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Abstract

Constructive (intuitionist, anti-realist) semantics has thus far been lacking
an adequate concept of truth in in�nity concerning factual (i.e., empirical, non-
mathematical) sentences.

One consequence of this problem is the dif�culty of incorporating inductive
reasoning in constructive semantics. It is not possible to formulate a notion for
probable truth in in�nity if there is no adequate notion of what truth in in�nity
is. One needs a notion of a constructive possible world based on sensory expe-
rience. Moreover, a constructive probability measure must be de�ned over these
constructively possible empirical worlds.

This study de�nes a particular kind of approach to the concept of truth in in�n-
ity for Rudolf Carnap's inductive logic. The new approach is based on truth in the
consecutive �nite domains of individuals. This concept will be given a construc-
tive interpretation. What can be veri�ably said about an empirical statement with
respect to this concept of truth, will be explained, for which purpose a constructive
notion of epistemic probability will be introduced.

The aim of this study is also to improve Carnap's inductive logic. The study
addresses the problem of justifying the use of an "inductivist" method in Carnap's
λ-continuum. A correction rule for adjusting the inductive method itself in the
course of obtaining evidence will be introduced. Together with the constructive
interpretation of probability, the correction rule yields positive prior probabilities
for universal generalizations in in�nite domains.
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Chapter 1

Introduction

1.1 General rationale and background
Constructive (intuitionist, antirealist) semantics has thus far lacked an adequate
concept of truth in in�nity concerning factual (i.e., empirical, non-mathematical)
sentences. The problem has been how to de�ne a veri�cation condition for sen-
tences that can neither be mathematically proved nor veri�ed by observations, like
universal generalizations in in�nite non-mathematical domains of individuals?

One consequence of this problem is the dif�culty to incorporate inductive rea-
soning in constructive semantics. For probabilistic induction concerning state-
ments in an in�nite domain of individuals, one needs a concept of probability in
in�nity � and the probability of a statement in in�nity is usually explained as the
probability of its truth in in�nity.

Benenson (1984), for example, provides arguments showing why constructive
probability should necessarily be epistemic probability. Without dwelling on this
discussion, the present study will simply be limited to epistemic probability.

Carnap's inductive logic, whose main reference is Carnap (1962), has lacked a
suf�cient explication of truth in in�nity. In inductive logic, probability in in�nity
is de�ned as the limit of probabilities in consecutive �nite cardinalities, which
means that the concept of truth involved in the de�nition of probability is truth in
a �nite domain of individuals. Hence, a precise connection between probability in
consecutive in�nite domains and any concept of truth in in�nity is missing from
the system.

This study de�nes a particular kind of approach to the concept of truth in
in�nity for Carnap's inductive logic. This new approach is based on truth in con-
secutive �nite domains of individuals. This concept will be given a constructive
interpretation, and what can be veri�ably said about an empirical statement with
respect to this concept of truth, will be explained. For this purpose a constructive
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notion of epistemic probability will be introduced.
Now the reader is entitled to ask why Carnap's inductive logic should be con-

sidered as the basic framework for de�ning constructive probabilities. Why not
some other approach to de�ning epistemic probability? It is not enough to state
that the study will be about a constructive variant of Carnap's inductive logic. One
must offer some justi�cation for building such a variant.

An important justi�cation is the restriction on truth and probability of a for-
mal language. Carnap's state description semantics is the best-known example
of trying to de�ne the concept of probability by using logical semantics. This
approach is intuitively appealing, since the models of the semantics (state de-
scriptions in Carnap's system) de�ne the space of possibilities. Probability is
most naturally de�ned by assigning probabilities to these entities representing the
possible worlds.

Constructively possible worlds can be given as sequences of observations or
data streams. One can represent such a data stream with binary sequences which
possibly have no upper limit, each digit corresponding to an atomic fact. This
is precisely what Carnap's state descriptions must be constructively: sequences
of atomic facts, obtained one after another. Hence, the philosophy behind this
de�nition of a constructive possible world is closely connected to Carnap's state
descriptions. The constructive de�nitions can be built on the already existing
system of state description semantics.

Still another advantage of Carnap's inductive logic is that its concept of prob-
ability is de�ned by using consecutive �nite logical spaces without in�nite se-
quences or logical spaces. This �nitistic concept of probability is a suitable basis
for de�ning probabilities for observation sequences. Carnap's inductive logic is
thus in this sense based on constructively solid foundations. Moreover, there is a
connection between the problem of induction and constructive semantics which
makes formalization with �nite logical spaces even more appropriate (see section
1.2 below).

Using Carnap's inductive logic as a background framework also means lim-
iting the scope of the study. Carnap's systems in 1962 and 1952 are de�ned for
monadic languages only. Many of the �ndings apply only to the variant of Car-
nap's inductive logic developed in this study. On the other hand, this is not neces-
sarily a drawback, since the objective has been to provide merely an explication
of constructive factual truth and constructive epistemic probability, not to address
the whole �eld of research concerning these notions. Moreover, the study brings
insight into the general problems behind de�ning an epistemic concept of prob-
ability and constructive probability. One can even establish a certain connection
between these two concepts.

This study does not work within any particular mathematical system of con-
structive semantics. One system that may be conceivable for such a purpose is Per
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Martin-Löf's constructive type theory and its nonstandard extension. However,
it has become interesting enough to discuss the general philosophy of empiri-
cal constructive truth and probability and to sketch how the concepts could be
worked into Carnap's state description semantics. The philosophical background
to explaining these concepts had to be discussed in any case to justify the use
of a particular mathematical system. It is a matter for a further study to actually
construct a complete semantics on the basis of the preliminary discussions of this
study.

The concept of constructivism which is used in this study is thus not de�ned in
any formal system or using the meaning explanations pertaining to such a system.
A precise concept of constructive empirical truth and probability would be impos-
sible to start with since the very objective of the study is to de�ne such concepts.
However, the general principle of constructive truth is respected: there is no truth
beyond knowledge (veri�cation) and a sentence can only be true if it is knowable
(veri�able). Constructive functions are assumed to be effectively computable �
although a reference to a more relaxed concept of the Markov-constructive limit
is provided in chapter 5. Finally, the standard BHK interpretation introduced by
Heyting (1934) for logical constants will be used unless stated otherwise.

The previous literature on the probability of constructive empirical truth is
slight. Benenson (1984) discusses an anti-realist (constructive) interpretation of
probability statements themselves (i.e., not sentences to which probabilities are
assigned) and holds that "logical relation theories" by Carnap (1962) and Keynes
(1921) (i.e., inductive logic) provide a foundation for an anti-realist explanation of
the meaning of probability statements. Benenson maintains that a realist account
of probabilities is tantamount to an empirical account (for example, frequentist or
propensity) (cf. Benenson 1984, p. 59), of which we have only probable knowl-
edge, and thus we are in a regress in trying to explain the meaning of probability.

Non-empirical probabilities are, however, not necessarily anti-realist since
they may exist without being known. As Grove, Halpern & Koller (1996, pp.
252-253, 264-273) have pointed out extending the results of Liogon'kii (1969),
inductive probabilities are in general undecidable, but it is true that the logical
relation theory enables the de�nition of an anti-realist concept of probability. At
the same time it is possible to defend the view that the logical relations theory is
objective as contrasted to the subjective interpretation of probability, which might
also be eligible for an anti-realist interpretation.

With respect to constructive empirical truth, Benenson (1984, pp. 57-58) relies
on Dummett's remark about the assertibility conditions for empirical statements.
According to Dummett, for empirical statements "there will, for the anti-realist,
be no question of there being anything in virtue of which they are (de�nitively)
true, but only of things in virtue of which they are probably true". Dummett
continues: "[...] and there is nothing to prevent a statement being so used that
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we do not treat anything as conclusively verifying it." Dummett (1978, p. 162.)
Dummett thus holds that no concept of conclusive veri�cation is even needed for
empirical statements. The key for Dummett is justi�ed assertibility; a sentence
may be justi�ably asserted if evidence supporting it is obtained. This evidence
does not have to verify the sentence conclusively, which entails that a justi�ably
assertible sentence may in the future not be justi�ably assertible. On this view,
the meaning of a sentence is de�ned by the condition of its justi�able assertibility,
not veri�ability.

Justi�ed assertibility is connected with the notion of probability. Evidence
increases the probability of a statement. A statement having at least a certain
probability can be considered as justi�ably assertible.

Evidence can thus make a sentence more probable and thus justi�ably assert-
ible, but what probability means must still be explained. Clearly the probability
of a sentence means probability that the sentence holds, i.e., is true. If the domain
of discourse � the domain of individuals � is in�nite, then truth here means truth
in in�nity. Hence, it seems dif�cult to do away with the concept of constructive
truth in in�nity by replacing veri�ability with justi�ed assertibility. What "prob-
ably true" means in constructive terms needs to be de�ned, but Benenson (1984)
does not provide an account of this.

1.2 Inductive inference
The aim of this study is also to improve Carnap's inductive logic, solving some
of its traditional problems. The use of Carnap's inductive logic as the framework
for the discussion about constructive probability needs some justi�cation of the
system of inductive logic itself � inductive logic must be a feasible explication of
probability. To contest the criticism it has faced during the past decades, some
arguments in favour of inductive logic will be provided in this study.

Scienti�c hypotheses are conventionally formalized as universally quanti�ed
sentences, universal generalizations. Because con�rmation by evidence is a cru-
cial question when dealing with scienti�c hypotheses, con�rmation of universal
generalizations is an important issue in the philosophy of science.

The problem arising from this can be formulated as follows.
Since there can be only a �nite number of observations in a �nite time, it is not

possible to verify a universal generalization by means of evidence in an in�nite
domain of individuals. Hence, at best one can assign a positive probability to the
universal generalization. The evidence e can con�rm universal generalization h in
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the sense of increasing its probability when the rule of conditional probabilities

P (h|e) =
P (h&e)
P (e)

(1.1)

is applied.
However, one should de�ne a probability function by which this con�rmation

actually takes place, which has turned out to be dif�cult. Carnap's (1962) seman-
tics of logical probability is an attempt to formalize the concept of probability by
using the formal language of predicate logic, but it is well-known that in Carnap's
system as well as in its generalization in Carnap (1952), universally quanti�ed
sentences are assigned a zero prior probability, which means that they must, ac-
cording to the conditionalization rule above, be assigned zero probability under
any �nite body of evidence.

Scienti�c inference belongs to a more general framework of non-deductive or
inductive inference, in which the conclusion does not follow logically from the
premises. This type of inference is troubled by the problem of induction, which
challenges any inference from past observations to future ones. For example, if
one has observed n black crows, the inductive skepticism denies that one would be
justi�ed in concluding that the n+ 1'th crow is also black. Expressed in terms of
probabilistic induction, inductive skepticism says that the probability of n + 1'th
crow's being black is not increased by evidence consisting of n black crows.

Consider now the inductive inference from the premiss that one has observed n
black crows to the conclusion that n+ 1'th crow is also black. Moreover, suppose
that this kind of simple enumerative induction is a valid form of inference. It
follows that all the n + 1 crows are black, from which one can conclude that
n+ 2'th crow is also black, and so on.

In fact, it follows that all crows are black. Consider the meaning explanation
of a universal quanti�cation: (∀x)P (x) is true iff P (c) is true for an arbitrary c.
Hence, a valid inductive inference from a �nite number of observations to the next
instance entails the validity of the inference from these observations to a general
law.

A conclusion about a single instance is at least possible to verify (or falsify)
by observation when time passes. In a semantics based on veri�cation conditions,
it is possible to say that a single-instance conclusion of an inductive inference is
indirectly veri�ed by induction, meaning that the inference in question concludes
that the instance will be directly observable. Moreover, if an arbitrary instance
is directly observable, the corresponding universal law is veri�ed and thus con-
structively true. Hence, if simple enumerative induction was a sound method of
inference, empirical universal generalizations would have a method of veri�cation
in in�nite domains of individuals; in other words, empirical universal generaliza-
tions would have a constructive meaning explanation. The rejection of the validity
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of enumerative inductive inference thus has a central role in the problem of con-
structive semantics for empirical statements.

However, probabilistic induction attributing the probability p to the next in-
stance does not provide a veri�cation method for universal generalizations in the
same fashion as above. The assumption that probabilistic induction is a valid form
of inference does not solve the problem of constructive empirical truth in in�nite
domains.

The cardinality of the domain of individuals also links constructive seman-
tics to the problem of induction. In the context of inductive inference, since a
�nite number of positive instances does not in general justify a universal law, a �-
nite number of observed individuals does certainly not justify the conclusion that
there is an in�nite number of individuals in the domain. In fact, this conclusion
can never be veri�ed by observation. Hence, a way to formalize the domain of
individuals which leaves open the possibility for the domain to be either �nite or
in�nite would be appropriate both from the point of view of constructive seman-
tics and inductive inference. This is one reason for implementing the semantics of
this study on the basis of �nite structures.

As was stated above, making an inductive inference concerning a thus far
unobserved single individual is a different issue from assigning universal quan-
ti�cations a positive prior probability. Even if observed black crows increase the
probability that the next crow is black, universal generalizations may still have a
zero prior probability.

On the other hand, if observed black crows do not increase the probability of
the next crow's being black, the probability of an in�nite series of black crows is
obviously zero. Hence, at least some inductive non-skepticism is a prerequisite
for positive probabilities of universal generalizations.

The way to tackle the zero prior problem of universal generalizations is ob-
tained through an attempt to solve the problem of induction (see below).

This study addresses the problem of justifying the use of an "inductivist"
method in Carnap's λ-continuum, which corresponds to the problem of induction
in Carnap's framework. There is a particular method in the λ-continuum which
does not allow of probabilistic induction. So far there has been no way of exclud-
ing such a non-inductivist method without inductive presumptions, i.e., without
assuming in one way or another that induction is a valid method of inference.

The suggestion of introducing second-order probabilities (i.e., probabilities of
inductive methods) for choosing among the inductive methods is rejected. Instead,
a correction rule of adjusting the inductive method itself in the course of obtaining
evidence will be introduced.

Together with the constructive interpretation of probability the correction rule
yields positive prior probabilities for universal generalizations in in�nite domains.
This provides a solution to the classical zero prior problem referred to above.
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Moreover, since it will be established that the probability of a sentence in an in�-
nite domain actually corresponds to a particular notion of truth in in�nity, univer-
sal generalizations can receive non-zero asymptotic probabilities while the prob-
ability in question is related to a notion of truth.

1.3 Outline of the study
The study is divided into the following chapters.

Chapter 2 of the study discusses what kinds of entities constructive empirical
worlds are and how they can be linguistically denoted. The latter question also
pertains to the problem of representing all the logically possible state descriptions.

Chapter 3 discusses the constructive formulation of the concept of epistemic
probability. Special attention is devoted to the problem of formalizing probability
and truth in the case of in�nitary state descriptions.

Chapter 5 elaborates further the problems of constructive factual truth in in-
�nity and probability. An attempt to resolve the problems by introducing the con-
cepts of extendible truth and extendible probability is presented. Various prop-
erties of extendible truth and probability are displayed and proved. Section 5.3
brings up another hitherto overlooked problem related to asymptotic probabili-
ties, which can also be solved by extendible truth.

Chapter 6 brings up the key problem of the logical interpretation of probabili-
ties, namely their dependence on the choice of the prior distribution (i.e., inductive
method in Carnap's terminology). Attempts to deal with the issue by introducing
probabilities at the meta-level are scrutinized. The main outcome of the chapter
is that second order probabilities do not provide any real help in justifying proba-
bilistic inductive reasoning.

The arbitrariness in choosing the inductive method is met by a non-Bayesian
way of adjusting the inductive method according to incoming evidence (ch. 7).

Section 7.2 �rst discusses a criterion based on the concept of immodesty for
choosing among the inductive methods based on the performance of the method as
evaluated by itself. It seems that this immodesty criterion is too liberal. In section
7.3, Carnap's own measure of success of an inductive method, the mean square
error, is elaborated. Section 7.4 presents a non-Bayesian rule for updating the
inductive methods, the correction rule Θ. The performance of the correction rule
is evaluated in section 7.5. It is argued that a more general form of the correction
rule performs in a particular sense better than a given non-optimum method of the
λ-continuum.

The chapter concludes with a proof that a particular uniform and endless
stream of evidence sentences has a positive limit probability when the correction
rule is applied. This is one step toward establishing a positive probability for uni-
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versal generalizations, which has been one of the problematic issues in inductive
logic.

Finally, chapter 8 discusses the consequences which the adoption of a cor-
rection rule has in constructive semantics. It is argued that, inter alia, the prior
probability of a particular universal generalization must be the same as the proba-
bility of the corresponding stream of evidence statements, in other words positive.
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Chapter 2

In�nite possible worlds

This chapter discusses the concept of a possible world and the totality of possible
worlds. The problem to be solved is the constructive formal representation of
these concepts.

Constructive meaning of a sentence is usually de�ned by its veri�cation condi-
tions. If this is the case, a statement cannot be constructively justi�ed if it cannot
be veri�ed. This does not mean that only actually veri�able sentences are con-
structively meaningful; constructive semantics is not tantamount to veri�cation-
ism. If no conditions can be given under the ful�lment of which the sentence S
would be veri�ed, however, S is not constructively meaningful.

Talking about the empirical world, i.e., the world of sensory experience where
factual statements apply, raises a particular constructive dif�culty. In general,
this empirical world is considered to be inexhaustible, i.e., there are in�nitely
many atomic facts to be learned about it. Most general statements concerning
the empirical world are beyond de�nitive veri�cation, including scienti�c gen-
eralizations. Under the meaning condition which is based on veri�ability, these
statements seem to be meaningless.

However, before going into discussion about constructive semantics for state-
ments about the empirical world, it is in order to provide analysis of the empirical
world. There is not just one possible empirical world � surely there are several
ways things might be in the actual world. In philosophy, there is a special disci-
pline called possible worlds semantics, which discusses what kinds of entity pos-
sible worlds are. For this study, it is enough to assume that possible worlds consist
of all possible ways to describe states of affairs in the language at our disposal.
The language in question will be that of �rst-order logic with identity and func-
tions. In Rudolf Carnap's semantics (1937, 1946, 1947, 1962, 1952), linguistic
representations of different possible states of affairs are called state descriptions
(see section 2.1 below).

As mentioned above, the empirical world (and thus all the possible ways that
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the empirical world might be) is in�nite, not necessarily in the sense of being
spatially in�nitely extensive but inexhaustible. Assuming that there are parts of a
possible world which transcend human cognitive capabilities, i.e., which are not
knowable even in principle, is constructively problematic. In mathematics, this
problem is overcome by appeal to potentially in�nite structures, like the set of
natural numbers, where the in�nity of the structure is a consequence of a �nitely
cognizable rule. By knowing the structure of the set of natural numbers, one can
always generate another natural number. There is no upper bound for the size of
the set of natural numbers.

The properties of an in�nite mathematical structure are coded in its de�nition.
Let us consider the expression `w is an empirical world'. It will be shown below
that expressions in a �nitary language (i.e., a language whose expressions are
�nite) do not suf�ce to represent the totality of in�nite possible worlds even in the
most elementary cases. In other words, the cardinality of the set of expressions in
�nitary language is less than that of the set of possible worlds.

All possible empirical worlds thus cannot be represented in a �nitary language.
On the other hand, it would be dramatic if adopting constructive semantics en-
tailed that the possible empirical worlds must be �nite simply because linguistic
identi�cation of some in�nite possible worlds is not feasible. The constructively
justi�ed existence of an entity does not necessarily mean that all its features must
be representable in a language. In this sense, constructive semantics is a way of
thinking about the meaning of linguistic expressions, but it does not say whether
something exists or does not exist outside language.

In constructive semantics one must be able to give the veri�cation condition
for the claim that `w is an empirical world'. If w is in�nite and cannot be grasped
in its totality, there must be some other way of guaranteeing that it is a possible
world; for example, from the way it is given to us.

Because there are insuf�cient expressions for all possible worlds, the state-
ment `w is an empirical world' is not expressible of all possible worlds. Hence,
there seem to be possible worlds which cannot be denoted by a linguistic ex-
pression. On the other hand, if it is claimed that something exists, the assertion
claiming this must have a veri�cation condition in order to be meaningful.

Saying that an entity exists which cannot be talked about is a constructively
meaningful assertion provided that there is a veri�cation condition for it. Possible
worlds, in the sense of alternative ways for the actual world to be, can also exist
constructively even if there are not enough names for them, because the totality of
possible worlds can be constructively given in such a way that it is clear that there
are no names for all elements in the totality. This will become evident in what
follows.
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2.1 Cantor space
Let us start by assuming that the logically possible domains have denumerable
cardinalities.1 Hence, the space of possible worlds must include worlds with car-
dinality |N | = ℵ0.

State descriptions in Rudolf Carnap's state description semantics are collec-
tions of atomic sentences and their negations. Every state description contains
either the sentence itself or its negation for each atomic sentence of the language.
For example, if the language contains the predicates P (x) and Q(x) and the indi-
vidual constant a, the possible state descriptions of the language are

{P (a), Q(a)}, {P (a),¬Q(a)}, {¬P (a), Q(a)}, {¬P (a),¬Q(a)}. (2.1)

The various state descriptions of the language are regarded as linguistic descrip-
tions of possible states of affairs or possible worlds.

A Carnapian semantics contains at most a denumerable number of individual
constants. Hence, the greatest cardinality among the domains of individuals of
state descriptions is ℵ0, i.e., that of N .

For the discussions in this study, it will be convenient to represent an in�-
nite state description by an in�nite binary sequence of 0:s and 1:s in which every
atomic sentence is represented by a corresponding term. For example, if the lan-
guage contains only one monadic primitive predicate A(x), the atomic sentences
corresponding to �rst three terms of the binary sequence would beA(1), A(2) and
A(3). If the value of a term is 0, the corresponding atomic sentence is false; if
the value is 1, the atomic sentence is true. This representation captures the idea of
state descriptions as observation processes proceeding in time.

For �rst-order languages with more predicates and of higher arities, it is possi-
ble to use a set of binary sequences or even represent these predicates by a single
binary sequence (see p. 51 below).

The (classical) set of binary sequences Ω is called the Cantor space. The
constructive version of the Cantor space will be introduced in section 2.3 below.

However, although the Cantor space is said to consist of binary sequences
representing all the logically possible state descriptions, this cannot literally be
the case since there are not enough linguistic signs to exhaust the whole of the
Cantor space, as shown below.

The set of binary sequences is nondenumerably in�nite, i.e., it is not only
in�nite but has the cardinality of the continuum. For each term of the sequence,
there are two possibilities, 0 and 1, which means that there are

2ℵ0 (|N | = ℵ0) (2.2)
1This assumption can be justi�ed by the Löwenheim-Skolem theorem: all satis�able sentences

must be satis�able in a denumerable domain.
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possibilities of assigning truth values to atomic sentences in a countably in�nite
set of individual constants. Hence, the set of state descriptions must be uncount-
able, i.e., its cardinality is that of the continuum.

Consider an expression (e.g. a function f : N → {0, 1}) assigning each term
of the sequence a value 0 or 1) which denotes an in�nite sequence of 0's and 1's.
Since the set of expressions is denumerable, there can be only denumerably many
state descriptions in the literal sense of the word. Hence, most of the elements
in the Cantor space cannot be state descriptions in the literal sense of the word.
This raises the question of whether the Cantor space of sequences is entitled to be
called the space of state descriptions. After all, state description in Carnap's sense
is a linguistic expression.

States of affairs can exist classically even if they are not denoted by linguistic
expressions. The term "state description" can be used �guratively about states of
affairs whose atomic parts can be described by individuals and predicates of the
language in question. It is possible at least in principle to produce an answer to
the question of whether an arbitrary atomic sentence is true or false in a given
state description, although it is clear that no �nite number of answers to such
questions can distinguish a state description from an uncountable number of other
state descriptions.2

2.2 Logical possibility
Can the continuum of state descriptions (see above) be dispensed with in formal-
izing the notion of logical possibility? In other words, is representing possible
worlds by linguistic expressions enough for their adequate logical treatment after
all?

Should this be the case, one would not have to de�ne a notion of truth for a
continuum of state descriptions, which in the case of constructive truth may prove
to be impossible given the lack of suf�cient expressions identifying the worlds. If
one needs to de�ne truth only for denumerably many state descriptions to capture
logical possibility, the task of de�ning constructive truth becomes considerably
easier.

Logical possibility plays an important role in inductive logic. It is essential to
be able to represent all the logical possibilities for a sentence to be constructively
true. There is no obvious connection between being able to represent logical pos-
sibilities and assigning probability measures to sentences, but such a connection
will be established in chapter 3.

2A solution to linguistic representation problem is provided by Bricker (1987, p. 343) by
adding an in�nitary sentential conjunction to the language. However, such solutions are construc-
tively problematic.
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2.2.1 Re-interpretable names
The �rst attempt to do away with the continuum in de�ning logical possibility
goes as follows.

Even though there are not enough names for all possible worlds, there might be
a possible name for each world through the re-interpretation of names. Consider
the expression wa as referring to a certain possible world w′. In order to re�x the
reference, one would have to say that wa refers to w′′ instead of w′. However, for
this the worlds must already have names (w′ and w′′ in this case), which leads to
the recurrence of the original problem.

This also applies to valuation functions when they are interpreted as entities
representable by linguistic expressions. Using just one name to refer to several
worlds by changing the valuation function means, in fact, that one generates sev-
eral names. For example, the valuations v1(w) and v2(w) can refer to two different
worlds, but they are themselves two different expressions at the same time.

Hence, by reinterpreting the names one cannot increase the number of poten-
tial referents from ℵ0 to a continuum.

2.2.2 Denumerable logical space
Another possibility is suggested by the following reasoning.

Suppose there is a meta-level language LM consisting of expressions referring
to state descriptions which, for all possible sentences, contains a single state de-
scription which makes the sentence true. LM must be denumerable because there
are only denumerably many sentences. One would not have to refer to the totality
of logically possible worlds since one could represent the logical modalities by
the expressions in LM . A sentence is possible if it has a corresponding expression
in LM .

The �rst question that arises here is whether all the state descriptions required
can be referred to by expressions. A sentence can be (classically) possible with-
out an explicit reference to a truth-maker (i.e., a particular state description in
which the sentence holds). It might be even the case that some truth-makers which
are needed to provide the logical possibilities cannot be expressed linguistically.
Hence, it is not clear without further investigations whether a set like LM is feasi-
ble in classical semantics.

In Carnap's semantics, the sentence S is necessary, N(S), if and only if it is
logically true, i.e. holds in all possible state descriptions. S is possible, �(S) iff
∼ N(∼ S) is true (cf. Carnap 1947, pp. 174-175).

In classical semantics, this means that a sentence is possible if and only if
it holds in at least one state description. In constructive semantics, ∼ N(∼ S)
does not entail that S does this. The constructive meaning of ∼ N(∼ S) is that
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the assumption that S is false in all state descriptions leads to contradiction, but
∼ N(∼ S) does not contain a reference to a particular state description where S
veri�ably holds.

Hence, �(S) can be constructively de�ned either as ∼ N(∼ S) or as saying
that S holds at least in one state description.

Assume that the last one of these de�nitions is chosen for �, i.e., � is de�ned
by reference to a particular state description, and is thus a stronger notion of pos-
sibility than ∼ N(∼ S). It can then be proved that if ∼ N(∼ S) holds, ∼ �(S)
cannot hold, which can be seen below.

Observe that N and � can be treated like universal and existential quanti�ers
over the Cantor space of state descriptions. It is a theorem of intuitionistic predi-
cate logic that

∼ (∃x)P (x)⇔ (∀x) ∼ P (x), (2.3)

which translates into

∼ �(S)⇔ N(∼ S). (2.4)

Assume that∼ �(S) holds. Then N(∼ S) holds which, together with∼ N(∼ S),
yields a contradiction. Hence, ∼ �(S) cannot hold.

This means that the assumption that there is no state description through which
S can be proved leads to a contradiction with the assumption∼ N(∼ S). Because
of this, even if only the weaker notion of possibility ∼ N(∼ S) can be proved,
there are consequences for the stronger notion with � as well. The assumption that
there is no expression for a state description in which S is true would mean that
�(S) cannot be constructively proved, i.e., ∼ �(S) would be constructively true.
But this is impossible if ∼ N(∼ S) is constructively true; hence the assumption
that there is no expression for a state description in which S is true is contradictory.
This means that even possibility in the weaker sense of ∼ N(∼ S) cannot do
without an expression for such a state description where S is true.

The possibility of a sentence being claimed to be true in a state description
without even the possibility of providing a denotation for the truth-maker is not
constructive possibility. A sentence is constructively possible in state description
semantics only if it can be proved in some state description, and it is not possible to
prove this without being able to say which state description we are talking about.
Since there can be only a denumerable number of identi�able state descriptions,
all constructive logical possibilities can be represented by a denumerable number
of identi�able state descriptions.

Now the question is how to select the relevant state descriptions to be included
inLM . This problem will be analysed in connection with the concept of extendible
probability in chapter 5.
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2.3 Constructive logical space
In constructive mathematics, the classical Cantor space can be replaced by a con-
structive spread of lawless binary sequences.

Lawless sequences are special cases of the more general concept of a choice
sequence. Choice sequences � as formulated by Brouwer � consist of consecutive
and in�nitely proceeding choices of natural numbers by an idealized epistemic
agent. This epistemic agent is sometimes referred to as an idealized mathemati-
cian who can complete any �nite number of choices but is not capable of making
an in�nite number of choices. However, it is not possible here to dwell on the
discussion concerning the ontological status of such an agent.

The agent chooses �rst number n1, for example, then n2 etc. without an upper
bound. The spread is the totality of the sequences constructed in such a way, i.e.,
by choosing a number from the set of natural numbers at each stage.

Since choice sequences come into existence term by term in the course of
time, the continuum of choice sequences exists only potentially, not actually. This
is the essential difference between the spread of binary choice sequences and the
classical interpretation of the Cantor space. In a sense there are non-denumerably
many possibilities to implement a lawless sequence construction process, although
no such possibility can ever actually be �nished.

The properties of choice sequences can be determined either by knowing a rule
that effectively outputs a value for a given position or knowing a �nite approxima-
tion of the sequence. There is a one-to-one correspondence between the setN and
the rule-determined or lawlike in�nite sequence 〈0, 1, 2, ...〉. The n'th term of the
sequence can be computed by using the rule of adding one to the n− 1'th term.

A lawless sequence is one whose terms are not governed by any restriction
(other than the a priori restriction for the terms to be of the speci�ed type, e.g. nat-
ural numbers); such a sequence is generated (and identi�ed) by a process involv-
ing repeated arbitrary selection of one term after another. A partly free sequence
is one in which some, but not total restriction may be imposed upon choices of
terms. (Cf. Dummett 1977, p. 418, 423; Troelstra 1977, p. 12.)

The principle of open data states that the truth of any statement made about a
lawless sequence can depend only upon some initial segment of it:

ϕ(ξ)→ ∃x∀η(ξx = ηx→ ϕ(η)) (2.5)

where ξx = 〈ξ(0), ξ(1), ..., ξ(x− 1)〉, i.e., the initial segment of length x of ξ. In
words: if ϕ holds for the lawless sequence ξ then there is an initial segment of ξ
such that all lawless continuations of this sequence also satisfy ϕ (cf. van Dalen
1986, p. 313).3

3Limitation to lawless continuations is not essential � the quanti�cation is just supposed to
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The principle can be justi�ed as follows: since ϕ(ξ) is established after a
�nite number of values of ξ have been chosen, because at any time that is all
the available information on ξ there is, the continuation of this particular initial
segment is irrelevant; i.e., all continuations also have the property ϕ (op. cit., pp.
313-14).

One can use the same framework for analysing all types of choice sequence
because they can be considered to represent different readings on the same scale.
At one end of this scale there are the lawless sequences with no restrictions at all
concerning the selection of terms, and at the other law-like sequences with total
restrictions. One associates a spread law with each spread, which, when applied
to any �nite initial segment, determines whether or not the segment is admissible
to the spread. At one extreme, the restriction set up by the spread law may be
completely empty, which means that the sequence is a lawless one. At the other
extreme, the restriction may fully determine the terms; in this case the result is a
law-like sequence. (Cf. Dummett 1977, pp. 65-66, 423.)

2.4 Formalizing choice sequences
Let us consider the representation of choice sequences in a formal language.
Would the formalization of choice sequences provide a solution to the problem
of representing the totality of possible worlds?

In formal languages, variables usually range over sets or classes of objects.
Permitting substitution of terms referring to choice sequences requires that the
terms qualify as elements of sets over which the variables range.

Most constructive systems prescribe that an element of a set is effectively rec-
ognizable as being an element of that speci�c set. Let us see what this means for
choice sequences.

In dealing with binary lawless sequences, one never knows anything more
about such a sequence than what is given by a �nite approximation like
0(1(0(0(...)))). There can be only a denumerable number of such approximations,
but it is usually held that the choice sequences themselves constitute a continuum.

How can one then be sure that the given expression 0(1(0(0(...)))) really refers
to an element of the set of binary sequences? One knows that the embodied initial
segment is an initial segment of a binary sequence, but one is not in a position to
recognize that the three dots in fact refer to a valid continuation of the sequence;
one can only assume that they do so. In other words, one assumes that the three
dots also refer to a binary sequence. But this means that one assumes that the
object referred to by the dots is recognizable as being an element of the set of
apply to over lawless sequences.
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binary sequences. This, in turn, entails that the object referred to by dots must
be expressible by means of a �nite expression since otherwise it would not be
possible to recognize it to be an element or elements of the set of binary sequences.

The expression 0(1(0(0(...)))) is thus effectively recognizable as being an ele-
ment of the set of binary sequences only if "..." can be replaced by a �nite expres-
sion of the language. This expression can be a variable with an open possibility of
substituting �nite expressions; this is the method used for representing choice se-
quences in the interpretation of Per Martin-Löf's non-standard type theory (1990)
in standard constructive type theory. In other words, a choice sequence which
transcends our cognition is represented by an in�nite (but denumerable) number
of cognizable objects. However, the question remains whether truth in in�nity can
be captured by such an interpretation of lawless sequences.

2.5 Observation sequences
In this study, the main emphasis is on sensory observations, which are considered
to constitute the source of knowledge about the empirical world (i.e., the world
outside the mind of the observer).

The focus of this study is thus not on the choices of an idealized mathemati-
cian. It will be argued below that the representation of sequences in formal se-
mantics by means of approximations (see section 2.4 above) corresponds to the
ontological status of observation sequences which consist of the observations of
an idealized observer. The idealized observer is tentatively assumed to be ca-
pable of performing any �nite number of observations but can never complete a
series involving an in�nite number of observations. Under this assumption it is
feasible to consider a potentially in�nite observation sequence. In other words,
the observational setting itself could count as a veri�cation for the in�nity of the
sequence. It will be discussed in section 2.5.3 below whether this analogy with
choice sequences is justi�ed.

2.5.1 The potential in�nity of observation sequences
Postulating the existence of an in�nite entity (e.g., a possible world) would re-
quire justi�cation other than that which can be achieved by observation alone. It
is clear that no �nite number of observations can establish the existence of an in-
�nite sequence of observations. Moreover, since observations take place in time,
there can only be a �nite number of observations at any point of time even in the
classical sense (more about this in 2.5.2 below).

However, by analogy with lawless choice sequences, it is constructively pos-
sible to conceive of a lawless observation sequence which has no upper bound. In
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observation sequences, the terms are chosen by "nature" instead of the idealized
mathematician. This is different from lawless choice sequences. There the ide-
alized mental agent has complete control over choosing the consecutive terms of
the sequence, whereas in observation sequences the observer can merely observe
what is being presented to her. The lawlessness of the sequence can be interpreted
to mean that the working of the mechanism which generates the observations (i.e.,
"nature") is not known to the observer. It is not necessary to assume that the world
outside the observer is non-deterministic.

The identity of the observation sequence is given by reference to a particular
observational setting and to the point of time at which the observation sequence
is initiated. For example, consider the observational setting of me tossing a coin.
I start a new observation sequence today at 7.13 pm; this point of time and the
rule which de�nes what will be observed (tosses of a particular coin) then de�ne
a speci�ed observation sequence.

Observation sequences can, at least in their formal representation, be restricted
by a spread law governing the future observations, which makes the sequences
partly or completely deterministic.

The idealized mathematician of lawless choice sequences can decide at the
outset that the process of selecting new terms in the sequences will never stop.
Analogously, one can assume that the idealized observer of the observation se-
quence can construct an observational setting which will continue generating the
observable phenomena in�nitely. Consider, for instance, the coin-tossing exam-
ple, where I can decide at the outset that I will continue tossing the coins, in the
same way as I can decide that I will continue choosing new terms for my lawless
choice sequence. (However, the soundness of the assumption that I can decide
that my observations will continue forever is doubtful. The consequences of this
fact will be discussed on page 31 below.)

In the coin-tossing example, the continuity of the sequence is under my con-
trol, but the outcomes of the tosses are not. If the outcomes were also under my
direct control, the proper term for the sequence under consideration would be a
lawless choice sequence.

2.5.2 Law-like sequences
This section discusses the question of whether it is possible to obtain knowledge
about an in�nite observation sequence by using mathematical induction. This,
if possible at all, is certainly only possible for observation sequences which are
law-like. If mathematical induction is a feasible method for law-like observation
sequences, the fact that the sequence consists of observations does not alone make
certain knowledge about its future behaviour impossible.

If one can prove properties for in�nite sequences of observations in principle
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by using mathematical induction, it makes constructive sense to say that such a se-
quence satis�es a sentence which is not �nitely veri�able. This entails that �nitely
non-veri�able sentences could be constructively true in in�nite sequences whose
terms refer to observations (see below about the problems of this reference). This
feature will prove important in explaining constructive truth and probability by
means of extendible truth and probability in chapter 5.

One characteristic feature of lawless sequences (both choice sequences and
observation sequences), is that observations and choices take place in time. This
means that in the case of a series of observations, it is not possible to generate
another choice or observation of the series in the same sense as it is always possi-
ble to generate another term of a law-like sequence, when considered purely as a
mathematical object, by applying the law de�ning the sequence.

It is clear that observations are not instantaneous; they always take some pe-
riod of time to make. Assume that making an observation will take a period of
time denoted by δt. Assume, moreover, that at t0 one has made n observations. It
follows that there can be no more than n observations before t0 + δt.

This reasoning applies to any given point of time, which entails that no more
than a �nite series of observations can exist at any given time. Assume that this
series at t0 consists of n �rst observations of the unlimited sequence α. This
means that the question `what is the m'th term (m > n) in the sequence α?' has
to wait until it can be answered.

On the other hand, one can never generate all the terms of any in�nite se-
quence, not even if there is a deterministic function which could repeatedly be
applied to generate consecutive terms. Any actually performed application of the
function lasts for a non-negligible duration of time. Hence, most of the terms of a
law-like sequence exist only potentially.

Consider now an observation sequence which is governed by a deterministic
rule. The future observations belonging to such a sequence are �xed in advance.
Despite the difference in the generation mechanism of terms between law-like
observation sequences and law-like choice sequences, the truth conditions of sen-
tences in both are essentially similar. This can be shown by examining the inter-
pretation of the laws governing the terms of the sequences.

Consider the truth condition of the statement which expresses the governing
law w : N → {0, 1}:

The value of the n'th term in the sequence w is w(n). (2.6)

The constructive meaning of (2.6) is

It can be veri�ed that the value of the n'th term
in the sequence w is w(n).

(2.7)
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If (2.6) was interpreted as meaning that the value of the n'th term is w(n) inde-
pendently of any veri�cation one would make a classical claim.

In law-like choice sequences, the law governing the sequence w yields a term
value w(n) whenever applied to a natural number n. The truth condition (2.7)
thus holds by stipulation.

When the law represents a restriction on future observations, its interpretation
is that every observed term will have the value determined by the function w.
The method which is used to verify the values of certain terms in observation
sequences is simply observing the terms. Hence, (2.7) means that it can be veri�ed
by observation that the value of n is w(n), and this can take place only by waiting
until n is observed. In other words, the law does not say that the value of n is
w(n) independently of any observation, but that there is a method to verify that
n's value is w(n), namely by waiting and observing n. The law both says that n
will be observed and that by this observation its value can be veri�ed to be w(n).

To illustrate that the proof mechanism of mathematical induction is essentially
the same irrespective of the interpretation of the law-like sequence as an observa-
tion sequence, consider the following proof by mathematical induction.

Suppose 1 in a binary sequence is interpreted to denote heads and 0 tails. Let
us denote these by a monadic atomic predicate: heads isH and tails∼ H . Atomic
facts about the terms are expressed by atomic sentences; they are veri�ed by direct
observation. The standard veri�cation conditions of more complex sentences can
be de�ned in the spirit of Heyting (1934).

Consider then the veri�cation condition of a universal quanti�cation: (∀x)P (x)
is veri�ed if there is a method of verifying P (c) for an arbitrary c. In law-like se-
quences, the veri�cation of P for an arbitrary c is based on mathematical induction
which makes use of the law governing the sequence.

Now interpret x in (∀x)P (x) as ranging over the terms of some in�nite law-
like observation sequence w and P (x) is a compound predicate which consists of
occurrences of H(x) and logical connectives. If P (0) is true and if one can infer
P (x + 1) from P (x), by mathematical induction P (c) holds for any c and thus
(∀x)P (x) holds.

Although P (x) cannot be directly veri�able by observation since it is a com-
pound sentence, its veri�cation condition is based on observing whether H(x)
holds or not. The inductive step in the mathematical induction involves an as-
sumption concerning the veri�ability of P (x) which in turn involves an assump-
tion concerning the observability of H(x). Similarly, the truth of P (x+ 1) means
that it is veri�able on the basis of observing whether H(x+ 1) holds or not. Thus
the conclusion P (c) means that P is veri�able for an arbitrary c on the basis of
observing whether H(c) holds or not.

Even if the observation sequence was not veri�ably in�nite, the law governing
the sequence could imply that if there is another observation, it has a certain prop-
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erty. In this case, mathematical induction could establish a theorem of the form
'if c is observed, then P (c)' for all c.

2.5.3 Mind-independent in�nity
The domain of individuals must be de�ned somehow, i.e., what the objects one
studies are must be stated. For instance, in the research process consisting of
tossing a coin, the objects of study are the individual tosses.

The potential in�nity of an empirical research process is thought to be a fact
which is independent of the observer. In other words, it is not the observer who de-
cides that the domain of individuals of the research is in�nite. In the section above,
the in�nity of observation sequences was equated with the in�nity of choice se-
quences in the sense that it can be concluded from the observational setting that
will always be another term in the sequence.

However, the continuation of an observation sequence is not completely under
the control of the observer, as contrasted to a choice sequence, which is com-
pletely controlled by the idealized mathematician. The observer may have an
intention to toss a coin an inde�nite number of times, but since nature is not under
the observer's control, it cannot be known whether her effort will be successful.
Assuming that the observation process is under the control of the observer would
amount to assuming that the observer is omnipotent concerning a certain region
of space-time. While it is certainly conceivable that an idealized mathematician,
deprived of all human characteristics except existence in time and space, is in con-
trol of her own choices, it is not equally plausible that an idealized observer is in
control of the mechanism which produces the observations.

In the coin-tossing process, the domain of individuals, consisting of consec-
utive tosses, is generated by the observer. However, in many cases the observer
does not generate the individuals only makes observations about them. Consider
the countable in�nity of a constellation of stars (see, e.g., Fletcher 2002). If the
constellation of stars is taken as the domain of individuals, the proper constructive
semantics cannot be based on knowing that the domain is in�nite, because this
cannot be veri�ed by observation. Hence, it is even less justi�ed to talk about
in�nite observation sequences when the domain is not generated by the observer
than in the coin-tossing case.

2.5.4 Coordinate languages
Carnap introduces the term coordinate language, where the individual terms do
not designate objects but simply positions about which it is not stated whether
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there are objects to be found (1937, p. 141; 1947, p. 75; 1962, p. 62).4 The po-
sitions are denoted by expressions like o for the �rst position, o′ for the successor
position, then o′′ and so on.

It is constructively legitimate to adopt coordinate languages because one can
always generate a successor position by adding ′ to the expression referring to the
concerned position.

However, interpreting the individual terms in a coordinate language as refer-
ring to the empirical world is more problematic. For example, space-time cannot
be judged to be in�nite by a simple linguistic stipulation. In other words, to use a
coordinate language with in�nitely many positions to represent the coordinates in
physical space-time, one must assume that space-time is indeed in�nite.

If the coordinate language contains in�nitely many positions, it is not know-
able whether every position will correspond to an observation. Atomic sentences
which contain individual terms not referring to observations do not describe states
of affairs "out there" .

2.5.5 Possibly in�nite observation sequences
Instead of being potentially in�nite, observation sequences should rather be char-
acterized as possibly in�nite, in the sense that according to the knowledge of the
observer, the assumption that the sequence will not stop does not lead to a contra-
diction.

If it is not knowable that the observation sequence is in�nite, a formal struc-
ture which knowably has no upper limit would have no justi�cation in represent-
ing the sequence. It is thus appropriate to look for a representation of observation
sequences which is not based on the notion of potential in�nity. A formaliza-
tion which does not commit one to in�nite state descriptions would obviously
need to be based on expressions referring to �nite objects, as suggested in sec-
tion 2.4 above for other reasons, those pertaining to the constructive de�nition
for an element of a set. This kind of formalization can be achieved by means of
Martin-Löf's nonstandard type theory, for instance (cf. Holm 2003; Ranta 1992).
However, the notions of truth and probability can be discussed without a type-
theoretical interpretation of observation sequences. This topic will be elaborated
in 5.1.

4The physical space-time coordinates or temporal positions are given as examples of such a
language in Carnap (1937, p. 141) and Carnap (1962, p. 62), respectively.
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Chapter 3

Constructive epistemic probability

This chapter discusses various challenges and dif�culties in de�ning a construc-
tive notion of epistemic probability, in which probabilities are interpreted as justi-
�ed or rational degrees of belief. The question of whether the concept of in�nity
provided by sequences in a Cantor space is appropriate for a constructive formal-
ization of observation sequences is put aside for the moment.

3.1 The axioms of probability calculus
The probability calculus is conventionally de�ned using the following formal ma-
chinery, in which the space of elementary events is denoted by Ω and the event
space is some class F of subsets of Ω.

Consider an arbitrary non-empty space Ω. A class F of subsets of Ω is an
algebra if it contains Ω itself and is closed under the formation of complements
and �nite unions (cf. Billingsley 1995, p. 19-20):

(i) Ω ∈ F ,
(ii) A ∈ F implies Ac ∈ F ,
(iii) A,B ∈ F implies A ∪B ∈ F .

A σ-algebra is also closed under the formation of countable unions:

(iv) A1, A2, ... ∈ F implies A1 ∪ A2 ∪ ... ∈ F.

Condition (iv) naturally implies (iii).
One can assign probability measures to algebras (cf. Billingsley 1995, p. 22),

but they are usually de�ned on σ-algebras.
Any probability measure P : F → R, where R is the set of real numbers, is

usually required to ful�l the axioms introduced by Kolmogorov (1933):
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(i) P (A) ≥ 0 for all A ∈ F ,
(ii) P (Ω) = 1,
(iii) If Ai ∈ F (i = 1, 2, ...) and Ai ∩ Aj = ∅ (i 6= j),
then P (

⋃∞
k=1Ak) =

∑∞
k=1 P (Ak).

Axiom (iii) is called countable additivity or σ-additivity. Sometimes only a more
restricted condition of �nite additivity is required:

(iv) If A,B ∈ F and A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

The probability axioms do not provide an interpretation of the probability func-
tion, i.e., they do not tell how the values of P are calculated. The axioms only
outline the limiting conditions for the possible interpretations.

In constructive semantics, one must interpret axioms (i)-(iii) in a constructive
fashion. The truth requirement of the axioms means thus that they must be ver-
i�able in the proposed constructive semantics. However, it may be questioned
whether the axioms should also hold for a constructive probability function or
whether they should be amended somehow.1

A brief discussion concerning this issue is provided in section 3.2.4, where
one immediate argument against the axioms is refuted.

When it comes to distinguishing between the traditional interpretations of
probability, this study is focused on the epistemic interpretation, in which proba-
bility is formulated in terms of the degrees of rational belief of an epistemic agent.
A constructive interpretation for epistemic probabilities is sought for, with an ac-
companying argument that the proper interpretation for an epistemic probability
function must be constructive.

Carnap's state description semantics, which in its original form is classical
logical semantics, provides a logical framework for discussing the meaning of
probability. Carnap's explication is perhaps the best-known logical interpretation
of probability.

Logical interpretation of probability is a branch of epistemic probabilities. In
the logical interpretation, probabilities are assigned to propositions (or sentences
of �rst-order logic in Carnap's case). The state descriptions represent the space
of logical possibilities. Assigning probability values to sentences by means of
logical relations derived in the space of state descriptions is motivated by the pre-
sumption that one can arrive at objective or a priori probabilities in this way, thus
representing the objectively rational degrees of belief. For example, if a sentence
is true in half of the state descriptions, it can be assigned the probability 1

2 . On the
1Should this be the case, another approach would of course be to declare that constructive

probability is not possible since no such function can satisfy the axioms of probability.

34



other hand, by giving unequal weights to state descriptions, the probability value
can also be something else in this case.

However, when one moves to considering the in�nite logical space, problems
begin to occur. Carnap does not thoroughly relate the asymptotic limit interpreta-
tion (see section 4.1) of probability functions in an in�nite domain to the de�nition
of truth in an in�nite state description, which consists of an in�nite class of atomic
sentences and their negations. The asymptotic limit de�nition of probability deals
only with the �nite domains of individuals.

Moreover, the concept of constructive probability is a dif�cult one from the
outset. There is no interpretation of constructive probability which is based on
the notion of the constructive truth of a sentence in an in�nite state description
(or more generally, in an in�nite possible world or model). The problem is that
truth as provability or veri�ability has not seemed a useful concept in this con-
text because observation is usually not enough to prove general statements about
the empirical world. Those possible worlds whose formalization has made them
accessible to formal proof (for example, worlds whose atomic facts are given by
computable functions) occupy such a small part of the probability in in�nite do-
mains of individuals (in fact, in�nitesimally small) that provability in these worlds
does not, at the outset, seem very signi�cant with respect to probability consider-
ations.

The above issues will be discussed in section 4. The chapter begins with a
treatment of inductive logic as an explication of epistemic probability (section
3.2). In section 3.2.3, it is suggested that the constructive interpretation of in-
ductive logic is the most credible one, if inductive logic is to be an explication
of epistemic probability. Section 3.2.4 discusses the relation between the betting
interpretation of probability and constructive semantics.

3.2 Inductive logic and epistemic probability
Inductive logic or logical probability in the sense of Carnap (1962) could be con-
ceived of as a formal discipline in its own right, without being considered as an
interpretation (or to use more precise language, explication) of the more or less
vaguely de�ned concept of probability. In this view, inductive logic simply pro-
vides logico-mathematical methods of establishing the degree of entailment or,
using Carnap's terminology, degree of con�rmation between evidence and hy-
pothesis (the function to express this will be called the entailment function below,
denoted by Ent), but this degree is not claimed to be an explication of the con-
cept of probability. The degree of entailment would simply express the (weighted)
proportion of state descriptions in which the hypothesis is true of those state de-
scriptions where the evidence is true.
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However, the reason for inductive logic is its use as the foundation of proba-
bility. Inductive logic is often referred to as a logical interpretation of probability
or logical probability.

The epistemic motivation of probability in general is to provide degrees of
belief under uncertain circumstances, i.e., where deductive methods of obtaining
knowledge are not available.

Suppose that the following is considered to hold: from the fact that the degree
of entailment between h and e is p it follows that if somebody knows e and noth-
ing else, this person is justi�ed in believing in h to the degree p and also acting
according to this belief. This view is put forward for example in Carnap (1962),
p. 44. (Note that e can also be a logical truth.) Observe the words "nothing else"
here, which are required by the principle of total evidence (cf. Carnap 1962, p.
211). If one also believes something other than e which affects the probability of
h, one is certainly not justi�ed in believing in h to the degree p.

On this account, inductive logic is regarded as a foundation for rational induc-
tive inferences in the sense that it provides a method for determining justi�ed (or
rational) degrees of belief.

In what follows, the circumstances under which leap from the mathematical
degree of entailment to justi�ed degrees of belief is possible will be examined in
more detail.

3.2.1 Probability in in�nity as veri�ability
In this section some preliminary remarks will be made concerning the constructive
interpretation of Carnap's inductive logic and constructive probability in general.

In inductive logic, probabilities are established on the basis of the truth and
falsity of sentences in all the alternative possible worlds or state descriptions. For
the probability value of a sentence to be de�ned, it is not necessary to be able to
decide whether the sentence is true or false in the actual world, of which it is not
known which formal state description it corresponds to; it is only required that the
truth value of the sentence can be determined in the state descriptions belonging
to the logical space.

In constructive semantics, a sentence is true or false in a state description of
the logical space only if it is veri�ably true or veri�ably false.

Constructive logical probability as probability which is based on a constructive
notion of truth is determined by the (weighted) proportion of those state descrip-
tions in which the sentence is veri�able. The question of interpreting the proba-
bility function classically or constructively is independent of the interpretation of
truth. However, it is hardly possible to adopt constructive semantics for truth in the
object language and classical semantics for the probability function. For example,
in the Carnapian asymptotic limit approach to probability, the existence of a limit
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is expressed by an existential quanti�er. It is not a consistent semantic stance to
interpret the quanti�er classically if truth is otherwise interpreted constructively.

A question arises, however, when the meaning of constructive logical proba-
bility is compared to that of classical probability. The meaning of the classical
probability of S includes that it is the probability with which the actual world is
such that S is true. This is the reason for using probabilities in decision-making.
Constructively speaking, however, the actual world may be such that S is true in
it only if S is veri�able in it. The question is whether the actual world is one of
those state descriptions where S is veri�able � and the `is' in italics must here be
interpreted constructively.

The problem is that there is no link from the constructive degree of entailment
of S to the probability of the actual world turning out such that S is veri�ed. Even
if a certain ratio p of the state descriptions satisfy S constructively, this does not
mean that S is veri�able in the actual world with the probability p because it may
be the case that which state description corresponds to the actual world can never
be found out.

Classically speaking, the actual world may correspond to some state descrip-
tion where S is constructively true even if this is not known. In fact, S would then
be classically true in the actual world. In classical semantics, the link from the
degree of entailment of S to the probability of the actual world being such that S
is true in it does exist. It thus seems that classical probability is a better guide than
probability de�ned as veri�ability in the actual world, but then one must of course
accept classical truth for S. The probability of classical truth provides a different
kind of rational guide than the probability of constructive truth. The probability of
constructive truth is about coming to know S, whereas the probability of classical
truth has no relation to the state of knowledge of the cognitive agent.

The epistemic motivation of probability is the cases in which no certain knowl-
edge is available. Such cases include those in which the sentence cannot necessar-
ily be veri�ed or falsi�ed in a �nite time. If probability of (∀x)P (x) is about the
actual world turning out such that the S is true in it, then it is clear that (∀x)P (x)
must have zero probability. However, this limitation on the use of probability is
quite drastic, since it can no longer be used as epistemic guidance for situations
which go beyond �nite knowledge. Probability is reduced to situations in which
uncertainty currently prevails but which will eventually be decided. In section
4.1.3, it will be shown that this kind of notion of constructive probability can lead
to absurdity.

On the other hand, one may ask what kind of rational guide to life would
such probability be where the probability of S is not about the actual world being
such that S is true in it. Since the most obvious constructive interpretation of
"being such" � namely, veri�ability � does not work, one must come up with
some other constructive interpretation for the phrase or, alternatively, adhere to
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classical probability.
Even if S is not known to be true in the actual world, it may not be known to

be false either. In the absence of any knowledge, one has to act on the basis of
probabilities. In this case the probability is not about S being true in the world,
but is rather about the world being such that ∼ S will not be proved when new
data is discovered. Although this kind of non-falsi�ability is not an adequate basis
for probability, as will be shown by the remark concerning (4.12) on p. 52 below,
it is a step toward achieving a formulation of probability based on constructive
notions.

Since de�ning probability in terms of knowability or veri�ability in the actual
world is not a reasonable goal at all, the requirement that S should be veri�able in
those state descriptions which are considered as positive outcomes for S becomes
obsolete. If probability of S cannot, in any event, be interpreted as the probability
of true veri�ability of S (i.e., veri�ability in the actual world), there is little need to
de�ne probability on the basis of veri�ability in the alternative state descriptions.

This does not mean that S's is veri�ability in a given state descriptionw has no
signi�cance for rational decision-making. The point is that the signi�cant effect
can be attained with a less stringent observable property than the veri�ability of
S in w; namely, with a property which is close to the non-falsi�ability of S in w,
as mentioned above. The positive outcomes of S with respect to probability are to
be constructively de�ned, but not as veri�ability of the truth of S. This situation
will be elaborated in chapter 5, where a constructive formalization of probability
will be suggested.

3.2.2 Knowable degree of belief
A justi�ed degree of belief does not have to be actually maintained by any partic-
ular cognitive agent. However, only such a term can refer to a justi�ed degree of
belief which could, at least in principle, denote somebody's actual degree of be-
lief. Hence, a justi�ed degree of belief must in principle be knowable, otherwise
it could not be anyone's degree of belief.

This means that in Carnap's view, which was cited above on page 36, the
cognitive agent must also know, beside e, that the degree of entailment between e
and h is p.

A justi�ed degree of belief is obtained by using sound methods. The degree
of entailment is considered to be such a method. If the degree of entailment is
knowable, then a method is known which, when implemented, will yield the value
of the degree of entailment. By applying this method, one thus gets to know the
degree of entailment.

If the degree of belief is to be determined by the degree of entailment, knowing
the latter is a precondition for knowing the former. Hence, the only situations
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in which some degree of belief can be known are those in which the degree of
entailment is known or a method of obtaining it is known.

Degree of entailment is thus useful for determining degree of belief only if
it is knowable. This already suggests that perhaps only constructively justi�ed
degrees of entailment, in which the entailment relation is interpreted according to
constructive semantics, are useful or even sound in determining justi�ed degrees
of belief. The issue will be examined more closely in the next section.

If this view is accepted, statements of the form

Ent(h | e) = p, (3.1)

where Ent is a function from a pair of sentences to a value in the range [0, 1], are
true only if they are veri�able; Ent is interpreted as saying that e entails h with
the degree p. Furthermore, if follows from the constructive meaning explanations
for the quanti�ers going back to Heyting (1934) that the existentially quanti�ed
statement

(∃x)[Ent(h | e) = x], (3.2)

saying that there is a degree of entailment between e and h, means that (3.1) is
veri�able for some particular natural number p.

The existential quanti�cation comes to play an important role when dealing
with the asymptotic limit interpretation ofEnt in in�nite domains because asymp-
totic limit probabilities are not always decidable (see, e.g., Grove, Halpern &
Koller 1996). One can classically justify statements of the form

(∃x)(LimEnt(h | e) = x) (3.3)

without being able to specify a value for the limit, while in the constructive ap-
proach the limit exists only if it is knowable. If (3.3) is interpreted constructively,
it follows that

(∃x)(the justi�ed degree of belief=x), (3.4)

but not if (3.3) is interpreted classically. Hence, the question arises whether one
should adopt constructive semantics in dealing with justi�ed degrees of belief.

3.2.3 Constructive probability and justi�ed degrees of belief
Whether justi�ed degrees of belief suggested a constructive interpretation of prob-
ability, was discussed in the previous section, although no compelling argument
was offered. Most naturally constructive probability would also mean a construc-
tive interpretation of truth for the sentences of the object language. Talking about
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constructive probability (the provable probability statements) of classical truth
is certainly an odd, if not inconsistent combination. However, if the reason for
adopting constructive probability is simply the fact that it suits with degrees of
belief best, there is no obligation to adopt a more general constructive philosophy
or semantics (concerning the sentences of the object language, for example).

The classical probability of a sentence can exist even where the probability is
not known. If the classical probability of h is not known, then the justi�ed degree
of belief in h is not known. In this case, there is no justi�ed degree of belief of h
because a degree of belief must be known, but one could still consider the classical
probability of h as being interpreted as the justi�ed degree of belief of h whenever
this probability is known. The formalized probabilities would then be considered
as limiting conditions which the justi�ed degree of belief has to ful�l. If a degree
of belief is to be justi�ed, it must abide by the values given by the probability
function, but the function does not necessarily effectively yield the value in every
situation.

However, if there are probabilities which cannot be known, these probabil-
ities cannot be interpreted as rational degrees of belief. Maintaining that there
are classical probabilities is tantamount to explaining the notion of probability as
something other than a rational degree of belief.

Even if epistemic probabilities should be understood constructively, however,
must the notion of truth for the sentences of the object language be constructive
as well?

To analyse this question, consider the usual formula for conditional probabili-
ties:

P (h|e) =
P (h&e)
P (e)

(3.5)

If truth is interpreted classically, this de�nition says that h's classical truth has
a certain probability when e is classically true. To set the justi�ed degree of belief
according to (3.5), e must also be all the relevant evidence known to the agent (cf.
the principle of total evidence on p. 36 above).

To adjust the justi�ed degree of belief one thus requires known evidence, not
simply classically true evidence. If e is known and nothing else which is relevant
is known, one can set the justi�ed degree of belief in h according to (3.5).

Consider now the following. If e is known, the actual world must correspond
to a state description in which e is classically true, but then even more is true
about the actual world than that e is classically true � namely, that e is known to
be classically true.

If e is a �nitely decidable sentence, this distinction does not matter. Whenever
a decidable sentence is classically true, it can also be known to be true. However,
if e is not a decidable sentence, its knowability does not coincide with its classical
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truth, in which case, sentence e can be classically true even if it is not knowably
true.

Recall once again the principle of total evidence: in determining the justi�ed
degree of belief, one needs to take all the available evidence into account. If e is
known to be true, it is not simply classically true, but also knowably true. Hence,
the probability of h should not be updated with the probability of e's classical
truth, but with that of e's knowable truth. If one uses the probability of e's classical
truth, one does not take into account the fact that e is knowably true and thus
violates the principle of total evidence.

This suggests that to be consistent with this principle, one should apply con-
structive semantics in the object language when discussing the probability of truth
of h and e. Probabilities would thus be probabilities of constructive truth.

Gilbert Harman has discussed another line of reasoning which, he claims, both
leads to constructive semantics in the object language and calls into question the
validity of a particular theorem of probability calculus (see section 3.2.4 below).

3.2.4 Harman and betting interpretation
Harman (1983) raises a doubt concerning the validity of

P (A) + P (∼ A) = 1. (3.6)

Harman formulates his point in terms of the subjective or betting interpreta-
tion of probability, which is a branch of epistemic interpretation of probabilities
in terms of degrees of belief. In the betting interpretation, the probability of a
proposition is assumed to represent the odds one would require before betting for
or against the truth of the proposition.

Many betting quotients can be rational, but some are not. Some betting quo-
tients are not coherent in the sense that the bettor cannot possibly win. In the
betting interpretation, it is argued that a probability assessment cannot be rational
if it cannot be interpreted in terms of a coherent betting quotient.

For Carnap in 1962, logical probability meant a fair betting quotient (cf. Car-
nap 1962, pp. 165-167, 237). A logical probability can always be rephrased in
terms of a betting quotient. This is a stricter requirement than mere coherence:
Carnap seems to advocate the view that there is one rational betting quotient,
which is provided by degree of con�rmation. Nevertheless, the point here is that
according to Carnap, logical probability must also have a formulation in terms of
betting quotients.

Harman (1983, p. 242) argues that the betting interpretation of probability in
fact implies constructive semantics in the object language (Harman uses the term
intuitionism) since what settles a bet is not the truth or falsity of the proposition
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in question, but the discovery that the proposition is true or the discovery that it is
false. Since the basic doctrine of constructive semantics is precisely that truth and
falsity mean the same as discovery of truth and discovery of falsity, the betting
interpretation should adopt constructive semantics.

The fact that it cannot in general either be discovered that some fact obtains
or that it does not obtain means, according to Harman, that one should assign a
positive probability to the possibility that the issue is never settled. This implies,
he claims, that theorem (3.6), which is usually derivable (the preconditions for its
derivability will be discussed below) from the standard axioms of probability, is
not valid for subjective probabilities.

Harman does not, however, explicitly point out the fact that (3.6) is usually
considered to be derivable from the probability axioms; he merely refers to Field
(1977) for the assumption that any reasonable subjective conditional probability
function must satisfy it. The derivability from probability axioms makes the case
more serious. One must ask whether constructive semantics is in fact incompatible
with standard probability axioms.

Let us look more closely at how theorem (3.6) is derivable from the probability
axioms.

It follows from the additivity axiom that

P (A∨ ∼ A) = P (A) + P (∼ A). (3.7)

Let us assume that∼ A can be interpreted as being the complement ofA, i.e., that
∼ A covers the cases (elementary events / state descriptions) where A does not
hold:

∼ A = Ω \ A. (3.8)

Then either A or ∼ A always hold and thus

P (A∨ ∼ A) = P (Ω) = 1. (3.9)

Result (3.6) follows from (3.7) and (3.9).
The crucial assumption in the proof is (3.8), which is not an axiom of the

probability calculus. If this assumption is not accepted, (3.6) cannot be derived.
Harman (1983) can be interpreted as saying that assumption (3.8) cannot be

accepted in the subjective interpretation of probability, i.e., that there are some-
times cases (elementary events / state descriptions) in which the truth or falsity
of the sentence will not be discovered, meaning that there are cases which belong
neither to A nor to its complement.

However, Harman's argument is not formulated in an entirely consistent man-
ner. For an event or proposition to have a certain probability in the betting in-
terpretation, it would have to be discoverable. This is also Harman's point: the
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possibility of a proposition never being discovered must have some probability.
However, in the general case it is not possible to discover in a �nite time that
something will not be discovered in a �nite time. Therefore, if the probability of
a proposition is to be considered in terms of discovering it, it is not possible to
assign a probability value to not discovering that A or ∼ A.

Despite this problem, Harman's point about the non-validity of (3.6) in the
constructive interpretation stands. One does not even have to assume as much as
Harman does. One can dismiss (3.8) by simply stating that nothing guarantees
that it is true. There are state descriptions in which A cannot be proved, i.e., ∼ A
holds, but these do not necessarily encompass all the state descriptions where A
has not been proved. It may be the case that neither A nor ∼ A is known to be
true.

Hence, because (3.8) and thus (3.9) are not constructively valid, the construc-
tive interpretation of probability does not necessarily contradict the standard ax-
ioms of probability. Expression (3.6) is simply not derivable from these axioms.
In other words, subjective probability does not lead to adjustments of probability
axioms.
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Chapter 4

Formalizing probability in in�nity

This chapter considers the problem of constructing a probability measure in the
in�nite space of in�nite state descriptions.

The notion of asymptotic probability in Carnap's inductive logic is an explica-
tion of the concept of a justi�ed degree of belief in a formal language of in�nitely
many individual constants (and thus also in�nitely many in�nite state descrip-
tions). However, it will be argued that Carnap's approach seems to lack a proper
connection with truth in in�nity.

Instead of using the asymptotic approach, probability can be de�ned for the
in�nite logical space, which would establish a direct connection between truth and
probability in in�nity. This chapter concludes with a discussion concerning prob-
ability measures in a Cantor space formalisation of state descriptions. Although a
probability measure based on veri�able truth in in�nity turns out to be problem-
atic, a probability measure for classical truth in in�nity can be constructed. It will
be shown that this measure cannot represent the probability of constructive truth
in in�nity.

4.1 In�nite domains according to Carnap
How do we assign probabilities to members of the nondenumerably in�nite logical
space of in�nite state descriptions? This problem is tackled by Carnap (1962, p.
289) using an asymptotic limit procedure. The probability of a sentence in in�nity
is de�ned as the asymptotic limit of its probability in consecutive �nite domains
D(n) containing the �rst n individual constants (or, following Carnap, systems of
language Ln):

P∞(S) = lim
n→∞

Pn(S). (4.1)
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On this de�nition, the probability values are calculated on the basis of truth in
�nite state descriptions, not in�nite ones. The limit is the limit of the probability
that the sentence can achieve in arbitrarily large �nite domains. However, one
should also establish a connection with the truth of the sentence in in�nite state
descriptions. This relation is not established by Carnap nor by subsequent com-
mentators on his works.

Let us �rst discuss the case of sentences without quanti�ers. This case is
simple, since such sentences can be discussed in the framework of propositional
logic. The sentences in propositional logic are truth-functional, i.e., their truth
value can be determined on the basis of the truth value assignment to the atomic
sentences occurring in them. This means that if a sentence without quanti�ers is
true in a certain state description (which corresponds to a truth value assignment
to the atomic sentences), it is true in all the �nite and in�nite extensions of this
state description.

It follows from this that the meaning of a quanti�er-free sentence is the same
in different domains of individuals (or language-systems in Carnap's terminology)
since its truth-conditions remain the same.1 The probability of such a sentence is
also the same in every �nite and in�nite domain where it is a sentence at all.

The case of quanti�ed sentences is different. Carnap explains the meanings
of quanti�ers in �nite language systems by means of conjunction and disjunction
over all the individual constants of the language (Carnap 1962, p. 60, 62). It fol-
lows that their meanings are language dependent, because the stock of individual
constants varies between the systems Ln (it is, however, assumed that the domains
of individual constants are nested, i.e., D(i) ⊂ D(i + 1) for all i). The univer-
sal sentence (∀x)P (x) in in�nity is equivalent to the in�nite class of instances of
P (x). The meanings of (∀x)P (x) in the consecutive systems Ln with �nite n do
nevertheless "converge, so to speak, toward its meaning in L∞". (Carnap 1962, p.
60.)

However, it is not clear what Carnap means by convergence of meaning here.
According to Carnap, the range Rn(S) of the sentence S is the class of state
descriptions of Ln in which S is true. The rules of ranges determine the range of
any sentence in Ln.

The idea of a rule of range is to point out state descriptions in which the sen-
tence in question holds. If one knows how to do this, if one knows the rule of
range, one knows the meaning of a sentence in the Wittgensteinian sense (cf. Car-
nap 1947, p. 10).

The rules of range specify the meaning of a sentence to the extent that it can be
expressed without specifying the meaning of each atomic sentence, i.e. without

1Constructively one would have to speak about veri�cation conditions, but that does not make
any difference in this case.
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specifying interpretation of its predicate symbols and individual constants. The
whole meaning of a sentence also includes these and is expressed by its rule of
truth.

In predicate calculus with identity (which the Carnapian systems Ln do con-
tain, see Carnap 1962, p. 61), there are sentences which are not �nitely satis�able
but are valid in the in�nite domain. In consecutive �nite domains, the ranges of
such sentences are empty, and thus in no way converge to the range in the in�-
nite domain. The idea of convergence presumes that these sentences are excluded
from the discussion.

Are the ranges of (∀x)P (x) in consecutive �nite domains approximations of
the range of (∀x)P (x) in the in�nite domain? The range of (∀x)P (x) in Ln con-
tains state descriptions which have extensions in larger domains that do not satisfy
(∀x)P (x). Since an in�nite number of extensions of members of this range will be
excluded from subsequent ranges of (∀x)P (x), every rule of range which selects
a number of �nite state descriptions to constitute the �nite range of (∀x)P (x) also
selects an in�nite number of possible extensions which do not satisfy (∀x)P (x)
in L∞. In any Ln the rule of range only points out state descriptions in which
(∀x)P (x) can possibly hold in larger domains of individuals, these being those
that belong to the range of (∀x)P (x) in Ln. The rule of range in the in�nite
domain would be a method of pointing out the state descriptions in the in�nite
domain where (∀x)P (x) holds. The question now is whether the repeated appli-
cations of the rules of range in the �nite domains somehow converge toward a rule
of range in the in�nite domain.

Consider the rule of range for (∀x)P (x) in L∞, which says that P (an) must
hold for all an when n is arbitrarily large. This means that no �nite Ln can com-
prise anything except an in�nitesimal proportion of all the individual constants for
which P (x) must hold. Hence, the rules of range in Ln are not approximations of
the rule of range in L∞. Even if a given state description (∀x)P (x) ful�ls its rule
of range in a given state description of Ln, it is not closer to truth in L∞ since it
would still have to ful�l the rule of range in an in�nite number of larger domains.
To put this in another way, establishing the truth of P (x) for a certain �nite set
of instances does not bring us any closer to establishing the truth of P (x) for an
in�nite number of instances.

Although the asymptotic probability of (∀x)P (x) is associated with the rules
of range in consecutive �nite domains, no repeated application of a rule of range
for a �nite domain of individuals can point out state descriptions in the in�nite
domain in which (∀x)P (x) holds. The best that is achieved is ruling out state
descriptions in which (∀x)P (x) does not hold. This, however, is insuf�cient for a
meaning explanation.

Note that it is certainly true that the proportion of the range of (∀x)P (x) of
all �nite state descriptions tends to zero, i.e., its probability value tends to zero,
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but this is not the same as the convergence of �nite meanings toward the in�nite
meaning. It might be said that the probability values of (∀x)P (x) in consecutive
�nite domains do converge toward the probability of (∀x)P (x) in the in�nite do-
main, but then one must de�ne the probability of (∀x)P (x) in in�nity in terms of
its meaning in in�nity.

The conclusion from the discussion above is that it is not clear how the mean-
ing of (∀x)P (x) in �nite domains converges toward its meaning in the in�nite
domain. One remaining task in the programme of inductive logic is thus to �nd a
concept of truth in in�nity which would match the asymptotic limit approach to
probabilities. If this is not possible, one must conclude that the Carnapian prob-
ability of a sentence S is something other than the probability of S's truth in an
in�nite domain.

The problems discussed in this section necessitate a brief digression to other
approaches to probabilities in in�nity than the asymptotic one adopted in Carnap
(1962).2 An alternative approach which uses in�nite domains instead of a series
of �nite ones provides a more straightforward connection between the notions of
truth and probability in in�nity. However, such an approach will be shown to be
constructively problematic.

4.1.1 An in�nite number of state descriptions
The probability space of state descriptions can be represented by means of the
Cantor space Ω, which is a collection of in�nite binary sequences, as explained
in section 2.1 above. Such sequences can be considered as representing in�nitary
state descriptions.

In order to assign a probability to a state description in the Cantor space, one
should specify the state description under consideration. An enumeration of its
elements, i.e., a list of binary digits (or truth values of atomic sentences), will not
do for this purpose since no list can be in�nite. Only �nite parts of such in�nite
worlds can be speci�ed by this kind of enumeration.

It is possible, however, to denote complete state descriptions with functions
over individual constants. The combination of these functions would then deter-
mine one state description.

However, as was seen in section 2.1, there are not enough expressions to ex-
haust the logical space. There is only a denumerable number of expressions, but
the whole Cantor space has a non-denumerable cardinality. This means that the
set of those state descriptions that can actually be denoted by a linguistic expres-
sion is an in�nitesimal minority of all state descriptions and it is clear that one

2See also the discussion in Carnap 1962, p. 303, touching the question of a probability measure
in an in�nite set of state descriptions.
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cannot found a semantics of probability on such a minority, at least not without
further arguments.

4.1.2 Integer chosen at random
De Finetti discusses the example of choosing a positive integer at random (De
Finetti 1972, p. 86). While the probability of a particular integer being selected is
zero, the whole space of positive integers has the probability 1. Hence, countable
additivity does not hold because the sum of probabilities of integers is zero and
the probability of the union of integers is 1.

In De Finetti's example, there are an in�nite number of elementary events
which all have an equal probability. In such cases, the probability measure cannot
be countably additive. For example, if one takes the state descriptions as elemen-
tary events, their union must have a probability of 1 although the sum of their
individual probabilities is zero. However, for reasons mentioned in section 4.1.1,
in�nite state descriptions will not be considered as elementary events in what fol-
lows below.

4.1.3 The neighbourhood approach
Although the Cantor space is originally a classical notion, it can be given a con-
structive meaning as a spread of lawless binary choice sequences (see section 2.3
above). The binary digits 0 and 1 of the sequences may be interpreted as the truth
values false and true respectively. It is obvious that the binary sequences can be in-
terpreted to correspond with state descriptions of a language of predicate calculus
with one monadic predicate.

However, sections 4.1.3.3-4.1.3.6 below apply only to genuine Cantor spaces
whose sequences cannot be interpreted by means of �nite sequences. Moreover,
most of what appears in this chapter is valid in classical set theory only.

The purpose of this discussion is �rst to demonstrate how one could construe
a probability measure for sentences in the in�nite domain and why this de�nition
would fail in the constructive setting (in section 4.1.3.6). Second, the discussion
points out the fact that the dif�culties of de�ning the concept of probability in
in�nity are characteristic of constructive semantics. Third, because at least some
classical probability measure for state description semantics can be formulated by
using subsets of the Cantor space, the asymptotic limit approach to probabilities
(like in Carnap 1962) is actually needed more in a constructive version of state
description semantics (with a constructive concept of truth) than with the classical
one.
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4.1.3.1 Neighbourhoods

Instead of complete state descriptions of the Cantor space, it is possible to assign
a probability measure to certain sets of state descriptions, which are called neigh-
bourhoods. The neighbourhood approach could be employed to solve the problem
of reference since there is an expression to denote each neighbourhood � the set
of neighbourhoods is thus denumerable, although the neighbourhoods themselves
are non-denumerable.

The initial segment of length j of a sequence w in the Cantor space is provided
by the restriction function

rj(w) ∈W (j) (w ∈ Ω), (4.2)

whereW (j) is the set of sequences of length j. The neighbourhoods of the Cantor
space are sets of in�nite sequences which have a common initial segment.

The neighbourhood de�ned by the initial segment wj is the set

J(wj) = {w ∈ Ω|rj(w) = wj}. (4.3)

Neighbourhoods allow us to assign a probability measure to sets of in�nite
sequences. One can de�ne the Lebesgue measure for neighbourhoods along the
lines of Martin-Löf (1968, p. 91). The Lebesgue measure PL gives the probability
value 2−n to each neighbourhood de�ned by means of an initial segment of the
length n. For example, the whole Cantor space has the probability value of 20 = 1
and a neighbourhood which is de�ned by one binary digit has a probability of
1
2 . The probability of the neighbourhood approaches 0 when the length of the
de�ning initial segment grows without an upper limit.3

4.1.3.2 Truth in a neighbourhood

What is the relation between the concept of truth and the probability measure
which is de�ned over neighbourhoods?

Truth in a neighbourhood J(wj) can be de�ned as truth in all the state descrip-
tions. This can be formally presented as follows:

J(wj) ��������� S =Df (∀w ∈ J(wj))(w � S). (4.4)

According to this de�nition of truth in a neighbourhood, S is true in an in�nite
state description w only if it is true in every in�nite state description belonging to
J(wj). What is common to all these state descriptions is the initial segment wj .

3The Lebesgue measure corresponds to Carnap's m† measure, which assigns each state de-
scription equal probability.
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The �rst observation is that the concept of truth in a neighbourhood results in
a restricted applicability of probabilities. To consider J(wj) as a positive outcome
for the probability of the sentence, the sentence ought to be true in all the state
descriptions belonging to it. Hence only sentences can have positive probability
which are veri�able on the basis of some �nite body of evidence. Because non-
valid sentences which contain universal quanti�ers do not fall into this group, such
sentences must receive zero probability value.

One of the main uses of probability is to evaluate the degree of certainty of
sentences that cannot be established from a �nite number of observations. Scien-
ti�c hypotheses are in general established only with some probability, not veri�ed.
For example, even though it can never be concluded on the basis of observations
that all ravens are black, this should not be enough to conclude that the probability
of the proposition is zero. Scienti�c hypotheses should be enabled to have a non-
zero probability; if this is not the case, they cannot not be con�rmed by empirical
evidence at all.

The second observation is about the sentence

(∃x)(∀y)C(x, y). (4.5)

This sentence is neither veri�able nor falsi�able. Hence, neither (4.5) or its nega-
tion are veri�able on the basis of any �nite initial segment, which means that, on
the view presented above, both should be impossible and thus have zero probabil-
ity.

Before further deliberations on (4.5), it must be shown that a language con-
taining a two-place relation can indeed be interpreted in the Cantor space.

The following logical space corresponding to a two-place relation can be used
for encoding the example sentences above.

Let

C = {Ω}∞k=1 (4.6)

be a countable ordered set of Cantor spaces, corresponding to one two-place rela-
tion. Let us denote the x'th Cantor space by Ωx.

The truth value of an atomic sentenceC(x, y) is determined by the y'th digit in
the sequences belonging to Ωx. For example, the �rst Ω in (4.6) consists of binary
digits corresponding to the atomic sentences C(1, 1), C(1, 2), ..., the second Ω of
binary digits corresponding to the atomic sentences C(2, 1), C(2, 2), ... and so on.

One can also encode all the state descriptions into a single Cantor space Ω
in the following manner:4 the �rst binary digits represent the truth values of the

4In considering languages of many predicates of different arities, it might be more convenient
to give up the space of binary sequences and resort instead to sequences with more options at each
node. Each node would then represent a complete state description.
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atomic sentences

C(1, 1), C(1, 2), C(2, 2), C(1, 3), C(2, 3), C(3, 3), (4.7)
C(1, 4), C(2, 4), C(3, 4), C(4, 4)...

Consider the sentence (∀y)C(a, y) for some constant a. Since there is only one
state description which satis�es this sentence, the Lebesgue measure of the sen-
tence in the uncountable Cantor space must be zero (how to construe the measure
for this sentence will be explained starting from section 4.1.3.3 below). Moreover,
the union of state descriptions which satisfy (∃x)(∀y)C(x, y) is clearly the union
of state descriptions satisfying (∀y)C(a, y) when a is consecutively replaced by
each individual constant of the language. This union is thus a countable set with
a zero Lebesgue measure. It is thus reasonable to expect that ∼ (∃x)(∀y)C(x, y)
has a probability of 1 or at least a positive probability.

Moreover, an adequate concept of probability distinguishes between a sen-
tence and its contradiction on the basis of received evidence. It follows that even a
non-veri�able sentence like ∼ (∃x)(∀y)C(x, y) should have a positive probabil-
ity. Since it is not reasonable to expect that all non-veri�able sentences have zero
probability, one cannot argue that scienti�c hypotheses should have zero probabil-
ity simply because they are non-veri�able. Should one defend such a claim, one
should also accept that sometimes both a sentence and its contradiction must have
zero probability.

The zero probability of (∃x)(∀y)C(x, y) and its negation seems also to be in
contradiction with the theorem

P (S∨ ∼ S) = 1. (4.8)

However, ∼ S is not the complement of S with respect to truth in a neighbour-
hood. The sentence ∼ S means that S's falsity can be established on the basis of
some initial segment. This is not always the case when the truth of S cannot be
established on the basis of the initial segment.

Let us de�ne this concept of complement more precisely.
Let SΩ denote the set of state descriptions in Ω where S can be veri�ed on the

basis of their initial segments. Let

SC
Ω = Ω \ SΩ = {w ∈ Ω|w 6∈ SΩ}. (4.9)

In other words, if S cannot be veri�ed on the basis of an initial segment of w,
then w ∈ SC

Ω . This in turn means that ∼ S must be classically true in at least one
state description in J(rj(w)) for every j.

Let us denote the negation of S corresponding to this complement by ¬S. The
truth condition for this negation is thus: ¬S is true in the neighbourhood J(wj)
iff ∼ S is true in at least one state description in J(wj).
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This concept of negation has the consequence that

¬(∃x)(∀y)C(x, y) (4.10)

is true in every neighbourhood because (∃x)(∀y)C(x, y) cannot be veri�ed on the
basis of any initial segment. Hence,

P ((∃x)(∀y)C(x, y) ∨ ¬(∃x)(∀y)C(x, y)) = 1 (4.11)

and thus no contradiction with P (S ∨ ¬S) = 1 arises.
Should one thus replace ∼ by the complement negation ¬? The problem with

¬ is that the the truth value of ¬S can change with new evidence. For example,
sometimes ¬(∃x)P (x) can be true until evidence veri�es (∃x)P (x). This is a very
unintuitive conception of negation and does not re�ect the notion of falsity in a
state description. Moreover, it follows that ¬(∃x)P (x) can receive a probability
of 1 in a particular neighbourhood but a probability of 0 if more evidence becomes
available. This is not a reasonable concept of probability.

To sum up the discussion here, a concept of truth cannot reasonably be founded
on veri�ability on the basis of initial segments.5 This also applies to the concept
of probability.

But what if one relaxes the requirement that the sentence must be true in all
state descriptions of the neighbourhood? Perhaps one could only require that the
sentence be true in some state description of the neighbourhood, as formalized
below.

J(wj) �′�′�′�′�′�′�′�′�′ S =Df (∃w ∈ J(wj))(w � S) (4.12)

Consider now the earlier example of (4.5) and its negation. Neither is falsi�able
by any �nite initial segment, which means that each of them is true in some state
description of every neighbourhood. This means in turn that both must be assigned
a probability of 1, which is obviously absurd.

4.1.3.3 An algebra of neighbourhoods and unions of neighbourhoods

A way to assign probabilities to (monadic) �rst-order sentences will now be out-
lined. The basic idea, present at least in Jeffrey (1971), is to de�ne the proposi-
tions (i.e., the set of in�nite sequences) corresponding to the sentences by means
of countable unions and intersections of neighbourhoods and to assign probabil-
ities to propositions formed in this way. Since there are only denumerably many
sentences, one can form a proposition for each sentence.

5This result may cause problems to concepts like Crispin Wright's superassertibility (1992),
according to which a predicate is superassertible if it is assertible in some state of information and
then remains so no matter how that state of information is enlarged upon or improved.

52



The set-theoretical operations of union and intersection can be de�ned con-
structively (cf. Bishop 1967, p. 64). However, it is not claimed that the discussion
below can be carried out completely in a constructive fashion. The aim of the
treatment here is to describe one possible way to assign probabilities to sentences,
following the idea of the range of a sentence consisting of all the state descriptions
in which it is true. Only after presenting the proposal it is possible to discuss (in
section 4.1.3.6) where the problems of this proposal with respect to constructive
semantics are located. These problems are considered to establish that the notion
of constructive truth of S in an in�nite lawless sequence which is veri�able only
by looking at �nite initial segments of the sequence cannot be the basis of con-
structive probability of S in the Cantor space representing in�nite state descrip-
tions. At the same time, the discussion relates the goals of this study to abstract
probability theory. Chapter 5 will present another, hopefully more successful at-
tempt to de�ne the notion of constructive truth and the corresponding notion of
constructive probability.

The �rst observation in the treatment by means of unions and intersections
of neighbourhoods is that the set of neighbourhoods does not ful�l the usual re-
quirement of a set of events since it is not closed under set-theoretical operations.
The union of two neighbourhoods not having common elements (e.g., the union
of two neighbourhoods de�ned by the binary initial segments 000 and 111) is not
necessarily a neighbourhood. Hence, one needs to generate a set of events which
is closed under �nite unions.

Consider Ω to be the set of sequences and F to be the class of neighbourhoods
and �nite unions of neighbourhoods. It is easy to see that F is an algebra:

(i) Ω ∈ F holds trivially;
(ii) If A ∈ F , Ac = Ω r A is clearly a neighbourhood or a �nite union of neigh-
bourhoods;
(iii) If A,B ∈ F , A ∪B is clearly a �nite union of neighbourhoods.

Consider the above Lebesgue measure PL of neighbourhoods (cf. p. 49), which
can be de�ned in an algebra which also includes unions of neighbourhoods. That
this is the case can be seen from the following. Suppose that A and B are neigh-
bourhoods. One of the following three options then holds: A ⊆ B, B ⊆ A or
A∩B = ∅. IfA∩B = ∅, PL(A) = 1

2x and PL(B) = 1
2y , then PL(A∪B) = 1

2x+ 1
2y

for some x and y.

4.1.3.4 The countable additivity of PL

Let us then see whether PL ful�ls the condition of countable additivity (see p. 34)
usually required from probability measures. This will turn out to be an important
property of PL.
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The countable additivity condition also concerns in�nite countable unions
which belong to F . Hence, we must �rst see whether if there are in�nite countable
unions in F .

Suppose �rst that
∞⋃
k=1

Ak ∈ F (4.13)

where the Ak are disjoint neighbourhoods. The union
⋃∞
k=1 Ak must clearly con-

sist of neighbourhoods of diminishing size when the index k grows since the prob-
ability of any neighbourhood is positive.

It follows from (4.13) that there is a �nite union of disjoint neighbourhoodsBl

n⋃
l=1

Bl =
∞⋃
k=1

Ak (4.14)

because F is a class of neighbourhoods and �nite unions of neighbourhoods.
Moreover, it is easily shown that

(∀k)(∃l)(Ak ⊆ Bl). (4.15)

since it is clear that for a given Ak, Ak ∪ Bl 6= Bl cannot be the case for all Bl

because otherwise Ak would contain elements which do not belong to
⋃n
l=1Bl

(two neighbourhoods cannot overlap without one being a subset of the other).
It is evident that the following holds for allAi which are subsets of a particular

Bl: ⋃
i

Ai = Bl. (4.16)

If Bl contains sequences which do not belong to
⋃
i

Ai, these sequences must be-
long to some Ak which is not a subset of Bl. However, according to (4.15), this
Ak must be subset of another member of

⋃n
l=1Bl, but this is impossible because

the members of
⋃n
l=1Bl are disjoint.

From (4.16) and (4.15) we get:

Every set in
∞⋃
k=1

Ak belongs to a union
⋃
i

Ai which equals some Bl. (4.17)

Since the sets in
⋃∞
k=1Ak are non-empty, disjoint and in�nite in number, not all

neighbourhoods Bl can each be covered by a �nite union of such Ak's, otherwise
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these �nite unions would cover the whole �nite union
⋃n
l=1Bl, which cannot be

the case. Hence, at least some B′l ∈
⋃n
l=1Bl must equal an in�nite union of Ak's.

Every neighbourhood naturally contains an in�nite number of smaller neigh-
bourhoods. Moreover, every neighbourhood contains a �nite number of smaller
neighbourhoods with initial segments of a given length. Consider then all neigh-
bourhoods included in B′l which have the initial segment of length m. The union
of these neighbourhoods equals B′l itself.

Suppose now that each of these neighbourhoods is a subset of 1) some Ak in
the in�nite union which equals B′l or 2) some �nite union of these Ak's. Suppose
�rst that 1) is the case. It follows that there must be a �nite number of Ak's which
cover B′l. But this cannot be the case since B′l equals an in�nite sequence of
disjoint Ak's. Suppose then 2). It follows again that there is a �nite number of
Ak's which cover B′l. Contradiction.

Hence, there is at least one neighbourhood in B′l (say, J(w′m)) which is not a
subset of one of the Ak's or a �nite union of Ak's. It follows that there must be at
each level m + i some extension w′m+i of w′m such that J(w′m+i) is not included
in any Ak; if this was not the case, i.e., if all neighbourhoods of the form J(w′m+i)
for some i were included in some Ak, J(w′m) would itself be included in that Ak,
which is not the case. Moreover, if J(w′m+i) is not included in any Ak, the same
argument applies to it, and so on.

An in�nite series of consecutive extensions of w′m thus de�nes an in�nite se-
ries of neighbourhoods which are not included in any Ak. But is this in�nite
sequence w′∞ of extensions of w′m itself included in some Ak, despite the fact that
none of the approximating neighbourhoods is?

Since w′∞ ∈ J(w′m) and J(w′m) ∈ B′l, it holds that w′∞ ∈ B′l. Therefore, w′∞
belongs to an in�nite union of Ak's. Because this union consists of disjoint sets,
w′∞ must belong to one of the Ak's in the union.

Suppose now that w′∞ is included in one of the Ak's, say Ak′ , which is a
neighbourhood. Then for some j, it holds for the initial segment w′m+j of w′∞ that
J(w′m+j) ⊆ Ak′ . Contradiction. Therefore, w′∞ does not belong to the in�nite
union of Ak's. Contradiction. It follows that assumption (4.13) is not consistent,
i.e., that an in�nite countable union of disjoint non-empty sets cannot be included
in the algebra F . The countability condition thus holds trivially for PL in F .

4.1.3.5 A probability measure for sentences

Since the event space consisting of the set of neighbourhoods and unions of neigh-
bourhoods of the Cantor space is an algebra and PL is a countably additive prob-
ability measure, by a well-known theorem there is a unique probability measure
of the σ-algebra generated by the set of neighbourhoods and unions of neighbour-
hoods which coincides with PL (cf. Billingsley 1995, p. 36-37).
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In the new event space, one can form events corresponding to quanti�ed sen-
tences. In other words, one can de�ne sets of state descriptions (binary sequences)
which are ranges of quanti�ed sentences.

For example, in a language with one monadic predicateH(x) representing the
case that the toss denoted by x is heads, the universal quanti�cation (∀x)H(x) can
be represented as follows.

First write

VH(x)(k) = {w ∈ Ω|H(k) is true in rk(w))}. (4.18)

The sentence (∀x)H(x) corresponds to

∞⋂
k=1

VH(x)(k). (4.19)

In other words, (4.19) is the de�nition of the range of (∀x)H(x), R∞((∀x)H(x)).
It is clear that (4.18) is a union of disjoint neighbourhoods with all possible

initial segments of length k, where wk is a sequence of 1's of length k; hence,
(4.19) is an intersection between neighbourhoods.

The sentence (∀x)H(x) is thus interpreted as a set of sequences (namely, of
one sequence 1111... when `H(x) is true' is represented by the x'th term value 1).

The existential quanti�cation (∃x)H(x) corresponds to the set of sequences
∞⋃
VH(x)(k)
k=1

, (4.20)

which is again obtained from neighbourhoods by combining them with operations
on sets.

The presentation above applies only to monadic events. It will now be shown
that the case of one two-place predicate can also be represented in a similar fash-
ion, but with a slightly more complicated formalism.

Recall the coding of a single dyadic predicate into a single Cantor space in
(4.7). Let us denote by V : N × Ω → {0, 1} the function which denotes the
binary value of a given term in a given sequence of Ω.

The sentence (∀y)C(1, y) corresponds to the set
∞⋂
k=0

{w|V (1 +
k∑
i=0

i, w) = 1}. (4.21)

Each element in the set {w|V (1 +
∑k

i=0 i, w) = 1} of the above expression is
a sequence in Ω whose 1 +

∑k
i=0 i'th term is 1. Consider all initial segments of

56



such sequences. Each of the initial segments de�nes a neighbourhood. The union
of these neighbourhoods equals {w|V (1 +

∑k
i=0 i, w) = 1}. Hence, (4.21) is an

intersection between unions of neighbourhoods and thus belongs to the σ-algebra
in question.

The general case is (∀y)C(a, y), where a is an arbitrary individual constant:

∞⋂
k=0

{w|V (
a∑
i=1

i+
k∑
i=0

i) = 1}. (4.22)

The range of the sentence (∃x)(∀y)C(x, y), R∞((∃x)(∀y)C(x, y)) is thus

∞⋃
a=1

∞⋂
k=0

{w|V (
a∑
i=1

i+
k∑
i=0

i) = 1}. (4.23)

The sentence ∼ (∃x)(∀y)C(x, y) is simply de�ned as the complement of this
set. The complement operation C can be de�ned as follows:

C(AΩ) = Ω \ A = {w ∈ Ω|w 6∈ A}. (4.24)

4.1.3.6 Elements of constructive sets

It has been shown above that one can at least classically assign probabilities to the
sentences (∃x)(∀y)C(x, y) and∼ (∃x)(∀y)C(x, y) in the Cantor space of in�nite
binary sequences or state descriptions. However, there is a problem when one
tries a constructive interpretation of the ranges of sentences as de�ned above.

It was shown in the preceding section how one can build R∞(S) for some
quanti�ed sentences in predicate calculus with one monadic predicate as well as
in a language with a single two-place predicate. It remains to show that the for-
mulated sets really contain state descriptions where the corresponding sentence is
true.

One should thus prove that if S is true in w, w ∈ R∞(S) and vice versa. It
turns out to be impossible to prove the following: ifw ∈ R∞(∼ (∃x)(∀y)C(x, y))
and if R∞(∼ (∃x)(∀y)C(x, y)) is uncountable as one expects it should be, then
∼ (∃x)(∀y)C(x, y) is constructively true in w.

The statement w ∈ R∞(S) means constructively that it can be proved that w
is an element of R∞(S). This can be done either by appealing to the rule that
de�nes w or, where w is a lawless sequence, by showing that the neighbourhood
de�ned by some initial segment rk(w) belongs to R∞(S).

Consider the range

R∞((∃x)(∀y)C(x, y)), (4.25)
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which consists of a countable number of state descriptions (cf. p. 51 above). The
range

R∞(∼ (∃x)(∀y)C(x, y)), (4.26)

which was de�ned above to be the complement of (4.25), should thus consist of an
uncountable number of state descriptions. Since there can be only countably many
rule-de�ned sequences, the only possibility for this is that there are uncountably
many lawless sequences in (4.26).

Consider the lawless state description α. To know that α is in (4.26), one
should know that (∃x)(∀y)C(x, y) cannot be true in α. It is possible to know this
only on the basis of an initial segment ri(α) for some i. But then one should know
that ∼ (∃x)(∀y)C(x, y) is true in J(ri(α)), which is impossible since it is not
veri�able on the basis of an initial segment.

Hence, no sequence which is not given by a rule can be proved to belong to
(4.26). It follows that the range (4.26) cannot correspond to constructive truth.

This entails that construing the Lebesgue measurable sets on the basis of
neighbourhoods along the lines above is not easily paired with any notion of con-
structive truth. Sentences which ought to have a positive measure, but are not
veri�able or falsi�able form the hub of the problem. Their positive probability in
an in�nite uncountable set of state descriptions cannot be interpreted as the prob-
ability of constructive truth in a state description since no reasonable concept of
truth for lawless sequences exists. Therefore, a constructive probability based on
the notion of constructive truth will be attempted taking a different approach in
Chapter 5. This approach will be based on the probability of an initial segment
being a part of an in�nitely proceeding rule-governed sequence satisfying S.
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Chapter 5

Extendible probability

5.1 Introduction
This chapter offers a formalization of constructive probability in in�nity. The new
concept is referred to as extendible probability, which will be based on a new
formalization of constructive truth in in�nity, referred to hereafter as extendible
truth.

As was seen above (cf. Ch. 3), the dif�culty in the �nitistic asymptotic limit
approach is the connection to truth in in�nity, in that the limit does not designate
the joint probability of in�nite state descriptions satisfying the sentence.

In order to de�ne the constructive probability of truth in in�nity, one should
indicate what kinds of entity the elementary events (i.e., the possible worlds or
state descriptions) are. State descriptions as observation sequences were discussed
in section 2.5 above.

In section 2.5.3, some doubt was cast on the in�nite character of observation
sequences. Their in�nity is better characterized as possible in�nity, not in the
sense that is usually meant by potential in�nity but rather that it is not known
whether the observation sequence will stop or not.

Truth in this kind of possibly in�nite sequence cannot be based on the assump-
tion that the sequence will not stop. However, one cannot expect that the sequence
will stop either. Hence, the state descriptions as representations of observation se-
quences and constructive truth in state descriptions must be de�ned such that the
epistemic nature of observation sequences is taken into account.

First it will be established (cf. section 5.2 below) that in predicate calcu-
lus without identity, a sentence true in a state description is also constructively
satis�able in any larger cardinality. Hence, in predicate calculus without iden-
tity, probability in a �nite domain stands for the joint probability of those �nite
state descriptions in which the sentence is true and which can be extended to any
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greater cardinality (including ℵ0) so that the sentence is true in all the extensions.
It follows that every �nite and satis�able extension of these extensions can also
be extended to a larger cardinality, and so on. Therefore, if a sentence S is true in
wi, wi has consecutive extensions up to in�nity which satisfy S. In the calculus
without identity, the asymptotic limit probability stands for the limit of the joint
probability of such state descriptions.

This idea needs some further re�nement to become a full-�edged formulation
of the probability of truth in possible in�nite observation sequences. A precise
notion of extendible truth based on consecutive extensions of a state description
will be introduced in section 5.4.

However, it holds that the so-called axioms of in�nity like (5.16) below can-
not be true in a �nite domain, which means that their probability is not captured
by the asymptotic approach. For these reasons, the notion of extendible proba-
bility captures the in�nite only for sentences that are satis�able in �nite domains.
This might be considered as a disadvantage of the notion. On the other hand, no-
tions of constructive truth in the spread of in�nite sequences do not give rise to a
reasonable notion of probability, as shown above in Chapter 3.

The extendibility property will be proved for predicate calculus without iden-
tity. The signi�cance of the proof is that it shows that the concepts of extendible
truth and corresponding extendible probability to be introduced below have an
important application in predicate calculus.

5.2 Satis�ability in greater cardinalities
Leblanc proves that every sentence in a model set for a given language L of pred-
icate calculus without the identity symbol '=' or function symbols is true in some
state description of L (1983, pp. 219-22). 1

What is the signi�cance of Leblanc's proof? Model sets, introduced by Hin-
tikka (1955), are consistent sets of sentences ful�lling certain conditions. A term
extension of L is any language that is exactly like L except for having countably
many terms apart from those of L (cf. Leblanc 1983, p. 195.) It follows from the
de�nition that a model set for L is a model set for any term extension L+ of L.

According to the de�nition in Hintikka (1969, pp. 57-58), the set of sentences
true in a state description is a model set.2 Hence, if a sentence S is true in a state
description wk of Lk, it belongs to a model set of Lk and thereby to a model set
of L+. By Leblanc's proof, S is then true in a state description of L+. (Note that
the union of S and the atomic sentences of wk is true in wk and thus in a state

1Instead of using the term state description, Leblanc talks about truth value assignments for the
atomic sentences of L.

2Hintikka calls such sets extended model sets.
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description of L+). In other words, if S is true in a state description of Lk, it is
true in a state description of the term extension of Lk; and this is precisely what
was to be proved.

Let us now examine more in detail the part of this proof which is described in
Leblanc (1983).

The T1 rewrite T1(S) of S is de�ned as the result of substituting the alphabet-
ically earliest individual constant in place of each constant of S which does not
occur in M . The truth value associate αM of a model set M of L+ is a complete
truth value assignment to the atomic sentences of L+ and thus analogous to a state
description. (Cf. Leblanc 1983, pp. 219-220.)

Since Leblanc's own proof for

αM(A) = αM(T1(A)). (5.1)

in Leblanc (1983, p. 220) is fairly concise, I will reformulate it in a more detailed
manner.

For each atomic sentence A of L+, αM(A) = T if T1(A) belongs to M and F
otherwise. Consider �rst the case A ∈ M . Then T1(A) = A and thus T1(A) ∈
M . It follows that αM(A) = T and αM(T1(A)) = T . Therefore, αM(A) =
αM(T1(A)). Let us then consider the case A 6∈M . Assume �rst that T1(A) ∈M ,
which means that αM(A) = T . In this case, since T1(A) ∈M and thus T1(T1(A))
in M (because T1(A) and T1(T1(A)) are the same), αM(T1(A)) = T holds and
hence αM(A) = αM(T1(A)). Assume then that T1(A) 6∈ M . It follows that
αM(A) = F . Because T1(T1(A)) 6∈ M , αM(T1(A)) = F holds as well. Hence
also in this case and thus always, αM(A) = αM(T1(A)).

The next step is to prove that

αM(P (a1/x)) = αM(P (aj/x)) (5.2)

for an arbitrary j, if all the individual constants in P (a1/x) occur in M .
Let P ′(aj/x) for any j be a substitution instance of P (aj/x) in which all

quanti�ed parts are replaced by their substitution instances; P ′(aj/x) is thus a
quanti�er-free sentence of L+.

T1(P ′(aj/x)) is a truth-function of atomic sentences, being the sentence which
is obtained when each atomic sentence AP in P ′(aj/x) is replaced by T1(AP ).
Consider an arbitrary atomic sentence T1(AP ) in T1(P ′(aj/x)). Since by (5.1),
αM(AP ) = αM(T1(AP )) holds, every T1(AP ) in T1(P ′(aj/x)) can be replaced
by AP without altering the truth value of T1(P ′(aj/x)) in αM . Hence,
αM(T1(P ′(aj/x))) = αM(P (′(aj/x)). Since the truth value of a quanti�ed sen-
tence depends only on the truth values of its substitution instances, it follows that

αM(T1(P (aj/x))) = αM(P (aj/x). (5.3)
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Observe that T1(P (aj/x)) = P (a1/x) because all the individual constants of
P (a1/x) occur in M and thus the only one in P (aj/x) which possibly does not is
aj . By (5.3), αM(P (aj/x) = αM(P (a1/x). QED.

Following the technique adopted in Leblanc (1983, p. 221), which proceeds
by induction on the length of sentences, it is easy to show using the above result
that every sentence in M is true in αM . The interesting cases are those with
quanti�ers. Consider, e.g., the sentence (∀x)P (x) which belongs to M . Then, by
de�nition of a model set, P (ai/x) belongs toM for each ai that belongs toM . By
the induction hypothesis, P (ai/x) is true in αM for each such ai. Hence, by (5.2),
P (aj) is true in αM for each aj which does not belong to M and thus (∀x)P (x) is
true in αM . The case with the existential quanti�er is similar.

According to the above result, in predicate calculus without identity, the prob-
ability of S in each �nite domain in fact denotes the joint probability of �nite
state descriptions which are initial segments of in�nite state descriptions satisfy-
ing S. The asymptotic limit of such �nite probability is then considered to be the
probability of S in in�nity.

What connects this concept of probability to constructive truth in in�nity?
After all, in each �nite initial segment wn contributing to the probability of S, it
is only required that S be true in wn and that S be possible in in�nity; truth in
in�nity is a different issue. This topic will be discussed in what follows.

5.3 In�nity represented by �nite structures
According to the approach of Carnap (1962), the elementary events of the prob-
ability space de�ned by the language Ln of the cardinality n are �nite state de-
scriptions of the elements in the domain of n individuals D(n).

Events, in general, are sets of elementary events; in this case, they are sets
of state descriptions. The range of a sentence is such an event. A �nite state
description wn, belongs to the range of the sentence S if S is true in wn. Carnap's
approach operates at the level of �nitary events without a de�nition of an in�nite
probability space.

However, one does not need in�nite domains of individuals (in�nite in the
sense of ℵ0) for representing an in�nitely proceeding observation sequence. The
concept of extendible truth in consecutive �nite domains will be used to explicate
truth in an in�nitely proceeding observation sequence.

5.3.1 Nested domains
The concept of extendible truth was outlined above informally in 5.1. This con-
cept, beside establishing a connection with truth in in�nity, will also solve another
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problem which arises from the original Carnapian limit de�nition of probability.
Some preliminary explanations concerning the formalism are in place before

turning to consider more carefully the relation between the asymptotic limit prob-
ability and truth.

Carnap's inductive logic has only one domain (i.e., set of individual constants)
for each cardinality and, in addition, the domains are nested in such a way that

D(i) ⊂ D(j), (5.4)

when j > i, where D(i) and D(j) denote domains with the �rst i and j individual
constants respectively. Individual constants are thus linearly ordered in the meta-
language; Carnap uses the expressions a1, a2, ..., an to denote the �rst n individual
constants. (Cf. Carnap 1962, p. 58.)

Carnap (1962) does not himself provide an explicit argument for the necessity
of this condition. However, it is needed in the limit approach for the following
reasons.

First, it is clear that a domain has to be associated with each natural number
greater than some k, i.e., D(i) must denote a domain for each i ≥ k. It is also
clear that domains can have no upper bound in size, which means that there can
be no i′ such that

(∀j)(D(i′) ≥ D(j)). (5.5)

Consider then a sentence with the occurrence of some individual constant a.
Well-de�nedness of the limit probability (4.1) requires that

(∃m)(∀n ≥ m)(a ∈ D(n)). (5.6)

The nestedness condition (5.4) guarantees that (5.6) is ful�lled and, moreover,
it seems to be the simplest condition applying to domains of individuals which
does this.

More justi�cation for the nestedness assumption can be derived from the idea
of possibly in�nite cardinality. If domains could not be ordered like this, a series
of them could not be considered as a domain without an upper bound, which is
needed for representing observation sequences (see below). Hence, nestedness is
necessary for the notion of extendible truth to be introduced below.

Since the nestedness condition imposes a linear order on the individual con-
stants, one can replace the constants a1, a2, ..., an by the natural numbers 1, 2, ..., n,
the advantage of this being that predicates concerning the order of the individual
constants are immediately possible in the object language.
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5.3.2 Observation sequences and sequences of possible obser-
vations

How does an in�nite sequence of nested �nite domains differ from an in�nite
domain? Both notions seemingly refer to in�nity. The assumption that there are
in�nitely many nested �nite domains means that there is an in�nite number of
individuals in the union of these domains. In�nity of individuals is thus imported
into the semantics even without assuming an in�nite domain of individuals. Are
we then not committed to in�nite structures, which was considered problematic
in the conclusion of section 2.5.3 above?

In what follows it will be argued that the semantics of consecutive �nite do-
mains is the most appropriate one for constructive modelling of a possibly in�nite
observation sequence, i.e., where it is not known whether the process will con-
tinue without an upper bound (cf. 2.5.3). The individuals of this semantics are
interpreted as observations in the process. (One can also consider every atomic
sentence as representing one observation, but this is a mere technicality without
much philosophical signi�cance.)

Clearly the logical space in this semantics cannot be based on the assumption
that the sequence will stop. Each domainD(n) must be included in the semantics,
because it is possible that the sequence will veri�ably have observations of at least
n individuals.

In each initial segmentwi of the observation sequence αo, it is possible that the
observations either continue or stop. There is thus a possibility of a veri�cation
at any given initial segment wi that the sequence will continue, in the sense of a
logical possibility.

Suppose wi is veri�ably an initial segment of αo. Then a given extension wi+1

of wi is a possibly veri�able initial segment of αo, in the sense that there is a
logical possibility that wi+1 will be veri�ed as an initial segment of αo. Moreover,
if wi+1 is such a segment, then a given extension wi+2 of wi+1 is also a possibly
veri�able initial segment of αo. Hence, if w is an initial segment of αo, then
wi+2 is a possibly veri�able initial segment of αo. It is thus clear that any �nite
extension of w is a possibly veri�able initial segment of αo in the sense of logical
possibility of veri�able truth; although it is not possible to verify the in�nity of αo,
the possibility of its in�nity can be veri�ed. Moreover, even if one cannot verify
some sentence S in every initial segment, its possible truth in each initial segment
may be veri�able.3

This reveals the in�nite character of the space of logical possibilities for obser-
vations clearly: there can be no upper bound in the length of the sequences which

3This comes close to the concept of possibility or consistency of a proposition in a choice
sequence presented by Per Martin-Löf in a series of lectures at Stockholm University during 1990-
1991.
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can possibly be veri�able initial segments of αo. The sequence αo has a possibly
veri�able extension at every �nite stage, unless αo has stopped for good. Hence,
αo is possibly in�nite in the sense that it may never be known to have stopped.

Consider now the consecutive extensions of the initial segmentwi of αo (where
wi+1 is an extension of wi etc). Clearly there is an in�nite number of possible
consecutive extensions which form an in�nite sequence of state descriptions. But
this sequence itself does not represent a possible world in the sense of veri�ably
corresponding to a lawless observation sequence; it is rather an in�nite totality
of possible or potential observations, which can never be simultaneously realized
(cf. also section 2.5.5).

The section below will elaborate how the in�nite sequences of possible obser-
vations �gure in de�ning constructive truth in in�nity.

5.3.3 Constructive truth and probability in the semantics of
observation sequences

As stated above, the sequence αo is possibly in�nite. If S is true in αo, it is true in
a possibly in�nite sequence.

If S is true in all the extensions of the initial segment wi of αo (which are all
�nite), it is veri�able in αo � in the sense of �nite truth. The idea is that no matter
which �nite state description αo turns out to be, S is true in it. Veri�ability in αo
thus means logical necessity in �nite state descriptions under condition wi.

However, as seen from the discussion in 4.1.3.2, this kind of concept of veri�-
ability as necessity is not a reasonable concept of constructive truth. Moreover, it
does not yet explain truth in in�nity because it refers only to truth in �nite exten-
sions of wi.

Let us assume that classical statements about the future behaviour of αo can be
made; i.e., some S can be classically true or false in αo. What does it then mean
to say that S is classically true in αo?

Take �rst the case that αo stops at some �nite stage. Then S is obviously true
in αo iff it is true in that �nite state description.

Next take the case that αo in fact continues forever. In this case, S is clearly
true in αo iff it is true in that in�nite sequence which is referred to by αo. Classical
truth does not seem to pose any problems here since it can be de�ned without
being able to point out αo in its entirety. It is evident that, however, in the case
of constructive truth, one needs to refer to several �nite sequences since one does
not know when αo will stop, if it will stop at all.

The logical space of n-long sequences is denoted by W (n). The logical space
of all �nite sequences is denoted by Wfin, but the domain of individuals in the
space of sequences of possible observations must be D∞, consisting of an in�nite
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number of individual constants. The in�nite sequences of possible observations
form a continuum W∞; this, however, is not the space of possible worlds, as
pointed out in section 5.3.2 above.

Although the possibly in�nite observation sequences clearly do not belong to
the set of �nite sequences Wfin, the notions of constructive truth and probability
for observation sequences can be explained by means of sequences in Wfin, as
will be shown next.

The observation sequences themselves will not be explicitly de�ned as func-
tions of a constructive formal language; it is simply said that they are lawless
sequences of observations, in the same way as lawless choice sequences are given
in constructive mathematics. Every name of an observation sequence is consid-
ered as referring simply to the output of some observational setting, which is given
to us in one way or another.

It would be possible to assign a probability measure to the event that αo con-
tinues after a given �nite stage. However, in order to focus on truth and probability
in in�nity, this possibility will not be discussed here.

Because αo is never veri�ably in�nite, S's constructive truth in αo cannot
mean its truth in an in�nite state description. It is also clear that S's truth in some
initial segment wi of αo is not suf�cient for its truth in the whole of αo (consider,
for example, that S is true in wi but false in the initial segment wi+1 of αo, which
is an extension of wi).

What about de�ning S's truth in αo as its truth in all the consecutive initial
segments of αo beginning from some stage wi? This concept of truth means that
the totality of consecutive observations constituting αo satisfy S, which thus in a
sense remains true according to the observations in αo. If S is true in this sense,
it would be true about something that belongs to the realm of experience, namely,
about consecutive stages of αo's development.

Although truth in the above sense does apply to constructions which are to
some extent observable (the �nite initial segments of αo), it is not possible in the
general case to verify or falsify S about the possibly in�nitely proceeding αo. Be-
cause of this veri�cation problem in observation sequences, truth in this sense can-
not be a constructive notion. Instead, the constructive truth of S in in�nity will be
de�ned as truth in consecutive initial segments of an in�nite (law-like) sequence
of possible observations. Such a sequence represents the provable possibility that
S is true at each �nite stage of the development of the lawless observation se-
quence αo (cf. section 5.3.2 above).4

4Note that requiring mere non-falsi�ability of S instead of its truth in the consecutive initial
segments of an in�nite sequence of possible observations would mean that these segments are
positive outcomes for the probability of both S and its negation (cf. p. 52). Moreover, since
non-falsi�ability must be de�ned with respect to some notion of truth in in�nity, the latter remains
to be de�ned for the in�nite sequence as a whole (i.e., not by means of its initial segments), which
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How is the statement "S is constructively true" then to be interpreted in the
constructive semantics of observation sequences? If αo denotes the actual world,
"S is constructively true" should mean that S holds in αo. For αo, the expression
"true" can constructively only mean veri�cation on the basis of an initial segment.
However, there may be an a priori restriction (cf. section 2.3) on αo according to
which admissible initial segments of αo are only such in which S is true and which
also are initial segments of sequences of possible observations in which S is true.
In other words, if S holds in αo, each initial segment of αo will coincide only with
sequences of possible observations where S is true. With this restriction, αo is a
partly law-like sequence and not an observation sequence.

The point in de�ning constructive empirical truth is not in a priori veri�ca-
tions. Proving something prior to experience certainly �ts well in the constructive
framework, but the challenge is to de�ne constructive truth in situations where no
prior to experience veri�cation is possible.

An a posteriori concept of truth can be constructively de�ned only by refer-
ence to �nite cardinalities. Hence, it can be said that S is constructively true in
αo's stage x, meaning that the x-long initial segment of αo coincides with one of
the sequences of possible observations whose consecutive initial segments satisfy
S without an upper bound.

The probability of S is de�ned by means of the above concept of S's con-
structive truth in αo's �nite stage. Roughly speaking (a more precise de�nition
will follow in the following sections), S has a probability of p in αo iff the limit
probability of αo to coincide with one of the in�nite sequences of possible obser-
vations satisfying S is p.

How can the notion of truth at a �nite stage be an explication of constructive
truth in in�nity? The probability of S at stage x of αo is clearly about a veri�able
property of αo, namely non-falsi�ability with respect to truth in some in�nite
sequence of possible observations. Can the reliability of sentences be measured
this way? In a sense, the answer must be positive since the property in question is
the most that is knowable about the empirical world with respect to truth of any S
when truth is de�ned by means of sequences of possible observations.

5.3.4 Asymptotic limits and truth in consecutive �nite domains
This section prepares the introduction of the formal notions of extendible truth and
probability. Here we discuss a particular dif�culty associated with the Carnapian
solution of using consecutive �nite domains to de�ne probability in in�nity. This
dif�culty shows that Carnap's solution is not in accordance with a reasonable
notion of truth in in�nity without some modi�cations.
is problematic considering constructive probability in in�nity, see chapter 4.
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The function r∗i (wn) yields the restriction of a n-long sequence wn to the �rst
i individuals, i ≤ n (cf. 4.1.3.1). The value of r∗i (wn) is thus a state description
of the cardinality i which is a part of a larger state description wn of cardinality n.
It is also said in this case that wn is an extension of r∗i (wn).

Assume that

wn � S, (5.7)

and

(∀w′n+ki)(wn = r∗n(w′n+ki)→ w′n+ki 2 S) (5.8)

for an in�nite sequence of ki's such that k1 < k2 < .... There is then an in�nite
number of cardinalities n+ k1, n+ k2, ... in which S is not true for any extension
of wn. This means that wn cannot be extended in such a way that S would be true
in any series of consecutive extensions, i.e., that S is true for some wn+1 such that
wn = r∗n(wn+1), for some wn+2 such that wn+1 = r∗n+1(wn+2), etc. ad in�nitum.
In other words, if the background information consists of wn, there is no possi-
bility of S being true without an upper bound in consecutive state descriptions
representing the �ow of new information.

This kind of situation is illustrated by the following example. Suppose that the
domains are nested and the individual constants in each domain are denoted by
consecutive natural numbers (cf. section 5.3.1 above). Consider then a monadic
language with symbols for primitive recursive functions, and the identity symbol
`='. Let S′ be

S ′ = (EvenD ⊃ A(1))&(OddD ⊃∼ A(1)), (5.9)

where

EvenD =df (∃y)[(∀x)(x ≤ y) ⊃ (∃z)(y = 2z)] (5.10)

and

OddD =∼ EvenD. (5.11)

The antecedent of the implication in (5.10) says that there is a largest number
in the domain of individuals and the consequent that this number is even. Since
the antecedent is true in every �nite domain, (5.10) is true in every �nite domain
containing an even number of individuals. Similarly, OddD is true only if the
consequent is false, which is the case in every �nite domain containing an odd
number of individuals.
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In domains of even cardinalities, S′ is true in those state descriptions where A
holds for the individual constant 0, and in odd cardinalities in those state descrip-
tions where ∼ A holds for 1, respectively.

To see this, consider �rst the domainD(1) with the single element 1. There are
two state descriptions with this domain, A(1) and ∼ A(1). Since the cardinality
of D(1) is odd, the second conjunct of S ′ implies that A(1) cannot be true if S ′ is
to be true. Hence, S ′ is true in ∼ A(1), but not in A(1).

Correspondingly, in the domain D(2) with two individuals and thus even car-
dinality, S′ is true in only those state descriptions in which A(1) is true. In D(2),
S ′ is true in none of the extensions of∼ A(1), and in every extension ofA(1). The
case of D(2) is similar to that of D(1): S′ is only true in extensions of∼ A(1) but
in none of A(1). The case of D(4) is again similar to that of D(2), etc.

It can be concluded that in odd cardinalities S ′ is true in those state descrip-
tions which containA(1), and in even cardinalities in those which contain∼ A(1).
S ′ thus holds in each domain in exactly 1

2 of the sentences; S ′ thus has a limit
probability of 1

2 .
On the other hand, it holds that

(∀n)(∀wn)(w � S′ → (5.12)
(∀w′n+1)(w = r∗n(w′)→ w′ 2 S ′)),

which means that (5.8) above holds for all n and wn.
This example shows that the asymptotic limit probability in Carnap's sense

does not correspond to a notion of truth in in�nity which is based on truth in
consecutive �nite domains.

5.4 Extendible truth
The concept of extendible truth (ET) will be now introduced to solve the problem
introduced above and to establish a basis for the concept of probability in in�nity.

The state descriptionwi+m extends the truth of S from i to i+m, wi+m �i,m S,
iff

(∀j)(i ≤ j ≤ i+m→ r∗j (wi+m) � S). (5.13)

The truth of S is extendible from wi to i+m, wi �◦i,m S, iff

(∃wi+m)(wi = r∗i (wi+m) ∧ wi+m �i,m S). (5.14)

The truth of S is extendible without upper bound from wi, wi �◦i,∀ S, iff

(∀m)(wi �◦i,m S). (5.15)
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Observe that the concept of truth in in�nitely proceeding �nite sequences is dif-
ferent from that de�ned in in�nite sequences with ℵ0 terms, although most sen-
tences which are satis�able in ℵ0 are also satis�able in in�nitely proceeding �nite
sequences. One consequence of extendible truth is that sentences which are satis-
�able in in�nite domains only, such as

(∀x) ∼ R(x, x)&(∀x)(∀y)(∀z)(R(x, y)&R(y, z) ⊃ (5.16)
R(x, z))&(∀y)(∃x)R(x, y),

are not satis�able at all.
Extendible truth can be given either a classical or a constructive interpretation,

depending on the interpretation of �◦i,∀ in (5.15).
The extendibility of truth without upper bound is not decidable. This entails

that in the constructive interpretation it is not the case that S either is or is not
extendibly true without upper bound. Classically this formulation of the principle
of excluded middle can be introduced as an axiom.

5.4.1 Commutation of extendible truth with logical operations
The concept of extendible truth is non-standard in the sense of commutation with
the logical operations. In other words, for most logical operations the extendible
truth does not follow the conventional truth table, according to which A ∨ B is
true if and only if A is true or B is true etc.

This fact has certain consequences for the theorems of extendible probabil-
ity, although extendible probability does not violate (at least) the �nite additivity
axiom of the probability calculus (see section 5.4.4.1 below).

Consider �rst the case of negation ∼. Does extendible truth commute with ∼,
i.e., if ∼ S is extendibly true, is S extendibly false and vice versa?

It is clear that even if S is extendibly false (i.e., is not extendibly true) from wi
to i + m, S may still be true in wi in the ordinary sense of truth. This means that
∼ S is not extendibly true from wi to i+m either. It follows that extendible truth
does not commute with negation ∼.

The case of disjunction. S∨ ∼ S is then classically and constructively valid
in the sense of extendible truth since one of the disjuncts is true in the ordinary
sense of truth in any given �nite state description (provided, of course, that the
atomic sentences are decidable). Hence, there may be cases in which S∨ ∼ S
is extendibly true (since it is valid), but neither S nor ∼ S is extendibly true.
It follows that extendible truth does not commute with disjunction classically or
constructively.

Conjunction. If both A and B are extendibly true, A&B is extendibly true and
vice versa. Hence, extendible truth commutes with conjunction.
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Implication. If B is always extendibly true when A is extendibly true, i.e.,
the extendible truth of A entails the extendible truth of B, it may still be the case
that A is not extendibly true while being true in the ordinary sense and B is not
true even in the ordinary sense. If this is the case, A ⊃ B is not true and thus
cannot be extendibly true. This shows that extendible truth does not commute
with implication.

Existential quanti�cation. Consider the sentence (∃x)(∀y)C(x, y). If it is
extendibly true from wi, (∀y)C(a, y) is true for some a in wi. However, in the
extension wi+1 of wi which satis�es (∃x)(∀y)C(x, y), it may be the case that
C(a, b) is false for the new constant b ∈ D(i+ 1), b 6∈ D(i), while C(c, y) is true
for some c ∈ D(i + 1) and all y ∈ D(i + 1). Hence, (∀y)C(a, y) is false in wi+1

and is thus not extendibly true from wi. Hence, a sentence of the form (∃x)P (x)
can be extendibly true even if P (a) is not extendibly true for any a, which means
that extendible truth does not commute with existential quanti�cation.

Finally, the case of universal quanti�cation. If (∀x)P (x) is extendibly true
from wi, P (a) must be extendibly true from wi for all a ∈ D(i). On the other
hand, if P (a) is extendibly true from wi for all a ∈ D(i), P (b) may be false for
some b ∈ D(j), j > i. Hence, (∀x)P (x) is not necessarily extendibly true from
wi. This means that extendible truth does not commute with universal quanti�ca-
tion.

The above shows that extendible truth commutes only with conjunction.
A detailed discussion about the signi�cance of these �ndings must be post-

poned to a further study. However, it is already clear that the concept of extendible
truth challenges the traditional views about truth in in�nity. Since traditional is
not a synonym for intuitive, the above results do not show that extendible truth is
unintuitive. Consider, for example, A ∨ B. Perhaps the traditional requirement
that if A∨B is true, then A is true or B is true could be unintuitive in a semantics
of observation sequences. This question is brie�y elaborated in section 5.4.4.1
below.

5.4.2 Extendible truth and truth in in�nity
In what follows, a de�nition of sets of sequences satisfying S in the sense of
extendible truth at a given cardinality will be constructed. The notion of truth of
S in in�nity will be based on these sets.

Consider �rst a family of sets of the form

Wu(i, S) = {wi ∈W (i)|wi �◦i,∀ S} (5.17)

where S is a sentence and i ∈ N . An in�nite sequence satisfying S at every step
can be initiated from each of the elements ofWu(i, S). For an arbitrary i,Wu(i, S)
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is the set of this kind of state description. Hence, Wu(i, S) as a family of sets is
not a state description or a set of them, but rather a function which provides a set
of a certain kind of state description at each i.

Wu(i+ x, S) may always contain new state descriptions which are not exten-
sions of elements ofWu in the preceding cardinality. The probability P (Wu(i, S))
is about an observation sequence αo coinciding with such a state description in
W (i) from which S's truth is extendible without upper bound.

Correspondingly, P (Wu(i + 1, S)) measures this probability for W (i + 1).
The limit of P (Wu(i, S)) (when i → ∞) can be positive even if the probability
of the extensions of all wi ∈ Wu(i, S) satisfying S tends to zero. In other words,
the limit of P (Wu(i, S)) is not about S being constantly true without upper bound
starting from some cardinality; it is about S being true so that its truth can be
extended without an upper bound. Hence, the limit of P (Wu(i, S)) is that of the
probability of S's possible truth in in�nity.

It would thus not be correct to use the limit of P (Wu(i, S)) to represent the
probability of extendible truth of S in αo. Instead, the following approach is
preferred.

Let us de�ne a set of the form5

∅ 6= FR(i, wi, S, x) ⊆ W (i+ x), (5.18)

which for a given state description wi and cardinality i + x consists of the exten-
sions ofwi = r∗i (wi+x) inWi+x for which it holds that everywi+x ∈ FR(i, wi, S, x)
extends S's truth from i,

(∀wi+x ∈ FR(i, wi, S, x))(wi+x �i,x S). (5.19)

However, this de�nition does not yet guarantee that the truth of S is extendible
from every member of FR. The extendibility property holds by the above de�ni-
tions only from wi up to every member of FR, which means that FR does not nec-
essarily contain only state descriptions from which S's truth is extendible without
upper bound.

Hence, one must add a further recursive requirement for FR:

(∀wi+x ∈ FR(i, wi, S, x))(∃wi+x+1 ∈ FR(i, wi, S, x+ 1))
(r∗i+x(wi+x+1) = wi+x).

(5.20)

A state description can thus only belong to FR if S's truth is extendible from it
without an upper bound.

The constructive interpretation of FR requires that one can actually point out
the extensions of wi+x, i.e., that they exist provably. In other words, a given wi+x

5F and R standing for "�nite" and "range" respectively.
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cannot belong to FR(i, wi, S, x) unless it is provable that it has extensions without
upper limit which satisfy S. This means that it is not in general decidable whether
a given wi+x belongs to FR(i, wi, S, x) or not.

Since this is not decidable, it could be considered that FR is not eligible to be
a set in constructive mathematics (for example, in Martin-Löf's type theory, it is
required that ∈ be an effectively computable relation). In this case, one could refer
to the collection of elements which satisfy the de�ning conditions of FR with a
particular expression but refrain from calling it a set. In any case, the decidable
notion of set is very restrictive considering the formalization of ranges of sen-
tences in in�nite domains (or in�nite series of consecutive �nite domains). It is
therefore suggested that a constructive formalization of state description seman-
tics should allow for undecidable sets of state descriptions. In spite of this, the
positive claim that a sentence S is true in w (i.e., w belongs to the range of S) is
only constructively justi�ed if it is veri�able.

It can be said that the in�nitely proceeding sequences generated by consecu-
tive applications of FR satisfy S (make S true) in in�nity in the sense of sequences
of possible observations; the function FR describes the ways an observation se-
quence satisfying S might proceed from some initial state description. The ele-
ments of FR(i, wi, S, x) for a given x are thus initial segments of sequences of
possible observations.

Note that the constructive interpretation of FR requires that the principle of
mathematical induction should be applicable to in�nite sequences whose terms
are interpreted as possible observations (cf. section 2.5.2 above).

5.4.3 Extendible truth as a foundation of probability
It was shown in section 5.2 that in predicate logic without identity or functions
there is an effective method for extending the truth of a sentence from a given
state description to any larger one. This means that if wi � S, the truth of S can
be effectively extended without upper bound. Hence, in predicate logic without
identity or functions in the object language, classical and constructive extendible
truth in the sense of (5.15) coincide.

To illustrate the situation in predicate logic without identity, consider the fol-
lowing. One can effectively �nd the elements of W (i + x) which extend S's
truth from some given wi ∈ W (i). If S is true in some wi+x, its truth is clearly
extendible to x + i + 1. Hence, one can effectively �nd the elements of any
FR(i, wi, S, x).

The underlying logical space associated with the concept of extendible truth
must be the space of in�nite sequences of �nite state descriptions. This can be rep-
resented by the Cantor space or any suitable tree structure with nodes and branch-
ing sequences as in the in�nite state descriptions. The nodes of the sequences of
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the tree are now considered to be �nite state descriptions instead of initial seg-
ments of some in�nite state descriptions. The constructive interpretation of the
tree is by means of lawless sequences (cf. section 2.3). However, the concepts
of extendible truth and probability as de�ned above do not need an explicit de�-
nition of an in�nite logical space of in�nite sequences of �nite state descriptions;
as in Carnap 1962, one can manage with nested �nite logical spaces of �nite state
descriptions.

As explained above, the elements of FR(i, wi, S, x) represent initial segments
of in�nite sequences of possible observations. Because any �nite initial segment
(i.e., �nite state description) can be denoted by a linguistic expression, there can-
not be more than a denumerable number of initial segments. Hence, a denu-
merable number of in�nite sequences is suf�cient for producing a non-negligible
asymptotic probability of �nite initial segments.

Constructively, the elements of FR(i, wi, S, x) are limited by the possibility of
extending S's truth with law-like sequences in the subsequent cardinalities. To
see this, assume that wi+x ∈ FR(i, wi, S, x) is justi�ed because wi+x = r∗i+1(α)
for a lawless α. Then there must be y ≥ 0 such that S is constructively true in
some wi+x+y ∈ W (i + x + y) and in all of its �nite extensions � which are all
law-like sequences.

Recall that there can be only a denumerable number of law-like sequences.
There is thus only a denumerable number of in�nite sequences of extensions of
wi which can be denoted. This means that most parts of the space of in�nite
sequences of �nite state descriptions (the space of the cardinality 2ℵ0) cannot be
denoted and thus cannot �gure in the constructive proof of a given sentence S.
This does not limit the logical possibilities for a sentence to be true since the
restriction to a denumerable number of law-like sequences does not effect the
logical possibility of a given S in constructive semantics. Even if S is logically
possible in the weak sense that its negation is not logically necessary, it is not
possible that there is no denotable sequence making it true (cf. section 2.2 above).

5.4.4 The probability of extendible truth
The set of state descriptions in W (i + x) which extend S's truth from i and from
which S's truth is extendible to an arbitrarily high cardinality is

E∀(S, i, x) =
⋃

wi∈W (i)

FR(i, wi, S, x). (5.21)

In the set W (i+ x), the probability of S's extendible truth from i to an arbitrarily
high cardinality is

PETi(S, i, x) = P (E∀(S, i, x)). (5.22)
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For reasons of simplicity, it will be assumed that P corresponds to Carnap's m†,
i.e., the equiprobability of state descriptions, but the results in what follows are
likely to extend to other measures as well.

It is decidable whether a given wi+x belongs to E∀(S, i, x) if S's extendible
truth without upper limit from wi+x is decidable. This is the case in �rst-order
logic without functions or identity (cf. section 5.2).

Assume a constructively de�ned set of real numbers, for example, by means
of sequences of rational numbers, as in Bishop (1967). The limit of PETi(S, i, x)
(if the limit exists), when x grows, is then the limit probability of S's extendible
truth without upper bound from i:

PETi
∞ (S, i) = lim

x→∞
PET (S, i, x). (5.23)

The overall limit probability of S's extendible truth is

PET∞
∞ (S) = lim

i→∞
PETi
∞ (S, i). (5.24)

The limit (5.23) is zero for sentences like (5.9).
The de�nition of conditional extendible probability can be construed along the

usual lines:

PETi
Con(S1, S2, i, x) =

PETi(S1 ∧ S2, i, x)
PETi(S2, i, x)

. (5.25)

However, a detailed treatment of conditional extendible probability will not be
presented in this study.

5.4.4.1 A remark about additivity

The equation

PETi(A ∨B, i, x) = PETi(A, i, x) + PETi(B, i, x) (A ∩B = ?) (5.26)

is not a theorem. The set E∀(A, i, x) can contain only sequences of state descrip-
tions in which A is true; and similarly with E∀(B, i, x). Hence, sequences of state
descriptions in which A and B are alternately true are not included, although they
are included in E∀(A ∨B, i, x).

However, the extendible truth of A ∨ B from wi is not the same event as the
union of the events `A is extendibly true from wi' and `B is extendibly true from
wi' (cf. section 5.4.1). Hence, the concept of extendible probability does not
directly violate the additivity axiom

P (A ∪B) = P (A) + P (B) (A ∩B = ?). (5.27)
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One could think of extendible probability in terms of a research process. The
process converges towards the truth of a sentence S iff S is con�rmed by all the
�nite stages of the process from some stage onwards, i.e., iff S is extendibly true
without upper limit from some wi belonging to the process. Even if the research
process does not converge to A or B, it can still converge to A ∨ B: A ∨ B can
be con�rmed by all the stages of the process from wi even if the process does
not con�rm either A or B at all those stages. Hence, the probability that A ∨ B
will conform with all the data gained during the research process may be different
from the joint probability of either A or B conforming with all the data.

5.4.5 The existence of the limit for PETi

The real number L is the limit of the function P (n), limn→∞ P (n) = L, if and
only if for all ε > 0 there is a natural number nk such that

if n ≥ nk then |P (n)− L| < ε.

It is obvious that the limit for the conventional asymptotic probability P does
not always exist; consider, for instance, the function P (Even(n)) when n → ∞.
Observe that since Even(n) involves a binary function symbol (multiplication),
this is not in contradiction with Lynch (1980), according to which asymptotic
probabilities exist for �rst-order languages with unary function symbols when
state descriptions are equally likely.

However, the extendible probability PETi has an advantage over conventional
asymptotic probability since the classical limit always exists for PETi , as will be
shown below.

To prove that a given function converges to a classical limit, one does not have
to be able to generate the numerical value of the limit.

PETi(S, i, x) is a non-increasing function for each constant i and its values are
in the interval [0, 1]. Hence, PETi(S, i, x) is bounded from below and above.

Classically, a function which is bounded from below has a greatest lower
bound. A classical theorem of analysis then implies that if a is the greatest lower
bound for a monotonic function like PETi(S, i, x), PETi(S, i, x)→ L for some L
as x→∞.

A similar proof technique with upper bounds instead of lower bounds can be
applied to the outer limit, since PET∞

∞ (S) is clearly a non-decreasing function with
an upper bound 1. This concludes the classical proof that the required classical
limits always exist.

To prove the constructive existence of the limit probability, one must �nd it,
in other words the limit must be known. The meaning of a known limit is that it
is provable that a certain known L satis�es the de�nition of a limit. However, this
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provability can be classical or constructive because one can either apply classical
inference rules or restrict oneself to constructive ones. Hence, the fact that one
knows that L is the classical limit does not yet entail that L constructively satis�es
the de�nition of a limit.

5.4.6 The known limit is Markov-constructive
Is there, after all, a distinction between a known classical limit and a known con-
structive limit? Is a known classical limit not always a constructive limit as well?

The answer is negative in the strict sense of constructive semantics, as can
be demonstrated by the reasoning below. However, as will also be seen, even a
known classical limit is always constructive in a more liberal constructive sense.

The Markov school of constructive mathematics uses the intuitionistic predi-
cate calculus with an additional principle, known as Markov's Principle (cf. Kopy-
lov & Nogin 2001; Markov 1962; Troelstra & van Dalen 1988, pp. 203-206):

(∀x)(S(x)∨ ∼ S(x)) ⊃ (∼∼ (∃x)S(x) ⊃ (∃x)S(x)). (5.28)

Markov's Principle can be interpreted as follows: provided that S is decidable for
a given x, it suf�ces for proving that an algorithm for �nding an x such that S(x)
holds halts after a �nite time to prove that the algorithm cannot possibly run for-
ever. In other words, the existential quanti�er `a' in `a �nite time' is interpreted
classically, meaning that a precise time at which the algorithm will provably ter-
minate is not known before it actually does so.

According to Troelstra & van Dalen (1988, p. 204), the acceptability of
Markov's Principle within the context of general constructivism is not all that
easy to determine.

Consider now the de�nition of PET∞
∞ (S). It follows from the non-decreasing

property of PETi
∞ (S, i) that it must approach the limit PET∞

∞ (S) from below. If this
limit is interpreted classically and is known, it is known that for every ε an i′ exists
(classically!)6 such that for every i ≥ i′, the value of the function PETi

∞ (S, i) is
within ε from PET∞

∞ (S). One can �nd such an i′ in a �nite time by simply letting
i grow because in a �nite time the value of PETi

∞ (S, i) must be large enough (even
though the value of i′ cannot be speci�ed before it is found). In other words, the
search procedure for �nding out the value of i′ cannot possibly run forever. Ac-
cording to Markov's Principle, this is enough to prove that the procedure halts
after a �nite time. Hence, the outer limit PET∞

∞ (S) ful�ls the constructive de�ni-
tion of a limit in the sense of Markov's Principle.

6The classical existence of this i′ can be proved, not only by producing the i′ itself, but also by
showing that the assumption that there is no such i′ leads to a contradiction.
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A similar argument applies to the inner limits PETi
∞ (S, i) since PETi(S, i, x)

is a non-increasing function of x for every i. Hence, the nested limit operation
PET∞
∞ (S) is, when known, constructive in Markov's sense.

5.4.7 Limit and veri�cation
The aim of this section is to prove that a positive limit probability for a sentence S
does not mean that S should be veri�able on the basis of some initial segment of
a lawless sequence. At the outset this is not obvious. We see that extendible prob-
ability does not express the probability of the sentence being veri�ed on the basis
of �nite information, but it does not follow that there actually is a non-veri�able
sentence having a positive extendible probability. It is important that positive ex-
tendible probability is not limited to �nitely veri�able sentences considering, for
instance, the possibility of assigning positive probabilities to scienti�c hypotheses.
Recall that one of the motivations for the notion of probability is those sentences
which cannot be veri�ed on the basis of �nite evidence.

It will �rst be shown that the conventional Carnapian asymptotic limit proba-
bility for S may be positive even if S is not veri�able.

Consider the sentence (4.5), i.e., (∃x)(∀y)C(x, y) again. Since the asymptotic
probability of a �rst-order sentence without constant or function symbols is either
0 or 1 (see, e.g., Fagin 1976), the asymptotic probability of (∃x)(∀y)C(x, y) or
that of its negation must be 1. In other words, either (∃x)(∀y)C(x, y) or its nega-
tion must have a probability of 1, although neither of them can be veri�ed on the
basis of any initial segment.

According to Liogon'kii's result (1969), the probability value of
(∃x)(∀y)C(x, y) is decidable. In order to verify constructively that one of the
sentences above has a probability of 1, one should show which one. Liogon'kii's
result would be handy here.

However, without assuming that Fagin's or Liogon'kii's �ndings hold con-
structively, it is impossible to assume that �nitely non-veri�able sentences could
not have positive extendible probabilities. The proof of this fact below will be
constructive.

If the negation of Fagin's result, i.e., that the 0 − 1 law does not hold for the
sentences in question, was constructively provable, it would also be classically
provable. But this is in contradiction with Fagin's result itself. Hence, the negation
of Fagin's result is impossible.

Suppose that neither (∃x)(∀y)C(x, y) nor its negation has an asymptotic prob-
ability of 1. Then the 0−1 law does not hold for it. This contradicts Fagin's result,
which is impossible. Hence, it cannot be assumed that neither (∃x)(∀y)C(x, y)
nor its negation has an asymptotic probability of 1.
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Let us denote (∃x)(∀y)C(x, y) by S. The argument above entails that it holds
constructively that

∼∼ (P∞(S) = 1 ∨ P∞(∼ S) = 1) (5.29)

where P∞(S) denotes the conventional asymptotic probability of S.
To modify the proof about the possibility of a positive probability without

veri�ability in initial segments to cover extendible probability as well, further
steps need to be taken. For simplicity, I will formulate the argument under the
assumption that all state descriptions are equally probable (i.e., as in Carnap's
m†); the general case would require somewhat more argumentation.

It needs to be proved that it is contradictory to assume that neither PET∞
∞ (S)

nor PET∞
∞ (∼ S) is positive, where both S and ∼ S are non-veri�able.

One can prove this for an arbitrary sentence S.
It will be �rst proved that

P∞(S) = 1 ⊃ PET
∞ = 1 (5.30)

where `⊃' is logical implication.
If P∞(S) = 1, for any b < 1 there must be i such that the probability of S in

all j ≥ i is greater than b.
Assume �rst that P∞(S) = 1; then the above condition must be ful�lled. Let

us choose b such that b > 1
2 . Let us then assume that PET∞

∞ (S) is zero. This means
that for some j ≥ i and for all j′ ≥ j, S is false in more than half of the state
descriptions inW (j′). Contradiction. Hence, PET∞

∞ (S) cannot be zero. Formally:

P∞(S) = 1 ⊃ PET∞
∞ (S) 6= 0. (5.31)

The next step is to prove that

∼ [PET∞
∞ (S) 6= 0 ∨ PET∞

∞ (∼ S) 6= 0] ⊃ (5.32)
∼ (PET∞

∞ (S) 6= 0)& ∼ (PET∞
∞ (∼ S) 6= 0).

This is easy, since (5.32) is an instance of the general theorem

∼ (A ∨B) ⊃ (∼ A& ∼ B), (5.33)

which is constructively provable.
Let us now prove

∼∼ [P∞(S) = 1 ∨ P∞(∼ S) = 1] ⊃∼ [∼ (P∞(S) = 1)&
∼ (P∞(∼ S) = 1)]

(5.34)
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This is an instance of

∼∼ (A ∨B) ⊃∼ (∼ A& ∼ B), (5.35)

which can be proved as follows. Assume

∼ A& ∼ B. (5.36)

It is clear that one can derive a contradiction with (5.36) by assuming that either
of the disjuncts of A ∨B is true; hence, ∼ (A ∨B) must be true. Since assuming
∼∼ (A ∨ B) yields a contradiction with this, ∼ (∼ A& ∼ B) must be true. This
proves (5.35). With (5.29), (5.34) thus entails

∼ [∼ (P∞(S) = 1)& ∼ (P∞(∼ S) = 1)]. (5.37)

Suppose now that P∞(S) = 1. It follows with (5.31) that

PET∞
∞ (S) 6= 0. (5.38)

Assume also that

∼ [PET∞
∞ (S) 6= 0 ∨ PET∞

∞ (∼ S) 6= 0]. (5.39)

With (5.32), this yields

∼ (PET∞
∞ (S) 6= 0)& ∼ (PET∞

∞ (∼ S) 6= 0) (5.40)

and further∼ (PET∞
∞ (S) 6= 0), which contradicts (5.38). Hence,∼ (P∞(S) = 1).

A similar proof with the assumption P∞(∼ S) = 1 gives ∼ (P∞(∼ S) = 1) and
thus ∼ (P∞(S) = 1)& ∼ (P∞(∼ S) = 1), which is in contradiction with (5.37).
Hence, one must deny (5.39) and thus ∼∼ [PET∞

∞ (S) 6= 0 ∨ PET∞
∞ (∼ S) 6= 0]

holds. QED.
Hence denying the claim that the extendible probability of S or the extendible

probability of ∼ S is positive leads to a contradiction. It is thus not possible
to maintain that all non-veri�able sentences must have an extendible probability
value of zero.

5.4.8 Calculating extendible probability
This section explores the possibility of calculating extendible probabilities. The
dif�culty of obtaining probabilities under the constructive interpretation of truth
will be of special concern in 5.4.8.3.
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5.4.8.1 Computing limits of classical extendible probability

We will now investigate how one could obtain (classical and constructive) values
for extendible probabilities without an upper bound. Initially, this seems some-
what dif�cult.

In the case of predicate calculus without identity or function symbols, the
truth of a sentence can always be constructively extended without upper bound
(cf. section 5.2). It follows that if S is true in an arbitrary wi, S's truth can be
constructively extended from wi. The probability of S's constructive extendible
truth without upper bound from i is thus decidable in each i+ x.

However, for full �rst-order logic, the question of the constructive or classical
decidability of the set E∀(S, i, x) in (5.21) has not been established because the
prerequisite for this decidability property is the decidability of S's extendible truth
without an upper bound for a given wi+x.

This leads one to inquire whether there might be an easier way to compute the
asymptotic limit of S's extendible probability than �nding out the extendibility of
S's truth without upper limit from each wi+x.

The set

Ext(S, i, x) = {wi+x ∈W (i+ x)|wi+x �i,x S} (5.41)

clearly incorporates at least those state descriptions in W (i + x) from which S's
truth can be extended without upper limit, but it may contain other state descrip-
tions as well. Hence, the probability measure of the set Ext(S, i, x) is at least
PETi
∞ (S, i) in both classical and constructive interpretations of extendible proba-

bility.
It will be shown below that the classical limit probability of Ext(S, i, y) when

y →∞ equals the classical limit PETi
∞ (S, i) in (5.23).

Consider those wi+x ∈ W (i + x) for which wi+x 6∈ E∀(S, i, x). (If wi+x ∈
E∀(S, i, x), then wi+x cannot make Ext(S, i, x) and E∀(S, i, x) differ from each
other.) Then either
A) wi+x extends S's truth from i but S's truth cannot be extended without upper
bound from wi+x or
B) wi+x does not extend S's truth from i.
If B) is the case, w 6∈ Ext(S, i, x) either. These state descriptions thus cannot
make the probabilities of E∀(S, i, x) and Ext(S, i, x) differ from each other and
can be left out of further deliberations.

Assume then that A) is the case for wi+x. In this case wi+x belongs to
Ext(S, i, x), which entails that P (Ext(S, i, x)) ≥ P (E∀(S, i, x)). A) also entails
that wi+x′ �∼ S holds for some x′ ≥ x and for all wi+x′ ful�lling the condition
wi+x = ri+x(wi+x′).
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It follows from the above that in some cardinality x′′ ≥ x′ the setExt(S, i, x′′)
contains only extensions of state descriptions wi+x ∈ Ext(S, i, x) for which
wi+x ∈ E∀(S, i, x) as well. Moreover, consider a given w′i+x ∈ E∀(S, i, x). It
is possible that some extensions of w′i+x in W (i + z) (z > x) do not satisfy S
and thus do not belong to Ext(S, i, z). These facts mean that P (Ext(S, i, x′′))
cannot be greater than P (E∀(S, i, x)). In fact, P (Ext(S, i, z)) cannot be greater
than P (E∀(S, i, x)) for any z ≥ x′′.

Hence, it holds that

(∃x′′)(∀z ≥ x′′)(P (Ext(S, i, z)) ≤ P (E∀(S, i, x)) = PETi(S, i, x)). (5.42)

On the other hand, because PETi(S, i, y) contains only state descriptions which
satisfy S in in�nity, P (Ext(S, i, y)) ≥ PETi(S, i, y) for all y. It thus holds that

(∃x′′)(∀z ≥ x′′)(PETi(S, i, x) ≥ P (Ext(S, i, z)) ≥ PETi(S, i, z)). (5.43)

Since obviously, even when z ≥ x′′,

lim
x→∞

PETi(S, i, x) = lim
z→∞

PETi(S, i, z) = PETi
∞ (S, i), (5.44)

it must hold that

lim
x→∞

P (Ext(S, i, x)) = PETi
∞ (S, i). (5.45)

Equation (5.45) means that it is enough to determine the left-hand side for cal-
culating extendible probabilities. This is a considerable advantage sinceExt(S, i, x)
is decidable whereas E∀(S, i, x) is not.

5.4.8.2 Computing limits of constructive extendible probability

In this section the �nding of the preceding section will be discussed for the case
of a constructive notion of asymptotic limit.

The question of the constructive validity of the argument in the previous sec-
tion can be split into two questions. First, there is the question of whether the
constructive limit can be calculated in the way suggested. Second, the construc-
tive validity of the reasoning itself is to be examined.

Let us analyse the above proof step by step.
The known value of E∀(S, i, x) can only differ from the known value of

Ext(S, i, x) when it is known that A) holds for certain wi+x (see section 5.4.8.1
above). But A) holds knowably only if it is known that S's truth is not extendible
from wi+x without upper bound.
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Applying the reasoning of the previous section (but without assuming knowl-
edge about a particular x′′) we get

∼∼ (∃x′′)(∀z ≥ x′′)(PETi(S, i, x) ≥ P (Ext(S, i, z)) ≥ PETi(S, i, z)). (5.46)

This holds constructively even if no x′′ can be effectively found. It is then clear
that

lim
x→∞

P (Ext(S, i, x)) 6= PETi
∞ (S, i) (5.47)

cannot be true and thus (5.45) holds. This shows that (5.45) holds constructively
when the limits exist constructively.

However, the motivation for deriving (5.45) above was to be able to use the
value Ext(S, i, x) instead of the undecidable E∀(S, i, x). Precisely the situa-
tions in which it is not known whether some wi+x ∈ Ext(S, i, x) also belongs
to E∀(S, i, x) are the reason why (5.45) was attempted. This means that situ-
ations in which either wi+x ∈ E∀(S, i, x) or wi+x 6∈ E∀(S, i, x) is known are
not the crux of the matter, the whole idea being able to avoid the need to know
whether wi+x ∈ E∀(S, i, x) holds when calculating S's extendible probability.
In the constructive version of the proof, one thus cannot rely on assuming that
wi+x ∈ E∀(S, i, x) ∨ wi+x 6∈ E∀(S, i, x) holds constructively.

Result (5.45) shows that even if one found out for every wi+x whether wi+x ∈
P (E∀(S, i, x)) or not, it could not change the limit probability of E∀(S, i, x)),
provided that the latter exists. If the limit exists constructively (which requires
that it be known), it must be the same as the limit of P (Ext(S, i, x)).

On the other hand, (5.45) is not, after all, constructively valid. Computing the
left side of the equation does not mean that the value of the right side is construc-
tively established. Establishing the value of the right side is not trivial since the
constructive extendible truth of S from wi+x requires a function that effectively
extends S's truth without upper bound, and it is not an effectively solvable task to
�nd such a function in full �rst-order logic. For �rst-order logic without functions
or an identity symbol, it was shown in 5.2 that in for every cardinality i in which
a certain wi satis�es S, this kind of function can be constructed. Hence, for this
segment of �rst-order logic, (5.45) holds constructively without quali�cation.

In what follows it will be proved that if the value of limx→∞ P (Ext(S, i, x))
exists constructively, it is possible to approximate the constructive value of every
PETi
∞ (S, i) with arbitrary precision.

5.4.8.3 Producing the initial segments

Calculating extendible probabilities in the constructive interpretation of extendible
truth is especially dif�cult because discovering which state descriptions meet the
requirement (5.20) of FR(i, wi, S, x) is a non-trivial matter.
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It will now be argued that, when

lim
x→∞

P (Ext(S, i, x)) > 0 (5.48)

holds constructively, there is a method for producing almost all the initial seg-
ments satisfying the de�nition of extendible truth without upper bound and con-
tributing to the limit probability of S in the sense that the joint probability of
the extensions does not tend to zero. For L to represent constructive extendible
probability, it is required at each �nite cardinality that one can point out the state
descriptions contributing to the limit in the sense that S's truth is extendible with-
out an upper bound, which is the condition (5.22) above, whereas �nding state
descriptions whose extensions do not have a positive limit probability is not es-
sential for considering L as the limit of constructive extendible probability of S.

The argument below focuses �rst on the cardinality i.
Suppose the constructive limit of P (Ext(S, i, x)) is L 6= 0. Let the set of state

descriptions in W (i) from which S's truth is extendible to i+ x be

Res(S, i, x) = {wi ∈W (i)|wi �◦i,x S} (5.49)

and let the set of state descriptions in W (i+x) which extend S's truth from wi be

EI(S, i, x, wi) =
{wi+x|wi+x ∈W (i+ x) ∧ wi+x �i,xS ∧ wi = r∗i (wi+x)}.

(5.50)

It is clear that

Ext(S, i, x) =
∑
wi

EI(S, i, x, wi). (5.51)

Then

lim
x→∞

∑
wi

P (EI(S, i, x, wi)) = lim
x→∞

P (Ext(S, i, x)) = L. (5.52)

The fraction
L

|Res(S, i, x)|
(5.53)

in which |Res(S, i, x)| is the number of state descriptions in Res(S, i, x), is the
average limit probability of extensions of elements inRes(S, i, x). In other words,
on average, the extensions of each wi in Res(S, i, x) have a combined limit prob-
ability according to (5.53), although not all wi in Res(S, i, x) necessarily have
extensions without upper limit.
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Res(S, i, x) is a non-increasing function of x, which means that (5.53) is non-
decreasing. It is clear that the distance of Ext(S, i, x) from the limit,

D(S, i, x, L) = P (Ext(S, i, x))− L (5.54)

may be arbitrarily small when x increases (although not necessarily zero). Then
x′ can be effectively found (recall that L is a constructive limit) such that

L

|Res(S, i, x′)|
> D(S, i, x′, L). (5.55)

Recall that Res(S, i, x′) consists of state descriptions from which S's truth is
extendible to i + x′. The combined probability of extensions of every wi ∈
Res(S, i, x′) must have a positive probability at x′. If D(S, i, x′, L) = 0, this
probability cannot decrease, which means that the desired result has been estab-
lished, i.e., we have pointed out those wi whose extensions satisfying S have a
positive limit.

In the general case, P (Ext(S, i, x)) approaches L asymptotically. If (5.55)
holds, then the probability of extensions in W (i + x′) of the average element of
Res(S, i, x′) is greater than D(S, i, x′, L). The magnitude of D(S, i, x′, L) is thus
comparable to that of the average element in Res(S, i, x′). Since there are only a
�nite number of elements in Res(S, i, x′), those for which it holds that

P (EI(S, i, x′, wi)) > D(S, i, x′, L) (5.56)

can be effectively pointed out. If (5.56) holds for wi,

P (EI(S, i, x′, wi))−D(S, i, x′, L) (5.57)

is a lower limit for the value of P (EI(S, i, x, wi) when x→∞.
This method of �nding the relevant elements of Wi can be made more com-

plete in the manner which will be outlined below.
Consider those wi ∈ Res(S, i, x′) for which (5.56) does not hold. In gen-

eral, for an arbitrary x, this set is non-empty and can even consist of all wi ∈
Res(S, i, x). Let us denote this set for x′ by

T (S, i, x′, L). (5.58)

If

P (
∑
wi∈T

EI(S, i, x′, wi)) > D(S, i, x′, L) (5.59)
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when T = T (S, i, x′, L), it is clear that the probability of extensions of all wi ∈
T (S, i, x′, L) cannot tend to zero. The minimum of P (T (S, i, x, L)) when x→ 0
is then

P (
∑
wi∈T

EI(S, i, x′, wi))−D(S, i, x′, L). (5.60)

Let us consider the fraction

P (
∑

wi∈T EI(S, i, x
′, wi))−D(S, i, x′, L)

|T (S, i, x′, L|
. (5.61)

Since D(S, i, x, L) is a decreasing function of x, one can effectively �nd an x′′ for
which

D(S, i, x′′, L) <
P (
∑

wi∈T EI(S, i, x
′, wi))−D(S, i, x′, L)

|T (S, i, x′, L|
. (5.62)

Hence, for the average wi ∈ T (S, i, x′, L),

P (EI(S, i, x′′, wi)) > D(S, i, x′′, L), (5.63)

i.e., (5.56) holds when x′ is substituted by x′′. One can thus effectively �nd at
least one wi ∈ T (S, i, x′, L) for which (5.63) holds.

This reasoning can be repeated for T (S, i, x′′, L) effectively until (5.59) does
not hold for some y > x′. The value D(S, i, y, L) is the proportion of the limit
value L for which it cannot necessarily be pointed out which wi ∈ Res(S, i, x)
contribute to this part of the limit. In other words, D(S, i, y, L) does not neces-
sarily manifest constructive extendible probability, i.e., probability in the sense of
constructive extendible truth. However, since D(S, i, y, L) is a decreasing func-
tion of y where y can be effectively selected to yield a given value forD(S, i, y, L),
it is possible to reduce the non-constructive proportion of the limit probability
down to an arbitrarily small number.

In general, similar reasoning applies for the set Res(S, i+ 1, x).
The above, however, not enough to show that S's truth is constructively ex-

tendible from a particular wi ∈ Res(S, i, x) (i arbitrary) without an upper bound.
It has only been shown that the assumption that S's truth is not extendible from a
subset of Res(S, i, x) results in a contradiction. For constructive extendible truth,
one must also suggest a method for �nding at least one extension for the relevant
wi ∈ Res(S, i, x).

Suppose that

P (EI(S, i, u, wi)) > D(S, i, u, L) (5.64)
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holds for some wi and u > i. Consider now the set of extensions of wi in Wi+1,
say w1

i+1 and w2
i+1. It clearly holds that

P (EI(S, i, u, wi)) = (5.65)
P (EI(S, i+ 1, u, w1

i+1)) + P (EI(S, i+ 1, u, w2
i+1)). (5.66)

If either P (EI(S, i + 1, u, w1
i+1)) > D(S, i, u, L) or P (EI(S, i + 1, u, w2

i+1)) >
D(S, i, u, L) holds, then wi has an extension in W (i + 1) satisfying S, QED. On
the other hand, if neither of these inequalities hold, consider the least possible
limit value of P (EI(S, i, x, wi)) when x→∞,

P (EI(S, i, u, wi))−D(S, i, u, L). (5.67)

For some z which can be effectively found it holds that

P (EI(S, i, u, wi))−D(S, i, u, L) > (5.68)
D(S, i, z, L). (5.69)

If now either P (EI(S, i+1, z, w1
i+1)) > D(S, i, z, L) or P (EI(S, i+1, z, w2

i+1)) >
D(S, i, z, L) holds, then wi has the required extension, QED. On the other hand, if
P (EI(S, i+1, z, w1

i+1)) ≤ D(S, i, z, L) andP (EI(S, i+1, z, w2
i+1)) ≤ D(S, i, z, L),

the limits of both P (EI(S, i + 1, z, w1
i+1)) and P (EI(S, i + 1, z, w2

i+1)) must be
positive when x → ∞ since otherwise the limit of P (EI(S, i, x, wi)) (x → ∞)
would be less than (5.67), i.e., less than its minimum. QED.

Hence, there is also a method for �nding out at least one extension for each i
and wi for which (5.56) holds.

It has been proved in this section that one can �nd almost all wi for a given
i of which it cannot be assumed that their extensions satisfying S do not have a
positive limit probability. There is a method for providing at least one required
extension for each such wi. The methods introduced in this section do not provide
the limit probability of the extensions of any particularwi satisfying S in the sense
of extendible truth, but it has been shown that the sum of such limit probabilities
must be close to L.
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Chapter 6

Second-order probabilities

This chapter starts the discussion about Carnap's inductive logic from the point of
view of the problem of induction. The most dif�cult problem with the justi�cation
of Bayesian inference also troubles inductive logic, namely, the dependence of
probability inferences on the choice of the prior distribution. The question is
which prior distribution yields the most accurate predictions. One cannot exclude
even prior distributions which do not take the effect of evidence into account.
This is the crux of the problem of induction as formulated within the framework
of general Bayesian inference.

Prior distributions are called inductive methods in Carnap's generalization of
inductive logic (1952), which de�nes a whole continuum of inductive methods.
Hence, the problem of choosing the prior distribution amounts to the problem of
choosing the inductive method from this continuum.

The customary way to let evidence affect probabilities is by introducing the
dyadic probability function with the conditionalization rule

P (h|e) =
P (h&e)
P (e)

. (6.1)

Conditionalization rule (6.1) in fact de�nes a probability function Pe(h) =
P (h|e) which is different from the prior probability function P (h). However,
since Pe(h) is de�ned by using P , the probabilities that are obtained by applying
Pe(h) depend on the choice of P .

A possible solution to the problem of choosing between the available prior
distributions is to assign probability values on the prior distributions themselves.
This kind of second-order probability function re�ects uncertainty concerning the
probability values of the �rst order, i.e., whether the probabilities determined by
applying the appropriate prior distribution are really the "true" probabilities.1 The

1Carnap (1952) de�nes the notion of optimum inductive method for a given state description.
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idea is that the choice of a second-order probability distribution can perhaps be
argued for more objectively than the choice of the �rst-order probability distribu-
tion. Moreover, one could update the probability of the inductive method itself
by evidence instead of only updating the probabilities of sentences. This would
mean that Bayesian updating according to conditionalization rule (6.1) would be
extended to the level of second-order probabilities, provided that the technical
details of this conditionalization can be sorted out.

Apart from resorting to second-order probabilities, there is also another pos-
sible strategy for adjusting the prior probability distribution. This is to adjust the
prior probability distribution with evidence in some other way than using condi-
tionalization rule (6.1). This would amount to not just updating the probabilities
of sentences by using a speci�ed prior probability distribution P (h) in (6.1), but
also adjusting which probability distribution P (h) will be used in (6.1). One usu-
ally calls this kind of updating method non-Bayesian because it deviates from the
customary Bayesian rule (6.1).

This chapter �rst discusses some problems present in the second-order proba-
bility approach. These considerations, which so far have not appeared in this form
in the literature, will lead the present author to favour a non-Bayesian way of ad-
justing the prior distributions (i.e., the inductive methods). Chapter 7 presents a
such a non-Bayesian method for Carnap's inductive logic and an argument for us-
ing it in a situation where there is no criterion available for choosing between the
different inductive methods.

6.1 Interpreting second-order probabilities
One possible way to make adjustments to inductive methods is to change their
probabilities instead of fully committing to another method. Assignment of prob-
abilities to inductive methods, however, gives rise to a question of a semantic
nature: what is really meant by probability in this case? The question is important
since the main objective of inductive logic is to provide a satisfactory interpreta-
tion of epistemic probability.

Probabilities of inductive methods cannot be determined in the same fashion
as probabilities of sentences of the object language. This is explained as fol-
lows. Sentences can be assigned meanings, in which case they describe the world.
One can assign probability values to sentences by means of applying a probability
function to them, which means assigning such values to various propositional con-
tents. Probabilities in inductive logic are considered as probabilities of obtaining
of certain states of affairs, which are described by sentences. Therefore inductive
The true probability can be de�ned as the one given by the optimum inductive method. This will
be discussed in more detail in what follows.
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methods can be considered as functions from sentences to real numbers. It does
not easily make sense to apply a second-order probability function to an inductive
method because such a method does not describe a state of affairs in the sense of
a sentence. A state of affairs can obtain � in this case the corresponding sentence
is true � but it is not clear what it would mean that an inductive method obtains.
Provided that second-order probabilities deal with inductive methods in one sense
or another, it must be explained what states of affairs the inductive methods can be
involved in such a way that probabilities can be assigned to these states of affairs.

Since parameter λ ranges over the continuum of inductive methods, its value
uniquely de�nes an inductive method. One option is to consider second-order
probabilities as degrees of belief concerning the optimum value of λ. On this
view, the probability assigned to a particular value of λ, say λ′, is interpreted as
the epistemic probability of the state of affairs that λ′ is the optimum value of λ in
the state description which corresponds to the actual world.

This way of formulating the issue gives rise to a further question concerning
the meaning of the word `optimum' in this context. What are the criteria to be
used in judging whether a method is the optimum one? Is there always a unique
optimum method?

6.2 Subjective second-order probabilities
If it is held that one always knows one's own beliefs, subjective second order
probabilities become absurd since they would always be either 0 or 1 for each
�rst-order probability. If my degree of belief in S is p, then I know that I believe
in S to the degree p so that the second-order degree of belief about my degree of
belief in S being p must be one.

This view has been criticized e.g. by Skyrms (1980, p. 114) and Logue (1991,
p. 158). One can, for instance, interpret degrees of belief as inclinations to be-
have in a certain way (in a betting situation, for example), and such inclinations
are not necessarily accessible to the cognitive agent at all times since one does
not necessarily know with certainty the contents of one's own mind. This argu-
ment would favour the view that subjective second-order probabilities cannot be
dismissed with the triviality argument above.

However, even if second-order probabilities were feasible in the subjective
interpretation of probability, second-order subjective probabilities can only be in-
terpreted as probabilities about one's own beliefs and behaviour. There is no ques-
tion about the closeness of some �rst-order probabilities to the true or objective
probability because such a thing as true probability is supposed not to exist.

Whether second-order probabilities are justi�ed or not in the subjective inter-
pretation of probability is a research topic in its own right, but this study is more
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directed towards �nding a way of justifying a given probability distribution on the
basis of some objective grounds. The motivation is thus to eliminate the subjective
elements from probability assignments as much as possible, and it is dif�cult to
see how considering second-order probabilities as subjective probabilities about
subjective probabilities would contribute to such aims.

6.3 The optimum method
A more objectivistic answer to the question of interpreting second-order prob-
abilities can be outlined by using the concept of optimum inductive method in
Carnap's λ-continuum of inductive methods (1952). One can stipulate that λi is
the optimum method if the actual (possibly unknown) state description is such
that λi yields the most successful predictions. This section will evaluate whether
a second-order probability distribution over all possible optimum values in Car-
nap's λ-continuum is feasible. Since each value of λ is possibly the optimum
value in the (unknown) actual state description, the second-order probability dis-
tribution should be de�ned over the entire λ-continuum from 0 to∞. However, a
slightly different approach will be used.

Carnap (1952) derives a formula for the optimum method in a given state de-
scription which is based on numbers of individuals satisfying variousQ-predicates.

In monadic predicate logic, a Q-predicate is a conjunction which contains
either the predicate itself or its negation for each atomic predicate.2 Hence, a
Q-predicate says which atomic properties an individual possesses and which it
does not. Each Q-predicate can thus be considered as a class of individuals (or
individual constants) of a particular type. The set of Q-predicates incorporates all
possible combinations of atomic properties an individual can have. The number of
Q-predicates in the language is 2π, where π is the number of atomic predicates of
the language. Hence, individual constants can be divided into 2π different classes.
Following Carnap (1952), the number of Q-predicates will be denoted by κ in
what follows.

The degree of order of a state description is given as follows:∑
i

r2
i (6.2)

where ri is the relative frequency of the Q-predicate Qi in the state description in
question and the summation goes to κ.3

2Carnap's systems in 1962 and 1952 use monadic language only.
3Carnap (1952, p. 66) brie�y discusses the degree of order (degree of uniformity, degree of

homogeneity) of the universe. One can conclude from the text that the sum above (which is an
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If the universe of discourse has N individuals and, according to the state de-
scription w, all of them satisfy the same Q-predicate, w's degree of order is maxi-
mal. On the other hand, if the individuals are distributed evenly among all possible
Q-predicates, w's degree of order is minimal. (Cf. Carnap 1952, p. 66.)4

According to Carnap (1952), there is a unique inductive method for a given
state description that yields the best estimates about the relative frequencies of
the Q-predicates on the basis of any sample which is small compared to the total
number of individuals N .5

essential part of the so-called Gini diversity index, see, e.g., Festa 1994) is not meant there as a
de�nition, but merely as a quantity that re�ects the degree of order. According to a footnote on
that page, the concept of degree of order will be discussed in a forthcoming article. However the
only published work known to the present author where the degree of order is discussed is Carnap
(1977). The degree of order is there de�ned in a slightly different way and is referred to as the
traditional concept of degree of order. In Carnap (1977), it is also mentioned that the traditional
concept is examined elsewhere in more detail. Going through Carnap's unpublished manuscripts
might shed more light on this issue.

4However, a proof of these facts is not available in Carnap (1952). Let us �rst prove that
1) if all individuals are concentrated on one Q-predicate, the degree of order is 1, and 2) if the
individuals are evenly distributed over the Q-predicates, the degree of order is 1

κ . Number 1) is
trivial: if for some i, ri = 1, then

∑
i r

2
i = 1. For number 2): if for every i, ri = 1

κ , then clearly∑
i r

2
i =

∑
i

1
κ2 = 1

κ .
The �nal step in the proof is to show that these values are in fact the minimum and maximum

for the degree of order and that they are unique in the sense that each of them is reached with
precisely one statistical distribution of individuals among the Q-predicates. (The proof of this
step was suggested to me by Theo Kuipers.) This requirement is implicitly assumed in Carnap
(1952) when it is said that the minimum is reached when the individuals are evenly distributed
and the maximum is reached when the individuals are uniformly distributed. If the minimum and
maximum values of

∑
i r

2
i were also reached with some other distributions of individuals than

maximally heterogeneous and maximally homogeneous ones, it would not make much sense to
regard

∑
i r

2
i as expressing the degree of order of the universe.

Observe �rst that

0 ≤ ri ≤ 1, for all i = 1, 2, ..., κ (6.3)

and ∑
i

ri = 1. (6.4)

Observe then that r2
i < ri for every i if the universe is not homogeneous and (ri − 1

κ )2 > 0
for some i if the universe is not heterogeneous. For the maximum it then follows from (6.4) that∑
i r

2
i <

∑
i ri = 1, QED. The minimum goes as follows:

0 <
∑
i

(ri −
1
κ

)2 =
∑
i

r2
i −

2
κ

∑
i

ri +
κ

κ2 . (6.5)

By (6.4), this yields 0 <
∑
i r

2
i − 1

κ ⇔
1
κ <

∑
i r

2
i , QED.

5The best estimate is de�ned as the minimum of the mean square error of the estimate function
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Following Carnap (1952, p. 69), λ∆ will be used to denote the optimum in-
ductive method. The value of λ∆ depends on the variable r and the parameter π,
standing for the degree of order of the state description and the number of primi-
tive predicates in the language respectively.

λ∆ can be treated as the function λ∆(r, κ). Carnap (1952) derives the follow-
ing equation for λ∆(r, κ):

λ∆(r, κ) =
1− r
r − 1

κ

. (6.6)

It is easily seen from the above that the function λ∆(r, κ) is reversible. Hence,
for each optimum method there is precisely one degree of order for which it is the
optimum method and vice versa.6

Let us denote by Desc(r) the set of state descriptions whose degree of order
is r and let wa denote the unknown state description corresponding to the actual
state of affairs. If a particular λ′ is the optimum method for wa, the latter must
manifest the degree of order associated with λ′, i.e., wa must belong to Desc(r).
In this case, λ′ is the optimum method for inductive inference in wa.

What does this mean constructively? If it is constructively justi�ed to say that
λ is the optimum method, this fact should be knowable. Hence, in this case it
should be knowable that

wa ∈ Desc(r). (6.7)

In other words, whenever saying that λ is the optimum method in wa is construc-
tively justi�ed, the degree of order of wa should be knowable. The consequences
of this observation will be discussed in the section below.

6.3.1 The optimum method and in�nite state descriptions
This section will discuss a dif�culty of de�ning a second-order probability dis-
tribution over the values of λ as representing the optimum method in the sense
of constructive semantics. The dif�culty arises when dealing with in�nite state
descriptions, where no decidable truth is available in general.

Suppose that the degree of order is somehow constructively de�ned for in�nite
state descriptions. In general, one not only does not know, but cannot even �nd
out the degree of order of the state description corresponding to the actual world.
This is the case in in�nite state descriptions, giving rise to the problem of choosing
given by the inductive method in question, see Carnap (1952, p. 61-62). This is discussed in more
detail in chapter 7.

6If the degree of order is 1
κ , then formula (6.6) yields λ∆ →∞ when r → 1

κ (cf. Carnap 1952,
p. 69).
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the optimum inductive method. If one knew the degree of order of the actual state
description, one would also know which inductive method is the optimum one.

Consider now the constructive meaning of "λ is the optimum method" as the
knowability of this fact. The probability of "λ is the optimum method" would
mean the probability of getting to know that λ is the optimum method. But it is
not the case that "λ is the optimum method" would always hold constructively for
some value of λ since with in�nite state descriptions it is not even always possible
in principle to establish that a particular inductive method is the optimum one.
Even if this was possible for a given in�nite state description, it would not be
possible to tell whether this state description corresponds to the actual world.

What does this mean for second-order probabilities over the λ-continuum?
Observe �rst that in fact one can more easily de�ne the probabilities over the
values of the degree of order since they are in one-to-one correspondence with
optimum values of λ (see above).

The degree of order r can be treated has a continuous random variable ranging
between 1

κ
and 1. In this treatment, each value of r would denote the event that

the corresponding value of λ∆ according to (6.6) is the optimum value for λ and
these events (values of random variable r) could be assigned a density function
of a continuous distribution, corresponding to the probability function over the
values of a discrete random variable.

However, in constructive interpretation r cannot be this kind of random vari-
able, the reason being that there is no density function f(r) de�ned over the values
of λ which would ful�l the condition∫ 1

1
κ

f(r)dr = 1 (6.8)

which is required from any density function. This is because when interpreted
constructively, the expression (6.8) would mean that the degree of order has a
knowable value between 1

κ
and 1 with a probability of 1. In other words, the

degree of order would always be knowable, which cannot be the case in semantics
with in�nite state descriptions.

6.3.2 The optimum method with �nite state descriptions
Recall now the connection (6.6) between the optimum inductive method and the
degree of order of the state description. Assigning a second-order probability
distribution to the λ-continuum would in fact amount to assigning a probability
distribution over degrees of order. It is conceivable that one could work out a
constructively acceptable de�nition of second-order probabilities over degrees of
order using the notion of extendible probability, which is based on �nite state
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descriptions. This would mean that the problem discussed above in section 6.3.1
could be avoided.

However, even such a treatment would not yield signi�cant results with respect
to the problem of choosing the correct inductive method. To see this, consider the
following argument, which is valid in both classical and constructive semantics.

The probability of a given degree of order must equal the combined probabil-
ity of the state descriptions with this degree of order. In fact, the methods in the
λ-continuum de�ne probabilities for various degrees of order by assigning prob-
abilities to state descriptions. These are the �rst-order probabilities. It is not rea-
sonable to assume that a method of assigning probabilities over degrees of order
could be selected on more objective criteria at the second-order level than at the
�rst-order level. It is thus not reasonable to expect bene�ts from introducing such
second-order probabilities. Moreover, second-order probabilities actually become
redundant if they are conceived of as probabilities over the optimality of inductive
methods. This can be shown formally as follows.

Let us assume that the space of possible degrees of order is discrete. In this
space not all λ-methods have a corresponding degree of order. Let O(λi) denote
the proposition saying that λi is the optimum method where i ranges over the
methods corresponding to all possible degrees of order. In fact, O(λ) can be
expressed as a disjunction of state descriptions. These disjunctions are mutually
exclusive (i.e., no member of any disjunction belongs to another disjunction) and
incorporate all state descriptions of the language.

When P̂ (O(λi)) is the second-order probability of the optimality of λi and
P i(S|O(λi)) is the probability of S (using λi) under the condition that λi is the
optimum method,

P̂ (O(λi)) · P i(S|O(λi)) (6.9)

may be used to express the probability that S is true and λ is the optimum method.
According to conditionalization rule (6.1), formula (6.9) above is equal to

P̂ (O(λi)) ·
P i(S&O(λi))
P i(O(λi))

. (6.10)

Observe that O(λi) occurs as an argument in two probability functions, P̂ and P i.
However, one cannot assign two different probabilities to any sentence at the same
time, which means that P̂ and P i must denote the same function. On the other
hand, it certainly does not make sense to index the second-order prior distribution
over O(λi) on i.

Let P replace all occurrences of probability functions in (6.11) thus yielding

P (O(λi)) ·
P (S&O(λi))
P (O(λi))

= P (S&O(λi)). (6.11)
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When it is not known which O(λi) obtains, the overall probability of S can be
calculated as the sum of all probabilities P (S&O(λi)):∑

i

P (S&O(λi)) (6.12)

Since the various O(λi) exhaust all possibilities, (6.15) reduces to P (S). This
means that the initial problem, the problem of choosing the �rst-order probability
distribution over the sentences of the object language, has recurred. Hence, a
second-order assignment of probabilities on the optimality of inductive methods
is not a solution to this problem.

6.4 The rationality of inductive methods
In this section, the second-order probabilities of inductive methods are discussed
by using a more general idea of the rationality of inductive methods than their
optimality in a given state description. As in the preceding section, the discussion
in this section applies both in classical and constructive semantics.

It was shown above that a second-order assignment of probabilities over the
optimality of inductive methods must reduce to a �rst-order probability assign-
ment over the sentences of the object language. It seems, based on the observa-
tions above, that a true second-order probability distribution needs to be discon-
nected from the �rst-order distributions in the sense that the second-order distribu-
tion is not de�ned over the same object language sentences as the �rst-order one �
otherwise the second-order distribution cannot differ from the �rst-order one. But
is a true second-order probability distribution over inductive methods possible?
What is the interpretation of such a distribution?

Apart from the knowable optimality of the inductive method λ, there may be
other rational reasons for choosing λ. One adopts a probability distribution be-
cause it is the most rational of all the available distributions, but rationality does
not necessarily mean knowable optimality. There might be some prior-to-evidence
considerations indicating that some methods are more rational than others. Un-
certainty about the most rational �rst-order distribution can be represented by the
second-order probability distribution.

To avoid interference with �rst-order probabilities, which caused problems
in section 6.3.2 above, the second-order distribution over the inductive methods
should not imply that some speci�c probabilities must be assigned to state descrip-
tions of the object language. The second-order distribution should merely re�ect
uncertainty on the issue of which one of the inductive methods is the most rational
one for determining probabilities of state descriptions (and other sentences).
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6.4.1 Calculating second-order conditional probabilities
This section will discuss the situation when second-order probabilities are com-
bined with conditionalization on evidence. It will turn out that conditionalization
on second-order probabilities is redundant when it comes to the conditional prob-
abilities of hypotheses.

Let us assume, as above, that the available inductive methods can be denoted
by natural numbers i. The probability of an inductive method λi is denoted by
P̂ (λ) and it is required that ∑

i

P̂ (λi) = 1. (6.13)

If λi is the most rational method, the probability of S is determined according to
λi and is denoted by P i(S).

The expressions λi for the inductive method and S for a sentence are not ex-
pressions of the same object language. However, the prior probability that λi is
the most rational method and that S simultaneously obtains ("λi and S") can be
stated as

P̂ (λi) · P i(S). (6.14)

Here P̂ is any prior second-order distribution de�ned by inductive methods and
P i a probability function corresponding to the method denoted by i.

The overall prior probability of S, P (S), can be stated as follows:

P (S) =
∑
i

P̂ (λi) · P i(S). (6.15)

When second-order probabilities are involved, conditional probabilities of hy-
potheses can be de�ned with or without updating the second-order probabilities.

Consider �rst the case without updating second-order probabilities. Applying
the conditionalization rule (6.1) on prior probabilities of the form (6.15) one could
de�ne

P (h|e) =
P (h&e)
P (e)

=

∑
i

P̂ (λi) · P i(h&e)∑
i

P̂ (λi) · P i(e)
(6.16)

One could also think of expressing the probability of h&e by means of using the
prior probabilities of h and e. This can be done by using the following probability
calculus theorem:

P (h&e) = P (h) + P (e)− P (h ∨ e). (6.17)
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Does the conditional probability de�ned by means of this rule differ from (6.16)
above? This will revealed out by a direct application of (6.17). Let us check the
situation by stipulating that

P (h&e) =
∑
i

P̂ (λi) · P i(h) +
∑
i

P̂ (λi) · P i(e)−∑
i

P̂ (λi) · P i(h ∨ e)

=
∑
i

P̂ (λi) · [P i(h) + P i(e)− P i(h ∨ e)]

=
∑
i

P̂ (λi)P i(h&e).

(6.18)

It is immediately seen that this equals the numerator of (6.16), which entails that
substituting h&e directly in (6.15) leads to the same result as using the formula
P (h) + P (e)− P (h∨ e) for P (h&e). This also demonstrates that (6.17) holds in
the present formalism.

Since the inductive methods have prior second-order probabilities, the ques-
tion arises whether they also have posterior second-order probabilities, i.e., whether
they can be updated with evidence using the Bayesian conditionalization (6.1).

In fact, there seems to be a straightforward method for doing this, which will
be discussed below. It will be shown that the method for updating function P in
(6.15) with evidence will follow rule (6.1).

The overall prior probability of the evidence e is, according to (6.15),∑
i

P̂ (λi) · P i(e) (6.19)

and the probability of "λi and e" is
P̂ (λi) · P i(e) (6.20)

according to (6.14). Hence, the conditional probability of λi under e can be stated
as

P̂ (λi|e) = P̂e(λi) =
P̂ (λi) · P i(e)∑
j

P̂ (λj) · P j(e)
. (6.21)

This function is the posterior second-order probability function on inductive meth-
ods, i.e. the second-order probability function which is updated on evidence e by
using Bayesian conditionalization.7

7Observe that (6.21) can be read as an application of Bayes's theorem

P (H|E) =
P (H) · P (E|H)

P (E)
(6.22)
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It should hold that
∑
i

P̂ (λi|e) = 1, i.e., no evidence should make the sum
of second-order probabilities of inductive methods differ from one. It is easily
proved that this is indeed the case:

∑
i

P̂ (λi|e) =
∑
i

P̂ (λi) · P i(e)∑
j

P̂ (λj) · P j(e)
= 1. (6.23)

Let us proceed to examine how hypotheses are updated when the above updat-
ing of the probabilities of inductive methods is included in the updating procedure.
The �rst candidate for a de�nition of conditional probability with updating of the
second-order probabilities will be considered below.

The conditional probability of a hypothesis h, denoted by P (h|e), can be de-
�ned by �rst updating the probabilities of the methods under evidence e using
formula (6.21) and then calculating the probability of the hypothesis h using each
corresponding method:

P u(h|e) =
∑
i

P̂ (λi|e) · P i(h|e) (6.24)

and P u(h) = P (h) where P is as above.
Observe that the ordinary conditionalization rule naturally holds for �rst-order

probability distributions determined by the inductive methods:

P i(h|e) = P i(h&e)/P i(e). (6.25)

Another way of expressing the conditional probability with updating of second-
order probabilities would be to import conditioning on e into the numerator and
denominator of (6.16): ∑

i

P̂ (λi|e) · P i(h&e|e)∑
i

P̂ (λi|e) · P i(e|e)
. (6.26)

Note that P i(h&e) and P i(e) in (6.16) need to be replaced by P i(h&e|e) and
P i(e|e), respectively, because P (λi) is also conditioned on e � in other words, it
is assumed that e holds.

Since P (e|e) = 1, P (h&e|e) = P (h|e) and according to (6.23),
∑
i

P̂ (λi|e) =

1, (6.26) equals (6.24) and thus these two ways of de�ning conditional probability
with updating of the second-order probabilities are in fact equivalent.
if one sets H = λi, P (H) = P̂ (λi), P (E|H) = P i(e) and P (E) =

∑
j

P̂ (λj) · P j(e).
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It follows from (6.24) that

P u(h|e) =
∑
i

P̂ (λi|e) ·
P i(h&e)
P i(e)

. (6.27)

According to (6.21), this can be written as∑
i

P̂ (λi) · P i(e) · P
i(h&e)
P i(e)∑

j

P̂ (λj) · P j(e)
. (6.28)

Hence,

P u(h|e) =

∑
i

P̂ (λi) · P i(h&e)∑
j

P̂ (λj) · P j(e)
, (6.29)

and with (6.15),

P u(h|e) =
P (h&e)
P (e)

=
P u(h&e)
P u(e)

= P (h|e). (6.30)

This shows that the updating method with second-order probabilities is in ac-
cordance with the ordinary conditionalization rule.8 However, the striking thing to
realize is that (6.29) is exactly the same formula as (6.16), in which the updating
of second-order probabilities is not even considered. This indicates that formula
(6.24) for updating second-order probabilities must be a kind of quasi-updating,
i.e. that updating second order probabilities has no effect on the �nal probabil-
ity, which means that there is not much point in introducing the whole idea of
updating second-order probabilities, at least not in this way.

This attempt to de�ne an updating procedure for second-order probabilities
simply reduces to using prior second-order probabilities. It follows that this kind

8It is interesting to note that if one chose not to update the methods themselves with evidence,
i.e., that the probabilities of hypotheses were given simply by

P (h|e) =
∑
i

P̂ (λi) · P i(h|e) (6.31)

instead of (6.24), the result (6.30) would not be achieved. If (6.31) replaces (6.24) in the de�nition
of conditional probability of a hypothesis, the resulting conditional probability must obviously
change accordingly at least sometimes since in general P̂ (λi|e) 6= P̂ (λi), see (6.21). Hence no
equality which involves (6.24) can hold when (6.24) is replaced by (6.31). This means that (6.31)
is not in accordance with the conditionalization rule.
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of introduction of second-order probabilities of inductive methods does not solve
the original problem, which was dependence on a priori assumptions � the choice
of an inductive method � in determining probabilities. It seems that the only
way second-order probabilities could help in choosing the most rational inductive
method is the possibility that one could establish less arbitrary criteria for con-
straining the choice of the second-order priors than the �rst-order ones. However,
as it stands, such criteria are not in sight.
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Chapter 7

Updating the inductive method

This chapter will present a non-Bayesian rule for updating the inductive method
on the basis of evidence. It will be argued that the rule should be favoured over the
methods of the λ-continuum and that it at least tentatively provides a proposal for
solving one of the forms of the problem of induction manifested in inductive logic,
namely that concerning the choice of the optimum inductive method in terms of
the success criterion for inductive methods as formulated by Carnap (1952).

The rule for updating the inductive method has certain consequences in the
constructive interpretation of extendible probability, which was de�ned in chapter
5. According to extendible probability, truth in in�nity means truth in consec-
utive �nite state descriptions. In other words, when more knowledge about the
actual world is obtained, S remains true in the light of this evidence. Updating the
probability measure in the course of obtaining the evidence has an effect on the
probability which corresponds to truth in in�nity in the sense of extendible truth,
that is, extendible probability. This question will be touched brie�y in chapter
8 below, where it will be shown that scienti�c hypotheses can assume non-zero
probabilities when constructive asymptotic probability is combined with the up-
dating rule. This establishes a link between constructive semantics and probability
results with the updating rule.

The idea of changing the prior probability distribution with a non-Bayesian
rule is not new. For example, Douven (2000) discusses empirical testing of in-
ductive logics. However, more relevant for the present study is the limit-process
already discussed in Kuipers (1986, p. 39). The correction rule which will be
introduced in (7.23) essentially updates the method analogously to Kuipers's one-
step version of the limit process (cf. Kuipers 1986, p. 43). However, despite
being able to make some preliminary remarks, Kuipers (1986) does not succeed
in evaluating the performance of the one-step system in a far-reaching way, as he
clearly recognizes himself.

In this chapter, a method of evaluating the correction rule will be introduced.
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The superiority of the correction rule over the methods of the λ-continuum will
be argued for.

The proofs in this chapter may contain instances of classical inference, but it
is presumed that, should this be the case, the methods can be replaced by their
constructive equivalents.

7.1 Inductive skepticism
Carnap regards the extreme method c†, i.e., λ = ∞ as seemingly inappropriate
for sound scienti�c reasoning on the grounds that it gives no consideration to
experience in making expectations or estimations, as long as the experience does
not concern the individual mentioned in the hypothesis (e.g., 1962, p. 564; 1952,
p. 38).1 For example, the evidence of n black ravens does not affect the c†-
probability that the n+ 1'th raven is black.

However, Carnap's view seems to presuppose that inductive reasoning should
be considered sound. Inductive skepticism, on the other hand, suggests that there
are no rational grounds for preferring methods which base predictions on obser-
vations to any degree. It follows from this that there are no rational grounds for
rejecting c†, the anti-inductivist method.

However, it does not follow that c† should be preferred over the other meth-
ods. It is true that c† does not take experience into account, and thus represents
the anti-inductivist attitude, but committing to c† is too strong a statement on the
basis of mere inductive skepticism. Method c† is optimal only in an extremely
heterogeneous universe in which the individuals are evenly distributed among the
Q-predicates. Since it is not possible to know whether the universe is constructed
like this, one cannot know if c† is the right choice.

Carnap puts forward the fact that all estimation methods based on the cor-
responding inductive methods are self-correcting, with the sole exception of c†
(1952, p. 63; also p. 44). Suppose that the limit of a relative frequency of a
predicate is r in an in�nite sequence of individuals. The inductive method λ′ is
self-correcting if the estimates of the relative frequency of this predicate based on
λ′ approach r in the limit. Hence, if there is a limiting relative frequency for a
particular predicate, all methods except c† converge toward r.

Let us discuss why the self-correcting methods should be preferred over c†.
1In �nite domains the quanti�ers are de�ned by means of �nite conjunctions of their instances

(cf. Carnap 1962, pp. 60-62). This means that if the hypothesis contains a quanti�er, a body of ev-
idence concerning any individual is automatically mentioned, which explains why the probability
of a universal or existential quanti�cation can change even when using c† in �nite systems. In the
in�nite case, quanti�ers are not conjunctions or disjunctions, but it is unnecessary to discuss this
case here because the probabilities for the in�nite domains are de�ned by using the �nite domains.
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Even though the "inductivist" methods are self-correcting, they give better es-
timates than c† only if the universe is not maximally heterogeneous. It seems
perhaps that a self-correcting method should be chosen because a maximally het-
erogeneous universe is such an extreme and unlikely case, but this is only an
intuitive feeling based on our unconscious presupposition that the universe has
some homogeneity. Such presuppositions cannot be used for justifying inductive
inference since they essentially beg the question.

There is a simple argument for choosing a self-correcting method resembling
the well-known Reichenbachian justi�cation of induction. This argument goes
as follows: if there is a limiting relative frequency for a particular predicate, a
self-correcting method will approach this frequency asymptotically, whereas the
c† method will not necessarily do so. In other words, if the universe is of the
kind in which learning from experience is possible, then only the self-correcting
methods will approach the true relative frequencies, whereas c† will not.

This does not change the fact that a self-correcting method can only perform
better than c† when the universe has some uniformity. If the universe has no uni-
formity, c† will provide better estimates than any self-correcting method. Why
should one such prefer a method only because it performs better than c† in a uni-
verse with some uniformity, if there is no reason to suppose that the universe
actually has some uniformity?

There does, however, seem to be a way out of the apparent impossibility of
making a rational choice between the inductive methods. This will be based on a
certain kind of self-correcting method, a correction rule which will take evidence
into account not only by using the conditionalization rule on the probabilities but
also by adjusting the inductive method itself.2

It will argued that the correction rule quali�es better than any given inductive
method in a set of inductive methods whose complement can be made arbitrarily
small (but not empty). This does not mean that the correction rule will necessarily
perform better than a particular λ′, but if one is to choose between λ′ and the
correction rule, there is an argument for preferring the correction rule provided
that there is no other reason to favour λ′. Since c† is no more justi�ed than any
other constant method, this reasoning also applies to λ′ = c†. Hence, although
there is no reason to prefer one constant method over another, there is a reason to
prefer the correction rule over any constant method.

If the correction rule is adopted, the possibility of inductive inference is depen-
dent on the nature of the evidence. If the evidence obtained shows some unifor-
mity, the updated inductive method is adjusted accordingly, making probabilistic

2Carnap acknowledges the possibility of changing the method according to its past perfor-
mance (1952, p. 55); on the other hand, he expresses doubts about such adjustments and prefers a
priori considerations in choosing the value of λ (1968, pp. 313-14).
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inductive inference possible. However, it is not possible to examine in this study
whether the above argument in favour of the correction rule really justi�es induc-
tive inference.

7.2 Immodesty
This section discusses the immodesty criterion, which has been suggested in the
literature as a necessary criterion for an acceptable inductive method. The concept
was originally introduced by Lewis (1971); comments include at least Spielman
(1972), Lewis (1974), Pietarinen (1974), Horwich (1982) and Festa (1994).

An inductive method is immodest if it evaluates its own predictions as the
most accurate ones. In other words, the estimates of a certain magnitude M made
by a method λ are compared to real values of M in all possible state descriptions.
The λ-weighted average of the errors obtained this way is then the performance
indicator of λ as evaluated by λ itself.

Immodesty can be considered as a necessary criterion for inductive methods.
If an inductive method λ is not the most accurate one when evaluated by itself, it
clearly cannot be considered as the optimum one without contradiction.3

According to Lewis's original paper, almost no inductive method is immodest.
On the other hand, Spielman (1972) arrived at a different conclusion, saying that
all inductive methods are in fact immodest.

Lewis (1974) explains the deviation of results by different approximations
used in the calculations. Lewis himself uses Carnap's own accuracy criterion
(1952), namely the mean square error of a method (see section 7.3 below). Car-
nap's measure, however, involves an approximation which simpli�es the calcula-
tions. The approximation is valid only if the universe is very large compared to
the sample which is used for prediction. According to Lewis, if one replaces this
approximation with the exact formulas, one gets Spielman's results saying that all
inductive methods are immodest.

However, Lewis does not explicitly show this. Since the motivation for using
the approximation is the mathematical intractability of the exact formula, it is
unclear whether Spielman's results are as easily obtainable as Lewis claims.

On the other hand, Horwich claims to have proved the immodesty of all induc-
tive methods without having to resort to any approximations concerning the size
of the universe (1982, pp. 87-90). Festa has a somewhat similar approach (1994,
pp. 41-44).

To sum up this discussion, the �nal outcome of immodesty considerations is
not quite clear, but if Horwich's result is taken to be valid, immodesty does not

3In other words, if λ is chosen, it itself suggests that another method should be chosen.
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rule any inductive method and thus cannot be a basis for choosing the correct
method.

7.3 Carnap's measure of success
In this section, I will elaborate Carnap's original work (1952) on the measure of
success or performance of an inductive method, namely the mean square error.

The expression

Estλ,κ(x,Xi) =
Xi + ( 1

κ
)λ

x+ λ
(7.1)

is the λ-estimate of the relative frequency of property Qi in a sample of cardi-
nality x obtained from the universe of n individuals wn (κ being the number of
Q-predicates in the language). (Cf. Carnap 1952, p. 33.)

This estimate is determined by using λ on the basis of a sample of x individuals
among which Xi have the property Qi. It is assumed that the size of the whole
universe n is very large compared to x so that it holds that the whole domain
n approximately represents the unobserved part U(n, x) of the universe, whose
cardinality is n − x. Function (7.1) is a random function which depends on the
random variable Xi. The expected value and variance of Xi can be obtained from
x and wn, in the way which will be described in what follows (cf. Carnap 1952,
pp. 57-58). This value will then be used to determine the error of the estimate
(7.1) (cf. Carnap 1952, p. 58).

Let ri be the relative frequency of Qi in the universe. Because n is very large
compared to x, ri is approximately the relative frequency ofQi in U(n, x) as well.

The proportion of samples with a given absolute frequency of Qi, si, among
all the samples of size x is approximately

P (Xi = si) ≈
(
x

si

)
rsii (1− ri)x−si , (7.2)

in other words, the random variable Xi approximately follows the binomial dis-
tribution.

The binomial distribution is customarily used to represent situations in which
the random variable denotes the number of successes in an experiment which
is repeated x times and where the probability of success remains constant (in
this case ri) in each trial. The critical part of this use of the formula concerns
the justi�cation of assuming the probability of success to be constant (i.e., ri) in
each trial. If the sample is large compared to the total population, a collection
of observations about individuals in the sample does have an effect on what the
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expected relative frequency of Qi-individuals in the rest of the sample is. Hence,
formula (7.2) gives only approximately correct probabilities when n is suf�ciently
large compared to x. When n→∞, (7.2) is the value of the corresponding limit.

The expected value (also called the mean value in this study) of a discrete
random variable X is de�ned as

E(X) =
∑
k

xk · pk (7.3)

where xk are the different possible values of X and the pk are the probabilities
P{X = xk}, provided that the series converges absolutely. Hence, the mean
value of X is the weighted average of X .

Notice that sometimes in the literature the mean value of a magnitude C often
signi�es simply the average value of C:

n∑
k=1

ck ·
1
n

(C = c1, ..., cn). (7.4)

The variance of a random variable X is de�ned as

D2(X) = E((X − µ)2), (7.5)

where µ = E(X).
For any variable X following the binomial distribution with parameters p and

y, one has

E(X) = py, (7.6)
V ar(X) = py(1− p), (7.7)

for the expected value of X , where p is the number of repetitions and y is the
probability of success in each trial. Hence,

E(Xi) = xri (7.8)

and

V ar(Xi) = xri(1− ri). (7.9)

The error of the estimate function Estλ,κ(x,Xi) of the random variable Xi

introduced in (7.1) above is also determined on the basis of ri, provided again
that n is suf�ciently large compared to x since Estλ,κ(x,Xi) gives the estimated
frequency of Qi for the part of the domain whose size is n− x:

Errλ,κ(x,Xi, ri) = Estλ,κ(x,Xi)− ri. (7.10)
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The presentation of the results below differs slightly from that of (Carnap 1952,
pp. 62-65). By virtue of (7.10), (7.1) and (7.8),

E(Errλ,κ(x,Xi, ri)) =
xri + ( 1

κ
)λ

x+ λ
− ri =

( 1
κ
− ri)λ
x+ λ

. (7.11)

The following general result holds for variance:

V ar(aX + b) = a2V ar(X), (7.12)

where a and b are constants. Because the variance of the error (7.10) above is the
same as the variance of the estimate, it holds by (7.12) that

V ar(Errλ,κ(x,Xi, ri)) = V ar(Estλ,κ(x,Xi)) =

V ar(
Xi + ( 1

κ
)λ

x+ λ
) = V ar(

Xi

x+ λ
+

λ

κ(x+ λ)
) (7.13)

=
1

(x+ λ)2V ar(Xi) =
xri(1− ri)
(x+ λ)2 .

The following is valid for an arbitrary random variable Y :

[E(Y )]2 + V ar(Y ) = E(Y 2). (7.14)

The mean (in the sense of expected) square error is the sum of square errors for
each sample in x multiplied by the probability of the sample, i.e., the weighted
average of square errors. Hence, the mean square error E(Err2

λ,κ(x,Xi, ri)) with
respect to Qi equals

[E(Errλ,κ(x,Xi, ri))]2 + V ar(Errλ,κ(x,Xi, ri)). (7.15)

Using the above results, one can derive the formula for the mean square error with
respect to Qi:

E(Err2
λ,κ(x,Xi, ri)) =

xri(1− ri) + ( 1
κ
− ri)2λ2

(x+ λ)2 . (7.16)

(Cf. Carnap 1952, p. 65.) Because the above does not depend on Xi, it can be
written as

Err
2
λ,κ(x, ri). (7.17)

With respect to all Qi, the mean square error is:

1
κ

κ∑
i=1

Err
2
λ,κ(x, ri). (7.18)
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This can also be called the average mean square error or the average expected
square error. Carnap (1952, p. 65-67) shows that (7.18) equals

x− λ2

κ
+ (λ2 − x)

∑κ
i=1 r

2
i

κ(x+ λ)2 , (7.19)

which means that the mean square error with respect to all Q-predicates in a par-
ticular universe (state description) depends only on the sample size x, the method
λ and the sum

∑
i r

2
i , which is the degree of order of the state description in ques-

tion (cf. section 6.3 above). Hence, (7.18) can be denoted by

∀QErr
2
κ,λ(x,

∑
i

r2
i ). (7.20)

7.4 The correction rule
The idea of the correction rule to be introduced in this section is to update the
method currently employed in the course of obtaining more and more information
about the actual (unknown) state description. It is hoped that this would result in
a better performance than any constant inductive method. This prospect will be
examined in section 7.5 below.

We saw above in chapter 6 that there is an optimum value of λ for any given
state description, which can be calculated from the degree of order of the state
description. The formula will be repeated here using slightly different formalism.

The optimum method for a given degree of order do(w), i.e., that which mini-
mizes the mean square error for this degree of order, is

δ−1(do(w)) =
1− do(w)
do(w)− 1

κ

. (7.21)

The problem with Carnap's measure of success is that it can be calculated only
for given degrees of order. Hence, the optimum method can also be determined
only for given degrees of order. Consider the question of which inductive method
is the optimum one for the actual state description. One usually knows only a rel-
atively small part of the universe; it is just this fact that makes the use of inductive
methods necessary. Therefore, the degree of order of the universe is usually not
known, which means that there is no way to �nd the optimum inductive method.
(Cf. Carnap 1952, p. 71.) No method seems to be excluded on the basis of the
mean square error performance criterion. In particular, the anti-inductivist method
c† cannot be rejected.

However, the situation may change with a non-Bayesian updating rule like the
correction rule below. Possibly the correction rule will yield better estimates mea-
sured by the mean square error than any of the non-optimum constant methods.
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If the universe of discourse has n individuals and, according to the state de-
scription wn, all of them satisfy a certain Q-predicate, wn's degree of order is
maximal. On the other hand, if the individuals are distributed evenly among all
possible Q-predicates, wn's degree of order is minimal. Other cases fall between
these two extremes. Hence, since each description of a sample of individuals can
be considered as a state description in a universe of the size of the sample, there
is an optimum method for each given sample.

The most trivial requirement for any correction rule is that it has to yield the
optimum method when the sample size consists of all individuals in the domain.
For �nite domains, it is easy to construct a rule that ful�ls this requirement. The
following line captures the main idea of such a rule:

Corr(wn, λa) = δ−1(do(wn)), (7.22)

where Corr(wn, λa) is the method when the data consists of a state description
wn in the sample of n individuals, λa is the initial method and δ−1(do(wn)) the
optimum method for the state descriptionwn. Hence, if the samplewn is the whole
state description, (7.22) yields the optimum method for that state description.

Rule (7.22) is an extreme one in the sense that it simply changes the inductive
method to comply with the evidence received, which means that presuppositions
about the best method can play no role there.

Following this idea, a correction rule for an arbitrary sample can be de�ned
simply as follows:

Θ(λa, x) = λa, if x = 0
Θ(λa, x, wx) = δ−1(do(wx)), if x > 0 and do(wx) > 1

κ
,

Θ(λa, x, wx) = Θ(λa, x, wx−1), if x > 0 and do(wx) = 1
κ
.

(7.23)

The Θ-function in (7.23) updates the method in each wx to correspond to the opti-
mum method for that state description (starting with the initial method λa). When
more information is received, i.e., x increases, the method is updated correspond-
ingly.

The justi�cation for the last condition above is that when the sample is max-
imally heterogeneous, no inductive method can react upon any uniformity in the
sample and hence every method will provide the same estimate for all Qi, namely
1
κ

.4
A more general form of the rule can be achieved by modifying it in two re-

spects: 1) adding a condition for a lower limit of cardinality x when the rule may
start to be applied (this will turn out to be essential in the �nal conclusions about
the performance of the rule in section 7.5.3), 2) adding a caution factor which

4I am grateful to Theo Kuipers for this observation.
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tells us how much the inductive method should be adjusted at each step (cf. sec-
tion 7.5.3.7).

7.5 Performance
One can now ask whether the correction rule Θ outranks the non-optimum con-
stant inductive methods with respect to the mean square error.

As the Θ-rule updates the method according to evidence, the mean square
error of the correction rule cannot be calculated by treating the inductive method
as a constant, which means that the calculation is more dif�cult to carry out than
in Carnap (1952).

The task is to show that the mean square error of Θ is smaller than that of a
given constant method when the sample is large enough.

It is evident that the expected degree of order of the sample approaches that of
the universe as the size of the sample increases. This means that the expected value
of Θ will be closer to the optimum method than a given constant method when the
size of the sample is large enough. Carnap proves that the mean square error
produced by λ decreases when λ approaches λ∆ (1952, pp. 68-69). However, the
mean square error of the Θ-rule does not necessarily equal the mean square error
of the expected value of Θ, which makes the issue technically complicated.

Since samples whose degree of order is close to that of the universe become
more probable when the sample size increases, the weight of this kind of sample
also increases in determining the mean square error. Hence, even without being
able to derive the mean square error of Θ, one may be able to show that it must be
smaller than that of a given constant method under certain circumstances.

But even though one could show that Θ quali�es better than a given constant λ
when x is large enough, the estimates for smaller samples matter as well. In other
words, one may obtain a signi�cant number of larger mean square errors with Θ
than with a given constant method before a certain sample size x. It is not clear
that choosing Θ at the outset is the optimal solution.

The situation is analogous when comparing constant inductive methods. The
difference between the mean square errors of two self-correcting constant methods
converge to zero in most cases when the sample size increases (as will be shown
in section 7.5.2). Some commentators have argued that for this reason the choice
of the inductive method does not matter, but this is not correct. The choice of the
method does matter when one is not acting in the "asymptotic limit" but in a more
immediate world when the methods do produce different errors. If one wishes to
obtain a correct estimate, which inductive method one uses is not insigni�cant.

Observe that it is not only the difference between single estimates by two
constant methods which is at stake here. A non-optimal method gives rise to a

111



number of more inaccurate estimates than the optimum one when the sample size
grows.

Similarly, one cannot straightforwardly prefer the Θ-rule just because it will
eventually produce a smaller error than a given constant method. It is possible
that the Θ-rule produces a large number of very inaccurate estimates compared to
those of a given constant λ. It is even possible that this property of Θ makes it
knowably more inaccurate in an overall evaluation than most constant methods.
If a method is knowably more inaccurate than most other methods and know-
ably more accurate than a few methods, pure guesswork in choosing the inductive
method may result in a statistically better result than the Θ-rule.

A more general measure of performance than the mean square error is obtained
when one considers a series of nested samples, where new individuals are added
to the sample previously obtained. For example, one �rst determines the error by
using a set of variables Xi for the sample size x, and for the sample size x + 1
one adds a random variable representing the value of the x+ 1'th individual to the
values of the variables Xi already obtained.5

The reason for considering a series of samples is to �nd the optimum estima-
tion method for the whole process of obtaining information from a population.
Even if there is no criterion for choosing the optimum method for an individual
prediction, perhaps there is one for a series of predictions. The formulation of a
performance measure with nested samples thus has some signi�cance.

The cumulative square error represents the total error one makes in consec-
utive estimates when new individuals are added to the same sample. It will be
shown below in section 7.5.4 that the mean cumulative square error can be de-
�ned as the mean (expected) value of all possible cumulative square errors, or,
equivalently, as the sum of mean square errors for consecutive samples.

However, it will turn out in section 7.5.3 that there is another way of evaluating
the performance of a more general form of the Θ-rule which includes the restric-

5It helps to understand the situation when one observes that the value of Xi can be calculated
by consecutive answers to the questions such as `is the 1. individual in the sample Qi?', `is the 2.
individual in the sample Qi?' etc. Hence, Xi can be represented by means of a sum of indicator
variables 1i(1), 1i(2), ..., 1i(x), where 1i(y) is 1 if the y'th individual is Qi and otherwise 1i(y) = 0:

Xi =
x∑
y=1

1i(y). (7.24)

The random variable for the sample size x+ 1 ≤ n can be expressed as

x+1∑
y=1

1i(y) =
x∑
y=1

1i(y) + 1i(x+1) = Xi + 1i(x+1). (7.25)

Hence, the value of this variable is not independent of the value of Xi.
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tion that the rule may start to be applied only after the sample is large enough,
see point 1) on p. 110 above, without resorting to a performance measure using
nested samples.

7.5.1 Convergence of mean square error with constant meth-
ods

The �rst steps toward the evaluation of the correction rule as compared to constant
inductive methods will be taken in this section by introducing some �ndings on
the convergence of the mean square error.

Let us �rst examine the situation for λ < ∞. The mean square error (7.19)
can be written as

x− λ2

κ
+ λ2∑ r2

i − x
∑
r2
i

κx2 + 2κλx+ κλ2 . (7.26)

For large values of x, the denominator of (7.26) is approximately equal to x2.
Consider �rst the case in which

∑
r2
i < 1. Since (7.26) is then approximately

equal to 1
x

for a suf�ciently large x, its convergence rate can be compared to that
of 1

x
.
Consider then the case in which

∑
r2
i = 1. Now (7.26) reduces to a form in

which x2 occurs in the denominator. If λ = 0, the mean square error is zero in
this case (cf. Carnap 1952, p. 69).

Then consider the case when λ = ∞. The limit convention of Carnap (1952,
p. 33) means that for any function f(λ) the value of f(λ), when λ = ∞, is
limλ→∞ f(λ). Hence, to achieve the mean square error of λ for a particular x, one
must consider the limit of (7.27) below.

Beside (7.26), the mean square error (7.19) can also be written as

x− λ2

κ
+ λ2∑ r2

i − x
∑
r2
i

κλ2(x2

λ2 + 2x
λ

+ 1)
=

x
κλ2 − 1

κ2 +
P
r2
i

κ
− x

P
r2
i

κλ2

x2

λ2 + 2x
λ

+ 1
.

(7.27)

Consider the last form above when λ→∞. The �rst two terms in the denom-
inator clearly tend to zero, which entails that the denominator tends to 1. The �rst
and last terms of the numerator tend to zero as well. Hence, the whole expression
tends to ∑

r2
i

κ
− 1
κ2 . (7.28)
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This constant is the mean square error for λ =∞.6
If
∑
r2
i >

1
κ

, (7.28) is greater than zero. The remaining case is
∑
r2
i = 1

κ
, in

which (7.28) is zero (as Carnap 1952, p. 69 also proves).

7.5.2 Comparing two constant methods
7.5.2.1 The difference between mean square errors

In this section it will be proved that the difference between mean square errors of
two arbitrary constant methods converges to zero with the rate proportional to 1

x2

in most cases.
Let us �rst examine the case in which λ1, λ2 <∞.
If
∑
r2
i = 1 and λ1 = 0 and λ2 > 0, the mean square error with λ1 is 0

and converges to zero at a rate proportional to 1
x2 with λ2; hence, their difference

converges to zero at a rate proportional to 1
x2 .

If
∑
r2
i = 1 and λ1, λ2 > 0, then the mean square errors of both λ1 and

λ2 converge to zero at a rate proportional to 1
x2 , which means that the difference

between them converges at least at this rate.
Then assume that

∑
r2
i < 1. Consider the expression (7.26) for the mean

square error when x→∞. One needs to �nd out the rate of convergence of

x− λ2
1
κ

+ λ2
1
∑
r2
i − x

∑
r2
i

κ(λ1 + x)2 −
x− λ2

2
κ

+ λ2
2
∑
r2
i − x

∑
r2
i

κ(λ2 + x)2 . (7.29)

It is obvious that the two middle terms in the numerators of the two mean
square errors in (7.29), of the form λ2

κ
and λ2∑ r2

i , converge to zero at a rate
which is proportional to x2.

It is also obvious that the difference∣∣∣∣ λ2
1
κ

+ λ2
1
∑
r2
i

κ(λ1 + x)2 −
λ2

2
κ

+ λ2
2
∑
r2
i

κ(λ2 + x)2

∣∣∣∣ (7.30)

is a decreasing function of x.
The remaining question is how fast the difference

1
κx

(1−
∑
i

r2
i )

x2

(λ1 + x)2 −
1
κx

(1−
∑
i

r2
i )

x2

(λ2 + x)2 (7.31)

=
1
κx

(1−
∑
i

r2
i )[

x2

(λ1 + x)2 −
x2

(λ2 + x)2 ]

6Since the square error of λ = ∞ is the same for every distribution of Q-predicates in the
sample, the result (7.28) can also be obtained directly from the average square error denoted by
the expression (7.58) below.
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converges.
The latter factor above becomes

x2

(λ1 + x)2 −
x2

(λ2 + x)2 =
x2(λ2 + x)2 − x2(λ1 + x)2

(λ1 + x)2(λ2 + x)2

=
x2(λ2

2 + 2λ2x+ x2 − λ2
1 − 2λ1x− x2)

(λ1 + x)2(λ2 + x)2 (7.32)

≤x
2(λ2

2 − λ2
1 + 2x(λ2 − λ1))
x4 .

The expression λ2
2−λ2

1
x2 clearly converges to zero with a rate proportional to 1

x2 .
The expression

2
x

(λ2 − λ1) (7.33)

converges in proportion to 1
x
, which means that (7.31) converges to zero with the

speed proportional to 1
x2 . Since the denominator of (7.32) increases with x, it

is also clear that the absolute value of this part of the difference between mean
square errors of two methods is a decreasing function of x.

The remaining case is when λ1 = ∞ and λ2 < ∞. Then the mean square
error of λ1 is (7.28).

If
∑

i r
2
i = 1

κ
, (7.28) is 0 with λ1 and the mean square error of λ2 converges in

proportion to 1
x

(see section 7.5.1 above). Hence, the difference between λ1 and
λ2 is converges to zero in proportion to 1

x
.

If
∑

i r
2
i >

1
κ

, by (7.28) the mean square error of λ1 =∞ is a positive constant
which can be denoted by c. The mean square error of λ2 <∞ is proportional to 1

x
.

Consider then the difference between the mean square error of λ2 and λ1, which
is approximately c− 1

x
for large values of x. Since 1

x
tends to zero, the difference

converges to c with the speed proportional to 1
x
.

7.5.3 Comparing the Θ-rule and non-optimum constant meth-
ods

Recall that our purpose is to evaluate the performance of Θ compared to a non-
optimum inductive method.

The easiest case for comparing the performance of Θ and a non-optimum con-
stant method λ is when

∑
r2
i = 1. In this case every sample must be uniform,

hence the value of Θ must be 1 after observing a sample of at least one individ-
ual. The choice of the prior method λa in (7.23) matters only for the estimates
prior to any evidence and the purpose of the Θ-rule is not to provide guidance for
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the a priori selection of a constant method. Hence, although the given method λ
can perform better for the estimate prior to evidence than λa, this is not relevant
for evaluating the performance of Θ. In situations where at least one individual
has been observed, the Θ-rule yields the optimum method λ = 0 and thus its
performance is equal to that of the optimum method.

However, the situation is more complicated if
∑
r2
i < 1. This case will be

analysed in the following sections.

7.5.3.1 The expected degree of order

Some preliminary derivations will be useful.
One obtains the expected degree of order of a sample wx if one assumes a par-

ticular degree of order for the whole universe and the sample is selected by means
of random sampling from the population of individuals in the whole universe.

The expected degree of order of the sample wx is

E(do(wx)) = E(
∑
i

[R(wx, i)]2) =

∑
i

E(
X2
i

x2 ) =
1
x2

∑
i

E(X2
i ).

(7.34)

In the above, wx is a sample and i goes through all the Q-predicates. Because

E(X2
i ) = V ar(Xi) + (E(Xi))2, (7.35)

one obtains

E(X2
i ) = xri(1− ri) + r2

i x
2, (7.36)

using (7.8) and (7.9), where ri is the relative frequency ofQi in the whole universe.
Hence, by (7.34),

E(do(wx)) =
1
x2

∑
i

[xri(1− ri) + r2
i x

2]

=
1
x

∑
i

ri + (1− 1
x

)
∑
i

r2
i (7.37)

=
1
x

+ (1− 1
x

)
∑
i

r2
i

=
∑
i

r2
i +

1
x

(1−
∑
i

r2
i ) ≥

∑
i

r2
i .
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It is interesting to note that the degree of order of the whole universe can be
stated as the inverse function of the expected degree of order of the sample wx:

∑
i

r2
i =

E(do(wx))− 1
x

1− 1
x

. (7.38)

7.5.3.2 Improbable samples

Recall the de�nition (7.23) of the Θ-rule. The Θ-rule yields a method which is the
optimum one on the basis of the sample obtained. Hence, if the sample tends to
a particular degree of order when the sample size grows without an upper bound,
the Θ-rule obviously tends to the optimum method of this degree of order.

Consider a sample size x in which

|
∑
i

r2
i − E(do(wx))| < |

∑
i

r2
i − d1|, (7.39)

for a given degree of order d1 ( 1
κ
≤ d1 ≤ 1). This condition means thatE(do(wx))

is closer to the degree of order of the whole universe than d1. When the condition
is ful�lled for some x, it is clear from (7.37) that it will be ful�lled for all samples
larger than x as well since E(do(wx)) will be closer to

∑
i r

2
i when x increases. It

is also clear that there is such x that (7.39) holds for an arbitrary d1 6=
∑

i r
2
i .

The performance of Θ in terms of mean square error will be compared below
to that of λ′,

λ′ = δ−1(d1). (7.40)

Let ε be such that if d1 >
∑

i r
2
i , it holds that

(∃x)(d1 − E(do(wx))) ≥ ε) (7.41)

and if d1 <
∑

i r
2
i , it holds that

(∃x)(
∑
i

r2
i + (

∑
i

r2
i − d1)− E(do(wx)) ≥ ε). (7.42)

If d1 >
∑

i r
2
i , it follows from (7.41) that |

∑
i r

2
i − d1| ≥ ε. Consider then the

case d1 <
∑

i r
2
i . Since E(do(wx)) ≥

∑
i r

2
i , it follows now from (7.42) that

|
∑

i r
2
i − d1| ≥ ε.

The idea behind ε in (7.41) and (7.42) is the following. Consider a degree of
order d2 for which |

∑
i r

2
i − d2| ≥ |

∑
i r

2
i − d1|. The distance of d2 from

∑
i r

2
i

is then obviously at least ε. Suppose �rst that d2 <
∑

i r
2
i . Because E(do(wx)) ≥∑

i r
2
i , it follows that |d2 −E(do(wx))| ≥ ε holds. Suppose then that d2 >

∑
i r

2
i .
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If d1 >
∑

i r
2
i , then (7.41) obviously entails |d2 − E(do(wx))| ≥ ε. On the other

hand, if d1 <
∑

i r
2
i , then d2 ≥

∑
i r

2
i + (

∑
i r

2
i − d1), which together with (7.42)

entails d2 − E(do(wx))) ≥ ε for the same x for which (7.42) holds.
Hence, if |

∑
i r

2
i − d2| ≥ |

∑
i r

2
i − d1| for some d2, the distance of d2

from E(do(wx)) is at least ε for some x (and thus clearly for all y > x because
E(do(wx)) approaches

∑
i r

2
i when x increases).7

Consider now the probability

P{|do(wx)− E(do(wx))| ≥ ε}. (7.43)

Chebychev's Inequality says that

P{|do(wx)− E(do(wx))| ≥ b
√
V ar(do(wx))} ≤

1
b2 (7.44)

for all b > 0 and all x (the precondition
√
V ar(do(wx)) > 0 is clearly satis�ed).

As probability (7.43) is under consideration here, it is important to observe that
Chebychev's Inequality also holds trivially for any b for which bV̇ ar(do(wx)) = ε.

It will be proved below in 7.5.3.6 that V ar(do(wx)) converges to zero at least
at a speed proportional to 1

x
when x→∞.

Let as choose b so that b
√
V ar(do(wx)) = ε is satis�ed:

b =
ε√

V ar(do(wx))
. (7.45)

Then b2 increases at not less than the same rate as V ar(do(wx)) converges, i.e., at
least proportionally to x.

By (7.44), (7.43) has to converge at a rate which is proportional to 1
b2

. From
the choice of b above, it then follows that (7.43) has to converge at least at a speed
which is proportional to 1

x
.

It follows that those values of do(wx) whose distance from E(do(wx)) is at
least ε, i.e., (7.43) holds, have a vanishing probability when the sample size grows.
To be more precise, their combined probability diminishes at a rate which is at
least proportional to 1

x
.

7.5.3.3 Comparing errors of two types of method

Consider now the sample wx, whose degree of order do(wx) satis�es

|do(wx)− E(do(wx))| ≥ ε. (7.46)
7Note that for some d3, |d3 − E(do(wx))| ≥ ε can be true even if |

∑
i r

2
i − d3| < |

∑
i r

2
i −

E(do(wx))|, but this does not matter for the present argument.
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It was shown in section 7.5.3.2 that the probability of this kind of sample
converges to zero at a rate proportional to 1

x
.

Let us then consider degrees of order whose distance from E(do(wx)) is less
than ε, i.e., the set

Gε(x) = {wx
∣∣|do(wx)− E(do(wx))| < ε}. (7.47)

If wx ∈ Gε(x), the value of Θ(λa, x, wx) is closer to E(do(wx)) than λ′, and thus
by (7.39) also closer to the optimum method corresponding to the degree of order
of the universe.

As mentioned above on p. 111, the mean square error of the given method
λ decreases when it approaches the optimum method λ∆. If λ∆ = ∞ holds, the
mean square error is clearly a decreasing function of the distance between λ and
λ∆. If 0 < λ∆ < ∞ holds,8 the mean square error decreases when λ approaches
λ∆ either from below or from above, but it is not immediately obvious that the
error is a decreasing function of the distance between λ and λ∆, since the rate of
decrease may be different depending on which side λ∆ is approached from.

Hence, when for some λ′′ it holds that λ′ < λ∆ < λ′′ or λ′′ < λ∆ < λ′, λ′ can
be such that even if |λ′′ − λ∆| < |λ′ − λ∆|, the mean square error of λ′′ is greater
than that of λ′ in some x. In such a case, the constant ε in (7.41) will be chosen
so that d1 can be replaced by δ(λo), satisfying the following constraint for all λ: if
|λ− λ∆| < |λo − λ∆|, the mean square error of λ is smaller than that of λ′. Since
the mean square error converges proportionally to 1

x
for all λ <∞ on each side of

λ∆, it is presumed here that λo can be considered roughly constant for each x; the
same follows trivially in the case λ′ = ∞ because the mean square error of such
non-optimum λ′ does not converge to zero.

Because this replacement does not change the results obtained for λ′ in this
discussion, we will adhere to the constant d1 in the derivations below. It can
therefore be said that for wx in Gε(x), the corresponding value of Θ produces a
smaller mean square error than λ′.

The value of δ(Θ) belongs to Gε(x) with a probability which is approximately
1 − 1

x
for large x. Let us compare the expected mean square error of Θ with that

of λ′. In the derivations below, the values of Θ < ∞ for which δ(Θ) 6∈ Gε(a′)
will be denoted by Θ1(a′) and the rest of the values by Θ2(a′).

If the inequality
1
a′

(∀QErr
2
κ,λ′(x,

∑
i

r2
i )− ∀QErr

2
κ,Θ1(a′)(x,

∑
i

r2
i )) +

(1− 1
a′

)(∀QErr
2
κ,λ′(x,

∑
i

r2
i )− ∀QErr

2
κ,Θ2(a′)(x,

∑
i

r2
i )) > 0

(7.48)

8λ∆ = 0 was discussed at the beginning of section 7.5.3.
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holds for some a′, some cardinality x and each value of Θ1(a′) and Θ2(a′) satis-
fying the above requirements, the expected difference between the mean square
errors of λ′ and Θ in x is greater than zero. This means that the expected mean
square error of Θ is smaller than that of λ′ in x.

The expression (7.48) can be written as

∀QErr
2
κ,λ′(x,

∑
i

r2
i )− ∀QErr

2
κ,Θ2(a′)(x,

∑
i

r2
i )) >

1
a′

(∀QErr
2
κ,Θ1(a′)(x,

∑
i

r2
i ))− ∀QErr

2
κ,Θ2(a′)(x,

∑
i

r2
i ))).

(7.49)

If λ′ =∞, this holds trivially for large enough a′. Let us then discuss the λ′ 6=∞
case. In what follows,

U(a′, x) = ∀QErr
2
κ,Θ1(a′)(x,

∑
i

r2
i ))− ∀QErr

2
κ,Θ2(a′)(x,

∑
i

r2
i )) (7.50)

and

V (a′, x) = ∀QErr
2
κ,λ′(x,

∑
i

r2
i ))− ∀QErr

2
κ,Θ2(a′)(x,

∑
i

r2
i )), (7.51)

which gives

U(a′, x)− V (a′, x) =

∀QErr
2
κ,Θ1(a′)(x,

∑
i

r2
i ))− ∀QErr

2
κ,λ′(x,

∑
i

r2
i )) ≥ 0 (7.52)

(since we only need to consider the cases in which the mean square error of Θ1(a′)
is greater than or equal to that of λ′). In section 7.5.2.1 it was demonstrated that the
difference between the mean square errors of two methods λ1, λ2 <∞ converges
proportionally to 1

x2 , which means that the difference (7.52) also converges at this
rate. It follows that

U(a′, x) ≈ V (a′, x) +
c

x2 ⇔
1
a′
U(a′, x) ≈ 1

a′
V (a′, x) +

c

a′x2 . (7.53)

for some constant c and all large enough x. Let us then examine the conditions
under which

V (a′, x) >
1
a′
V (a′, x) +

c

a′x2 , (7.54)

holds. Since V (a′, x) ≥ 0, the inequality (7.54) entails

a′ > 1 +
c

x2V (a′, x)
(7.55)
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while the difference V (a′, x) converges proportionally to 1
x2 , which means that

(7.55) equals some constant number. Hence, for some a′ satisfying (7.55) and all
large enough x, it follows that

1
a′
U(a′, x) < V (a′, x). (7.56)

Hence, the inequality (7.49) holds for some a′ satisfying (7.55) and all large
enough x. Note that this result is true no matter the magnitude of the difference
Θ1(a′)−Θ2(a′).

However, in each inequality above, the samples already obtained play a role.
Any sample wa′ has the effect that the relevant performance criterion is not the
mean square error for sample sizes x > a′. Instead, one has to calculate the mean
square error for samples which are extensions of wa′ .

This means that, for example, the errors of λ′ with the two different samples
are not reduced away from the inequality corresponding to (7.48) and an equation
corresponding to (7.49) is thus not obtained. However, the additional term of
the below form denoting the difference between the relevant errors of λ′ for the
samples yielding Θ1(a′) and Θ2(a′) as multiplied by 1

x
is added on the left side of

the equation corresponding to (7.49):
1
a′

(Error(a′, w1
a′ , λ

′)− Error(a′, w2
a′ , λ

′)). (7.57)

Since the degree of order of the latter sample (i.e., w2
a′ corresponding to Θ2(a′)) is

assumed to be closer to
∑

i r
2
i (recall that the cases in which Θ1(a′) closer to the

optimum method than Θ2(a′) can be left out from our considerations), the sample
w2
a′ probably resembles the universe more than w1

a′ , at least for large a′. Hence, it
can be assumed that the additional term of the form (7.57) is positive and one can
thus adhere to the equation (7.49) modi�ed by the effects of the two samples.

Recall the formula (7.10) for the error of the estimate (7.1) with respect to
Qi. It follows from this that the average square error of λ with respect to all
Q-predicates is

∀QErr2
λ,κ(x,X1, ..., Xκ, r1, ..., rκ) =

1
κ

κ∑
i=1

(
Xi + 1

κ
λ

x+ λ
− ri)2. (7.58)

Let Ai denote the absolute frequency of Qi in wa′ and let Yi be a random variable
for the corresponding frequency in the part of the sample not covered by wa′ . The
square error (7.58) takes the following form:

1
κ

κ∑
i=1

(
Ai + Yi + 1

κ
λ

x+ λ
− ri)2. (7.59)
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The expression (7.59) equals

1
κ

κ∑
i=1

(
Ai

x+ λ
+
Yi + 1

κ
λ

x+ λ
− ri)2 =

1
κ

κ∑
i=1

[(
Ai

x+ λ
)2 + 2

Ai
x+ λ

(
Yi + 1

κ
λ

x+ λ
− ri) + (

Yi + 1
κ
λ

x+ λ
− ri)2].

(7.60)

Consider the �rst term in the expression under the summation sign. The difference
between terms of this form for λ1 <∞ and λ2 <∞ is

(
A1
i

x+ λ1
)2 − (

A2
i

x+ λ2
)2 (7.61)

for two different samples. It is clear that this difference converges at a rate pro-
portional to 1

x2 . Consider then the second term under the summation sign. Since
the maximum absolute value of

Yi + 1
κ
λ

x+ λ
− ri (7.62)

is 1, the convergence rate of the difference between terms of the second form for
λ1 <∞ and λ2 <∞ for large x depends on

A1
i

x+ λ1
− A2

i

x+ λ2
=
A1
ix+ A1

iλ2 − A2
ix− A2

iλ1

(x+ λ1)(x+ λ2)
, (7.63)

which converges in proportion to 1
x
. This is also the convergence rate of one

term of the second form. Since the mean square error for λ < ∞ converges in
proportion to 1

x
although the square error does not in general converge to zero, it

seems credible that a term of the second form in (7.59) converging proportionally
to 1

x
does not affect the convergence rate of the difference between the means of

two errors of the form (7.59).
The remaining term, in turn, gives the square error for the part of the sample

which is not included in Ai, i = 1, ..., κ. It follows that the difference between the
expected values of errors of the form (7.59) for λ1 <∞ and λ2 <∞ decreases in
proportion to 1

x2 . Since the results without assuming the sample wa′ earlier in this
section also obtain no matter the magnitude of the difference between the errors
at a′, they can readily be generalized to the case with the sample wa′ .

The Θ(λa, a′, wa′) =∞ case, i.e., do(wa′) = 1
κ

is handled by simply declaring
that should this be the case, the method to be used being that which is closest to
λ = ∞ while being closer to λ′ than λ = ∞. This is an ad hoc solution, but
suf�cient for the present discussion.
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However, it has not yet been demonstrated that Θ performs better than λ′. The
question of �nding the values a′ and large enough x referred to above will be
discussed in section 7.5.3.4 below. If these values can be effectively found, one
can use the given constant method λ′ until some x and then switch to Θ(λa, a′, wa′)
at x. The mean square error of this combination of inductive methods would then
be smaller than that of λ′.

The other question relates to the original idea behind Θ. Stopping the updating
process at Θ(λa, a′, wa′) does not fully match this idea. However, due to technical
complexities the question of whether the continuous updating of the inductive
method would perform better than λ′ will not be addressed in this study.

7.5.3.4 Finding the sample size

One can choose λa = λ′, use this λa up to some x, and at this x switch to
Θ(λa, a′, wa′). This combination of rules would correspond to the generalized
form of Θ mentioned in 1) on p. 110. Obviously such a rule � in the effec-
tive sense of a computable rule � does not exist unless one provides an effective
method for computing the values of a′ and x. However, for obtaining a rule like
this it suf�ces to produce some values for a′ and x, which are not necessarily their
least possible values.

The dif�culty here is that the difference between λ′ and the optimum method
is not known for a given numerical value of λ′ unless

∑
i r

2
i is given. On the

other hand, the formulation of the generalized Θ-rule obviously cannot presup-
pose knowledge of

∑
i r

2
i ; if

∑
i r

2
i was knowable, the whole problem of choosing

the optimum inductive method would vanish. Nevertheless, the sample size up to
which one must adhere to λ′ cannot be calculated without

∑
i r

2
i . This means that

one has to assume that d1 in (7.39) differs from
∑

i r
2
i at least with some Y > 0.

Under these circumstances, it seems possible that a rule for computing the
values of a′ and x ful�lling the above requirements can be formulated such that it
does not contain

∑
i r

2
i as a parameter, although some additional work is required

to obtain its exact formulation.
However, it is possible that in reality |d1 −

∑
i r

2
i | < Y holds, i.e., d1 is closer

to the degree of order of the universe than Y . The procedure of calculating a′ and x
on the basis of Y then does not yield a correct result and the expected performance
of Θ(λa, a′, wa′) is not better than that of λ′ for samples greater or equal to x.

It is thus clear that given an arbitrary λ′, the generalized Θ-rule does not
demonstrably perform better than λ′. Nevertheless, it can be argued that it per-
forms better than any given λ′ for which

|δ(λ′)−
∑
i

r2
i | ≥ Y, (7.64)
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holds, where Y is an arbitrarily small non-zero natural number. In other words, if
the chosen λa = λ′ ful�ls the above condition, the generalized Θ-rule will perform
better than λ′.

Observe that the generalized Θ-rule does not necessarily perform better than
every method λ′ for which (7.64) holds. The result argued for here can hold only
for a λ′ for which λa = λ′; there may certainly also be other methods for which
(7.64) holds and which are, in addition, closer to the optimum method than λ′.
Therefore, it is only argued here that, when one deliberates about whether to use
a particular λ′, the generalized Θ-rule performs better than this λ′ and should thus
be preferred to it.

To sum up the above discussion: given a numerical value of λ′, the generalized
Θ-rule is not argued to perform better always. On the other hand, the rule (when it
is fully formalized) does perform better than a method which has at least a given
distance from the optimum method. This distance can be chosen to be arbitrarily
small. Hence, it can be argued that the general form of the Θ-rule performs better
than any given inductive method except an arbitrarily small set of them, namely,
the set of those for which (7.64) holds. Which methods actually belong to this set
is not known unless the degree of order of the universe is known.

7.5.3.5 The inverse inference

The foregoing discussion presented an argument in favour of the generalized Θ-
rule, a modi�ed version of the Θ-rule. This section continues the discussion on
the justi�cation of the Θ-rule, analysing the relation between the Θ-rule and the
statistical inference from a sample to the population. It is held that the justi�cation
of the Θ-rule does not require that one should be justi�ed in drawing conclusions
from a given sample to the whole population.

A well-known statistical formulation of the problem of induction is the fol-
lowing: given a random sample in which the frequency of the predicate Q is rx,
what is the probability that Q has a frequency which is within some given inter-
val from rx in the whole population? This is often called inverse inference in the
philosophical literature.9

In direct inference, in contrast to inverse inference, one draws conclusions
about a random sample based on knowledge about the whole population. The ar-
gumentation in the previous section resembles direct inference in the sense that
one discusses probabilities of obtaining various kinds of samples from the uni-
verse (although assuming any particular kind of universe is irrelevant for the ar-
gument). For example, the determination of the mean square error of a particular

9Various forms of inductive inference, including inverse inference, are listed in Carnap 1962,
pp. 207-208.

124



inductive method in a given universe and sample size is based on using direct
inference.

Although one can raise doubts about whether a sample is ever random in real
life or whether a sample can be known to be a random one, direct inference is usu-
ally considered to be less problematic than inverse inference; in direct inference,
one does not attribute properties to the whole population on the basis of observa-
tions concerning only a part of it, whereas this is exactly what is done in inverse
inference.

Let us now consider how inverse inference proceeds in practice. Suppose the
relative frequency of Q, rx, is close to r in the sample wx of size x. If x is large, it
would seem intuitively justi�ed to infer that the relative frequency of Q must also
be close to rx in the whole population wu, if not necessarily, at least with high
probability. However, it is well known that this conclusion is not valid without
further quali�cations, as can be seen from the following illustration using Bayes's
formula:

P (ru ≈ r|rx ≈ r) =
P ([ru ≈ r]&[rx ≈ r])

P (rx ≈ r)
=

P ([ru ≈ r]&[rx ≈ r])
P (ru ≈ r)

· P (ru ≈ r)
P (rx ≈ r)

= (7.65)

P (rx ≈ r|ru ≈ r) · P (ru ≈ r)
P (rx ≈ r)

.

Here ru is the relative frequency of Q in the whole universe wu and

P (rx ≈ r|ru ≈ r) (7.66)

corresponds roughly to the probability derived in Carnap (1952) (cf. section 7.3).
If (7.66) is given, one can make the inverse inference to the population illustrated
by (7.65), but only assuming that the prior probabilities P (ru ≈ r) and P (rx ≈ r)
are known � and in general they are not. However, the relation between the Θ-rule
and the inverse inference cannot be discussed in any further detail here.

7.5.3.6 The convergence rate of the variance

What remains of the discussion is the proof that V ar(do(wx)) converges toward
zero when x→∞ at least at a speed of convergence proportional to 1

x
.

Observe �rst that

V ar(do(wx)) = E([do(wx)]2)− [E(do(wx))]2. (7.67)
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This equals

E([
∑
i

(
Xi

x
)2]2)− [E(

∑
i

(
Xi

x
)2)]2. (7.68)

Consider the �rst term above. One obtains

E([
∑
i

(
Xi

x
)2]2) =

1
x4E(

∑
i

X2
i

∑
i

X2
i ) = (7.69)

1
x4E(

∑
i

∑
j

X2
iX

2
j ) =

1
x4

∑
i

∑
j

E(X2
iX

2
j ).

Consider then the second term in (7.68):

[E(
∑
i

(
Xi

x
)2)]2 = [

1
x2

∑
i

E(X2
i )]2 = (7.70)

1
x4

∑
i

E(X2
i )
∑
i

E(X2
i ) =

1
x4

∑
i

∑
j

E(X2
i )E(X2

j ). (7.71)

Substitution in (7.68) yields

V ar(do(wx)) =
1
x4 [
∑
i

∑
j

E(X2
iX

2
j )−

∑
i

∑
j

E(X2
i )E(X2

j )] (7.72)

=
1
x4

∑
i

∑
j

[E(X2
iX

2
j )− E(X2

i )E(X2
j )]. (7.73)

Schwartz's inequality says that

|E(XY )| ≤
√
E(X2)E(Y 2). (7.74)

Hence,

|E(X2
iX

2
j )| ≤

√
E(X4

i )E(X4
j ) (7.75)

⇔ [E(X2
iX

2
j )]2 ≤ E(X4

i )E(X4
j ).

It follows that

E(X2
iX

2
j )− E(X2

i )E(X2
j ) ≤

√
E(X4

i )E(X4
j )− E(X2

i )E(X2
j ) (7.76)

Now assume that the convergence of (7.72) to zero when x → ∞ can be proved
when E(X2

iX
2
j ) is replaced by

√
E(X4

i )E(X4
j ). This means that even an ex-

pression with possibly greater individual term values than in (7.72) tends to zero.
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Note also that since (7.72) is a variance, it is always zero or positive. Hence, it
also follows that (7.72) tends to zero.

The factor 1
x4 can be inserted into the expression (7.72). Let us now show that

1
x4 [
√
E(X4

i )E(X4
j )− E(X2

i )E(X2
j )] = (7.77)

1
x4

√
E(X4

i )E(X4
j )− 1

x4E(X2
i )E(X2

j )

tends to zero when x → ∞ at a rate of convergence at least proportional to 1
x
. It

will be shown that this holds if
1
x8E(X4

i )E(X4
j )− 1

x8 [E(X2
i )]2[E(X2

j )]2 = (7.78)
1
x4E(X4

i )
1
x4E(X4

j )− 1
x4 [E(X2

i )]2
1
x4 [E(X2

j )]2

tends to zero at this speed of convergence. Let now a =
√
E(X4

i )E(X4
j ) ≥ 0,

b = E(X2
i )E(X2

j ) ≥ 0 and c = 1
x4 . Then consider the convergence of

c2(a2 − b2) = c2(a− b)(a+ b) = (ca− cb)c(a+ b). The factor c(a+ b) equals
1
x4 [
√
E(X4

i )E(X4
j ) + E(X2

i )E(X2
j )]. (7.79)

This expression does not tend to zero unless E(X4
i ) or E(X4

j ) is zero and E(X2
i )

or E(X2
j ) is zero, in which case it is trivial that (7.77) converges to zero at least

at the rate of 1
x
. If this is not the case, the expected values in (7.79) must be

determined by the proportions of the corresponding Q-predicates in the universe,
which clearly entails that (7.79) does not converge toward zero. Hence, (ca− cb)
must converge to zero at least at the rate of 1

x
and the desired result obtains.

Moreover, observe that for arbitrary a, b, c, d it holds that

ab− cd = ab− cb+ bc− cd = (a− c)b+ (b− d)c. (7.80)

Hence, when h1, h2 are constants, if (a − c) → 0 and (b − d) → 0 at a rate of
convergence proportional to 1

x
, and b → h1, c → h2, then (ab − cd) → 0 at a

speed of convergence proportional to 1
x
. Let now a = 1

x4E(X4
i ), b = 1

x4E(X4
j ),

c = 1
x4 [E(X2

i )]2 and d = 1
x4 [E(X2

j )]2. If, when x→∞,

1
x4E(X4

i )− 1
x4 [E(X2

i )]2 → 0 (7.81)

and
1
x4E(X4

j )− 1
x4 [E(X2

j )]2 → 0 (7.82)
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at a speed of convergence proportional to 1
x
, plus if 1

x4E(X4
j ) and 1

x4 [E(X2
i )]2

approach some constant numbers, then (7.78) tends to zero at a speed of conver-
gence proportional to 1

x
, which means that (7.72) tends to zero at least a speed of

convergence proportional to 1
x
.

It thus has to be shown that (7.81) holds at a speed of convergence proportional
to 1

x
for an arbitrary i and that 1

x4E(X4
j ) and 1

x4 [E(X2
i )]2 approach some constant

numbers. Once this has been proved, it has clearly been shown that (7.67) tends
to zero at the speed of convergence proportional to 1

x
.

Consider �rst the term E(X4
i ).

One can expressX2
i by using indicator variables (1y is used as short for 1i(y)):

(
x∑
y=1

1y)2 =
x∑
y=1

12
y +

x∑
y 6=z

1y1z =
x∑
y=1

1y +
x∑
y 6=z

1yz, (7.83)

where 1y1z = 1yz and
∑x

y 6=z 1yz is the sum of all 1yz where y 6= z. It follows that

X3
i = (

x∑
y=1

1y)3 =
x∑
y=1

1y(
x∑
y=1

1y +
x∑
y 6=z

1yz) (7.84)

=
x∑
y=1

1y +
x∑
y 6=z

1yz +
x∑
v=1

1v
x∑
y 6=z

1yz.

Thus

X4
i = (

x∑
y=1

1y)4 =
x∑
y=1

1y(
x∑
y=1

1y +
x∑
y 6=z

1yz +
x∑
v=1

1v
x∑
y 6=z

1yz) (7.85)

= X2
i +

x∑
v=1

1v
x∑
y 6=z

1yz + (
x∑
u=1

1u)2
x∑
y 6=z

1yz.

Consider the last term of the last form above,

(
x∑
u=1

1u)2
x∑
y 6=z

1yz. (7.86)

One of its factors is
x∑
u=1

1u
x∑
y 6=z

1yz = (11 + ...+ 1x)
x∑
y 6=z

1yz, (7.87)

which also equals the middle term in the last form of (7.85). Each term 1h in
11 + ...+1x has a different effect on the terms in

∑x
y 6=z 1yz, depending on whether
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h equals one of y or z or not. If h = y or h = z, 1h is redundant in the term
1h1y1z. Consider now the terms in (7.87) for which this holds. For h = y or
h = z in (7.87), the result of multiplying

∑x
y 6=z 1yz by 1h is

x∑
z 6=h

1hz +
x∑

y 6=h

1yh = 2
x∑
y 6=z

1yz. (7.88)

The remaining terms of (7.87) are of the form
∑x

v 6=y 6=z 1vyz; hence, (7.87)
equals

2
x∑
y 6=z

1yz +
x∑

v 6=y 6=z

1vyz. (7.89)

The multiplication of (7.87) by the remaining factor of (7.86),
∑x

u=1 1u, gives
x∑
u=1

1u(2
x∑
y 6=z

1yz +
x∑

v 6=y 6=z

1vyz) (7.90)

= 4
x∑
y 6=z

1yz + 2
x∑

v 6=y 6=z

1vyz +
x∑
u=1

1u
x∑

v 6=y 6=z

1vyz.

The procedure for computing the last term in (7.90) is familiar (see above),
each 1vyz being counted in three times: �rst with 1v, then with 1y and �nally with
1z. The result is obtained when this is added to terms where u 6= v 6= y 6= z. It
follows that (7.90) equals

4
x∑
y 6=z

1yz + 2
x∑

v 6=y 6=z

1vyz + 3
x∑

v 6=y 6=z

1vyz +
x∑

u 6=v 6=y 6=z

1uvyz. (7.91)

When put together, the above yields

X4
i = X2

i + 2
x∑
y 6=z

1yz +
x∑

v 6=y 6=z

1vyz + 4
x∑
y 6=z

1yz + 2
x∑

v 6=y 6=z

1vyz +

3
x∑

v 6=y 6=z

1vyz +
x∑

u6=v 6=y 6=z

1uvyz = (7.92)

X2
i + 6

x∑
y 6=z

1yz + 6
x∑

v 6=y 6=z

1vyz +
x∑

u 6=v 6=y 6=z

1uvyz.
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Let us now proceed to calculate 1
x4E(X4

i ), which was set as the objective on
p. 128. Observe �rst that E(1y) = P{1y = 1} = ri (recall the abbreviation
1y = 1i(y)). Since 1y and 1z are independent if y 6= z,

E(1yz) = E(1y1z) = E(1y)E(1z) = r2
i (7.93)

and analogically for E(1vyz) and E(1uvyz).
The number of sequences of length k from the population of x elements is

x!
(x− k)!

. (7.94)

Hence, one can form
x!

(x− j)!
(7.95)

products of the form 11...1j when j ≤ x. One thus obtains (using the above note
about calculating expected values of indicator variables)

1
x4E(X4

i ) =
1
x4 (E(X2

i ) + 6
x!

(x− 2)!
r2
i + 6

x!
(x− 3)!

r3
i +

x!
(x− 4)!

r4
i ) =

1
x4E(X2

i ) + 6(
1
x2 −

1
x3 )r2

i + 6(
1
x
− 3
x2 +

2
x3 )r3

i + (7.96)

(1− 6
x3 +

11
x2 −

6
x

)r4
i .

It is clear from this that (7.96) converges toward a constant number.
Now one can proceed to calculate (7.81). By (7.36),

1
x4 (E(X2

i ))2 =
1
x4 (xri(1− ri) + r2

i x
2)2 (7.97)

= r4
i +

1
x2 r

2
i (1− ri)2 +

2
x
r3
i (1− ri).

When x → ∞, (7.97) tends to r4
i , which is a constant number. Hence, the condi-

tions concerning 1
x4 (E(X2

i ))2 and 1
x4E(X4

i ) on p. 128 are satis�ed.
Let us proceed to show that (7.81) holds.
Because 1

x4 (E(X2
i )) = 1

x4 (xri(1− ri) + r2
i x

2), (7.96) reduces to
1
x4 (xri(1− ri) + r2

i x
2) + 6(

1
x2 −

1
x3 )r2

i + 6(
1
x
− 3
x2 +

2
x3 )r3

i +

(1− 6
x3 +

11
x2 −

6
x

)r4
i = (7.98)

1
x3 [ri − r2

i − 6r3
i + 12r3

i − 6r4
i ] +

1
x2 [r2

i + 6r2
i + 18r3

i + 11r4
i ] +

1
x

[6r3
i − 6r4

i ] + r4
i .
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Recall that what was to be proved was the convergence toward zero of 1
x4E(X4

i )−
1
x4E(X2

i )2 at a speed of convergence proportional to 1
x
. Observe that the terms r4

i

in (7.97) and (7.98) cancel each other out. The rest of the terms tend to zero at
least the rate of 1

x
in both expressions when x→∞, from which the desired result

follows. QED.

7.5.3.7 Example: the probability of uniform evidence

Employing the Θ-rule leads to an interesting result concerning the prior probabil-
ity of an in�nite and uniform stream of evidence data. Observe, however, that the
constructive validity of the methods employed in this section is not discussed.

For the extreme method λ = 0, the prior probability of a uniform stream of
data is trivially 1. For the other extreme λ =∞, the prior probability of a uniform
stream of data must clearly tend to zero since no piece of evidence can make future
evidence of the same kind more probable. Hence, this section discusses only the
interesting cases 0 < λ <∞.

The optimum λ-method for uniform evidence (i.e., evidence representing a
single Q-predicate) is the straight rule λ = 0. After obtaining uniform evidence,
even consisting of a single individual, the output of the Θ-rule (7.23) is precisely
the straight rule. However, it is usually thought that prior considerations about
the correct inductive method have some weight in choosing the method. In most
cases, it is absurd to assign a probability of 1 to the next individual being similar
as the �rst observed one.

For this reason, a more general form of the Θ-rule (7.23) will now be used.
The general rule is de�ned as follows:


Θgen(λa, c, 0, _) = λa

Θgen(λa, c, x+ 1, wx+1)) = Θ(λa, c, x, wx)+
1
c
[δ−1(do(wx+1))−Θ(λa, c, x, wx)]

(7.99)

where w0 equals the empty sequence _.
Observe that for the considerations of this section it does not matter if the

application of the Θ-rule starts only after a certain sample size (cf. the discussion
in the previous chapter).

Method λa is the initial method based on prior considerations and c is a caution
factor which indicates how much the degree of order should be adjusted at each
step. The larger c is, the more cautious the adjustment is. For reasons of simplicity,
it will be assumed that one has already moved the method away from the extreme
method c†. Because the λ-value of c† is∞, no correction factor can adjust it. This
means that the correction rule would have to be formulated for degrees of order,
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which would result in more complicated calculations. Similarly, it is assumed that
do(wx+1) 6= 1

κ
.

Consider now the prior probability of consequently obtaining only heads when
tossing a coin. Suppose the situation is modelled in a monadic language with one
predicate, denoting the results of consecutive tosses of a coin. Moreover, suppose
that the evidence re�ects absolute uniformity, i.e., the tosses have been either
all heads or all tails. The optimum inductive method in this case is the extreme
method λ = 0, which means that the �rst application of the correction rule yields
the method

λa(1−
1
c

). (7.100)

If the incoming evidence remains homogeneous, the resulting methods can be
recursively calculated from the de�nition of (7.99). The result for a sample size k
is given by

λa(1−
1
c

)k. (7.101)

The probability of an unlimited number of heads (or tails) is given by substi-
tuting the above in formula 11-4 given in Carnap (1952, p. 33) and forming the
product over the indices k ≥ 1:

∞∏
k=1

k + λa(1− 1
c
)k

2

k + λa(1− 1
c
)k
. (7.102)

This formula can be compared to that for a �xed value of 0 < λ <∞:
∞∏
k=1

k + λ
2

k + λ
. (7.103)

It will be shown below that a routine convergence test, the ratio test, yields the
result that (7.102) converges to a non-zero value but remains indifferent concern-
ing the convergence of (7.103).

The terms of (7.103) can be written in the following form:

1 +
1
2

(
k

λ+ k
− 1). (7.104)

Provided that ak > 0 or ak < 0 from some value of k onwards, a product of the
form

∞∏
k=1

(1 + ak) (7.105)
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converges to a non-zero value if and only if the series
∞∑
k=1

(ak) (7.106)

converges. Since it was assumed that λ > 0, it holds that ( k
λ+k − 1) < 0. Hence,

as we see when the terms are written in the form (7.104), the product (7.103)
converges to a non-zero value if and only if

∞∑
k=1

1
2

(
k

λ+ k
− 1) (7.107)

converges, i.e., if
∞∑
k=1

(
k

λ+ k
− 1) (7.108)

converges.
Here one can apply the ratio test. If

lim
k→∞
|ak+1

ak
|, (7.109)

is smaller than 1, the series (7.106) converges, if greater than 1, the series diverges,
and if (7.109) is equal to 1, the convergence remains undecided.

For (7.108), the ratio in (7.109) is equal to
k+1

λ+k+1 − 1
k

λ+k − 1
, (7.110)

which reduces to

λ+ k

λ+ k + 1
=

λ
k

+ 1
λ
k

+ 1
k

+ 1
. (7.111)

From the above form it is clear that, when k → ∞ (and λ < ∞, as has been
assumed), the value of the ratio approaches 1. Hence, the ratio test leaves the
question of the convergence of the series undecided.

Let us now examine the convergence of the product (7.102). It is assumed that
λa > 0 since otherwise the prior probability of uniform evidence becomes 1 with
the correction rule as well and the whole issue becomes trivial. Observe that when
λa > 0, then λa(1− 1

c
)k > 0.
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The question of the convergence is now decided by the ratio test since the
convergence of terms of the product towards 1 is faster in (7.102) than in (7.103),
as is apparent when the terms of (7.102) are written in the form

1 +
k

2[λa(1− 1
c
)k + k]

− 1
2
. (7.112)

Let y = 1− 1
c
. The formula (7.110) corresponding to (7.102) reads

k+1
λayk+1+k+1 − 1

k
λayk+k − 1

, (7.113)

which can be reduced to
λay

k+1 + ky

λayk+1 + k + 1
. (7.114)

This reduces to
λayk+1

k
+ y

λayk+1

k
+ 1

k
+ 1

. (7.115)

As k →∞ (and λa <∞), (7.115) does not tend to 1 since the numerator tends to
y and the denominator to 1, and thus the ratio tends to y = 1− 1

c
, which is less than

1. Hence, the product (7.102) converges to a non-zero value, which shows that an
in�nite stream of evidence consisting of occurrences of only one Q-predicate has
a non-zero probability. Chapter 8 will examine what this means from the point of
view of prior probabilities of universal generalizations.

The �nding readily extends to other monadic languages and bodies of evidence
that contain occurrences of only one Q-predicate.

7.5.4 The cumulative mean square error
This section provides a short digression to the de�nition of the mean cumulative
square error, which is an interesting notion in its own right, even with no direct
relevance to the proofs above.

Recall the de�nition of error of the λ-estimate, (7.10). The idea of the cu-
mulative error is to consider the sum error of consecutive estimates with nested
samples.

The sum error for some values of Xi in two consecutive nested samples of the
sizes x and x+ 1 can be written as

Errλ,κ(x,Xi, ri) + Errλ,κ(x,Xi + 1i(x+1), ri). (7.116)
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The expected value of (7.116) is

E[Errλ,κ(x,Xi, ri) + Errλ,κ(x,Xi + 1i(x+1), ri)] =
E[Errλ,κ(x,Xi, ri)] + E[Errλ,κ(x,Xi + 1i(x+1), ri)].

Observe that the expected value operator can be applied to the two error expres-
sions separately even though the errors are not independent of each other because
the general formula E(X + Y ) = E(X) + E(Y ) does not require that X and Y
be independent random variables.

One can de�ne the following formula for the cumulative square error for
nested samples beginning from size of 1 up to k:

CErr2
λ,κ(k,Xi, ri) =

k∑
x=1

[Errλ,κ(x,Xi, ri)]2. (7.117)

The mean or expected value of the cumulative square error for the predicate
Qi is, by reference to (7.17),

E(CErr2
λ,κ(k, 1i(1), ..., 1i(k), ri)) =

k∑
x=1

Err
2
λ,κ(x, ri), (7.118)

i.e., it equals the sum of mean square errors for the nested samples from x = 1 to
x = k for the predicate Qi. One can thus use the terms mean cumulative square
error and cumulative mean square error interchangeably.

With respect to allQi, the average mean cumulative square error (referred to in
what follows only as the mean cumulative square error or cumulative mean square
error) is

1
κ

κ∑
i=1

k∑
x=1

Err
2
λ(x, ri) =

k∑
x=1

1
κ

κ∑
i=1

Err
2
λ(x, ri). (7.119)

Using the form (7.20), (7.119) equals to

k∑
x=1

∀QErr
2
κ,λ(x,

∑
i

r2
i ), (7.120)

which will also be denoted by

∀QCErr
2
κ,λ(x,

κ∑
i=1

r2
i ). (7.121)
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Observe that
k∑
x=1

1
κ

κ∑
i=1

Err
2
λ(x, ri) =

k∑
x=1

1
κ

κ∑
i=1

E([Errλ(x,Xi, ri)]2) = (7.122)

E(
k∑
x=1

1
κ

κ∑
i=1

[Errλ(x,Xi, ri)]2),

which means that one can also compose the expression for the cumulative square
error with respect to all Q-predicates �rst and then apply the expected value oper-
ator to this expression.
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Chapter 8

The correction rule and time

This section will discuss some implications of adopting the correction rule from a
constructive point of view. It will turn out that, beside the effect on probabilities
of pieces of empirical evidence, it also changes the way the prior probabilities of
sentences are conceived of.

The �rst observation is that the correction rule θ does not seem quite general,
since evidence does not necessarily consist of observations of single individuals.
In inductive logic, any sentence of the language can function as evidence. This
suggests that one needs a correction rule that would update the method with any
kind of evidence, for example, ones that describe several individuals.

However, a simple argument shows that this would lead to dif�culties. Con-
sider a rule like θ above but with the variable x denoting not the number of in-
dividuals in the sample, but the number of evidence statements that have been
observed. It is assumed that each of the evidence statements describes the proper-
ties of a �nite number of individuals exhaustively.

It is easy to see that the results of applying the general form of the correction
rule (7.99) with the evidence H(i)&H(i+ 1) at one go, and with two consecutive
pieces of evidence H(i) and H(i + 1) separately, would differ from each other
(assuming that only the property H has previously occurred). In both of these
ways of updating, the optimum method after obtaining the evidence remains λ =
0, but in the latter case, the current method is updated twice instead of only once,
as in the �rst case.

This sensitivity to the time factor in obtaining evidence has important con-
sequences. Consider the probability of uniform evidence discussed above. This
probability was shown to be positive and non-in�nitesimal, while the prior proba-
bility of a universal quanti�cation with the same propositional content is zero.

The time factor will be discussed in more detail below.
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8.1 Time and obtaining evidence
It seems that the optimum method depends on the duration of time in which the
pieces of evidence are obtained, but is this a plausible view about probability
considering that one arrives at the same body of knowledge about the world by
obtaining e1 �rst and then e2 as by obtaining e1&e2 at one go? Should not these
two updatings then result in equal posterior probabilities?

It has been argued above that it is rational to make adjustments to the inductive
method in the course of the process of inquiry. For example, even if one starts with
the method λ = ∞, which gives no weight to the empirical factor in determining
the probabilities, very uniform evidence attributing a propertyQ to a large number
of consecutively observed individuals should make a rational agent shift to another
value of λ at some point of the inquiry. Since such an adjustment increases the
probability of observing further individuals with the property Q, the probability
of doing so is higher than it was before the adjustment. Hence, because a process
of inquiry often involves a time factor, probabilities for a research process differ
from ordinary conditional probabilities.

The status of evidence which is obtained piecewise is, in fact, different from
that which is obtained at one go, in terms of knowledge in hand after obtaining the
evidence. Even though the meaning of the evidence statements is the same, their
status differs because they were obtained under different background conditions,
determined by the different inductive methods. To accommodate these ideas into
the framework of conditional probabilities, the evidence statement should inform
us, not merely about the propositional content of the evidence, but whether it is
known as well, and if so, whether it was obtained piecemeal or at one go. Thus, for
example, the probability of an in�nite body of evidence representing an in�nite
number of consecutive tosses resulting in heads, should be ascribed a different
probability than the corresponding universal generalization that says that all the
tosses will be heads.

However, it will be shown below that the above distinctions do not apply when
truth is interpreted constructively, which means � more precisely � that univer-
sal generalization is assigned the same a priori probability as the corresponding
stream of observational evidence.

8.1.1 Prior probability
Consider two sentences,Q1(1) andQ1(2), in whichQi is an observableQ-predicate.
Since constructive truth equals knowability, and knowability in this case is observ-
ability, Q1(1) and Q1(2) cannot be constructively true without being observable.
The question of what it means for a sentence to be knowable or observable re-
mains.
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The actualist conception of constructive truth is one answer to the question. It
will be shown below that the actualist conception entails that universal generaliza-
tions have the same probability as the corresponding body of evidence. However,
the actualist conception may not be the most intuitive interpretation of construc-
tive truth. One may wish to tackle the meaning of knowability in some other way.
It will be shown in section 8.1.1.2 that a non-actualist conception of constructive
truth also entails that universal generalizations and the corresponding streams of
evidence have equal probabilities.

8.1.1.1 Actualist truth

One answer is to reject the question and to admit that constructive truth is a tensed
conception, i.e., that being true means having been proved, which is often referred
to as the actualist conception of constructive truth (for constructive conceptions of
truth, see, e.g., Raatikainen 2004).

The following reasoning supports the actualist interpretation of constructive
truth.

The statement that a proposition can be proved cannot, in the constructive
setting, mean anything beyond there being a justi�cation for the expression `S
can be proved'. A situation in which S is provable and it is not justi�ed to say
that S is provable cannot occur; in other words, S cannot be provable in some
objective sense, without the justi�cation for saying that S is provable. Holding
that such a situation could occur would be a commitment to classical meaning
theory concerning the expression `S can be proved'.

If S has been proved, it seems intuitive that S was already provable before the
proof was actually carried out. The above argument entails that it is not justi�ed to
say that S is provable before it is proved, but is it justi�ed to say that, in a situation
where S has actually been proved, it was provable before it was proved?

Saying that S was provable means that a situation obtained where the state-
ment `S is provable' was true. However, the actualist conception of constructive
truth entails that S must be proved whenever `S is provable' is true. Hence, S
could not have been provable before it was proved, which is clearly an unintuitive
feature in the actualist conception of constructive truth.

Let us now proceed to discuss what the actualist conception of constructive
truth means from the point of view of probabilities.

The assertion thatQ1(1)&Q1(2) is true, for instance, means thatQ1(1)&Q1(2)
is knowable, which in turn means that Q1(1) and Q1(2) are knowable. In the ac-
tualist conception of constructive truth, Q1(x) is observable only if it has been
observed. Hence, Q1(1)&Q1(2) is true only if Q1(1) and Q1(2) have been ob-
served.

Provided that an observation of a Q-property must last for a certain duration
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of time, Q1(1) and Q1(2) can simultaneously have the status of having been ob-
served, but they cannot have been observed at the same time. Hence, the (actual-
ist) constructive meaning of the probability of Q1(1)&Q1(2) is the probability of
a state of affairs in which they have been observed separately, one after the other.

But if one observes Q1(1) or any other Q-property, the conception about the
degree of order of the universe is updated. It was argued above that it is rational to
update the inductive method whenever new individuals with the same Q-property
are observed. If the method is updated after observing Q1(1), the probability of
Q1(2) changes from what it was before observing Q1(1). Hence, the probability
of Q1(2) is different in the situation where no Q-individuals have been observed
from its probability in the situation where Q1(1) has been observed.

Hence, because of the updating of the method after each observation of a Q-
individual, universal generalizations are assigned the same prior probability as the
corresponding stream of evidence.1

8.1.1.2 Non-actualist truth

In a non-actualist conception of constructive truth, a sentence is true if it is prov-
able (in the sense of there being a method of proving it), without having to be
actually proved.

In this interpretation of truth, S can be true timelessly, but not independently
of knowability. Expressed in terms of observability, S is true if it is observable,
which means that Q1(1)&Q1(2) is true iff Q1(1) is observable and Q1(2) is ob-
servable. But even if Q1(1) and Q1(2) are both observable, they cannot be ob-
served at the same time. Q1(1) and Q1(2) can be timelessly true in the sense
of observability, but only under the condition that one of them can be observed
before the other one.

The probability of the truth of a universal generalization thus means the prob-
ability of its instances being observable one after another. This entails that the
probability of a universal generalization with a Q-predicate as the sentential ma-
trix is calculated by �rst calculating the probability of the �rst instance and then
multiplying this probability by the probability of the second instance while taking
into account the appropriate change in the inductive method, etc.

Since the inductive method can be updated after each observation of a Q-
individual, universal generalizations (with Q-predicates) are assigned the same
probability as the corresponding stream of evidence in the case of non-actualist
conception of constructive truth as well.

1Observe that no application of the correction rule needs to take place if truth is interpreted
classically since Q1(1)&Q1(2) can be timelessly true `out there', without one of the conjuncts
having to be established before the other.
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8.1.1.3 The order of conjuncts

The equation

P (Q1(1)&Q1(2)) = P (Q1(2)) · P (Q1(1)|Q1(2)) = P (Q1(2)&Q1(1)) (8.1)

re�ects the interpretation of probabilities without the effect of the correction rule
since the probability function P (i.e., the inductive method) remains unchanged
after observing Q1(2), as seen from the middle form of the equation.

When the correction rule is applied, the order of observations becomes signif-
icant. Provided that the order of the conjuncts in the probability statement denotes
the order of observation, it is not necessarily true that

P (Qi(x)&Qj(x+ 1)) = P (Qj(x+ 1)&Qi(x)) (8.2)

since it may, for example, be the case that observing Qi does not change the
current method but observing Qj does (in the latter case, Qi(x) is assigned a
different probability than in the previous case).

As discussed in Ch. 7, there are grounds for choosing a correction rule instead
of a constant method. Using a correction rule effects the probabilities of streams
of evidential data. It can be argued (as has been done in this chapter) that in con-
structive semantics, these probabilities must be the same as the prior probabilities
of the corresponding universal generalizations. However, the question of how
the correction rule effects the �ndings concerning extendible truth and probability
cannot be addressed in this study.
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