

Kai Lassfolk

Music Notation as Objects

An Object-Oriented Analysis of the
Common Western Music Notation System

Academic dissertation to be publicly discussed, by due
permission of the Faculty of Arts at the University of Helsinki in
Auditorium XIV, on the 20

th

 of November, 2004 at 10 o’clock.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14914942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Music Notation as Objects

Acta Semiotica Fennica
Approaches to Musical Semiotics

Editor

Eero Tarasti

Associate Editors

Paul Forsell
Richard Littlefield

Editorial Board (ASF)
Honorary Member:

Thomas A. Sebeok †

Pertti Ahonen
Henry Broms
Jacques Fontanille
André Helbo
Altti Kuusamo
Ilkka Niiniluoto
Pekka Pesonen
Hannu Riikonen
Kari Salosaari
Sinikka Tuohimaa
Vilmos Voigt

Editorial Board (AMS)
Daniel Charles
Márta Grabócz
Robert S. Hatten
Jean-Marie Jacono
Costin Miereanu
Raymond Monelle
Charles Rosen
Gino Stefani
Ivanka Stoianova

Music Notation as Objects

An Object-Oriented Analysis of the
Common Western Music Notation System

Kai Lassfolk

Acta Semiotica Fennica XIX
Approaches to Musical Semiotics 7
Studia Musicologica Universitatis Helsingiensis XI

International Semiotics Institute at Imatra
Semiotic Society of Finland
Department of Musicology, University of Helsinki
2004

This book is a publication of

The International Semiotics Institute

http://www.isisemiotics.fi/

Telephone orders +358 5 681 6639
Fax orders +358 5 681 6628
E-mail orders maija.rossi@isisemiotics.fi

Copyright © 2004 Kai Lassfolk
All Rights Reserved

Printed by Hakapaino, Helsinki 2004

ISBN 952-5431-07-X
ISSN 1235-497X Acta Semiotica Fennica XIX
ISSN 1458-4921 Approaches to Musical Semiotics 7
ISSN 0787-4294 STUDIA MUSICOLOGICA UNIVERSITATIS

HELSINGIENSIS XI

Acknowledgments

It took me more than ten years to complete this study. During that time I
received help and encouragement from an enormous number of people, to all of
whom I am deeply indebted. Here, I wish to mention a few of them as well as
the institutions, whose help was of utmost importance to the completion of this
book.

There are two persons to whom I will be forever grateful, but who unfortunately
passed away before I could complete the task: my mother Laila, who spared no
effort whenever I needed help of any kind, and Erkki Salmenhaara, who was my
original supervisor and for whom I hold the greatest respect.

I want to thank my final supervisors, Eero Tarasti and Alfonso Padilla, for all
their help and encouragement throughout my studies and this research project. I
also thank Kimmo Iltanen, my collaborator at the start of this dissertation
project. His input was crucial at the initial stages of this study. I would also like
to thank all my colleagues at the Department of Musicology, University of Hels-
inki for their support. In particular, I wish to thank Erkki Pekkilä, Erja Hannula,
Merja Hottinen, Jaakko Tuohiniemi, and Irma Vierimaa. Many thanks are also
due to Anna Pienimäki and Esa Lilja for proofreading my texts, to Richard Lit-
tlefield for improving the English language of this text, and to Paul Forsell for
his help at the final hectic stages of preparing this book for printing.

I am grateful to Andrew Bentley, Paavo Heininen, and Yrjö Hjelt, who granted
valuable interviews to Kimmo and me at the early stages of our research.
Andrew Bentley also deserves my warmest thanks for his advice and help at var-
ious stages of this project. I thank Eleanor Selfridge-Field, Vesa Välimäki, and
Mika Kuuskankare for kindly providing me with valuable reference material and
Jean-Baptiste Barrière for his generous advice. I also thank my closest col-

v

leagues, Pauli Laine, Mikko Ojanen, Jaska Uimonen, Jukka-Pekka Kervinen,
and Kalev Tiits for all their support and friendship.

The person who has had the greatest influence on this study is Timo Lehtinen.
Countless conversations and brainstorming sessions with him during the last
nearly twenty years have been a tremendous source of inspiration for me. Many
decisions made during this research project had their origins in these discus-
sions. In particular, it was Timo, who first brought linear logic to my attention.
Also, he was the first to suggest the idea of presenting an analogy between a lin-
ear object system and a hierarchical computer file system. Timo, I owe you my
deepest gratitude.

I want to thank my wife Hellevi and my sons Elias and Salomo for creating an
inspiring atmosphere at home. Many thanks are also due to my father Lenni for
constantly reminding me to keep on working with this study.

Finally, I thank the Finnish Cultural Foundation, the Niilo Helander foundation,
and University of Helsinki for funding this study.

Espoo and Helsinki, October 2004

Kai Lassfolk

vi

vii

Contents

Acknowledgments v
List of Figures xiii

Chapter 1: Introduction 1

1.1 Computer-based music notation 2
1.2 Research methods 3
1.3 Application of methodology and general goals 4
1.4 Results 5
1.5 Overview of contents 6

Chapter 2: Computer-based music notation 9

2.1 Common Music Notation 9
2.2 Graphical aspects of music notation 11
2.3 Dynamic and evolutionary aspects 11
2.4 Computer applications 12
2.5 Capabilities of music notation programs 14
2.6 Types of information 17
2.7 Rules and ambiguities 20
2.8 Music notation and computer graphics 22
2.9 Music notation terminology 23
2.10 Some conclusions 25

viii

Chapter 3: Computer-based musical data representation systems27

3.1 Music representation 28
3.2 Design requirements 30
3.3 Music notation as a representation 33
3.4 Digital audio signals 34
3.5 The Music V sound synthesis language 35
3.6 MIDI and MIDI Files 38
3.7 MusicKit 39
3.8 The SCORE music notation program 41
3.9 Lime and Tilia 45
3.10 The Music preprocessor 46
3.11 NIFF: Notation Interchange File Format 47
3.12 Music notation markup languages 49
3.13 Object-based music representations 51
3.14 General-purpose graphical representations 51
3.15 Comments on data representation systems 52

Chapter 4: Object-oriented software engineering 55

4.1 Basic concepts and terminology 56
4.2 Object-oriented programming languages 59
4.3 Object-oriented software engineering methods 61
4.3.1 The Coad & Yourdon OOA method 62
4.3.2 The Booch/ROSE method 65
4.3.3 The Object Modeling Technique 68
4.3.4 The Unified Modeling Language 70
4.4 UML principles and terminology 71
4.5 UML class and object diagrams 72
4.5.1 Class and its properties 73

ix

4.5.2 Association and aggregation 74
4.5.3 Inheritance 76
4.5.4 Other relationships and features 77
4.5.5 Object diagrams 78
4.6 Text representation of object systems 79
4.7 Object identification and classification techniques 79
4.8 Summary and discussion 80

Chapter 5: Refining the methodology with linear logic 83

5.1 Linear logic 84
5.2 Computational applications 85
5.3 Considerations 86
5.4 Application in object-oriented analysis 88
5.5 Formal rules for a linear object system 89
5.6 Implications for UML notation 90
5.7 Toward a systematic analysis process 91

Chapter 6: Analysis principles for music notation 93

6.1 Existing systems 93
6.1.1 Sound Processing Kit 94
6.1.2 Adobe Illustrator 97
6.1.3 SCORE 98
6.1.4 Tilia and MusicXML 100
6.1.5 Object-oriented representations of music notation 101
6.2 Basic criteria for a new object representation 103
6.3 Categorization principles 107
6.4 Scope of the analysis 109
6.5 Application of linear logic 110

x

6.6 General requirements 110
6.7 Preliminary examples 112

Chapter 7: The analysis model 115

7.1 General definitions 115
7.2 The CMNSymbol class 116
7.3 The top-level aggregation structure 118
7.4 Staff 121
7.5 DurationalSymbol 122
7.6 Note 123
7.7 Environment modifiers 125
7.8 Attachments 127
7.8.1 Connector 128
7.8.2 Marks 129
7.9 Beams 130

Chapter 8: Object diagram examples 133

8.1 Systems and Staves 133
8.2 CoreSymbols 133
8.3 Chords and Stems 136
8.4 Beams 136
8.5 TremoloBeams 137
8.6 Ties and Slurs 139
8.7 An XML example 140

xi

Chapter 9: Discussion 145

9.1 Commentary on the analysis 145
9.2 A low-level graphics system 146
9.3 Notes, stems and chords 148
9.4 Beams 149
9.5 Design issues 150
9.6 Implementation issues 152
9.7 Score processing and dynamic behavior 153
9.8 Logical and performance information 156
9.9 Macro statements 157
9.10 Extendibility of the model 158
9.11 Representational aspects 158

Chapter 10: Conclusions 161

References 165

xii

xiii

List of Figures

Figure 2-1: A simple expression using common music notation 18
Figure 3-1: An example score 37
Figure 4-1: Class 73
Figure 4-2: Association 74
Figure 4-3: Aggregation 75
Figure 4-4: Aggregation with a multiplicity adornment 75
Figure 4-5: Association with role adornments 76
Figure 4-6: Composition 76
Figure 4-7: Inheritance 77
Figure 4-8: Multiple inheritance 77
Figure 4-9: Object diagram 78
Figure 6-1: Signal flow diagram of a Schroeder reverberator 95
Figure 6-2: UML class diagram of the SPKit Schroeder reverberator 96
Figure 6-3: SCORE’s inheritation structure 99
Figure 6-4: Examples of tied notes 113
Figure 7-1: The CMNSymbol class 117
Figure 7-2: Top-level aggregation structure 119
Figure 7-3: System-level structure 120
Figure 7-4: Staff-level structure 122
Figure 7-5: DurationalSymbol class structure 123
Figure 7-6: Note class structure 124
Figure 7-7: Environment modifiers 126
Figure 7-8: Types of barlines 127
Figure 7-9: Connectors 128

xiv

Figure 7-10: Marks 130
Figure 7-11: Class diagram of Beam and its subclasses 131
Figure 8-1: Example of a system with staves and grand staff 134
Figure 8-2: A two-bar note example and equivalent object diagram 135
Figure 8-3: Sample chord 136
Figure 8-4: Example of two beamed notes 137
Figure 8-5: Examples of tremolo beams 138
Figure 8-6: Examples of tied notes 139
Figure 8-7: Examples of tied notes 140
Figure 9-1: An example low-level graphics model 147
Figure 9-2: A simplified top-level aggregation structure 151
Figure 9-3: Sample sequence diagram: Deletion of a note from a staff 156

1

Chapter 1
Introduction

Western music notation has played an important role in preserving musical
works created over several hundred years. Although electronic and computer
technology has provided new means of storing musical information, music nota-
tion is still used extensively. The limitations of Western music notation have
been criticized, especially in the 20th century, and alternative notations have
been developed. In spite of this, the so called “standard” or “common practice”
music notation remains an important form of storing and publishing music. As
one consequence, specialized computer applications have been developed to cre-
ate, process and print music notation.

The Western music notation system has continuously evolved throughout its
existence. One reason for the evolution has been the need of composers to repre-
sent new musical structures or expressions. Another reason has been the need of
music publishers to engrave and print musical scores in an economical way.
Although a similar economy and level of standardization as in printing texts has
not been achieved, enough commonly accepted principles and systematic rules
exist to make it possible to develop computer-assisted tools for many notation-
related tasks.

Music notation is a graphical language, which is comprised of different types
of symbols and from the placement of these symbols in relation to each other.
Compared to other written languages, Western music notation is exceptionally
complex. However, it is efficient enough to allow a skilled musician to perform a
musical work even at first sight. A computer music notation program needs an
explicit description of these rules in order to interpret or process a musical score
efficiently. One central aspect of the rules is the structure of a musical score.
This does not mean the musical structure of any particular work but rather the
structure of music notation as a system of symbols for representing a musical
work.

The purpose of this study is to analyze the Western music notation system as
a set of objects that act as computational representatives for notation symbols.
The primary analytical method is the object-oriented analysis used in computer
science. To improve coherency in the resulting analysis, I have extended stan-
dard object-oriented methodology with linear logic, a method also originating

Music Notation as Objects

2

from computer science. The result of the study is a

structural object model

 that
describes the roles and relationships of objects found in music notation. This
model can be used as a basis for computer software design.

The intention of the study is to represent a theoretical description of music
notation that can be used in the design process of a music notation computer
program. Previous studies on computer-based music notation have shown that
the processing of music notation involves different types of information. Exist-
ing musical data representations serve as current examples of how the various
types of information can be encoded and of the kinds of difficulties involved.
This study is based on the assumption that a consistent object model can be
formed by including only those objects that have an explicit visual appearance;
information belonging to levels or domains other than the visual one can be
included as properties of visual objects.

1.1 Computer-based music notation

Music notation presents a challenge for software developers for many reasons.
Firstly, music notation programs typically have to process several different types
of information. (At least three basic types of information have been identified by
previous research: graphical, logical and performance. Sometimes, a fourth
type, the analytic, is referred to as well.) Secondly, the rule set of music notation
is extremely complex compared to, for instance, word processing or other com-
monly-known computer applications. Third, the market for commercial music
notation application is considerably smaller than that of, say, word processing
programs. These facts mean that the development process of a notation program
is typically difficult and slow, while the potential outcome of a commercial
endeavor may be small.

The computational and representational difficulties concerning music nota-
tion have also been subject to scientific research in both musicology and com-
puter science. There has been active scientific research on many areas
concerning music notation. These include user interfaces, forms and means of
data input, different forms of displaying music notation (e.g. music printing, on-
line publication, and dynamic, interactive-graphical presentation systems), auto-
matic spacing algorithms, algorithms for generating a musical performance
from a notated score, optical recognition of printed and handwritten music nota-
tion, etc. One central area of research is the computer representation of music
notation, which also lies within the scope of this study.

Computer representations have been developed for various purposes related
to music notation. These include data input, data output, the internal memory
structures of notation programs, file formats for data storage, and file formats for

Introduction

3

data interchange between notation programs. This study does not present a con-
crete and detailed representation for any of these particular uses. Instead, an
abstract, general-purpose analysis model of the common Western music notation
system is presented. This model, comprised of hierarchically organized objects,
can be used as a basis for designing concrete representations, for example, for
the uses mentioned above.

Representational issues of music notation are related to computer representa-
tion of musical data in general. Many notation programs also process data that is
not strictly notation-specific. Such data might, for example, be an outcome of an
interpretation process of a notated musical score. For this reason, a computer
representation of music notation must also take into account other forms of
musical data.

1.2 Research methods

Computer science offers systematic methods for various tasks and stages in soft-
ware engineering. These tasks include the selection and use of programming
languages and the preparation of specifications for programming tasks. In addi-
tion, formal methods have been presented for analyzing a system, or for a prob-
lem to be implemented in or solved by computer software.

Object-oriented analysis is a part of object-oriented software engineering
methodology. Object-oriented software engineering uses objects as a basic unit
of software construction. An “object” is a combination of data and a set of oper-
ations for manipulating the data. The use of objects provides a formal method of
decomposing a large and complex system into smaller parts that can be written
and tested separately. An object can hide its internal data structures from other
objects so that the data is protected from undesired use. Thus, the object’s data
structures may also be redesigned and changed without requiring changes to
other objects.

Object-oriented analysis is a method whereby a system to be implemented in
software is decomposed into objects, and the basic relationships of these objects
are defined. The result of the analysis is presented as graphical diagrams and
textual descriptions.

Several formal object-oriented methods have been presented. The basic prin-
ciples of these methods are more or less similar. The main differences concern
terminology and graphical notation conventions. In the late 1990’s, the Unified
Modeling Language (abbr. UML) became the dominant formal object-oriented
method. Thus UML notation was chosen for use in this study. However, UML is
primary a modeling language, not a formal method for performing an analysis.
In this study, formal analysis methodology is approached by the examination of

Music Notation as Objects

4

existing methods for object-oriented engineering. To systematize further the
analysis process, linear logic was used as a complementary method.

Linear logic is an alternative logic to classical logic. Linear logic is based on
the principle of limited resources as opposed to the principle of unlimited
resources in classical logic. For software engineering linear logic offers advan-
tages for simplified management of memory and other computing resources.
Although software systems based on linear logic have been criticized as compu-
tationally inefficient, the theoretical principles remain useful as a means of mod-
eling real-life situations. When applied to object-oriented analysis, linear logic
provides a systematic method for evaluating various analytical decisions. Fur-
thermore, linear logic provides basic guidelines by which to make structural
decisions during the analysis process.

1.3 Application of methodology and general goals

The basic goal of this study is to present a model of the Western music notation
system, such that this model, in turn, can be used as a basis for computer soft-
ware design. The model should be general enough to be applicable to many
types of computer applications requiring music notation. At the same time, the
model should be independent enough not to require a particular area of applica-
tion. Also, it should be independent of the computer hardware or software envi-
ronments and of the implementation programming language.

The original impetus for the present study arose from a technical interest in
applying object-oriented techniques to the design of music notation software.
Previous personal experience with music representations and on music composi-
tion software design had shown that modularization can lead to an effective and
efficient musical computing environment while requiring a relatively small
amount of programming code (see, e.g., Kervinen and Lassfolk 1993). Then
came further experience in designing and implementing an audio signal process-
ing system (Lassfolk 1995 and Lassfolk 1999). This experience showed that an
object-oriented approach provided the means of building an easily-maintainable
and expandable framework, one that could also be accomplished with a rela-
tively modest amount of programming effort. This leads to experiments with
applying similar techniques to the design of music notation software. However,
music notation proved to be a much more difficult problem than the one faced in
signal processing or the manipulation of musical events. Experiments with dif-
ferent program prototypes showed that a theoretical study, separated from the
practical problems of programming, was needed in order to form an objective
view of the problem domain.

Introduction

5

The present study focuses more on data representational aspects of com-
puter-based music notation, and less on algorithms involved with musical data
processing. More specifically, my focus is on high-level structural abstractions
rather than on low-level data structures and optimization of storage space.

My study concentrates on defining the different types of objects that can be
found in common music notation. This can be seen as the first necessary step in
a process of object-oriented software development. What this study does

not

address is another important step in software development: the definition of
rules for handling the objects. Among these rules are conventions that affect the
placement of notes such a way as to make a score readable and visually pleas-
ing. These rules are described in great detail in several books on music theory
and engraving. Hence, duplicating them here would have been both redundant
and unnecessary.

One goal of the study was to achieve a simple and coherent model of a sys-
tem that in itself appears to be extremely complex. To help achieve this goal, I
applied systematic methodology beyond conventional object-oriented tech-
niques. In the light of the complexity of music notation as a communication sys-
tem, the amount of detail that could be handled had to be kept small. Limiting
the amount of detail also helps to keep the model and its presentation simple.

1.4 Results

The results of the study are centered around a structural analysis model of music
notation. The model is presented as a set of UML class diagrams with accompa-
nying text descriptions. The model presents a structure of object classes and
their relationships. One aspect of the analysis involves the classification of musi-
cal symbols. Another aspect is the definition of various relationships between
the classes. One central set of relationships is the decomposition of a musical
score; this starts from the abstraction of an entire score and proceeds down to its
smallest symbolic constituents: note heads, lines, dots, letters, numbers, etc.

This is not the first project to apply object-oriented techniques to computer-
based music notation. In fact, several ongoing notation programs have been
written with object-oriented programming languages. Nevertheless, few system-
atic scientific studies have been published that deal with what music notation is
in terms of objects (i.e., classification of music notation symbols). The key con-
tribution of this study is not the new-object model itself. Rather, object-oriented
modeling is used here as a means for gaining a new perspective on music nota-
tion and on its computer representation.

Above all else

, the object modeling
applied in this study helps to isolate and organize the different types of musical

Music Notation as Objects

6

information mentioned above, and to examine their roles and mutual relation-
ships.

What separates this study from previous ones on the same area is that it pre-
sents a general-purpose model of music notation rather than one aimed at some
particular computer program or application. Here, object-oriented analysis, fur-
ther refined with the principles of linear logic, is used as a systematic research
method. Moreover, the object-model of music notation is presented as a result of
using this methodology, rather than as a mere case study of some software engi-
neering method. The main aim of this study is to present a description of music
notation that can be used as a basis for software design. In addition to this prac-
tical aim, the present work can be approached as a theoretical study that presents
a systematic categorization of the symbols used in Western music notation.

The principal value of this study does not lie in the application of object-ori-
ented methods to music notation in general. Rather, its main value concerns the
way that music notation is approached and how object-oriented methods are
applied and developed further. Here, music notation is approached primarily as a
graphical system, which contrasts with some recently developed representations
of music notation. Object-oriented methodology is extended with linear logic,
which provides a strict set of rules to help in forming an object structure for rep-
resenting music notation.

Like representations in general, my analytic model is a result of interpreta-
tion. It does not represent absolute and universal truth. Rather, the analysis
model is an instrument for retrieving information from its target. For example, it
can reveal potential problems concerning computer representation or music
notation in general. With the analysis model proposed here, these problems can
be taken into account and possibly solved in a software design process.

1.5 Overview of contents

This text includes descriptions and discussions of the following questions: What
is common Western music notation? What is required of a high-quality musical
representation? What types of musical data representations exist? Do they relate
to music notation, and if so, then how? What is object-oriented software engi-
neering? How can it be applied to the development of music software? Finally,
how can music notation be represented in a form that is realizable as a computer
program, while remaining true to the traditional semantics of music notation?

The text is divided into 10 chapters. Following this introduction, Chapter 2
describes various issues in computer-based music notation and defines basic ter-
minology. Ways of examining and categorizing music notation programs are

Introduction

7

described. Also discussed are general principles and problems involved with
computer-data representation of music notation.

Chapter 3 describes the terminology and criteria of computer-based musical
data representation, with a focus on music notation. A selection of existing com-
puter-based musical data representations and their design criteria are also
described. Among the representations are file formats, music-related program-
ming languages, and data structures of notation programs. Their applicability for
representing various forms of musical data, particularly music notation, is dis-
cussed. Short examples are given to demonstrate their syntax and semantics.
These particular representations were chosen because they are typical represen-
tatives of their genre and are therefore documented in sufficient detail. Less
emphasis was put on their availability, popularity among users, or commercial
success.

Chapter 4 describes central aspects of object-oriented, software engineering
methodology. Basic object-terminology as well as the historical and philosophi-
cal background of that methodology are presented. A discussion of object-ori-
ented software engineering methodology is included, and basic principles of the
Unified Modeling Language (UML) are described.

Chapter 5 discusses linear logic and its application as a complementary
method for object-oriented analysis. Chapter 6 discusses the application of
object methodology to the analysis of music notation. General principles and
objectives for analysis of music notation are also described.

Chapter 7 presents an analysis model of the common music notation system.
The model is illustrated with a set of UML class diagrams and commented on in
the text. Chapter 8 shows examples of the model as UML object diagrams.

Chapter 9 contains a discussion of the advantages and disadvantages of the
analytic model as well as the application and modification of the model for the
purposes of software design. The model’s application for software design
receives discussion, leading to Chapter 10, which presents a summary and con-
cluding remarks of the study, as well as possible directions in future research.

Music Notation as Objects

8

9

Chapter 2
Computer-based music notation

In this chapter, basic terminology of music notation is defined, including the
term

music notation

, or more specifically,

common Western music notation

.
Also, various aspects and problems of computer-based music notation are dis-
cussed.

At least since the 1980’s, computer-based music notation has been an object
of ongoing scientific research. Moreover, the 1980’s saw a dramatic increase in
the availability of both commercial and academic notation programs. In 1987
Walter Hewlett and Eleanor Selfridge-Field (1987: 35-73) published notation
examples made with 17 different computer-based notation systems, including
both proprietary systems and commercial software). In 1989 the number of sys-
tems demonstrated had grown to 23 (Hewlett & Selfridge-Field 1989: 57-105).
This increasing trend has continued in those authors’ later publications.

Research areas involving music notation have included data structures, spac-
ing algorithms, means of data entry, and user interfaces, among other subjects.
Below, overviews of some of these studies are presented. Specific computational
and representational problems concerning computer-based music notation
receive special discussion.

2.1 Common Music Notation

Western music notation is a graphic system used to encode music so that it can
be interpreted and reconstructed by people. The entry on the topic in the

Grove
Dictionary of Music and Musicians

 (1980) says music notation can be described
as either a description of sound events or as “a set of instructions for perform-
ers”. According to Nelson Goodman and Kari Kurkela, music notation can be
examined both syntactically and semantically, as in the case of a natural lan-
guage – although music notation differs in many ways from natural languages
(Goodman 1985; Kurkela 1986).

Besides

Western music notation

, the system is also called

conventional music
notation

,

common (Western) music notation

(sometimes abbreviated as

CMN

)

,
common-practice music notation

, and

staff notation

. No official or formal stan-

Music Notation as Objects

10

dard designation for this form of music notation exists. However, the term

stan-
dard music notation

 is used to denote a loosely restricted set of Western music
notation symbols and conventions. In this study, the terms

common music nota-
tion

 or just

music notation

 will mainly be used.
Roads defines common music notation as follows: “Common music notation

(CMN) is the standard music notation system originating in Europe in the early
seventeenth century.” (Roads 1996: 708.) In the context of this study, this defini-
tion can be further refined as

the set of music notation conventions established
by music publishers and musical education institutions in the 20th century for
the representation of 18th and early 19th century Western art music.

 Although
common music notation is even used to represent contemporary art or popular
music, it does not include special symbols or conventions developed for contem-
porary music.

Donald Byrd’s SMUT notation program was aimed at “handling virtually all
Western music written from about 1600 to 1945” (Byrd 1984: 6-7). According to
Byrd:

CMN (“conventional” music notation) includes any arrangement of the symbols in
general use by composers in the European art music tradition from about 1700 to
1935, used with the meanings that were standard: (1) if the notation was made
between 1700 and 1935, at the time it was made; (2) if the notation was made before
1700, with the meanings of 1700; or (3) if the notation was made after 1935, with the
meanings of 1935.

Byrd admits, however, that “the endpoints 1700 and 1935 are somewhat arbi-
trary.” (Byrd 1984: 13.) Byrd illustrated his description of conventional music
notation by dozens of examples extracted from scores of the standard repertoire
of Western art music. In particular, Byrd focused on special cases that are poten-
tial sources of problems for computer-assisted music notation.

As a language, Western music notation is highly complex, more so than any
written natural language or even Western mathematical notation (Roads 1996:
708). Donald Byrd acknowledged this complexity by comparing music notation
with both mathematical notation and the written Chinese language (Byrd 1994).
The complexity of music notation is caused by, not only the number of different
symbols, but the complex rules that govern the coexistence the symbols.

As an example of the number of different kinds of symbols in music nota-
tion,

The Essential Dictionary of Music Notation

 by Tom Gerou and Linda Lusk
(1996) lists 79 different topics. Several individual notation symbols receive their
own topics, while some groups of related symbols are grouped under a common
topic. Topics have also been given to concepts or practices such as “spacing”.
Gerou and Lusk’s text is still not a comprehensive manual or guidebook of
music notation, but is rather intended as a concise encyclopedia. Kurt Stone

Computer-based music notation

11

(1980), in turn, describes at more length the use of common music notation aug-
mented with specialized techniques of contemporary music notation. Gardner
Read’s book (1982) is yet another example of a description of music notation
practices.

Guitar and lute tablatures form another kind of music notation that also is
sometimes regarded as part of common music notation. Both specialized con-
temporary music notation techniques and tablatures are excluded from this
study.

2.2 Graphical aspects of music notation

Music notation is not only complex in terms of the amount of symbols or rules
of encoding information. As a graphical system it also has rules and conventions
that govern the visual layout. The main purpose of these conventions is to
improve the readability of a musical score so that it can be interpreted as fast and
correctly as possible. This is particularly important in a concert performance of a
musical work.

In addition to rules derived from music theory, visual layout is controlled by
conventional esthetic considerations. Entire text books are devoted to teaching
the conventions of musical manuscript writing and engraving (e.g., Ross 1970;
Heussenstamm 1987). Many music publishers have developed their own layout
conventions, sometimes called “house styles”. Many individual music engravers
have also developed their own personal visual styles.

George Heussenstamm (1987) describes layout conventions and also gives
detailed instructions on how to draw notation symbols by hand. Ted Ross (1970)
describes in great detail how to engrave publication-quality musical scores. He
discusses, not only the commonly accepted and established rules on how to
stack notes and adjust the direction of stems, but also, how much space each
symbol should be given on a staff, how to place staves on a page, and the like.
Despite providing these detailed instructions, Ross acknowledges that there
exists no single standard for music engraving. Engraving and layout practices
vary between individual music publishers and engravers. Engravers even dis-
agree on the role and placement of common symbols such as barlines (Ross
1970: 151).

2.3 Dynamic and evolutionary aspects

Western music notation, from its earliest forms up to those of the twenty-first
century, has appeared in several different representational forms and their minor

Music Notation as Objects

12

variants. The time period of common music notation, as defined by Byrd (see
above), represents only a fragment of this long evolutionary process. Even com-
mon music notation itself has not remained a static system. For example, the
conventions of writing manuscripts of eighteenth-century music differ, in many
details, in the twenty-first century from what they were in the nineteenth cen-
tury. The music publishing industry has obviously played an important role in
establishing many conventions used in modern music notation. It can be
expected that the use of computers will also have an evolutionary effect on the
conventions of music notation. Manual tools, such as stamps or specially
designed rulers used by music engravers, also affect the graphical layout of
scores and the shape and maximal degree of variance among notation symbols.
The engraver is tempted to use tools that give the desired result with the least
effort. A similar phenomenon can be seen in the design and implementation of
music notation programs. Programmers are tempted to solve problems with as
little programming or designing effort as possible in order to save time in the
software development process.

The increasing use of computers in music publication and the like has
affected, and will continue to affect, music notation itself. Techniques that are
easy to accomplish with a computer become more common, while difficult tech-
niques are avoided. This phenomenon may shape and restrict the expressiveness
of music notation and thus have an evolutionary effect. Composers who write
music using a notation program that has a limited set of capabilities easily fall
into restricted notational expression. In addition, a difficult learning phase of a
notation program or of some notational feature can form an obstacle to its use,
which is yet another potential cause of evolution.

2.4 Computer applications

Computer programs that can process music notation can be categorized in sev-
eral ways. At least the following criteria can be listed:

1. Intended use or user base
2. Functionality or feature set
3. Type of user interface
4. Type of data representation

Intended use

 or

user base

 refers to the type of use or users the program is
designed for and marketed to. A user base may be defined by the kind of musical
background (e.g., popular music or classical music), educational background,
level of expertise (professional, amateur, student, etc.), or even the special needs
of a particular instrument (e.g., the guitar). Intended user base and intended use

Computer-based music notation

13

are partly correlating criteria. According to Glendon Diener, music notation pro-
grams have three basic types of use (1990: 6-7):

1. Compositional
2. Archival
3. Analytic

Diener based his description on Hugo Cole’s (1974) earlier categorization,
which included four types of use. The only significant difference between Cole’s
and Diener’s categories are that Cole specified distinct categories for both com-
position and arranging, whereas Diener described both of these uses as “compo-
sitional” (Diener 1990: 6-7).

The uses of notation programs can be also divided into (a) publication of
music notation and (b) other types of music production. In the publication of
printed music, graphical layout capabilities and quality of graphical output are
of great importance. In other types of music production, the notation may serve
only as a user interface or as an intermediate form of communication between
music producers and performers. In such cases, aspects other than the quality of
graphical output may be more important to users. Nevertheless, some acceptable
degree of graphical quality is required of all programs that handle music nota-
tion – at the very least, the notation produced should be readable and under-
standable.

The user interface of a notation program often also reflects the kind of users
the program is intended for. A shallower learning curve, but with fewer capabili-
ties or less control of detail, is typical of programs intended for non-experienced
or casual users, whereas programs intended for professional users may be hard
to learn but typically offer a relatively greater deal of control, with several alter-
native means of data entry. The capabilities of several professional music nota-
tion programs have been examined and compared by Alan Belkin (1994), and
will be discussed further below.

When categorized on the basis of functionality, programs may be divided
into general-purpose and special-purpose programs. A high-quality, general-pur-
pose program is capable of handling several types of notational uses needed by
composers, arrangers, music students, and others. Some general-purpose pro-
grams are even used by music engravers and publishing companies. Special-pur-
pose programs, on the other hand, are designed or optimized for some specific
task, such as music publishing, music education, guitar or lute tablatures, medi-
eval notation, or music analysis.

On the basis of user interface, programs may be divided into interactive and
non-interactive ones. Interactive and non-interactive methods of data input and
editing are both described in section 2.5.

Music Notation as Objects

14

The data representation of a notation program shows how data is organized
within, imported to, or exported from a notation program. A representation also
reflects the capabilities of the program that uses it. On the basis of data represen-
tation, programs may be divided, for example, into language-based, data-struc-
ture-based, and object-oriented. Since non-interactive programs require an
external program for data entry and processing, they must support a well-docu-
mented data representation. The representation is often a text-based, specialized
programming or formatting language that can be written by a general-purpose
text editor. Alternatively, the representation may be a binary file format. Musical
data representations, including computer representations of music notation, are
described in Chapter 3.

2.5 Capabilities of music notation programs

The capabilities of music notation programs can be divided into three basic cate-
gories: data entry, data output, and editing. Data entry refers to ways of creating
notation. Data output refers to ways of displaying scores or parts of scores, and
to ways of exporting information in various forms. Editing refers to ways of
manipulating notation that has been previously created by some form of data
entry.

Alan Belkin describes the problems involved in music notation software
development. Belkin observes that some of the problems are caused by music
notation itself. Conventional word processors are very similar to each other in
features and deal with a relatively simple flow of data. In contrast, the process-
ing and organization of music notation data is much more difficult, and music
notation programs must also include a large set of features to accommodate dif-
ferent kinds of users (Belkin 1994: 53-54).

To be called a “notation program”, a program requires at least one kind of
graphical output and at least one form of data input. Other than this, any combi-
nation of the capabilities mentioned above is possible. For example, editing
capabilities are not necessarily needed if the program supports an input language
that can be created and edited with an external program.

As already mentioned above, music notation programs support many differ-
ent ways of inputting data. A particular program may support from one to sev-
eral input methods. At least the following input method categories can be listed:

Computer-based music notation

15

1. Input language
2. Point and click entry
3. Computer keyboard entry
4. Piano-style keyboard entry
5. File import from other programs
6. Data generation from event file formats
7. Automatic composition/arrangement/orchestration

An input language is typically written manually with a conventional text editor
or some other external program. Point and click entry refers to data entry by an
interactive, typically graphical user interface that is operated by a mouse, touch
pad, or other pointing device. Computer keyboard entry refers to an interactive
user interface, in which notes are created by the typing of commands on a com-
puter keyboard. Many interactive notation programs allow note entry via a
piano-style keyboard. In that case, music can be entered, for example, by one's
playing the notes in real time (against a metronome click played by the program)
or in “step time”, by the choice of pitches from the MIDI keyboard and entry of
durations with a computer keyboard.

File import from other programs may be provided, for example, in the form
of a dedicated, notation-exchange file format or by interpreting the native file
format of another notation program. The generation of notation imported from
event files, from MIDI files in particular, is supported by several notation pro-
grams. MIDI files are discussed in the next chapter.

A notation program may also provide automatic composition, arrangement,
or orchestration capabilities. Also, a macro-facility may be used for automating
routine note-entry tasks.

Other, less common input methods include handwritten notation, which uses
a graphics tablet (see Forsberg

et al.

 1998) and optical recognition of printed or
handwritten music notation. Also, information retrieval from acoustical signals
by automatic transcription could be applied as a method of inputting data (e.g.,
see Klapuri 2003; McNab

et al.

 1996). These methods could be implemented as
external programs, or as integral parts of notation programs, such as extensions
(e.g., “plug-ins”) of notation programs.

Data output methods of notation programs include the following:

Music Notation as Objects

16

1. Computer display
2. Printing
3. Synthesized audio playback
4. File export to other notation programs
5. Export to event files (e.g. MIDI Files)

Printing and computer display are the most common forms of data output. A
synthesized audio playback capability is typically provided for proof-reading
purposes. In a more sophisticated form of synthesized playback, algorithmic
phrasing methods can be used to make the playback sound less mechanistic than
a rhythmically rigorous conversion from graphical or logical notation data. File
export may also be provided to other notation programs as well as to MIDI files
or other event-file formats.

The available editing methods of notation programs include the following:

1. Interactive point-and-click editing
2. Keyboard shortcuts or macros
3. Interactive command language
4. Editing of input language (i.e. in batch-based, non-interactive programs)

A point-and-click-based, interactive, user-interface is perhaps the most com-
monly offered editing method in commercial, general-purpose notation pro-
grams. To speed up common tasks and to automate routine tasks, interactive
programs often offer keyboard shortcuts or user-definable macro commands (as
in the case of data entry). In some notation programs, a command language can
be used either instead of or in addition to point-and-click-type operations. In the
case of an input language, editing is performed in some external program rather
than within the notation program itself.

As in the cases of both input and output methods, a particular notation pro-
gram does not necessarily provide or need all the editing methods listed above.
For example, programs with no interactive data entry or editing do not need
operations for such tasks as selecting, moving, copying, or deleting notation
symbols.

Alan Belkin compared the capabilities of commercial notation programs
available for the Apple Macintosh. Belkin presented an extensive list of features
divided into the following main categories (Belkin 1994: 65-67):

Computer-based music notation

17

1. Note entry
2. Entry of slurs, articulation, dynamics, etc.
3. Selection in regional editing operations
4. Editing
5. Special, customized notations
6. Lyrics
7. Midi playback
8. Entry layout
9. Page layout
10. Part extraction
11. File operations
12. Interface and overall ease of use

All the programs compared by Belkin were based on a graphical, interactive
user interface typical of Macintosh software in general. Belkin noticed a ten-
dency towards unification of features between the programs, although their ori-
gins differed considerably. Belkin also noted that a previous contradiction
between ease of use and amount of flexibility was becoming less obvious as the
programs became more mature (Belkin 1994: 54). He cited some “standard”
requirements, such as viewing of user-selected parts of a score, cut and paste
editing, and MIDI playback. However, he concluded that “currently, no available
notation software meets all of these requirements” (ibid.: 53-55). Belkin
restricted his review to the Apple Macintosh platform. Thus, music notation lan-
guages designed for text-based user interfaces were not discussed. It can be
assumed that there has been considerable progress in the capabilities of notation
programs since the time of Belkin’s survey. Some of the programs available in
2004 might well meet Belkin’s requirements. There are, however, also new
requirements, such as music publishing via Internet, that would have to be con-
sidered, if a similar survey were to be conducted in the year 2004 or later.

Belkin saw a need for the transfer of notation data between programs. He
proposed a list of requirements for a “standard notation file format” (SNFF).
Partly from Belkin’s initiative, a group of developers began development of the
Notation Interchange File Format (NIFF).

2.6 Types of information

The Notation Interchange File Format specification (NIFF 2002) states that
music notation contains three types of information

components

:

graphical

,

logi-
cal

, and

performance

. These components are loosely connected. This principle
was first presented by Ornstein and Maxwell (1983; see also, Maxwell & Orn-

Music Notation as Objects

18

stein 1984). A similar principle forms the architectural basis of the Standard
Music Description Language (SMDL). The latter groups different types of musi-
cal information into

domains

, one of which is called

visual

 and another

gestural

.
The SMDL equivalent for the logical domain is called Cantus. SMDL also spec-
ifies a fourth domain called analytic (Sloan 1997).

It is difficult to separate and define these components in a precise manner.
Eleanor Selfridge-Field (1997b) describes the relationships between logical,
“physical” and “practical” information by using an analogy to geographical
maps. As she points out, a map may represent physical, practical, and logical
information, or some combination of these. For example, one kind of map can
show borders of states, and a road map represent physical presence, but both
maps also constitute logical information.

In a computer program, the graphical information represents instructions for
displaying visual symbols on a computer screen or on printed paper. Logical
information includes invisible connections and relationships between individual
graphical symbols. This includes terms such as “voices” in a polyphonic struc-
ture or the durational “value” of a note. Performance information represents
musical interpretation of a score. This typically includes the precise timing of
notated events, phrasing, intonation, detailed use of vibrato, and so on.

The difference between performance, logical, and graphical information can
be demonstrated with an example. “Quarter note middle C” can be regarded as
logical expression describing musical information. The expression “one second
long, 261.62 Hertz tone” can be regarded as a performance-oriented or physical
expression. A corresponding graphical expression might in turn be as shown in
Figure 2-1.

The notation example of Figure 2-1 could also be expressed verbally, as “a staff
containing a treble clef and a quarter note with an upward stem on the first lower
ledger line” or “five horizontal lines, one vertical line, a spiral-like shape, and a
filled ellipse with a short horizontal line crossing it”. Both expressions can be

Figure 2-1: A simple expression using common music notation

Computer-based music notation

19

regarded as graphically-oriented, but the first uses musical vocabulary, whereas
the second uses general graphical vocabulary. This shows that even graphical
types of information may be interpreted and expressed on different semantic lev-
els.

The expression of pitch is often an indicator of the orientation of a represen-
tation. If a pitch is coded by the note’s vertical position on a staff, it is an indica-
tion that the representation is (likely to be) graphically-oriented. By contrast, if a
note name and octave range are used, then the representation can be considered
as more logically-oriented. A combination of both ways of specifying pitch indi-
cates that the representation is designed to express both types of information
explicitly.

A purely logically-oriented representation primarily represents logical infor-
mation explicitly, and graphical information implicitly (either fully or in part). If
a notation program uses a logically-oriented representation, it must typically
calculate at least some of the placements of notation symbols automatically. A
logically-oriented representation may, however, contain either optional or man-
datory graphical parameters to aid in the calculation process. A graphically-ori-
ented representation, in turn, encodes graphical information explicitly. A
performance-oriented representation may also allow optional expression of logi-
cal or graphical information, although its typical purpose is to express perfor-
mance information in an explicit way.

In common music notation, graphical information is explicit. Logical infor-
mation is implicit, and must be derived through analysis or interpretation of the
graphical symbols. Performance information, for its part is mainly expressed
implicitly and can be generated by interpreting the graphical information.

As noted above, graphical information may be further subdivided into sev-
eral levels of abstraction. The “lowest” of these may be called the “physical”
level. In a printed score, this level would consist of ink and paper. In a computer
software implementation, it might consist of primitive computer graphics (such
as points, lines, curves, etc.) or of individual pixels on a computer display –
these may be regarded as virtual equivalents of paper and ink. On a higher level,
graphical information can be represented as complex symbols, such as notes,
rests, key signatures, or staves. Some of these symbols can consist of physically
separable parts. On an even higher level of abstraction, a whole musical work
may be regarded as a single graphical symbol.

Performance information, too, may be represented on many abstract levels,
including a stream of events or a sampled audio signal. When a musical score is
performed, each note is given an exact beginning and duration in time as well as
nuances such as vibrato, tone color, and more. In performance, graphical details

Music Notation as Objects

20

(such as stem direction) and logical information (such as tempo) either disap-
pear or are translated into a combination of several notes or parameters.

Similarly, a detailed analysis of logical information in music notation can be
expected to reveal different levels of abstraction. How SMDL distinguishes
between logical and analytic domains is an indication of this. Also musical
structure can be regarded as either graphical, logical or analytic information.
This raises an additional issue to be considered in evaluating the relationships
and roles of the different information types. Roger Dannenberg discusses hierar-
chy and musical structure in music representation. According to him, it is impos-
sible to represent musical structure sufficiently in terms of a single hierarchy.
For example, beams and slurs form two different structural constructs, which
often intersect (Dannenberg 1993: 20-21). Therefore, the encoding of musical
structures as parts of relationships could result in a complex set of interweaving
hierarchies.

2.7 Rules and ambiguities

The basic rules of music notation have long been described in music theory
books, some of which were mentioned above. Among these, George Heussen-
stamm’s book (1987) describes basic music notation techniques, and Gardner
Read (1982) presents an even more detailed guide to music notation.

In even more detail, Ted Ross describes the rules that govern the graphical
placement of notation symbols. For example, the correct beaming of two con-
secutive eight notes is described with illustrations of more than 270 discrete
interval combinations. In these illustrations, the correct stem direction, stem
length, and beam angle is shown for each interval (Ross 1970: 104-110). A
direct conversion into algorithmic form of Ross’s examples of “correct” and
“incorrect” notation would create an extensive list of conditions. Although
Ross’s book is written for human music engravers and not for software design-
ers, it shows how much detailed consideration must be paid to even the simplest
engraving tasks.

Donald Byrd (1994) takes examples from works of J. S. Bach, Brahms,
Debussy and Ravel to demonstrate situations which are likely to cause difficul-
ties for computer software. In his Ph.D. thesis, Byrd presented a large amount of
examples extracted from standard Western art music repertoire, such examples
showing even more ambiguities and difficulties (Byrd 1984). Both Byrd and
Dannenberg reached the conclusion that several tasks require manual work, such
as transcription of musical performances and layout adjustments necessary
when instrument parts are extracted from an orchestral score (Dannenberg
1993).

Computer-based music notation

21

Automatic spacing has been studied as one of the most difficult areas in nota-
tion software design. Blostein and Haken (1991) discussed the difficulties of
designing spacing algorithms. Earlier studies, made by Gourlay (1987) and
Rouch (1988), on the spacing of monophonic music notation provided solutions
for spacing single staves or simple homophonic material. Blostein and Haken
(1991), however, went on to address polyphonic and multi-staff notation.

Blostein and Haken described a complex, two-pass spacing algorithm used
in the LIME notation program. In the first pass, two types of spacing, “textual”
and “durational”, are computed. In textual spacing the width for each chord,
individual note, clefs, key signature, lyric syllable, and so on are computed in
parallel on all staves in the system. Textual spacing does not take into account
the duration of notes. For this, the durational spacing algorithm, in turn, uses a
nonlinear function of note length to compute spacing. In the second pass, textual
and durational spacings are compared and combined while the desired width of
the music is taken into account (Blostein & Haken 1991: 95).

SCORE uses a semi-automatic approach to spacing. In the data input stage,
symbols are placed horizontally according to the durations of notes and rests.
When the input of a whole system has been completed, the user must type a
command that causes SCORE to make fine adjustments to spacing. SCORE’s
spacing scheme is divided into two processes: “lineup” and “justify”. The user
may either execute both processes at the same time, using a single command
(named “LJ” for “lineup and justify”), or perform each operation separately (i.e.,
either “L” or “J”). The lineup and justify processes have functions approxi-
mately similar to Blostein’s and Haken’s textual and durational passes, respec-
tively. SCORE’s lineup process aligns every note and rest belonging to the same
beat in vertical groups. The justify process spaces the symbol groups according
to their durational values (SCORE 1991b: 243-244).

SCORE provides an additional command for justifying a previously spaced
system to accommodate a lyric line. Its purpose is to handle situations in which
long syllables do not fit between their respective notes. If the result is still not
pleasing, the user may move symbols manually. A detailed description of
SCORE’s spacing algorithms has not yet been published.

Kai Renz presented an improved version of Gourlay’s spacing algorithm. He
also stated that most published spacing algorithms were minor modifications of
Gourlay’s scheme. Renz demonstrated the weaknesses of Gourlay’s algorithm,
especially in the spacing of tuplets in multi-stave systems. He also demonstrated
that the spacing algorithms in the Finale and Sibelius notation programs suffer
from deficiencies similar to those in Gourlay’s algorithm (Renz 2002.)

The descriptions of the above spacing algorithms concern the placement of
symbols within a staff or a system. An even higher-level problem exists. An

Music Notation as Objects

22

engraver might, for example, deliberately misalign barlines on nearby systems
to enhance readability of the score or an instrument part. This situation has also
been noted by Gerou and Lusk (1996: 52). Also, vertical spacing between staves
and systems may have to be adjusted to avoid collisions between symbols on
neighboring staves. Furthermore, facile placement of page turns may be difficult
even for a human engraver (see Ross 1970: A3-A5).

2.8 Music notation and computer graphics

Music notation programs use computer graphics as their primary means of data
output. Notation may be shown on a computer display, or it may be printed on
paper. Many programs use an interactive graphics system as their user interface.
The graphics-processing capabilities needed by a notation program may be
divided into general-purpose graphics algorithms and notation-specific capabili-
ties.

Kimball Stickney divided the implementation techniques of notation sym-
bols into two categories: “iconic” and “algorithmic” (1987: 129-131). There,
iconic symbols can be seen as computer equivalents of metal stamps used in
manual music engraving. In a score, extensively used symbols that do not have
to be varied in shape or size can be conveniently implemented as “iconic” sym-
bols. For example, these can include note heads, clefs, and symbols for rests and
accidentals. Many computer graphics systems offer fonts as a means to imple-
ment iconic symbols. “Algorithmic” symbols, by contrast, are calculated indi-
vidually for each symbol and often vary in shape. These symbols include slurs,
beams, braces, and stems. Algorithmic objects offer more graphical flexibility
than do iconic symbols, but they are computationally less efficient.

Many general-purpose graphics systems, such as Adobe PostScript, Apple
MacOS, and Microsoft Windows, support both iconic and algorithmic graphics.
For example, the Adobe Sonata PostScript font (Grosvenor et al. 1992: 354) is
specifically designed for music notation. It includes common notation symbols
such as note heads, rests, clefs, stems, flags, and accidentals.

General-purpose graphics systems provide means for drawing lines, curves,
circles, ovals, rectangles, polygons, and more. For example, stems, staff lines or
even beams, may be flexibly drawn with general-purpose graphics routines.
Some notation-specific algorithmic symbols are more difficult to produce. These
include braces and slurs. Few graphics systems offer ready-made primitives for
drawing these symbols. PostScript (Adobe 1986), for example, includes a cubic
Bezier curve primitive, but a single Bezier curve does not suffice to draw a shape
with varying width, such as a music notation slur or brace.

Computer-based music notation

23

Special-purpose processing is also required when fonts and algorithmic
shapes have to be joint or jointly adjusted. For example, to join perfectly a note
head with a stem may cause difficulties for a music notation program. In that
case, the exact dimensions of the note head must be known in order to adjust the
starting point of the stem. Also, the width of the stem must be taken into account
so that the stem starts precisely beneath (i.e., from inside of) the respective note
head.

2.9 Music notation terminology

According to Donald Byrd (1984), common music notation represents four
basic parameters: pitch, time, loudness, and timbre. Of these, the representation
of pitch and time are explicit or fairly explicit; representation of time is mostly
implicit; and timbre is both explicit and implicit. Loudness may be expressed
explicitly by verbal comments but is mostly implicit. Timbre is expressed
explicitly by naming instruments or ways of playing (e.g., “sul ponticello”), but
mostly the expression of timbre is implicit (Byrd 1984: 10-11).

A note is a central term in most music representations. The semantics of
note, however, has different meanings among various representations. In perfor-
mance-oriented representations, note is typically equivalent to a sound event.
Performance-oriented representations include sound synthesis programs and
MIDI, as described in the next chapter. In music notation, note is typically equal
to a graphical symbol and has various parts, such as a note head and a stem.
Alternatively, a note may refer to a logical unit, which may have several alterna-
tive appearances in sonic or visual domain. In a visual domain, e.g. in common
music notation, a logical note might appear as either a single graphical note
symbol or, if its context requires, as two successive note symbols connected by a
tie.

Pitch is an ambiguous term. Its meaning and representation differ among
musical data representations. In performance-oriented systems, pitch may mean
a fundamental frequency of a sound event or a symbolic parameter referring to,
for example, a key on a piano keyboard, where each key produces a sound with a
predefined pitch. In logically-oriented music representation systems, pitch is
often represented by a name that contains a pitch class and an octave. In music
notation, pitch is affected by several parameters, including the note-head’s verti-
cal position on a staff, a preceding clef symbol, a preceding key signature, pre-
ceding accidentals, preceding barlines, and, in some cases, even the kind of
instrument.

Duration of a note is also ambiguous. In performance-oriented systems,
duration refers to the length in time of a sound event. In music notation, a com-

Music Notation as Objects

24

mon form of expressing duration is in fragments of a “whole” note; e.g., half
note, quarter note, eighth note, dotted quarter note, etc. A referential duration for
these relative note durations is defined with tempo expressions. Logically-ori-
ented representations often use a similar way of expressing duration.

Time has a partially similar meaning in performance, logical representation,
and notation. In performance, time can be measured in real time (e.g., minutes
and seconds). Logical time is measured in beats and measures. Some perfor-
mance representations also use a beat-based expression of time instead of, or as
an alternative to, real time. In notation, time flows roughly from page to page,
from the top-most to the bottom-most system on a page, and from left to right on
each system or staff. Barlines are used as a means of synchronization. Notes that
are vertically aligned are usually also played simultaneously. There are, how-
ever, several exceptions to this general principle. In some cases, notes cannot be
aligned perfectly vertically, but are still intended to be played simultaneously.
On the other hand, an arpeggio sign indicates that vertically aligned notes are
not to be played exactly simultaneously. Also, instrumental limitations may
require breaking a chord such that all the notes will not be played at exactly the
same time.

In notation, dynamics and loudness are expressed by written comments and
by graphical symbols (e.g. “wedges” or “hairpins” indicating increase or
decrease of loudness). In performance representations they can be expressed as
signal amplitude values or as instrument-specific parameters, such as key stroke
velocity values for keyboard instruments. Logical representations may use both
implicit and explicit expression of dynamics and loudness.

The staff is an organizational unit that can be regarded as both graphical and
logical. A staff is usually explicitly visible as a one or more (typically five),
equally spaced, solid horizontal lines. Additionally, the staff also forms a coordi-
nate system within which notation symbols are placed. In music engraving, staff
space and staff step are commonly used units of measuring distance (both verti-
cal and horizontal). Staff space is the distance between two consecutive staff
lines. A staff step is one half of a staff space. A system is a way to connect staves
to indicate that they are performed in parallel. A system may be regarded as a
unit for both logical and graphical organization. A group of staves connected
with a systemic barline is unambiguously recognized as a system (see Gerou and
Lusk 1996: 308).

Voice, part, and measure (a.k.a. bar) are used for the logical or analytical
organization of notes or other symbols. In notation, voices and parts correlate
partly with staves. For example, a part (e.g., that of an instrument) is often writ-
ten on a dedicated staff or group of staves. However, also more than one part
may be written on one staff. A voice is often used to refer to a monophonic mel-

Computer-based music notation

25

ody line within a polyphonic structure. A voice may also refer to either the part
of a solo performer (a human voice or an instrument) or a group of performers
singing or playing in unison. In music notation, voice is displayed implicitly by
stem direction and, sometimes, by slight horizontal misalignment of notes
instead of their being grouped into a chord. In many computer representations, a
voice is an organizational feature within a part; i.e., a voice could also be called
a “subpart”. Visually, there is no dedicated explicit symbol that represents a
voice. Instead, a voice is implied by relative placement or by stem direction of
notes. Measure or bar is a horizontal section of a staff or system enclosed by bar-
lines. Visually, a measure can be regarded as an implicit construct of a staff or
system and surrounding barline symbols.

2.10 Some conclusions

In this chapter, various difficulties involved with computer-based music notation
as well as representational and terminological aspects of music notation were
discussed. The issues in notation software design concern identification of the
different types of information described above, the definition of their respective
roles, and the finding of suitable representations for them. The representation of
program data must be capable of supporting not only the various types of infor-
mation, but also the complex rules of both correct notation and pleasing visual
layout.

Of the three basic types of information, only graphical information is manda-
tory for producing music notation. Without the ability to process graphical infor-
mation, on some level, a computer program cannot be called a music notation
program. Therefore, issues concerning graphical data-processing have to be
addressed in the design process of music notation software. In this respect, logi-
cal and performance information are only of secondary importance. For a com-
puter program, the ability to store and process logical or performance
information is a benefit, and may in many kinds of applications even be a neces-
sity. For example, a purely graphics-based notation program may be unable to
provide adequate assistance for users. Moreover, if the notation program is
intended to be used by a musician rather than a graphics designer, it should oper-
ate on or at least demonstrate itself to the user on an understandable semantic
level. A distinction should be made, however, between the user interface of a
program and its scheme for internal data representation. In some programs,
Leland Smith’s SCORE in particular, the internal data structures are visible to
the end user, while in many others, they are hidden under a user-interface layer.

A considerable part of data processing in any music notation program is
devoted to graphics processing. Questions concerning general-purpose graphics

Music Notation as Objects

26

are under on-going research (e.g. see Feiner et.al. 1992). Questions concerning
the application of those techniques are part of the specialized design tasks of
music notation software.

As described above, there are several alternative methods of inputting, out-
putting, and editing data in computer-based music notation. A general-purpose,
high-quality computer representation should be applicable to any of those meth-
ods and, ideally, be adaptable to new, as yet uninvented methods. To achieve
this, the representation should be independent of any particular input, output, or
editing method.

From the above discussions, the requirements for an “ideal”, all-purpose
notation program can be summarized as follows: (1) the program should be
applicable to any of the basic uses listed by Diener; (2) it should provide a high
degree of graphical freedom (as required by Byrd); (3) it should provide guid-
ance for correct notation (i.e., implementation of the rules presented by Heus-
senstamm or Ross); and (4) it should provide assistance in automating notation
tasks (as suggested by Belkin). These requirements can be difficult to achieve in
a single program. Yet, in designing new representations for computer-based
notation, one should take these criteria into account, if only to assure that the
representation does not prevent any of the requirements being met, if not now,
then during future developments of the system.

27

Chapter 3
Computer-based musical data
representation systems

Computer-based musical data processing involved with music production may
be divided into three main areas: (1) synthesis and processing of audio signals,
(2) manipulation of musical events, and (3) music notation. Specialized pro-
grams, with a wide variety of user interfaces, are available for each area. Also,
general-purpose or multi-purpose programs exist which can handle more than
one of these tasks. Specialized data representations have also been developed for
all three of these areas.

An example of an early data representation system for musical sound synthe-
sis is the Music V scoring language (Mathews et al. 1969). Music V provides a
specialized programming language for describing a detailed sound synthesis
process. Music V and its predecessor, Music IV, have greatly influenced other
music synthesis programs as well as programs developed for the other two main
areas of application. The Music V program produces a digital audio signal,
which is typically stored in a pulse-code modulated (PCM) form.

The introduction of the Musical Instrument Digital Interface (MIDI) in 1983
was an important factor in the development of programs that process musical
events. In turn, the development of interactive, graphical user-interfaces for per-
sonal computers during the 1980’s affected the development of interactive music
notation software. Most modern musical notation programs used for commercial
and general purposes have adopted the interactive “point-and-click” user inter-
face used in the Apple Macintosh and Microsoft Windows computing environ-
ments. User interface principles have also affected and placed constraints on the
representation of musical data.

This chapter presents an overview of some musical data representation sys-
tems with emphasis on music notation. With some exceptions, the discussion
concentrates on text-based representations. Text-based file formats and lan-
guages are often used as a means of data input or data interchange between
musical programs. In order to be usable, such a format needs to be thoroughly
documented. Less information is available for internal data representation of
notation programs – especially commercially distributed ones. There are two

Music Notation as Objects

28

exceptions for which usable documentation has been published: SCORE and
Lime. Their representations are also described in this chapter. My intention here
is not to present a thorough listing or description of even those notation-specific
representations that have been published. The focus is instead on basic architec-
tural features of musical representations and on their semantic differences. Gen-
eral questions concerning representation are also discussed.

3.1 Music representation

According to David Huron (1992: 7), “to represent something is to create a map-
ping between a source object to be signified, and an independent target object or
signifier”. Huron mentions four basic types of representations: binary, alphanu-
meric, graphic, and sonic.

A terminological distinction can be made between representation and for-
mat. A computer data representation is a semantical definition of parameters
used to describe (musical) information. “Format” refers to how the parameters
are entered into computer memory. In particular, “file format” is a definition of
encoding data in a computer file.

Many representations are bound to a single format. In some cases, however,
there may be multiple (file) formats for a single representation, or a representa-
tion may be independent of any fixed format (see, e.g., Selfridge-Field 1997b:
565-572). For example, the Time Stamped Music File Format (Lassfolk &
Lehtinen 1988) includes a definition of a binary file format but also allows the
same information to be stored in three different types of ASCII text formats. The
binary format was optimized for storage efficiency while the ASCII formats
were intended to aid in data transmission and editing.

Representation and format are often used as synonyms, however, and an
exact distinction between the two is sometimes difficult to make. For example, a
binary file may have to be converted to ASCII text for E-mail transmission or for
archival purposes. The result can be called an “ASCII encoded binary file”. In
that case, ASCII character strings represent binary codes. The distinction
between “format” and “representation” may also be seen as a cultural one. For-
mat (especially, file format) is a commonly-encountered term in computer sci-
ence, whereas humanists or musicologists are more eager to talk about
representation. A further distinction could be that representation refers to the
logical content of the document, whereas format refers to the physical form or
encoding in which content is stored.

Computer-based musical data representation systems

29

In general, digital music representations may be divided into four basic cate-
gories, according to intended usage:

1. Input
2. Output
3. Storage
4. Data transfer

Input representations are optimized for entering information into a program.
Output representations are products of computer processing tasks. For example,
a notation program might use the PostScript graphics language as an output rep-
resentation of a score, or it might employ a MIDI file as an output representation
of a musical performance of the score. Storage representations are used to store
programs' data structures in computer memory or into files. Transfer representa-
tions are used to transfer data between different programs or program versions.

As discussed in the terminological section of the previous chapter, the con-
cept of “note” often demonstrates the semantic differences between various sys-
tems of representation. In the language of musical synthesis, “note” refers to a
sound event that has an explicitly definable pitch, duration, onset time, and color
(timbre). In MIDI, a note refers to a key of a keyboard instrument (such as a
piano or organ). In MIDI, onset time and duration are explicitly definable, but
exact pitch and tone are implicit. In music notation, as pointed out by Kurkela
(1986: 101), a graphical symbol of a note is dependent of other objects, which
Kurkela calls qualifiers. In representational systems for computer-based music
notation, several forms of information (graphical, logical, and performance ori-
ented) may be included in the same document.

Curtis Roads uses two adjectives for characterizing computer representa-
tions: iconic and symbolic. Roads bases his categorization on Thomas A.
Sebeok’s definition of iconic and symbolic signs. Roads quotes Sebeok: “A sign
is said to be iconic when there is a topological similarity between the signifier
[the sign] and its denotata [what it represents]” (in Roads 1985: 405; Sebeok
1975: 242). Further, according to Sebeok and Roads “a symbol can be defined as
‘a sign without either similarity or contiguity but with only a conventional link
between its signifier and denotata’” (Roads 1985: 406; Sebeok 1975: 247).
According to Roads, a digital audio signal can be described as iconic while

Music Notation as Objects

30

music notation falls somewhere in between iconic and symbolic (Roads 1985:
406).

3.2 Design requirements

Huron (1992: 15-37) specifies a list of twelve properties of good representations.
These properties may be used to characterize representations and to point out
differences between representations. Huron lists the properties as follows:

1. Unique
2. Mnemonic
3. Consistent
4. Reversible
5. Terse
6. Non-cryptic
7. Structurally isomorphic
8. Context-free
9. Idiomatic
10. Explicit (interpreted)
11. Optional
12. Extendable

By unique, Huron means that “no two signifieds may share the same signifier”
(ibid.: 16). This property guarantees error-free (or ambiguity-free) translation or
interpretation of the representation. Mnemonic refers to associational relation-
ships or mappings between signifiers and signifieds, said relationships meaning
to help the user to learn or remember the representation. Huron mentions several
types of mnemonic relationships. An example of literal mapping is the relation-
ship between a graphic music notation symbol and its written name (for exam-
ple, a fermata symbol and the word “fermata”). An “initial” mnemonic
relationship occurs when a signifier is a letter that equals the written name of the
signified; for example, when the letters W, H, and E represent durational values
of a whole note, half note, and eighth note, respectively. “Pictorial” relationship
refers to (approximate) visual resemblance between signifiers and signifieds; for
example, the characters | and & as signifiers for a barline and a treble clef,
respectively. Northern Indian tabla notation is an example of “onomatopoeic”
mapping (Huron 1992: 20; Bel & Kippen 1992: 208).

Other types of mnemonic mappings listed by Huron are operational, seman-
tic convention, isotonic convention, and topological correspondence. Isotonic
convention describes the mapping of two quantitatively ordered parameters. For
example, in MIDI, numbers 0 to 127 are mapped to the keys of a piano or syn-

Computer-based musical data representation systems

31

thesizer keyboard. Isotonic mapping of dynamic markings would be achieved by
assigning consecutive integer values for each dynamic level from ppp (or pppp,
if desired) through fff (or ffff).

A representation is consistent when general rules and conventions of the rep-
resentation are followed and applied without exceptions. Consistency is harder
to achieve in terse representations than in verbose ones. This is due to limits
placed upon the size and thereby by the number of possible signifiers for a given
parameter. For example, the DARMS representation mixes initialism and iso-
tonic convention in the encoding of durations (Huron 1992: 23).

In a completely reversible representation, the signifiers may be derived from
the signifieds with the same effort required to derive the respective signifieds
from the representation’s signifiers. According to Huron, however, reverse map-
ping from signifieds to signifiers may be less mnemonic than is the opposite
mapping (Huron 1992: 24).

A terse representation is often more efficient to use (for example, to write or
to read) than a “verbose” representation. Huron uses a programming language to
exemplify the advantages of terse representation (1992: 25). According to this
example, it is more convenient to keep (local) variable names short rather than
unnecessarily verbose. Here, “verbose” means that variable names are full,
descriptive names rather than single letters or abbreviations as used in terse rep-
resentations. The same principle is discussed by Kernighan and Pike (1999: 3).
A terse representation is more economical in terms of space and often faster to
comprehend, especially by an expert user or programmer. However, Kernighan
and Pike point out that short names should be used for local variables whereas
descriptive names should be used for global ones (ibid.).

Terseness is beneficial especially for a text-based representation intended for
data input. The less keystrokes, the faster the encoding process. However, terse
representations become easily – but not necessarily – more cryptic than verbose
ones do. Obviously, non-cryptic representations are easier to understand and to
process manually than are cryptic ones.

Structural isomorphism means that the signifiers are structurally organized
similarly to the signifieds in the system to be represented. For example, a struc-
turally isomorphic computer representation of music notation would somehow
maintain the two-dimensional graphical structure of music notation. In context-
free representations signifiers are self-contained and independent of other signi-
fiers.

A representation is idiomatic if it takes advantage of practical features, “idi-
oms”, provided by computing environments. One such feature is the ASCII

Music Notation as Objects

32

character set. Another is the principle in which computer memory is physically
organized as 8 bit bytes and other power-of-two quantities.

According to Huron, a representation is a result of interpretation. A represen-
tation is explicit when signifieds are mapped to signifiers so that they form a cor-
rect and sufficient interpretation of the target system for a particular application
or purpose. For example, a different kind of explicit mapping may be needed in
a representation intended for music printing purposes than for music analysis.
According to Huron, it is important that the signifiers are well-suited (i.e., pro-
vide a correct interpretation) to the application for which they are used (Huron
1992: 31-34).

A representation is optional, if it allows the user to omit those attributes that
are unnecessary for a particular task. For example, a user might want to omit
pitch when encoding only a rhythmic structure. An extendable representation is
not restricted to the set of signifiers defined by the designer of the representa-
tion.

It may be difficult for a music representation to meet all of the above require-
ments. For example, to be both terse and non-cryptic, may be impossible unless
it is for a fairly simple or restricted target system. Further, if a representation is
too idiomatic, then expressiveness, extensibility or even storage capability may
suffer. Many binary formats, for instance, use a fixed number of bits for storing
data lengths or other information about amounts. For example, the RIFF file for-
mat, which is used for many music and video applications, uses 32-bit data-
length fields, which limits the storage capacity of RIFF to 4 gigabytes. This
makes a single RIFF incapable of storing lengthy, high-resolution video or
multi-track audio recordings.

Huron´s requirements provide a usable set of features for characterizing and
assessing music representations. Still, some additional criteria and complemen-
tary remarks can be brought forward.

First of all, a representation should be complete (i.e., provide a signifier for
every signified). This completeness may be difficult, if not impossible, to
achieve in a dynamic target system. This situation emphasizes the importance of
extensibility. Extensibility addresses the issue of completeness indirectly. To be
usable, however, a representation should be complete enough to serve the pur-
pose for which it is intended. An overly restricted initial set of signifiers may
result in the use of terse or idiomatic signifiers that will later lead to inconsisten-
cies when more signifiers must be added.

As mentioned by Huron, a central issue in representation is mapping
between signifiers and signifieds. In general, four different types of mapping can
be defined: (1) one-to-one, (2) one-to-many, (3) many-to-one, and (4) many-to-
many. In one-to-one mapping, there is always exactly one signifier for each sig-

Computer-based musical data representation systems

33

nified and vice versa. In one-to-many type mapping, a signifier is mapped to a
group of signifieds. In many-to-one mapping, in turn, a group of signifiers is
mapped to a single signifier. In many-to-many mapping the mapping is done
between a group of signifiers and a group of signifieds. Of these, one-to-one
mapping is the most explicit and unambiguous. One-to-one mapping also makes
reverse mapping easier to achieve.

3.3 Music notation as a representation

The signifiers in music notation are graphical symbols, but what are their respec-
tive signifieds? If notation is regarded as a “visual analogue of sound” (see
Grove 1980), then the signifieds can be regarded as sound events. To achieve a
sound event from a note, an interpretation process is needed, wherein informa-
tion other than the note symbol itself also have an effect on the produced sound
event. Therefore, music notation is symbolic, rather than iconic, in respect to
sound.

Although Huron´s requirements were intended for describing computer rep-
resentation, they also can be used for “analogue” representations such as music
notation. At least the following characterizations can be made of music notation
as a representation.

In music notation, many signifiers (notes in particular) are unique only
within a specific context. Thus music notation is highly context-dependent. For
example, a dot may be interpreted as an augmentation dot, as part of a repeat
sign, or as a staccato symbol, depending on context. Music notation contains
both pictorially and literally mnemonic signifiers. Tempo and dynamic markings
are examples of literally mnemonic signifiers. Pitch and time are represented
roughly and pictorially with a two dimensional coordinate system, where the
vertical axis represents pitch and the horizontal axis represents time. Thus,
music notation is also structurally isomorphic in respect to time and pitch.

Music notation is reversible. A musical score may be created by transcribing
a musical performance. However, for trained musicians, music is generally eas-
ier to read than to write. Music notation is terse. This can be seen from computer
representations of music notation, which show the large amount of information
embedded in the individual signifiers of music notation.

Music notation is both cryptic and partly inconsistent. Its signifieds are hard
to understand without prior musical education. Among the inconsistencies are
ways of representing durations of notes as a combination of several different
symbols, which include noteheads, stems, flags, beams, and augmentation dots.
Among the benefits of music notation are that it is both extendable and optional.

Music Notation as Objects

34

It is also explicit enough for many applications. One proof of this assertion is the
large corpus of works of Western art music stored by means of such notation.

Computer representation of music notation can be regarded as “representa-
tion of representation” or meta-representation. Depending on the degree of
uniqueness and explicitness of the particular computer representation, many
aspects of music notation apply to the respective computer representation as
well. Therefore, it is difficult, if not impossible, to design a computer representa-
tion of music notation that meets all of Huron’s requirements. For example, if a
computer representation is explicit and unique, can it be context-free at the same
time? After all, music notation itself is not context-free. However, if uniqueness
and explicitness are sacrificed, a context-free representation can be developed.

3.4 Digital audio signals

A digital audio signal is a technically simple way of storing music. A common
technique for representing an audio signal is pulse code modulation (PCM). In a
PCM encoding process, an analogue audio signal resulting, say, from a recorded
musical performance, is sampled at a constant rate. Each sample represents an
amount of air pressure, or a respective level of electronic voltage, at a specific
point in time. Resolution, and thus audio signal quality, may be altered by a
change of the sampling rate or of the amount of bits reserved for each sample.

A PCM signal does not interpret the content of the signal. It may originate
from any kind of sound source, such as a solo musical instrument, a complete
orchestra, speech, sounds of animals, or noise. Even inaudible signals, or static
air pressure, can be encoded in PCM format. A PCM signal can therefore be
described as non-symbolic in respect to musical content.

Methods of technically more advanced audio signal encoding have been
developed for network transmission purposes, in order to reduce the amount of
data relative to the amount of transmitted information content. For example, the
MPEG-1 Audio Layer 3 format (MP3) uses spectrum analysis methods and psy-
choacoustic modeling to enable data compression by reducing inaudible compo-
nents emitted from an audio signal (Fraunhofer 2004a). MP3 and similar
techniques can be used to optimize transmission of acoustic signals. However,
their encoding techniques are based on the physical behavior of hearing, not on
the source or origin of the sound signal.

An alternative approach is offered by the Structured Audio encoding format
of the MPEG-4 system (Fraunhofer 2004b; Lazzaro & Wawrzynek 2004). Struc-
tured Audio (MPEG-4 SA) is based on a virtual sound synthesis engine, which
is controlled by a score or by MIDI data. An MPEG-4 SA document decoder
produces an audio signal, but the content of an SA document is represented on a

Computer-based musical data representation systems

35

symbolic level. The operational principle MPEG-4 SA is derived from sound
synthesis languages used in computer music. The Music V program, described
in the next section, can serve as an example of a synthesis language.

Many music notation programs offer some form of sound output, which may
be at some stage converted into a digital audio signal. Few notation programs
contain a sound synthesis engine for directly producing an audio signal. Instead,
many programs can produce symbolic performance information, such as MIDI
data, that can be used to drive an external hardware synthesizer or a synthesis
program.

3.5 The Music V sound synthesis language

Through its data representation system, Music V (Mathews 1969) enables the
user to construct synthetic instruments and supply them with a score that
describes a detailed musical performance. The representation of Music V is a
specialized programming language which provides instructions for synthesizing
sound.

Music V instruments are constructed by the combining of unit generators,
which can be regarded as software equivalents of analog synthesizer modules.
Each unit generator performs a primitive signal generation or modification task.
Among available unit generators are an oscillator, a set of filters, a random noise
generator, and an envelope generator. For example, oscillators may be combined
to modulate each other’s frequency or output amplitude. Moreover, the output of
several oscillators may be mixed to create complex sounds. In the Music V rep-
resentation, each instrument is given a unique identification number so that it
can be referred to during a performance. In principle, Music V imposes no limits
on either the amount of unit generators per instrument or the number of instru-
ments in an orchestra.

The musical performance is controlled by a set of timed events called notes.
Each note consists of timing information (such as the onset time and duration of
the note) and parameter data specific to the individual instruments. The use of
nearly all of the note’s parameters must be explicitly defined by the instrument.

Music V stores its data in a set of records. Each record is written on a single
line of text and is divided into a set of fields, which are ordered from left to right.
There, the first field represents the record type (also called an “operation code”).
Individual types are reserved for each unit generator and for note events. The
interpretation of other fields depends on the record type and/or instrument.

In note events the record type is “NOT”. The second field contains the num-
ber of the instrument that plays the note. The third field contains the start time,
in beats, of the note and the fourth field contains the duration of the note. The

Music Notation as Objects

36

rest of the fields may contain values for various synthesis parameters depending
on the instrument’s construction. An arbitrary amount of notes of any duration
can be played simultaneously.

Typically, a note event contains parameters to specify pitch and amplitude
specifically. Also, parameters might be added for controlling tone, vibrato rate
and depth, and so forth.

Below is a sample program written for Music V. These programs are called
scores in Music V terminology (Mathews 1969: 44). A Music V score consists
of two parts: instrument definitions that comprise an orchestra and a set of notes
to be played by the instruments.

INS 0 1 ;
OSC P5 P6 B2 F1 P30 ;
OUT B2 B1 ;
END ;
GEN 0.00 1 1 1 ;
NOT 0.00 1 1.00 1000 3.03 ;
NOT 1.00 1 1.00 1000 3.82 ;
NOT 2.00 1 1.00 1000 5.54 ;
NOT 3.00 1 3.00 1000 3.03 ;
TER 6.00 ;

In Music V scores, each record contains a data statement. A record is terminated
by a semicolon. Records consist of fields that are separated by spaces. Fields are
ordered from left to right and can be referred to by a numeric identifier. For
example, the leftmost field’s identifier is P1, the next field’s identifier is P2 etc.
Field P1 contains an operation code and other fields contain parameters for the
data statement.

The first four records form a definition for instrument number 1. The INS
operation code begins an instrument definition. P2 of the INS statement speci-
fies the time at which the statement is executed. P3 specifies a numeric identifier
for the instrument. In the example, the instrument definition starts at time 0 (i.e.,
immediately at the start of the performance). The instrument is given 1 as its ID
number. The OSC record defines an oscillator that will be used as a sound gener-
ator. The parameters of the OSC statement are amplitude, pitch, output, wave-
form function, and sum, respectively. In the example, amplitude and pitch values
are controlled by, respectively, the P5 and P6 fields of note records. In other
words, each note specifies its own amplitude and pitch.

The oscillator output is copied to a memory block named B2. The oscillator
waveform function is F1, which is defined in the GEN record on the fifth line.
P30 is used as a temporary storage space for the oscillator. The OUT record on

Computer-based musical data representation systems

37

line 3 is used for connecting the oscillator output signal, stored in B2, to a main
signal output memory block B1. The END record terminates the instrument def-
inition. The GEN record defines a waveform function as one period of a sine
wave.

In Music V oscillators, pitch is specified by a coefficient that determines a
fundamental frequency. The frequency can be calculated as: f0 = (fs * p) / N(F),
where f0 is the fundamental frequency in Hertz, fs is the sampling rate of the
resulting audio signal, p is the pitch coefficient and N(F) is a memory “block
size”, i.e., the amount of samples reserved for storing wavetable functions
(Mathews 1969: 127). In the example, a sampling rate (fs) of 44100 and a block
size of 512 are assumed. Setting p to 3.03 would yield a frequency of 260.98 Hz,
which is close (with a small round-off error) to a middle C in an equally tem-
pered scale with tuning reference level of A = 440 Hz. Adding more decimals to
p would yield a more precise definition of pitch.

The NOT records in the score will play four consecutive tones on the instru-
ment 1. A respective score in music notation is shown in figure 3-1.The TER
record terminates the score at beat 6.00.

Semantically, a note in Music V is equivalent to a sound event. Each note has
an explicitly defined onset time and duration. The only external variables that
affect a note are the digital audio signal’s sampling rate, the memory block size
and performance tempo. If and how the sound event is audible is determined by
the instrument definition. All parameters in instruments are explicitly defined
and deterministic except when a random function (Mathews 1969: 128-129) is
used to produce sound or to control a parameter of an instrument. Music V does
not include a signifier for a “rest”. A rest is produced implicitly by not defining a
note for a desired length of time.

The Music V score is a symbolic representation although it provides fairly
explicit definition of sound events through notes and instrument definitions. For

Figure 3-1: An example score

Music Notation as Objects

38

example, Music V scores do not contain detailed descriptions of the sound syn-
thesis algorithms needed when the score is translated into a sound file. There-
fore, it is possible, that different implementations of Music V-compatible
synthesis programs might produce slightly different-sounding translations of the
same score.

The influence of Music V and its predecessors is demonstrated by the large
amount of other unit-generator-based synthesis languages. Roads, for example,
lists 20 synthesis languages, including Mathews’ Music III, IV and V (Roads
1996: 789-790). A modern and widely used member of this family is Csound by
Barry Vercoe (Boulanger 2000).

3.6 MIDI and MIDI Files

MIDI (Musical Instrument Digital Interface) was designed in the early 1980’s as
a means of controlling music synthesizers and other electronic keyboards. The
original MIDI 1.0 specification (MIDI 1985 [1983]: 114-126) contained defini-
tions for both a hardware interface and a data format. The data format consists of
MIDI messages that are transmitted between instruments or other devices
equipped with MIDI hardware interfaces. Later versions of the specification
have included extensions to the data format and a file format for storing MIDI
data.

Two central MIDI messages for controlling musical instruments are called
Note On and Note Off. Both messages contain three parameters: a MIDI chan-
nel, a key number, and a key-stroke velocity value. The key number, an integer
between 0 and 127, specifies a key on a chromatic piano keyboard. MIDI thus
allows the use of a 128-key keyboard, at the maximum. The key number 60 is
specified as “middle C”. No means of explicit definition of pitch was given in
the 1983 specification. In later revisions, a way of defining different tuning sys-
tems was included.

A MIDI Note On event consists of three bytes: one Status Byte and two Data
Bytes. As an example, let us say a Note On event contains the decimal values
144, 60, and 64. There, the first value (144; i.e., the status byte) specifies the
MIDI message type and, in the case of a Note On event, also the MIDI channel.
Status byte values of 144 through 151 are reserved for Note On on channels 1
through 16, respectively. In the example message, the data byte values 60 and 64
specify the key number and velocity, respectively. A MIDI channel, ranging
from 1 to 16, is encoded in the status byte.

An example Note Off message contains the decimal values 128, 60, and 64.
There, 128 is a Status byte specifying a Note Off for MIDI channel 1. (Status
bytes 128 through 143 are reserved for Note Off on channels 1 though 16,

Computer-based musical data representation systems

39

respectively.) The values 60 and 64 specify, respectively, the key number and a
Note Off velocity (the speed at which the key is released).

MIDI was originally a real-time system. That is, MIDI messages were
intended to be transmitted and performed instantly. In later revisions of the spec-
ification, a file format, Standard MIDI Files, was included for attaching timing
information to events. Still, the MIDI communication protocol itself remains
mostly real-time.

Besides event timing, MIDI Files enables the storage of logical information
that is not part of the MIDI protocol itself. Examples of these include time sig-
nature and lyrics. Still, as pointed out by Hewlett and Selfridge-Field (1997: 68)
as well as Haken and Lippold (1993: 43), MIDI or MIDI Files offers insufficient
detail to be used as a music notation representation. Extensions have been pro-
posed for including notation information in MIDI (e.g., Nordli 1997; Cooper et
al. 1997). These extensions have, however, not been included in the official
MIDI specification.

MIDI is a terse representation. This is an important requirement, because
events are transmitted in real time between devices, and there should not be a
noticeable delay in the reaction time of a receiving instrument to the messages
sent by a MIDI keyboard or other controller.

In the MIDI protocol, all data is encoded in groups of 8-bit bytes, where one
bit is reserved for indication of status or data byte. The remaining 7 bits are left
for storing the actual data. This leads to difficulties, when large data entities
have to be folded into 7 bit chunks. MIDI does not even specify a generic way of
encoding and decoding typical 16 bit, 32 bit, or 64 bit computer data types.
Therefore, each application or extension of MIDI, must specify its own way of
solving this common problem.

3.7 MusicKit

MusicKit (Boynton & Jaffe 1991) is an object-oriented software system origi-
nally distributed as part of the system software of NeXT computer workstations.
Music Kit contains an application programming interface (abbr. API) with
classes for sound synthesis as well as for processing and storing musical events.
MusicKit also included a text-based scoring language, which is a mixture of
techniques used in MIDI and synthesis languages. In the NeXT system software,
a separate class system, called SoundKit was provided for audio signal storage
and editing.

Syntactically, the MusicKit score language resembles a modern statement
and expression -based programming language, such as C or Pascal. This is a
departure from the record/field-type syntax of Music V and many other synthe-

Music Notation as Objects

40

sis languages. Semantically, MusicKit borrows features from both synthesis lan-
guages and MIDI.

In MusicKit, Note is semantically equivalent to a sound event. Onset times
and durations of sound events are determined by “noteOn” and “noteOff”
events, or alternatively by “noteDuration” events which are encoded in a timed
event stream. Pitch may be specified either as a MIDI key number or as a funda-
mental frequency value. The score may be used to control both external MIDI
instruments and the computer’s internal sound synthesis engine.

Below, an example of a MusicKit score is presented. The first line contains
comment, preceded by a “//” delimiter. The rest of the score consists of state-
ments. A statement ends with a semicolon character (;) and may be written on
one or more lines. The first statement in the sample score specifies a perfor-
mance tempo in beats per minute. The next statement defines a named “part”,
p1. The part is given an instrument in the next statement. There, the expression
synthPatch:”midi” specifies, that a MIDI instrument is used to perform
the part.

The BEGIN statement marks the start of a stream of timed events which
ends with an END statement. The event stream contains a noteOn statement and
a noteOff statement. The noteOn statement is preceded with a timing statement
“t 0” that sets the time of the performance to 0 beats. This means that all suc-
ceeding events until the next timing statement are performed at beat 0. The
noteOn event belongs to the previously defined part p1. In the parenthesis fol-
lowing the noteOn expression, is a numeric identifier for the note. Each note
may be given a unique identifier so that the note may be referred to in other
events. In the noteOn event, pitch is specified with the expression
keyNum:60 as a MIDI note number. Velocity is specified as a MIDI value
with the expression velocity:64.

With the timing statement “t +1” time is advanced by one beat (i.e. 1/60th
of a second as defined by the preceding tempo setting). Next, a noteOff event for
the note ID 1 is given. Unlike in MIDI, a key number does not have to be speci-
fied since the note already has a unique identifier.

Computer-based musical data representation systems

41

// A sample MusicKit score

info tempo:60;

part p1;

p1 synthPatch:”midi”;
BEGIN;
t 0;
p1 (noteOn 1) keyNum:60 velocity:64;
t +1;
p1 (noteOff 1);
END;

A MusicKit note is an extension of the MIDI Note concept. As one important
extension, MusicKit supports uniquely identifiable notes. This enables one to
change parameters of a note in between noteOn and noteOff events. For this pur-
pose MusicKit includes a specialized event type called noteUpdate. MusicKit
allows the specification of pitch or related information in alternative ways. One
way, a key number, is used in the above example. Other alternatives are funda-
mental frequency and key name. A key name allows one to specify a name on a
note (c, d, e, etc.) and an octave range. For example, the key name c4 is equiva-
lent to MIDI key 60. Unlike with MIDI key numbers, key names enable explicit
definition of enharmonic variants. For example, the key name cs4 (c sharp, 4th
octave) is logically different from df4 (d flat, 4th octave). When used to control a
MIDI instrument both are interpreted as key number 61, but if the representation
is translated into music notation, the enharmonic distinction can be preserved.
Still, a MusicKit score does not provide sufficient information to be used as a
translation format or input language for music notation programs. Among the
lacking parameters are key and time signature, lyrics, and stem direction.

MusicKit is more literal than MIDI and, on the other hand, less terse. Music-
Kit is also somewhat cryptic and idiomatic in respect to the synthesis algorithms
available in the NeXT workstations. These features become apparent in scores
that are more complex than the above example and which use the internal syn-
thesis algorithms instead of, or in addition to, MIDI control of external instru-
ments.

3.8 The SCORE music notation program

SCORE, designed by Leland Smith (SCORE 1992a, 1992b, Smith 1997), is an
exceptionally well-documented commercial notation program, especially con-

Music Notation as Objects

42

cerning the contents of internal data structures and operational logic. The
SCORE system is implemented for IBM PC compatible computers running the
MS-DOS operating system. SCORE is based on an earlier program for main-
frame computers, called MSS (Smith 1972). Hereafter, SCORE, written in all
capital letters, refers to the SCORE program as a distinction from the general
musical term “score” or from a class “Score” (with an initial capital letter) as
described in Chapter 7.

As its data representation system, SCORE uses a database approach similar
to that of Music V. Whereas the database of Music V consists of sound synthesis
parameters, SCORE’s database consists of music notation parameters.

SCORE is written in the FORTRAN programming language. The limited
data structure capabilities of early FORTRAN languages are reflected in
SCORE’s data representation and behavior. Due to the lack of user-definable
data structures in FORTRAN 66 and 77, SCORE stores most of its data in arrays
of floating point numbers. Text strings are stored separately from the floating
point arrays. Parameters are accessed through their position (i.e., index) in an
array. As in Music V, parameter fields are named P1, P2, etc. according to their
index number.

As in Music V, SCORE’s data representation system can be described as a
simple database where data is stored in records, with each containing a set of
fields. In a record, the first field, named P1, is a “code” number. Individual code
numbers are given to notes, rests, clefs, staves, time and key signatures, etc.
Some closely related symbols are given a shared code. For example, slurs, ties,
tuplet brackets and endings share a common code number. The second, third and
fourth fields are common to all record types. The second field, named P2, is the
number of the staff associated with the symbol. Fields P3 and P4 contain the
horizontal and vertical coordinates of the symbol, usually relative to the associ-
ated staff’s location on the score. Other fields contain parameters specific to the
type of record.

SCORE supports a text-based input language for entering notation from the
computer terminal or from a file. The graphical layout may be adjusted manually
by editing the numeric values of the record-based data storage format. SCORE
also has a set of commands for automatically adjusting the spacing of notes,
height of stems, length of beams etc.

Internally, each SCORE record is stored in an array of floating point num-
bers. Even the record types are internally stored as numbers. Lyrics and other
text symbols are an exception to this principle.

Below is a representation for the note example presented in Figure 3-1 as a
SCORE Parameter List File (SCORE 1992b: 225). Each SCORE symbol is
printed on a separate line. Above the parameter list is a line that lists names of

Computer-based musical data representation systems

43

the parameter fields from P1 to P9. The symbol code number is stored in P1 fol-
lowed by a staff number, horizontal and vertical (if needed) coordinates, in P2,
P3, and P4, respectively. Coordinates are expressed in staff steps and are relative
to the position and size of the staff that the symbols are printed on. Coordinates
may use the decimal part of the floating point number to reach higher resolution
than that of a staff step. Fields P5 through P9 contain parameters specific to the
individual code numbers.

P1 P2 P3 P4 P5 P6 P7 p8 P9

8. 1.0 .000 .00 .00 70.00
3. 1.0 1.500
18. 1.0 8.999 .00 3.00 4.00
1. 1.0 16.499 1.00 10.00 .00 1.0000
1. 1.0 26.678 3.00 10.00 .00 1.0000
1. 1.0 36.857 5.00 10.00 .00 1.0000
14. 1.0 47.456 1.00
1. 1.0 50.788 1.00 10.00 1.00 3.0000 .00 10.00
14. 1.0 70.000 1.00

The example contains dedicated records for one staff (code 8), a clef (code 3), a
time signature (code 18), four notes (code 1), and two barlines (code 14).
SCORE’s coordinates are expressed in staff steps.

In SCORE parameter list files, parameter field values are printed for each
code, up to the last field having a nonzero value. Zero values are printed as
“.00”.

Below is a list of the code numbers used in SCORE version 3. The code
numbers range from 1 to 18 with the exception of number 13 which is not used
in SCORE version 3. Leland Smith marked code number 13 as “reserved”
(Smith 1997: 257).

Music Notation as Objects

44

1. Notes
2. Rests
3. Clefs
4. Lines and hairpins
5. Slurs, ties, tuplet brackets, and endings
6. Beams and tremolandi
7. Trills, ottavas, and pedal marks
8. Staves
9. Symbol library
10. Numbers (rehearsal letters)
11. User symbol library
12. Special shapes
13. (“reserved”)
14. Barlines, braces, and brackets
15. Importing postscript programs
16. Text
17. Key signature
18. Time signature

Note items have 17 parameter fields, or 13 in addition to fields P1 through P4,
which have similar meaning in all codes. Fields P5 through P17 are used for
specifying values for parameters such as stem direction, type of accidental and
displacement (P5), note head type (P6), rhythmic duration of a note (P7), stem
length (P8), number of augmentation dots and flags (P9), etc. In the above exam-
ple, the P5 value of “10.” means “Up stem/No accidental” (SCORE 1992b: 9).
P6 of 1.000 (in the first three notes) means rhythmic duration of a quarter note
and 3.000 (in the last note) means three times the duration of a quarter note (i.e.,
the duration of a dotted half note). The P8 value “.00” in the last note means
“Normal stem length” (ibid: 15) and the P9 value “10.” means “Single dotted
note”.

Rest records have 15 parameter fields. Clefs have 7 parameter fields. In the
latter, for example, P5 is used to specify a clef type from nine different choices.
In the example, the P5 value 0 indicates a treble clef.

The graphical approach of SCORE has advantages and disadvantages. For
example, SCORE permits the moving or reshaping of most symbols indepen-
dently of each other. Any individual note head may be resized or moved with
great precision both horizontally and vertically. Changing the position or size of
one symbol does not move or resize the other symbols in the score unless a spe-
cific formatting command is entered by the user. On the other hand, the level of

Computer-based musical data representation systems

45

automation is low – even most features stated in the SCORE manual as “auto-
matic” must be executed manually by entering a dedicated command.

In SCORE, a note is equivalent to a graphical note symbol including a note
head, a stem, augmentation dots, and various modifiers including accidentals
and articulations. As a representation, SCORE is explicit in respect to graphical
aspects of music engraving. All symbols in SCORE are explicitly positioned on
a two-dimensional coordinate system. Logical and performance data is repre-
sented either implicitly by graphical symbols or stored as parameters of graphi-
cal symbols.

Many editing operations, however, leave the score in a graphically distorted
state. For instance, stems may, as a result of a transposition operation, become
separated from their respective note heads. During an engraving process, the
score must be occasionally fixed with manually typed commands that check the
relationships between musical symbols and adjust the layout accordingly. Nev-
ertheless, SCORE has a rich set of features and is suitable for professional-qual-
ity music engraving. It has thus been used by many music publishers (Smith
1997: 252). In particular, SCORE’s record-based internal structure is thoroughly
documented, which makes it a suitable subject for study.

SCORE is partly inconsistent. Many complex or rarely needed layout situa-
tions are encoded differently from simple or commonly used ones. This is partly
due to the long development process from MSS through several versions of
SCORE itself. SCORE’s inconsistencies are also partly caused by the primitive
data structure capabilities of the FORTRAN programming language.

3.9 Lime and Tilia

Tilia is a data structure system used in the Lime notation program (Haken &
Blostein 1993). Unlike SCORE, Tilia allows records to contain arbitrarily typed
data, including types other than just floating point numbers. Tilia stores graphi-
cal, logical, and performance information in its data structures. Tilia is, however,
mainly logically-oriented: both detailed graphical information and performance
data (i.e., MIDI data) is mostly generated automatically by the Lime program.

Tilia is based on linked lists. The elements of the lists are called nodes. The
size of each node is 32 bytes (256 bits) divided into fields of various sizes. In
each node, the first two fields, 32 bits each, are reserved for pointers to the next
and previous node in the list. The remaining 24 bytes are used for storing the
type (called “kind” in Tilia’s terminology) of the node and a set of type-specific

Music Notation as Objects

46

parameters. A “note” node has a set of parameters different from, for example, a
“text” node.

Musical data organization in Tilia is based on voices. In Tilia, each voice is
stored in its own list. Each list starts with a “Voice Info” node containing a
numeric identifier for the voice. The Voice Info node is followed by a “PRINT”
node indicating a staff ID number. Tilia allows more than one voice to be dis-
played on the same staff.

Note nodes represent both notes and rests. A “rest” field determines if a note
node represents a note or a rest symbol. Pitch is represented as both a playback
pitch and a notated pitch. Playback pitch is coded with a combination of a MIDI
key number and a fractional pitch value that even enable microtonal resolution if
needed. Notated pitch is coded as a combination of a numeric value indicating a
note name (C, D, E, etc.), an octave range, and a parameter for specifying the
amount and type of accidentals attached to the note.

Lime is able to compute a playback pitch from a notated pitch. Detailed
graphical information, such as coordinates for adjusting the placement of note
symbols, are not stored in note nodes. Duration is also divided, by dedicated
fields, into playback and notated duration. An “end chord” field is used to spec-
ify whether the next note in the list belong to the same chord (Haken & Blostein
1993: 46-50).

Nodes such as “smove”, “cmove”, “space”, and “zone” are used for specify-
ing various graphical layout adjustments. Smove controls vertical placement of a
staff. Cmove, space, and zone control horizontal placement of notes.

Tilia provides dedicated nodes for clefs, key signatures, barlines, beaming,
etc. During a music formatting process, Lime inserts temporary “data” nodes to
store parameter settings (ibid: 55-56). Tilia, as well, supports links between
nodes belonging to different lists.

3.10 The Music preprocessor

Music by Eric Foxley (1988) is a text-based music notation language. Foxley’s
Music was designed as a preprocessor for the UNIX troff typesetting program
(Kernighan et. al. 1987) and follows the principles of other troff preprocessors
such as eqn and pic. Music provides means for writing music notation with com-
pact text expressions. Default settings are for commonly-used notation situa-
tions so that they do not have to be coded explicitly. This reduces the amount of
text needed.

Computer-based musical data representation systems

47

Below is version of the note example of figure 3-1 as a Music program:

.MS
timesig = 3 4;
key = c;
bars = 2.
c e g | c>. |
.ME

The program is embedded in a troff document where it is surrounded by
“.MS” and “.ME” statements. A typical Music program consists of a header and
a score. The header contains settings for variables for the piece of music such as
a time signature, a key signature, and the amount of bars in the score. The header
is terminated by a full stop character. The example score contains three quarter
notes c, e, g, and a dotted half note c in the default octave starting at middle c.
The octave range can be changed by changing the value of the “octave” variable.
An octave range may be specified for individual notes by appending upward or
downward arrow characters to the note name (e.g “c↑”, “c↑↑” etc.) to trans-
pose the note by one or more octaves up or down from the default octave. Note
length is specified as the denominator value of the time signature and may be
changed for individual notes by appending < (one value shorter) or > (one value
longer) characters to the note name. To print a dotted note, a dot is appended to
the note name. In the example, the default note length is quarter note.

In Music, note is semantically equivalent to a music notation symbol that
consists of a note head and an optional stem. Note names are written explicitly
for each note. Octave range and note length depend on modifications made to
preceding notes, and on preceding time signature and variable settings.

Other text-based notation languages include DARMS (Selfridge-Field
1997a), GUIDO (Renz 2000), and CMN (Schottstaedt 1997). DARMS is an
early music representation which has several dialects developed for specialized
uses. GUIDO is a logically-oriented data input language for the GUIDO Nota-
tion Engine software implemented in C++ and Java. CMN (abbreviated from
common music notation) is a notation language written in Common Lisp Object
System (abbr. CLOS) (Steele 1990). CMN’s representation is a logically-ori-
ented notation language following the syntax of LISP. (Schottstaedt 1997.)

3.11 NIFF: Notation Interchange File Format

A committee was founded in the early 1990’s by a group of researchers and
music notation software developers to develop an interchange file format for

Music Notation as Objects

48

music notation data. The format was named Notation Interchange File Format
(Grande 1997), abbreviated as NIFF or sometimes NIF. NIFF was intended to be
used for data exchange between software from different manufacturers. One of
the potential uses for NIFF was to enable the development of applications spe-
cialized for a limited task, such as recognition of printed or hand-written scores.
Such applications could, by supporting NIFF as a data export format, omit
music editing or printing functionality.

Although NIFF is a partly graphically-oriented representation, NIFF regards
the logical component of music notation as the most important component to be
preserved in data transmission. In NIFF-based data transmission, graphical posi-
tioning details can be left to be calculated automatically by the receiving pro-
gram.

The NIFF file format is based on the Resource Interchange File Format
(RIFF), a binary file format designed by Microsoft and IBM. Other applications
of RIFF include Microsoft’s WAVE audio file format and the AVI video file for-
mat. In RIFF, data is organized as “chunks”. Each chunk consists of a four byte
identifier, a 32-bit integer size field, and an arbitrary amount of data. The size
field specifies the chunk size in bytes. A chunk may contain other chunks as its
parts, thus allowing the construction of hierarchical structures. Another structure
is a LIST of consecutive chunks (Microsoft 1991).

NIFF uses RIFF chunks for storing various structures related to music nota-
tion. Individual types of chunks are specified for constructs such as Score, Part,
Voice, System, Staff, and Time-Slice. A Score may contain several instrument
Parts, which may contain an arbitrary amount of Voices. Parts are printed on
Staves, which are grouped into Systems. Time-Slice is used to group notes that
appear on a specific point in time within the score (Grande 1997: 494-495).

NIFF specifies also distinct chunk types for various music notation symbols.
These include rest, barline, key signature, time signature etc. Notes are com-
prised of separate stem and notehead chunks. A stem may be followed by one or
several noteheads which form a chord. Also, a stem with no noteheads is
allowed.

In NIFF, a Note’s placement is expressed by its vertical position on staff
expressed in staff steps. This approach is similar to SCORE. The pitch or name
(and octave) of the note is therefore dependent on previous symbols. Note length
(“logical duration”) is defined with a numerator/denominator pair (i.e. 1/8 for an
eight note).

Below is an example of a simplified NIFF representation converted to text
pseudo-code in a manner similar to Cindy Grande’s examples (Grande 1997).
NIFF and generic RIFF constructs that are not crucial in demonstrating NIFF’s
fundamental syntactic and semantic principles were omitted from the example.

Computer-based musical data representation systems

49

Each chunk is written on a separate line. On each line, a chunk type is followed
by the chunk’s parameters and values separated by commas.

Staff-header, number of staff lines=5
Clef, shape=G clef, staff step=2
Time-signature, top number=3, bottom number=4
Time-slice, type=event, start time=0/4
Stem
Head, shape=filled, staff step=-2, duration=1/4
Time-slice, type=event, start time=1/4
Stem
Head, shape=filled, staff step=0, duration=1/4
Time-slice, type=event, start-time=2/4
Stem
Head, shape=filled, staff step=2, duration=1/4
Barline, type=thin line
Time-slice, type=event, start time=4/4
Stem
Head, shape=filled, staff step=-2, duration=3/4
Augmentation-dot
Barline, type=thin line

In NIFF, each staff is stored in a RIFF LIST. A Staff Header chunk starts the
LIST and is followed by other chunks as shown in the example. As the example
shows, NIFF encodes both logical and graphical information. Representation of
pitch is graphically-oriented, and duration is specified as a mixture of logical
and graphical information.

3.12 Music notation markup languages

The Standard Music Description Language project (Sloan 1997), abbreviated as
SMDL, was an ambitious standardization effort in the field of musical data rep-
resentation. Based on the standard of SGML (Standard General Markup Lan-
guage), SMDL is a text-based representation aimed at encoding virtually any
kind of musical document.

As already described in the previous chapter, SMDL specifies several
“domains” for categorizing musical information. The central or primary domain
in SMDL is called Cantus. It describes a core of the musical work excluding

Music Notation as Objects

50

graphical symbols or improvisation. The other domains may use Cantus as a
basis and include only the differences (such as timing differences) from Cantus.

Other domains in SMDL are called gestural, analytical, and visual. The ges-
tural domain is intended for representing a performance of a musical work. The
analytic domain is intended for representing an analysis of and commentary on a
musical work. The visual domain is intended for encoding various graphical
notations or displays of a work. These secondary domains can be regarded as
derivatives or interpretations of Cantus. An SMDL document may include sev-
eral different performances, analyses, or notations of the same Cantus (Sloan
1997: 470-472).

In SMDL, a note is represented by pitch and duration. Both of these so-
called elements may be represented in several alternative ways. Pitch may be
represented, for example, as a frequency, or as a named note within an octave.
Duration may be represented, for example, in real time (e.g., in minutes or sec-
onds) or in virtual time (e.g., in fragments of a beat). Other SMDL basic ele-
ments include articulation and ornamentation, dynamics, and timbre. SMDL
allows notes to be organized into threads (voices) where each thread may have a
different timbre (Sloan 1997: 472-473).

The Extensible Markup Language (XML) is a meta-language for creating
markup-type documents (Eckstein 1999). Syntactically XML is similar to
SGML. XML documents are conventionally text-based, although XML supports
inclusion of binary data under certain conditions. XML allows the definition of a
syntax for practically any type of content, including literature, hypertext, data-
bases, graphics, multimedia, and music.

XML documents are organized as elements that may contain data or refer-
ences to external documents. Each XML element is surrounded by a “tag” and
“end tag” -pair. A group of tagged elements may be in turn surrounded by a col-
lective tag pair. Nested tags form a hierarchical element structure with a single
document-level tag on the top level of the hierarchy. Tags may also refer to other
documents, making XML suitable for hypertext-like applications. Since XML
documents are, by convention, text-based, they may be created and modified
with a general-purpose text editor.

There are several published XML applications for representation of music
notation including NIFFML (Castan 2001), MDL (Roland 2001), and
MusicXML (Good 2001). NIFFML is an XML implementation of NIFF.
NIFFML enables the writing and display of NIFF documents as text.

Both MDL and MusicXML were designed for data interchange between
music applications. MusicXML is a logically-oriented representation. There,
music may be organized in two, alternatively structural ways: “part-wise” or
“time-wise”. In part-wise organization, notes are stored within “parts”. Time-

Computer-based musical data representation systems

51

wise organization is based on “measures”. “Note” tags enclose subtags; for
example, pitch (expressed as “step” and “octave”), duration type (whole-, half-,
quarter-, eighth-note, etc.), dots, stem direction, and lyrics. MusicXML is not
designed for representation of detailed graphical layout (Good 2001). MDL is
intended as an interchange format for “music notation, performance, analysis,
and information retrieval applications” (Roland 2001: 126). For example, MDL
supports representation of musical structures.

3.13 Object-based music representations

Object-based representations use objects as the principal organizational con-
structs. Objects may contain arbitrarily-typed data as well as operations for
manipulating the data. MAX (Déchelle 2004) is an object-based graphical pro-
gramming language used for building interactive musical performance applica-
tions. There are several versions of MAX. Some newer versions, including jMax
(Déchelle 1999) and Max/MSP (Cycling74 2004), support processing of both
MIDI events and audio signals. PatchWork (Laurson 1996) includes a graphical
programming environment somewhat similar to MAX. PatchWork is intended
primarily for music composition rather than for performance. PatchWork sup-
ports several forms of graphical and numerical representation of musical struc-
tures, including music notation.

Glen Krasner described ways for using the object-oriented Smalltalk-pro-
gramming language for musical representation and data processing. Krasner
presented a scheme for representing both musical data and actors involved in
data processing as software objects. Among these objects were an “Orchestra”, a
“Player”, a “Score”, and an “Instrument”. (Krasner 1991 [1980].)

MODE is an object-oriented, musical data processing system written in the
Smalltalk programming language. MODE allows the processing and display of
musical data in various forms, including graphical representations. Notes may
be displayed as common music notation or as a piano-roll style, pitch-time rep-
resentation. MODE also supports graphical wave-form display of digital audio
signals, as well as the graphical display and editing of musical phrases (Pope
1991b). Object-based representations are discussed further in Chapter 6.1.5.

3.14 General-purpose graphical representations

General-purpose graphical representations may be used also for representation
of music notation. In general-purpose representations, however, graphical infor-
mation is encoded on a lower semantic level than that of dedicated musical rep-

Music Notation as Objects

52

resentations. In particular, logical and/or performance information is difficult,
and sometimes impossible, to store and process. Also, for example, the align-
ment of note heads in relation to staves or stems is typically more difficult to
arrange in a general-purpose representation than in a graphically-oriented musi-
cal representation.

Purely graphical representations are used in music publishing, however; for
example, by some music engravers involved with contemporary music. One
such application is to use a general-purpose graphics program to add custom
symbols to a score initially produced with a notation program.

Graphical representations can be divided into two basic categories of repre-
sentation: pixel-based and vector-based. A pixel-based graphics representation
can be described as an iconic representation of a picture, while a vector-based
one is more symbolic.

An example of graphical representations is the Adobe PostScript system
(Adobe 1986). PostScript provides a text-based graphical programming lan-
guage that can be used to control output devices such as printers. PostScript can
also be used as a general-purpose programming language.

PostScript allows processing of both vector and pixel graphics. Vector graph-
ics are constructed of “paths” that are formed by coordinate points and connect-
ing lines or curves. Visual graphical shapes are created by either “filling” an area
bounded by a path with a desired color or by “stroking” a line that follows a
path. The width and color of stroked lines can be controlled, and the line may be
solid or dashed. Fonts are available for optimized processing of text characters.
Specialized fonts, such as the Adobe Sonata font, are available for displaying
music notation symbols.

Adobe Illustrator is an interactive drawing program that is based on the Post-
Script imaging model. Adobe Illustrator may be used also for creating and pro-
cessing musical scores. As general-purpose programs in general, Illustrator is
not able to store any form of logical data or even general information about
music notation. Placement of notation symbols, including spacing, must be done
manually. Moreover, construction of many music notation symbols (such as
slurs or braces) is difficult unless the symbols are first created in a music nota-
tion program and then imported to Illustrator. On the other hand, Illustrator and
similar graphics programs offer a high degree of control of graphical details.

3.15 Comments on data representation systems

The differences in the focus or orientation between the above-described repre-
sentations is demonstrated by their conception of constructs such as note and
rest, or of parameters such as pitch and time. Most music representations include

Computer-based musical data representation systems

53

some conception of “note”, but with varying meanings. To performance-ori-
ented representations, a note may mean a sound event or a key of a keyboard
instrument. In graphically-oriented representations, “note” refers to a graphical
symbol. In logically-oriented representations, the concept of note lies some-
where in between those two meanings. Graphically-oriented music notation rep-
resentations contain a signifier for a rest, while performance-oriented
representations may exclude it. In logically-oriented representation, the exist-
ence of a rest depends partly on whether the representation is geared for music
notation or only for rendering a sonic performance.

For example, the Music V language is extremely performance-oriented,
while SCORE’s internal representation is profoundly graphics-oriented. In
Music V, pitch is defined in terms of fundamental frequency. In MIDI, exact
pitch is dependent on the MIDI instrument. In contrast to a frequency value, a
key number is a step towards logical representation of pitch.

Most of the music notation languages and notation interchange representa-
tions described above are primarily based on the description of logical informa-
tion. They leave graphical details to be generated automatically. Eric Foxley’s
Music is logically-oriented, but provides some control over graphical layout.
NIFF allows both detailed graphical control and logical constructs to be
included in the same document. In this sense, NIFF is a hybrid logical/graphical
representation.

Many text-based music notation languages are intended to be written manu-
ally and thus are optimized for compact expression of notation situations. In
such cases, the support of detailed graphical control is often limited. One reason
for this is that to allow explicit control of more than one data component (such
as both graphical and logical) would easily make the representation itself too
complex to learn and remember.

For a musician, a logically-oriented notation language can be more compact,
and is more intuitive to write manually than is a graphically-oriented one. There-
fore, logically-oriented representation may prove more efficient and practical as
data input representation. Yet, and especially in internal data representation as
well as in data exchange, detailed graphical information needs to be preserved,
especially if the manual labors of the music engraver are to be retained. The
analysis model of music notation presented in this study is based on graphical
information. There, logical information is considered secondary, optional, and
dependent on graphical data. Semantically, however, the vocabulary of music
theory and music engraving is preferred over the vocabulary of general graphics.

A common feature between iconic representations, such as digital audio sig-
nals and pixel graphic, is that they are easily interchangeable with their analog
counterparts. A digital audio signal can be achieved with an automatic conver-

Music Notation as Objects

54

sion process of an analog signal. A reverse, equally simple conversion process
can be used to convert the digital signal back to analog format. In many circum-
stances, the encoding and decoding process can be performed with insignificant
deterioration of sound quality. This is similar to the way a picture can be con-
verted to a pixel-based digital representation with a scanner device and then
back to analog form with a printer. For symbolic representations, either the
encoding or decoding process, or both, require a higher degree of interpretation
of the signifieds and/or signifiers.

A notation program typically needs to handle more than one representation.
For example, SCORE uses five representations, each for a specific purpose: (1)
SCORE input language for data input, (2) internal database representation for
data storage, (3) pixel graphics for displaying notation on a computer display,
(4) the PostScript language for printing, and (5) MIDI, for playing music with a
MIDI instrument. The input language is used as an intermediate representation
to produce the internal database representation. The other three representations
are created from the database representation by automatic interpretation pro-
cesses. Music notation programs may also provide the means to translate MIDI
or printed graphics into their internal representations. Conversion between dif-
ferently-oriented representations is, therefore, the challenge that all notation
programs must face.

55

Chapter 4
Object-oriented software
engineering

This chapter describes the basic principles of object-oriented software technol-
ogy. Included are a brief description of terminology as well as a historical over-
view of object-oriented programming languages and of some formal software
engineering methods. The main features of Unified Markup Language (UML)
are described with emphasis on the features needed for presenting the analysis
model of music notation in Chapter 7. Three formal object-oriented methods are
discussed: OOA by Coad and Yourdon, ROSE by Grady Booch, and OMT by
James Rumbaugh et al. The similarities and differences of their basic principles,
terminology, and methods of classification are described.

It is difficult to present a simple definition or description of object-oriented
software engineering. Here, such methodology is described through the above-
mentioned three example methods. Each method has a different approach to the
subject and a different perspective on how object-oriented techniques differ
from other techniques. In particular, each method has a different approach to the
carrying out of an object-oriented software development process, and to each
stage within a complete process. The methods have also been influenced by the
principles and terminology of object-oriented programming languages, the first
of which appeared before any of the above-mentioned methods were developed.

The UML notation used in this study is described here in order to make the
study self-contained in this respect. UML is a rich language, only a part of
which is needed for our purposes. Also, the language is used so widely that the
ways of using it are likely to differ among users. Hence, this chapter also pre-
sents a description of UML as it is used in this study.

The first programming languages that can be described as object-oriented
were developed in the late 1960’s and early 1970’s. It is difficult to define
exactly what makes a programming language object-oriented, but some distinc-
tive common features can be mentioned. Perhaps the most distinctive one is the
ability to form modular constructs, called objects, by means of data and func-
tionality. Another common feature is the ability to form objects that contain
other objects as their parts. Yet another is the ability of one object to “inherit”

Music Notation as Objects

56

data and functionality from another object. Other features include the ability of
objects to communicate with each other and to form various kinds of relation-
ships.

During 1990’s object-oriented programming and related software engineer-
ing methods became a central paradigm in the software industry. Object-ori-
ented programming provides a formal method for creating software systems that
simulate or mimic real-life systems. Some of the main benefits of the object-ori-
ented paradigm are maintainability and reusability of the program code. At the
same time, object-oriented methodology emphasizes the importance of system-
atic software design

Computational efficiency is not considered the primary aim of object-ori-
ented programming. Object-oriented programming languages often produce
computationally less efficient programs than do traditional function call based
languages. Instead, object methodology has been viewed as a solution for han-
dling increased complexity in software systems (Cox & Novobilski 1991: 3-29).
Several formal methods have been developed for the production of object-ori-
ented software. Unified Markup Language, or UML, is now widely used both as
a production tool in the software industry and as a formal methodological tool in
computer science.

4.1 Basic concepts and terminology

Object-oriented software engineering uses objects as basic units of software
construction. An object is a combination of data and a set of operations that can
manipulate the data. Data are organized as a set of attributes. An object may
have various types of attributes; for example, numeric variables, text strings,
truth values, or other objects. A certain set of values of an object’s attributes is
called the state of the object. Operations are constructed from executable pro-
gram code. Operations form the behavior of an object. Collectively, attributes
and operations are called the properties of an object. Objects communicate by
invoking each other’s operations.

In a purely object-oriented system, all the system’s data are stored within
objects. An object may allow or deny other objects to have access to all or part
of its attributes (or operations). One common practice is for an object’s data to
be accessed only through its operations. This kind of data protection or data-hid-
ing principle is called encapsulation.

Class is the definition of an object. Classes are typically created by program-
mers using an object-oriented programming language. In a class-based object
system, an object is an instance of a class. Instances are created and destroyed
while the program is executed. Typically, a class may have more than one

Object-oriented software engineering

57

instance. Although class is a typical feature of object-oriented programming lan-
guages, some languages do not use classes but are still object-oriented; for
example SELF (Ungar & Smith 1991). In SELF, objects are created by cloning
other objects called prototypes. This text concentrates on describing class-based,
object technology. Here, classes are used merely as conceptual instruments for
defining abstractions and for structural organization. It is not assumed that a
class-based programming language will be used for implementing the object
structures presented in this study.

A class is identified by a class name. A common convention is to write a
class name with an initial capital letter followed by lower case letters; for exam-
ple, “Car”, “Window” or “Note”. In more complex class-names, several words
may be concatenated with capital letters used as word separators (e.g., “Sports-
UtilityVehicle” or “KeySignature”). Other naming practices exist but this one is
used exclusively in this study. The same convention is also used in the UML
manuals.

Instances are also identified by their names. To distinguish instance-names
from class-names, instances are typically designated with an initial lower case
letter followed by mixed-case letters or numbers. An object may also include the
class name. For example, “myCar”, “car1”, and “car2” might be used as names
for instances of the class “Car”.

Classes or objects may relate to each other in various ways. A relationship
between two classes A and B means that an instance of class A has a relationship
with an instance of class B. There are three basic types of relationships: associa-
tion, aggregation, and inheritance. Aggregation is a relationship where a class
(or set of classes) is part of another class, called an aggregate. The part-object
may be physically stored within the aggregate. Many programming languages
also allow aggregation by reference, where the part is physically stored else-
where, but a reference to the part is stored within the aggregate. Languages that
use reference semantics allow, for example, the moving of an object from one
aggregate to another by the moving of its reference, i.e., without moving of the
actual data of the object within computer memory. Also, reference semantics
makes it possible for an object to be logically part of more than one aggregate.

Inheritance is a relationship between classes wherein a class shares a part of
its properties with a similar but more specialized class. The more specialized
class is said to inherit properties from the more general class. Inheritance is also
called a generalization / specialization relationship, depending on the direction
of the relationship between the general and specialized class, also called a
superclass and subclass, respectively. A superclass is a “generalization” of its
subclasses, and a subclass is a “specialization” of its superclass. Association is a
generic relationship, other than aggregation or inheritance, between two or more

Music Notation as Objects

58

classes or objects. An association between two classes indicates that the classes
are somehow related.

In a class-based, object-oriented system every object is an instance of some
class. Yet, not all classes necessarily have instances. A class that is designed not
to have instances is called an abstract class. Abstract classes may have (and usu-
ally do have) subclasses that have instances.

A central term used in this study is the state of an object. A state is a combi-
nation of an object’s attribute values, and it may be either stable or unstable. An
object is in an unstable state if it has not fully completed an operation and is not
ready to be used again without causing a possible error. Ideally, upon the com-
pletion of every operation, an object should return to a stable state. Encapsula-
tion, the principle that an object's attributes cannot be accessed directly from
outside the object, makes it possible to achieve stability in a controlled way. This
is an important factor with regard to the reliability of the system.

Objects communicate by executing or invoking each other's operations. In
many programming languages, an operation is invoked by the sending of a mes-
sage to an object. A message is a request for an object to perform an operation.
A protocol is an agreement among or arrangement of the types or kinds of mes-
sages that are sent between a group of objects. The operations of a class define a
protocol that can be used to control the respective instances. Subclasses may
“override” the operations of their superclass to implement their own specialized
behavior. In this way, different classes may have a different behavior for the
same message. This principle is called polymorphism.

Runtime (or run-time) is a state during which an object system is operational.
Runtime begins when the execution of an object-oriented program is started.
Generally, instances are created during runtime. Compile time (or compile-time)
is a term that describes the phase when programming language code is converted
to executable machine code. During compile time, the language syntax is
checked, and in some languages, types of objects are checked as well. The num-
ber of features checked varies among programming languages. In some pro-
gramming languages, object types are resolved in runtime rather than during
compile time.

In some object-oriented languages, objects have knowledge of their class at
runtime. This feature is sometimes called runtime type identification or runtime
type information (RTTI). In other languages, this capability is not provided by
the language and thus – if considered necessary – must be implemented to each
class by the programmer. The capability of objects to hold information of their
class might be useful for other objects as well. For example, an object might use
the information of the classes of its parts in order to determine how to treat the
classes. Stroustrup (1994: 315-316) has described the advantages and disadvan-

Object-oriented software engineering

59

tages of using runtime type identification. According to him, polymorphism
offers a more “object-oriented” solution to most problems where the use of runt-
ime type information is considered necessary. Still, and it seems somewhat
reluctantly, Stroustrup agreed to add support for RTTI in the C++ programming
language (1994: 306-307).

In object-oriented methodology, the terms (object-oriented) analysis and
(object) modeling are used often as synonyms. There is, however, a distinction
between the two. In general definitions of the term analysis, it means both the
breaking down of a thing into smaller parts (for individual study) and their criti-
cal examination. Object modeling, in general, means a process of forming an
object model. The model might be built intuitively, but some form of analysis is
needed to create a model that resembles or simulates a target system.

It can be said that analysis is a higher-level process than modeling is. For
example, a model may be analyzed (examined critically). In turn, object-model-
ing techniques, UML in particular, offer systematic and (unofficially) standard-
ized notation conventions that are widely known in computing science and in the
software industry. Therefore, the result of an object-oriented analysis can be
conveniently presented as a UML model.

4.2 Object-oriented programming languages

Simula (Dahl 1966) was the first programming language that can be regarded as
object-oriented. It was the first to suggest the metaphor that a computer program
should be a combination of physical objects and their behavior. Simula was
designed for simulation of physical phenomena.

The Smalltalk programming language (Goldberg & Robson 1989) was
developed during the 1970’s at the Palo Alto Research Center of Xerox. The
Smalltalk system consisted of, not only the programming language itself, but
also an integrated, network-distributed software development environment.
Smalltalk inherently supported the development of programs having an iconic
and graphical user-interface. The ideas of the Xerox user interface were used in
the design of first the Apple Macintosh system and later the Microsoft Windows
environment – although both of them omitted the Smalltalk development envi-
ronment.

Smalltalk has been regarded generally as inefficient for creating mainstream
application programs (Cox & Novobilski 1991: 38-39), but it has played an
important role in many research and development projects and in prototyping
(e.g., Pope 1991a; Pope 1991b; Krasner 1991). Moreover, the Smalltalk system
has influenced the design of many modern object-oriented languages and envi-
ronments for software development.

Music Notation as Objects

60

Smalltalk is a purely object-oriented language in which all constructs are
classes or objects. The syntax of its programming language does not even
include control structures. Instead, the latter are implemented as operations of
(Boolean) objects created by test operations. Smalltalk includes the concepts of
class, encapsulation, and inter-object communication by messages.

C++ (Stroustrup1992), one of the most widely used object-oriented pro-
gramming languages, is an extension of the C programming language (Ker-
nighan & Ritchie 1977). C++ retains the static typing principles of C while
adding support for classes. C++ has undergone several revisions, the design pro-
cess of which has been aimed at retaining compatibility with C while adding
support for Smalltalk-like programming techniques (within the scope of strictly
static typing).

Smalltalk and C++ represent two distinct schools in the design of program-
ming-language. Many central concepts of C++ can be traced to the mathemati-
cally-oriented FORTRAN programming language. A typical FORTRAN
implementation is a compiler that translates a completed program or a program
subroutine and yields a file that contains a machine-code language interpretation
of the program for a specific computer platform. Like FORTRAN, C++ is stati-
cally typed; i.e., the object types are determined at “compile time”, which is
when programming language code is translated into machine code.

Smalltalk, on the other hand, is a highly dynamic language. The object types
are determined at runtime, i.e., during the time the program is being executed. A
typical Smalltalk implementation is an interpreter (although many implementa-
tions also include a compiler). In this respect, the roots of Smalltalk can be
traced to the linguistically-oriented LISP language (Steele 1990).

Both C++ and Smalltalk have adapted the concept of class. Smalltalk imple-
mentations include collections of general-purpose classes for data storage and
for input/output and user interface development. A class library has been pro-
posed also for the forthcoming ANSI standard specification of C++.

In prototype-based programming languages, Smalltalk’s dynamic principle
has been taken further. The SELF programming language does not include the
concept of classes but implements inheritance by making copies (“clones”) of
prototype objects at runtime (Ungar & Smith 1991). Also, several “hybrid” pro-
gramming languages have been developed. They include features from both
Smalltalk- and/or SELF-like dynamic languages and static languages. These
include, for example, Java, Dylan, NewtonScript, Python and Delphi.

Even the most commonly-used object-oriented programming languages dif-
fer in basic capabilities, implementation of these capabilities, and even basic ter-
minology. Still, they have enough common denominators to make possible the
development of software engineering methods that are independent of program-

Object-oriented software engineering

61

ming language. The central common denominators are the concepts of class and
inheritation, as well as the capability to construct hierarchical, “part-of” object
structures. Described below are some related software engineering methods.

4.3 Object-oriented software engineering methods

Several formal object-oriented software engineering methods were developed
during the 1980’s and 1990’s. One purpose of these methods was to provide sys-
tem designers with tools for describing and specifying a software system. Some
of these methods were presented as replacements of pre-established processes of
software engineering. Some came about as evolutionary steps from earlier meth-
ods of software engineering.

A common principle is to divide an object-oriented software development
process into three stages: object-oriented analysis, object-oriented design, and
object-oriented programming. The role of the stages varies among the individual
methods. Especially, the exact distinction between analysis and design is often
vague. The term object-oriented programming is commonly used to mean the
process of realizing an object-based software system by means of a (usually
object-oriented) programming language. The term implementation is also used
as a synonym for programming.

Object-oriented design is the process of making a specification according to
which the programming task is executed. Object-oriented analysis is a process
that precedes the design stage. The main purpose of the analysis task is to ana-
lyze a “problem domain” and describe it as a system of objects. The analysis and
design processes might also be called decomposition and composition, or analy-
sis and synthesis, respectively (Pope 1991a).

According to James Rumbaugh et al., “a software engineering methodology
is a process for the organized production of software using a collection of pre-
defined techniques and notational conventions” (1991: 144). In object-oriented
methodology, various techniques are described for the identification and classifi-
cation of objects. Use of a graphical notation convention for defining class and
object structures is also a typical feature of the methodology.

In the following sections, three early object-oriented software engineering
methods are discussed. Each method takes a different view on the importance
and role of the three stages. The methods differ also in the use of basic terminol-
ogy. Further differences can be found in their relationships with earlier (non-
object-oriented) software engineering methodology. The methods discussed are
the OOA method by Peter Coad and Edward Yourdon, the ROSE method by
Grady Booch, and OMT by James Rumbaugh et al.

Music Notation as Objects

62

There are many other object-oriented methods that are not described here
(e.g., Slaer & Mellor 1988; Jacobson 1992). According to Booch et al. (1999:
xviii), more than 50 methods had been introduced by 1994. The Coad & Your-
don OOA method is discussed here because it is an early method that presents
analysis, design, and programming as distinct stages in the software engineering
process. The Booch/ROSE method is discussed partly because of the author's
references to the philosophical and theoretical background of object-oriented
techniques. OMT is discussed partly because it is, along with the Booch/ROSE
method, a direct predecessor of the Unified Modeling Language (UML). Let us
recall that UML, a notation language rather than a method, is used as the nota-
tion technique of this study.

4.3.1 The Coad & Yourdon OOA method

Some of the first object-oriented methods covering analysis, design and pro-
gramming as distinct stages were presented in a series of books: Object-Ori-
ented Analysis (Coad & Yourdon 1991a), Object-Oriented Design (Coad &
Yourdon 1991b), and Object-Oriented Programming (Coad & Nicola 1991).
Coad and Yourdon describe Object-Oriented Analysis as a method for finding
classes and objects (“Class-&-Objects”), for identifying structures, and for
defining attributes of the problem domain. This method is commonly referred to
as either “Coad & Yourdon” or OOA. The complete, three-stage process is also
called OOADP.

Coad and Yourdon define the term “Object-Oriented” with the equation
(Coad & Yourdon 1991a: 30):

Object-Oriented = Classes and Objects
+ Inheritance
+ Communication with messages

For Coad and Yourdon, all systems that exclude any of the three factors in the
equation are not object-oriented. In the equation, Communication with messages
is a “means for managing complexity” (ibid.: 12-18, 30), which may be
achieved even if the programming language does not include a concept called
messages (as the Smalltalk language does). C++, for example, uses function
calls for a similar purpose and can thus be regarded as an object-oriented lan-
guage. Coad and Yourdon present a graphical notation system for describing
classes and objects, inheritance structures, “part-of” structures, attributes, ser-
vices (i.e., operations), and connections (i.e., associations).

Coad and Yourdon define analysis in this way (ibid.: 18-19):

Object-oriented software engineering

63

– – the study of a problem domain, leading to a specification of externally observable
behavior; a complete, consistent, and feasible statement of what is needed; a cover-
age of both functional and qualified operational characteristics (e.g., reliability, avail-
able, performance).

Further, Coad and Yourdon state that analysis focuses on “what the system must
do to satisfy the client, not how the system must be implemented.” In contradic-
tion to their definition, however, Coad and Yourdon do not give a detailed
description or any example of what a “complete, consistent, and feasible” speci-
fication should be.

Coad and Yourdon present their method as a replacement for, or rival to, the
entity-relationship and data flow diagram methods that dominated systematic
software engineering (especially database system design) throughout the 1980’s.
Since they were among the pioneers of object-oriented methodology, Coad and
Yourdon also considered it necessary to point out the advantages of object-ori-
ented methodology in order to justify their approach. The whole OOADP
method is straightforward and practical-minded. The third book of the series
gives detailed descriptions of several exemplary software projects, including
their source code listings in both Smalltalk and C++.

Coad and Yourdon present a graphical notation system for defining classes
and their relationships. Separate notation for state transition diagrams is also
described, but the main focus of the method is on class and object diagrams.
Classes are drawn with round-cornered rectangles that enclose the name of the
class. Classes and instances are drawn in the same diagram, which distinguishes
it from the methods discussed below. Aggregation and inheritance relationships,
called structures, are typically drawn with tree-like hierarchies flowing from top
to bottom. When the analysis requires a large amount of structures, they are
divided into Subjects.

Coad & Yourdon's OOA process consists of five “major activities”: identify-
ing classes and objects, identifying structures, identifying subjects, identifying
attributes, and identifying services. The persons that carry out the process are
called analysts.

The class and object identification activity starts with investigation of the
problem domain. There, the analyst should study the field of inquiry by using
various techniques such as first-hand observation, listening to problem domain
experts, checking previous OOA results, checking other systems, and reading
the literature that describes the problem domain. The analyst should account for
all nouns encountered in the investigation process and weigh them systemati-
cally (Coad & Yourdon 1991a: 58-60).

For weighing potential classes and objects, Coad and Yourdon present a
practical, two-step process. First, in order to find candidates for classes and

Music Notation as Objects

64

objects, the analyst should look within the target system for potential objects,
such as “structures, other systems, devices, things or events remembered, roles
played, operational procedures, sites, and organizational units”. Second, the can-
didates are challenged with a list of criteria called “needed remembrance,
needed behavior, (usually) multiple attributes, (usually) more than one object in
a class, always-applicable attributes, always-applicable services, domain-based
requirements, and not merely derived results” (Coad & Yourdon 1991: 60-78).

If the investigation reveals any structures, they should be challenged as
potential generalization-specialization relationships or as whole-part relation-
ships. References to other systems can reveal points of interaction among those
systems and call for specific classes and objects. Roles played refers to how
human beings act within the system. The analyst needs to consider whether spe-
cific classes and objects should be used to represent the various roles. If the sys-
tem should hold any operational procedures over time, they may call for
specialized classes and objects. Sites, which are physical locations involved with
the system, are potentially classes and/or objects. Organizational units are also
potential classes and objects.

Needed remembrance refers to inquiring whether a system needs to remem-
ber anything about the object, whether the object can be described, and what its
potential attributes are. Needed behavior refers to questioning whether an object
should have “services” (i.e., operations). There may be objects that have ser-
vices but not attributes, i.e., behavior without remembrance. (Usually) multiple
attributes suggests that objects should usually have more than one attribute each.
Otherwise, a simple value could be more practical than a full-fledged object.
(Usually) more than one object in a class suggests that classes that have only one
instance should be challenged. In particular, if there is another class with similar
attributes and services, a common class or a generalization-specialization struc-
ture should be considered. Always applicable attributes and always applicable
services are criteria for questioning whether a set of attributes or services applies
to all objects in a class. If the class has attributes or services that are irrelevant,
then some objects should be considered as generalization-specialization struc-
tures.

Domain-based requirements refers to the importance of separating analysis
decisions from design decisions. The analyst should avoid making decisions and
assumptions based on implementation requirements or limitations such as com-
puter hardware. The analysis process should concentrate on the problem domain
and leave design decisions to software designers or to the software design stage.
For example, task and data management are considered as design decisions. The
not merely derived criterion suggests the exclusion of attributes and objects that

Object-oriented software engineering

65

can be easily derived (e.g., calculated) from other attributes or objects. This cri-
terion helps to avoid redundancy, i.e., the unnecessary duplication of data.

The structure-identification activity involves defining generalization-special-
ization (“Gen-Spec”) and whole-part structures for the identified classes and
objects. Objects with similar behaviors are indications of potential generaliza-
tion-specialization structures. There, new classes may be defined for collecting
common attributes or services of the previously identified classes

The subject-identification activity focuses on dividing sets of structures into
entities called subjects. Identification of attributes concentrates on the definition
and organization of both attributes and “instance connections”. (Instance con-
nections are called associations in many other object-oriented methods, and also
in this study.) Identification of services involves definition of a set of services
that the classes and objects provide for the system.

While Coad and Yourdon concentrate largely on the use of class and object
diagrams, they also present a notation for describing services called a “service
chart”. A service chart demonstrates the changes in the state of an object when a
service is executed. Service charts have symbols for displaying basic elements
of computer algorithms such as states, conditions (i.e., if-then clauses), loops,
and transitions between these. Coad’s & Yourdon's service charts resemble the
traditional flow charts commonly used for visualizing algorithms (ibid.: 145).

The OOA process specifies the problem domain. The specification is used as
a basis of the design stage (OOD stage). There, the OOA model of the problem
domain is expanded with components involved in a particular implementation.
These components include human interaction, task management and data man-
agement (ibid.: 178-179). The resulting OOD specification is then given to pro-
grammers in order to accomplish the programming (i.e., OOP) stage.

4.3.2 The Booch/ROSE method

Grady Booch first presented his software engineering method in the book
Object-oriented Design with Applications. A revised version was presented in
Object-oriented Analysis and Design with Applications (Booch 1994). Booch
gives a detailed description of object-oriented software development, from both
theoretical and practical points-of-view. Booch’s method is commonly referred
to as either the ROSE method or the Booch method.

The Booch method concentrates on two tasks: (1) finding and classifying
objects and their relationships using both graphical diagrams and a formal text
description; and (2) defining the dynamic aspects of the object-system by means
of state-transition diagrams and additional text descriptions.

Booch defines the “object-oriented analysis” as follows (1994: 39):

Music Notation as Objects

66

Object-oriented analysis is a method of analysis that examines requirements from the
perspective of the classes and objects found in the vocabulary of the problem domain.

According to Booch, the emphasis in object-oriented analysis is on the “building
of real-world models”. Object-oriented design, in turn, is defined as:

– – a method of design encompassing the process of object-oriented decomposition
and notation for depicting both logical and physical as well as static and dynamic
models of the system under design

The emphasis is on “the proper and effective structuring of a complex system”.
(Ibid.)

Booch does not give explicit definitions of the basic terms “analysis” and
“design”. Although the definitions of both terms can be roughly deduced from
Booch’s text, the distinction between OOA and OOD is not made very clear.
Booch himself admits that the boundaries between the two are “fuzzy”. He con-
tinues, however, by adding the following:

In analysis, we seek to model the world by discovering the classes and objects that
form the vocabulary of the problem domain, and in design, we invent the abstractions
and mechanisms that provide the behavior that this model requires. (Ibid.: 155.)

Booch gives a list of techniques that can be used in object-oriented analysis:
“classical approaches”, behavior analysis, domain analysis, use-case analysis,
CRC (Class/ Responsibilities/Collaborators) cards, informal English descrip-
tion, and structured analysis. Classical approaches are derived from classical
categorization. Behavioral analysis focuses on dynamic behavior as the source
of classes and objects. Objects with similar behavior are grouped under the same
class. This technique is related to conceptual clustering. Domain analysis can be
used as an additional method for finding and defining abstractions. There,
objects and classes are organized into domains. Domain analysis is often done
by examining existing software systems and by consulting domain experts, i.e.,
persons that are closely familiar with the domain (Booch 1994: 155-158).
Booch’s object identification and classification techniques are explained in more
detail in section 4.7, below.

Use-case analysis, first described by Ivar Jacobson, is a practice, where a
system under examination is tested through example situations in use (Booch
1994: 155-161). CRC cards are regular index cards used in building simulations
of scenarios within a system. Every class in a scenario is given a CRC card, on
which are written the class name, its responsibilities and collaborators (other
classes). New responsibilities and collaborators may be added on the CRC card
as the development team evaluates the role of the class within the scenario (ibid.:
159).

Object-oriented software engineering

67

Informal English descriptions offer an alternative approach to analysis. In
this case, the developer will write a description of the problem and underline
each noun and verb in the text. Nouns are considered as potential objects and
verbs as their potential operations. This approach is similar to the principle pro-
posed by Coad & Yourdon (see section 4.3.1), such that an existing text may be
used as the source document.

Structured analysis is a traditional software engineering method that was
used widely in the software industry, especially before object-oriented tech-
niques became popular. Although Booch discourages the use of structured anal-
ysis, he describes how it could be used as a basis for object-oriented analysis,
should pragmatic reasons demand this. Booch, however, warns against using
structured analysis instead of object-oriented analysis as the front end to an
object-oriented design. In his criticism of structured analysis, for example the
use of data-flow diagrams, Booch sees fundamental differences between struc-
tured and object-oriented analysis (ibid.: 160-161).

Perhaps more than most authors of object-oriented software engineering
textbooks, Booch addresses the historical and philosophical background of
object-oriented software engineering. In particular, he points out the heritage of
Plato’s and Aristotle’s techniques of classification and categorization (Booch
1994: 151, 168). Booch does not insist on using any particular method for iden-
tifying objects and their properties. Instead, he presents several alternative or
complementary methods, some of which are also used in fields other than soft-
ware engineering.

Booch, however, does describe a systematic high-level method for software
design. He emphasizes that all design projects are unique and that problems can
result from developmental processes that are either too strict or too ad hoc.
Booch presents his “rational” development process as a suggestion that does not
have to be followed without question. Booch divides object-oriented software
development projects onto two layers: the macro-development process and the
micro-development process. The macro-developmental process presents the
major activities involved in the task:

1. Establish core requirements (conceptualization)
2. Develop a model of the desired behavior (analysis)
3. Create an architecture (design)
4. Evolve the implementation (evolution)
5. Manage postdelivery evolution (maintenance)

To describe these briefly (Booch 1994: 248-264): In conceptualization, require-
ments of the system are defined. Analysis produces a model of the problem
domain. Design creates a software architecture. Evolution involves translation of

Music Notation as Objects

68

the design documents into program code. Maintenance involves making adjust-
ments for the system, which are implemented in a new evolution.

The micro development process consists of the following four activities

1. Identify the classes and objects at a given level of abstraction.
2. Identify the semantics of these classes and objects
3. Identify the relationships among these classes
4. Specify the interface and then the implementation of these classes and

objects

To summarize Booch (1994: 234-248): The micro-process is cyclic. This means
that once step 4 is accomplished, the process returns to step 1. This micro-pro-
cess cycle will continue throughout the macro-process. The micro-process
includes implementation – which has begun already, at very early stages of the
macro-process, even before the analysis or design stages are completed.

Booch creates his own graphical notation system for describing classes,
objects, and their relationships. Unlike in OOA, classes and objects have dedi-
cated diagrams. Booch uses an amoeba-like shape as a symbol for classes and
objects. While classes and objects themselves are more complex to draw than
are Coad & Yourdon's round-cornered rectangles, Booch’s notation allows more
freedom in the graphical placement of the objects. Furthermore, Booch’s nota-
tion is richer and offers more detailed expression than does OOA.

Booch also presents several types of diagrams to illustrate the behavior of
objects and the higher-level constructs called “modules”. These include state-
transition diagrams, interaction diagrams, module diagrams, and process dia-
grams (ibid.: 199-208, 217-228). Furthermore, Booch describes a system for
writing text specifications (ibid.: 196-199). There, elements like classes or oper-
ations are assigned a list of topics to be given a value or explanation in text, such
as “Name:”, “Description:”, “Attributes:”, “Operations:”, etc. The approach is
similar to the “manual page” system of the UNIX operating system (Kernighan
& Pike 1984: 308-312). Booch’s emphasis is, however, on object and class dia-
grams, especially the latter.

4.3.3 The Object Modeling Technique

The Object Modeling Technique, abbreviated as OMT, was developed by James
Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen (Rumbaugh et al. 1991). Its notation is more systematic than that of
the two above methods, and it offers object-oriented substitutes for traditional
software engineering techniques, e.g., for entity-relationship graphs and data-
flow diagrams. By building on the tradition of pre-object-oriented techniques,

Object-oriented software engineering

69

OMT takes an opposite direction to the more radical departure presented by
Coad and Yourdon.

OMT uses the term modeling as the central activity of the engineering pro-
cess. The OMT process is divided into three stages: analysis, system design, and
object design. The analysis stage involves description of the problem, without
consideration of the implementation details, such as data structures. The system-
design stage concentrates on high-level modularization of the system. It is at this
stage where the implementation issues, such as optimization, are considered.
Object design focuses on detailed formation/construction of the individual
objects. Implementation and testing are also mentioned as parts of a software
“life cycle” but are not presented as parts of the OMT method (Rumbaugh et al.
1991: 5, 144-147).

The OMT analysis stage involves construction of three types of models:
object models, dynamic models, and functional models. Combined, they form
an “analysis model”. An object model describes and defines the classes and
objects in the system. Dynamic models are similar to the state-transition
schemes, as presented by Booch and others. Functional modeling describes the
flow of data through the system. The object modeling of OMT can be regarded
as a modern equivalent of entity-relationship modeling, where functional mod-
els resemble traditional data-flow diagrams. Rumbaugh also describes the rela-
tionships between OMT and other software engineering methods (ibid.: 266-
274).

The OMT analysis process starts by gathering requests from users, develop-
ers, and managers. The requests are compiled into a “problem statement”. The
problem statement is used as a reference document for building the object,
dynamic, and functional models.

In the object-modeling process, Rumbaugh advises starting with a written
description of the problem and to consider nouns in the text as candidate classes.
Then, unnecessary and incorrect classes are discarded according to a given list
of criteria. A class is discarded if it belongs to the following categories: redun-
dant classes, irrelevant classes, vague classes, attributes, operations, roles, and
implementation constructs. Redundant classes are classes that hold in common
the same information with some other class. Irrelevant classes are those that
have nothing to do with the problem. Vague classes are those which have ill-
defined boundaries. Names that describe attributes or operations of objects are
not considered as correct classes. Roles are not considered as good names for
classes. Implementation constructs, such as computer hardware objects, data
structures or algorithms, should be excluded from the analysis model, although
they can prove relevant at the design stages (ibid.: 148-156).

Music Notation as Objects

70

In the task of analysis, the modeling of associations is a three stage process.
First, candidate associations are identified; second, irrelevant associations are
removed; third, semantics of associations are specified (ibid.: 156-162). A simi-
lar procedure is used for identifying attributes. Rumbaugh’s analysis procedures
resemble those of Coad and Yourdon. In both methods, potential items are
picked and then tested against a given set of criteria.

Rumbaugh sees dynamic modeling as insignificant for static systems such as
databases, but quite important for interactive systems (ibid.: 169). Thus,
dynamic models may be seen as an optional part of OMT. Dynamic modeling
involves the modeling of user interaction, tracing events caused by interaction
with users or other external devices, building state diagrams for objects involved
with interaction, and building event-flows between objects (ibid.: 169-179).

Functional models “show how values are computed, without regard for
sequencing, decisions, or object structure” (ibid.: 179). Functional modeling
involves construction of data-flow diagrams and function descriptions. A spe-
cialized notation is created for data-flow diagrams. Functions may be described
with natural language, mathematical equations, or pseudo-code (ibid.: 179-186).

Rumbaugh suggests an iterative work process for the analysis. On each itera-
tion, the analysis model is refined. Also, an iteration may reveal problems in the
analysis model that require major restructuring of the model. The aim is to pro-
duce a “cleaner, more coherent design” by iterating each modeling stage (ibid.:
186).

Rumbaugh’s book devotes much attention to describing and using the OMT
graphical notation. Object identification and classification principles are dis-
cussed on a pragmatic rather than theoretical level. Rumbaugh also provides
practical advice on how to use object-oriented techniques with traditional pro-
gramming languages such as FORTRAN, C and Ada (ibid.: 340-363).

4.3.4 The Unified Modeling Language

The Unified Modeling Language (UML) was designed by Grady Booch, Ivar
Jacobson, and James Rumbaugh. UML is a combination of earlier methods cre-
ated by its designers: ROSE by Booch, OOSE by Jacobson, and OMT by Rum-
baugh et al. Upon its introduction in the late 1990’s, UML was quickly accepted
by the software industry. It seems to have remained the most widely used design
language and formal, object-oriented analytic method.

UML is described as “a language for visualizing, specifying, constructing,
and documenting the artifacts of a software-intensive system” (Booch et al.
1999: xv). Compared to graphical notation systems of OOA, Booch/ROSE, and
OMT, UML includes more features, including several different types of dia-

Object-oriented software engineering

71

grams and a wider range of inter-object relationships. UML adopts its basic syn-
tax from OMT, especially in class and object diagrams, but adds more types of
relationships. Parts of both Booch’s and Jacobson’s notations have also been
adapted to UML.

All three of the software engineering methods described above included
three basic subjects: explanation of the principles of object-oriented software
engineering, advice on how a development process is carried out, and descrip-
tion of a graphic notation for classes and objects, their relationships, and their
behavior. UML, in turn, is separated both from explanation of basic object-ori-
ented concepts and from development methodology. The authors have, however,
published a book titled The Unified Development Process (Jacobson et. al.
1999). It is a methodological guidebook in which UML is used as notation lan-
guage. On the other hand, the documentation of UML itself does not require the
use of any particular method for producing UML language documents.

4.4 UML principles and terminology

UML offers nine different types of diagrams divided into two categories: struc-
tural and behavioral (Booch et al. 1999: 93-98). They are intended for visualiz-
ing static and dynamic aspects of a system, respectively. There are four types of
structural diagrams:

1. Class diagram
2. Object diagram
3. Component diagram
4. Deployment diagram

Class diagrams are used to visualize classes and their associations, including
inheritance and aggregation structures. Object diagrams are used for displaying
example situations with a set of objects and links that illustrate various types of
associations. Component and deployment diagrams are used to visualize struc-
tures of a level higher than class diagrams. There, one or more classes may be
presented as a component, and one or more components may form a deployment
(ibid.: 98).

Music Notation as Objects

72

UML contains the following behavioral diagrams:

5. Use case diagram
6. Sequence diagram
7. Collaboration diagram
8. Statechart diagram
9. Activity diagram

Use-cases illustrate various activities that the system will perform. Activities
demonstrate “what” a system does instead of “how” is does it. Activities are ini-
tiated by actors, which may be objects or users. A sequence diagram shows a
time-ordered flow of messages between objects. A collaboration diagram also
illustrates the flow of messages between objects, but from an alternative per-
spective. Stage-chart diagrams illustrate the transition of an object between vari-
ous states when it is carrying out a specific task (ibid.: 233-256, 331-339).

Activity diagrams display flows of activities within the system. There, activ-
ities are higher-level entities than the operations of single objects. Instead, activ-
ities typically consist of collaboration between a group of objects. Activity
diagrams consist primarily of named activities and transitions from one activity
to another, possibly via condition nodes of the “if-then-else” type (ibid. 257-
273).

UML also allows the user to construct diagrams that mix features from the
above-listed diagram types. In UML terminology, thing is used as a collective
name for every item or unit that can be modeled. E.g., an object, a class, a com-
ponent, or a property can be called a thing. Below, some central UML elements
and expressions are described with examples.

4.5 UML class and object diagrams

UML class diagrams display classes, their properties, and relationships between
classes. The principal relationships in class diagrams are discussed below.
Object diagrams display instances of classes, and can be regarded as “snap-
shots” of the object-system (or a part of it) in a chosen situation. Object dia-
grams display connections between object instances, not between their
respective classes. Therefore, inheritance relationships are not displayed. Booch,
Jacobson, and Rumbaugh state that object and instance are “largely synony-
mous”. They believe that an association may be also an instance, although it is
not an object (Booch et al. 1999: 185). Here, object diagrams are described more
briefly than are class diagrams, because they have minor importance as com-
pared with class diagrams in this study.

Object-oriented software engineering

73

Other structural diagrams and/or dynamic diagrams in general are not
described here. Apart from one sample interaction, presented in Chapter 9, they
were not considered necessary for this study.

Central features of UML diagrams are described with simple examples. Each
example shows a UML statement. In practice, typical UML diagrams contain
more than two or three classes or objects. On the other hand, an entire class
structure or object system is usually broken into several small diagrams for the
sake of clarity, or because of practical limitations imposed by available display
area or computer screen resolution.

4.5.1 Class and its properties

In UML diagrams, a class is shown in a rectangular box containing the name of
the class and its properties. Properties are separated from the class name with a
horizontal line. Attributes and operations are typically separated from each other
by a vertical line.

Figure 4-1 shows an example diagram containing a single class. The class is
named CMNSymbol. It has four attributes (“origin”, “size”, “dimensions”, and
“value”) and two operations (“draw” and “play”). In addition to name, attributes,
and operations, UML also allows a fourth category, called responsibilities. How-
ever, a class can be displayed by using only the class name.

CMNSymbol

draw
play

origin
size
dimensions
value

Figure 4-1: Class

Music Notation as Objects

74

4.5.2 Association and aggregation

An association between two classes is shown with a line connecting the classes
as in figure 4-2. Associations may have properties called adornments such as
name, role or multiplicity. In UML terminology, aggregation is described as an
adornment of association (Booch et. al. 1999: 143). Figure 4-2 states that the
class A is associated with the class B. On the instance level, the figure states that
an A object (i.e., an instance of the class A) is associated with an instance of
class B. Since no adornments are presented in the diagram, an A object may be
associated with an undefined amount of B’s (instances of B) and vice versa.

Figure 4-3 shows an example of an aggregation. The latter is illustrated by an
open diamond shape at the “whole end” of a whole-part relationship. In the
example, B is part of A. The roles of A and B are as follows: A is the aggregate,
and B is the part. The diagram states that an instance of class A may contain an
unspecified amount of instances of class B, while each instance of B may be part
of an unspecified amount of instances of A.

The multiplicity adornment defines the amount of instances of a specific
class allowed at each end of an association. Figure 4-4 shows an aggregation
with a multiplicity adornment. The association in the figure can be read as “a 1-
to-4 aggregation exists between A and B.” Figure 4-4 determines that A has
exactly four instances of class B as its parts. Respectively, B is (always, if addi-
tional class diagrams are not given) part of one (and only one) instance of class
A. Multiplicity may specified by giving an exact value, a list of discrete values
(e.g. “0,1,2”), a range (e.g. “0-5”), or an asterisk (“*”) denoting an arbitrary
amount.

A role adornment states that an object refers to its associate object by that
name. Figure 4-5 shows an association of a class named Person with itself. A

Figure 4-2: Association

BA

Object-oriented software engineering

75

role name is shown at both end of the association. The association states that a
Person (i.e. an instance of the class Person) is associated with another Person
and refers to that other person as “parent”. The other person, in turn refers to the
first Person as “child”.

An association may be given a name as an adornment. A name may be used,
for example, if there is a need to refer to a particular association among other
associations.

A special case of a one-to-many aggregation is called composition. In this
case, a part may be part of one object only; moreover, the part can not exist with-
out the whole. Figure 4-6 shows an example of a composition between classes A
and B. There, an instance of a class B is part of an instance of class A. The exist-
ence of instances of B is dependent on the existence of A’s instance(s). If the
instance of A is deleted, then the B’s respective instance is deleted with it
(Booch et al. 1999: 147, 459-460).

Figure 4-3: Aggregation

BA

Figure 4-4: Aggregation with a multiplicity adornment

BA 41

Music Notation as Objects

76

4.5.3 Inheritance

Inheritance is illustrated in UML with an arrow symbol. A large, open arrow
head is at the generalization end of the relationship. Figure 4-2 shows an exam-
ple inheritance structure with a superclass A and two of its subclasses: B and C.
Both classes B and C inherit the properties of class A. An instance of class B
will have the properties of both A and B. In turn, an instance of C will have the
properties of both A and C.

Some programming languages support a feature called multiple inheritance.
There, a class may have more than one direct superclass. Figure 4-8 shows class
C, which inherits classes A and B. A and B could, in turn, have a common super-
class. Languages that support multiple inheritance should also include a way to
handle potential conflicts that arise when parallel superclasses share the same
properties. There the programmer should be able to control which of the con-
flicting properties are inherited from the individual superclasses.

Person child

parent

Figure 4-5: Association with role adornments

Figure 4-6: Composition

BA 1

Object-oriented software engineering

77

4.5.4 Other relationships and features

UML specifies a number of other relationships, including dependency and asso-
ciation class. Association class is a class that gives additional properties to an
association. An association class is used when an association is considered to be
so complex that it requires the use of properties that are logically part of the
association and not part of the associated classes (Booch et al. 1999: 147-148).

Dependency is used for defining a connection between two things, where a
change in one thing will reflect on or in the other (Booch et al. 1999: 63). This

Figure 4-7: Inheritance

A

CB

C

BA

Figure 4-8: Multiple inheritance

Music Notation as Objects

78

relationship is shown with a dashed arrow pointing out the direction of the
dependency.

4.5.5 Object diagrams

Object diagrams are used for showing instance-level relationships. An object
diagram serves as a demonstration tool showing a “snapshot” of a hypothetical
or real situation of the object system at runtime.

Object-diagrams may include several instances of the same class. As
opposed to class diagrams, association and aggregation relationships are both
replaced with links (drawn with solid lines) connecting objects. Inheritance rela-
tionships are typically not shown, since many programming languages imple-
ment inheritance as a compile time construct rather than a runtime feature. Even
with prototype-based languages, such as SELF, inheritance structures are not
often relevant when the runtime behavior of the system is demonstrated.

In Figure 4-9, an example object diagram is shown. The diagram is an
instance-level equivalent of the class diagram of Figure 4-5. The objects are dis-
played as boxes. Objects can be distinguished from class symbols by the colon
symbol that separates the object identifier and the class name, and by the hori-
zontal line under the identifier/name string. The example shows that the object
“jill” of class “Person” is a “child” of Person “john” and “john” is a “parent” of
“jill”. As noted above, instance names are commonly, although not exclusively,
denoted with an initial lower case letter, while class names have an initial upper
case letter.

jill: Personjohn: Person
parentchild

Figure 4-9: Object diagram

Object-oriented software engineering

79

4.6 Text representation of object systems

Some object-oriented programming languages and programming environments,
such as Java and Objective-C, provide a way of storing a state of the object sys-
tem in a file. Often, the file formats are binary and meant to be edited within
those particular object environments. General-purpose, text-based formats are
also available. The technique for storing the state of the object system is called
object “serialization”, “persistence”, or “activation/passivation”. Its use and
implementation is demonstrated by Coad and Nicola as programming examples
in Smalltalk and C++ (Coad & Nicola 1991: 317-385). A similar system for
Objective-C is described by Cox (Cox & Novobilsky 1991: 144-146).

Coad and Nicola’s solution is syntactically close to XML. In fact, XML is
used as the data storage file format of many object-oriented programs. XML
documents are text-based and, typically, literally mnemonic. Therefore, XML
“tags” can easily be mapped to class names and attributes of an object-oriented
system. This allows for XML or a similar text representation to serve as an alter-
native or a complementary technique for demonstrating the structure of object
systems.

A serialized object system typically contains only the object structure and
the attribute values. Behavior, i.e. program code, is typically stored in the actual
computer program. Although some programming languages support serializa-
tion of program code, the inclusion of such code would make the representation
dependent on that particular programming language. Thus, a serialized, object-
system representation does not substitute class diagrams but may be used as
replacements or alternatives for object diagrams.

4.7 Object identification and classification techniques

A common problem in applying any object-oriented software engineering
method is the way in which object and classes are identified and defined. The
textbooks for engineering methods often approach the problem thorough exam-
ples. However, object identification and classification techniques that are sys-
tematic and generally applicable have received almost no discussion in the
literature on software engineering. Grady Booch has addressed this situation in
terms of Western philosophy and human cognition.

Booch describes an object to be either “a tangible and/or visible thing”,
“something that can be apprehended intellectually”, or “something toward
which thought or action is directed” (1994: 82-83). Furthermore, “an object has
state, exhibits some well-defined behavior, and has unique identity” (ibid.). In a
software object, its state is presented by the object’s attributes and its behavior is

Music Notation as Objects

80

implemented in the object’s operations. Identity is a property that separates an
object from all other objects (ibid.: 83-97).

Once the objects have been found, they must be classified. There are several
techniques for doing this. Booch lists three principal classification techniques:
classical categorization, conceptual clustering, and prototype theory (1994: 150-
155). Classical categorization is based on principles first described by Plato in
his essay The Statesman (in Booch 1994: 168). Aristotle applied this technique
in his essay Categories, where he described the differences between classes and
objects (ibid.). Classical categorization was adopted by later philosophers such
as Aquinas, Descartes, and Locke (ibid.: 151). In this technique, objects are con-
sidered to be in the same class if they have the same set of properties.

Classical categorization is used widely in modern Western science. However,
many natural categories, such as “chair” or “bird”, are difficult or impossible to
define in terms of any set properties (ibid.: 153). Conceptual clustering and pro-
totype theory are more modern techniques that attempt to address the shortcom-
ings of classical categorization. In conceptual clustering, classes are defined as a
set of concepts, and objects are tested against the concepts. A concept is a
higher-level entity than is a single property. A concept may have vague bound-
aries, such that decisions may have to be made on the basis of whether an object
belongs more to one class than to another (ibid: 153-154).

Prototype theory is derived from Ludwig Wittgenstein’s concept of “family
resemblances.” In prototype theory, objects are tested against a proto- or stereo-
typical object. An object is considered to belong to the class represented by the
prototype if it bears a sufficient amount of “family resemblance” to the proto-
type. Booch suggests using all three classification techniques, starting with clas-
sical categorization. If the latter doesn't produce a satisfactory result, then the
other two techniques are used, in the order that they were introduced above.

4.8 Summary and discussion

All of the object-oriented software engineering methods described above
(although UML cannot be called a method) include some kind of graphical nota-
tion system. All these methods offer a way to illustrate classes and objects as
well as the basic relationships among them, including aggregation, inheritation,
and association. Some kind of behavioral notation is also provided, but with
much more variation in the amount of features and the emphasis place on them.

OOA, in particular, offers a very restricted way of expressing dynamic
aspects of an object system. One reason for Coad and Yourdon to lay such
emphasis on static aspects might be that the authors view the analysis stage as
basically for constructing static conceptions of the classes and objects of the tar-

Object-oriented software engineering

81

get system. Dynamic aspects, such as descriptions of algorithms, belong more
(or mostly) to the design and programming stages.

Coad and Yourdon use their notation as a tool for their analysis method.
Booch, in turn, describes several alternative methods, especially for the analysis
stage. Although Booch introduces his own notation, he permits the borrowing of
features from other kinds of notation (1994: 177). Rumbaugh concentrates more
on notation and its use instead of methodology. Still, Rumbaugh and his co-
authors do provide concise methodological advice for various stages of the
development process.

UML presents a complete departure from methodology. UML has enough
features to be used in probably most if not all object-oriented development
projects that require graphic notation of the object system. It may also be used
throughout a development process included in both analysis and design. More-
over, a user may select only those diagrams or expressions that are needed for a
particular task. UML could also be used as a direct replacement of Coad and
Yourdon’s as well as Booch’s notation.

The methods differ in how they make the distinction between analysis and
design. Coad and Yourdon make huge efforts in separating the two stages,
whereas Rumbaugh emphasizes the integration of analysis and design into a sin-
gle and systematic development process. An extreme example of separating
analysis and design is described by Slaer and Mellor, where, unlike with Rum-
baugh, only an analysis method is described, and where it is remarked that the
analysis might differ from the results of the design process (Slaer & Mellor
1988; Rumbaugh 1991: 273). Rumbaugh, in turn, states that “there is no abso-
lute line between the various design phases” (1991: 187).

The methods also differ among themselves with regard to how, in the analy-
sis, they identify various kinds of relationships between objects. Coad & Your-
don emphasize, in the analysis stage, the importance of finding inheritation and
aggregation structures (i.e., “Gen-Spec” and “Part-of”). Rumbaugh, in turn, sug-
gest that generalization and aggregations should be primarily modeled in the
design stage. Rumbaugh sees aggregation merely as “an association with extra
connotations” (1991: 156).

According to Rumbaugh, there isn’t “any such thing as a perfect analysis”
(1991: 187). He states, moreover, that

All abstractions are incomplete and inaccurate. – – The purpose of abstraction is to
limit the universe so we can do things. In building models, therefore, you must not
search for absolute truth but for adequacy for some purpose. There is no single ‘cor-
rect’ model of a situation, only adequate and inadequate ones. (Rumbaugh 1991: 16.)

Music Notation as Objects

82

Hence, I suggest that decisions on what to focus on in the analysis, and
where to draw the line between analysis and design, should be made only after
the problem domain has been examined. The exact distinction between analysis
and design can be made after both the problem domain and the solution domain
have been defined. Analysis should operate on the terminology of the problem
domain, while design would deal with terminology of the solution domain.

83

Chapter 5
Refining the methodology with
linear logic

The object-oriented software engineering methods presented in the previous
chapter provide advice and examples for identifying classes and their relation-
ships. However, the detailed construction process of an analysis or design model
is generally explained in a relatively abstract way. Moreover, the methods place
very few restrictions on what kinds of relationships or structures are allowed.
Although analysis and design examples are provided, they illustrate relatively
simple problems that do not approach the complexity of music notation.

As described by Booch (1994: 148-150) a common method for performing
an analysis and design process is by trial and error. There, a primary model is
created ad hoc and then tested, after which it is either refined or discarded. In
dealing in this way with a system as complex as music notation, the amount of
models to be tested can easily become impracticably large – especially if the
time available for performing the analysis is limited. Here, linear logic is pre-
sented as a basis for a disciplinary rule set that can be used to systematize further
the object-modeling task. One advantage of the rule set is that it encourages the
analyst to be consistent in the usage of class relationships, “part-of” structures in
particular.

Linear logic was introduced by Jean-Yves Girard (1987) as an extension or
alternative to classical logic. When applied to object-oriented analysis, linear
logic leads to the building of coherent aggregation structures. When strict crite-
ria for defining aggregation relationships are at the analyst’s disposal, other
structures become easier to identify. This can both improve consistency in the
model and speed up the analysis task. In this chapter, the principles of linear
logic are described. Also discussed are the application of linear logic to object-
oriented analysis and its implications for UML.

To judge from the amount of publications, research in linear logic was most
intensive in the late 1980’s and early 1990’s. Since then, interest seems to have
declined, but there still is active research in the topic, both on theoretical and
practical levels. This chapter concentrates on describing the fundamental con-
cepts of linear logic and its application to object-oriented methodology.

Music Notation as Objects

84

Advanced theoretical or syntactical concepts of linear logic, as well as its appli-
cation in logical calculation and logic programming, are beyond the scope of
this study.

5.1 Linear logic

Linear logic is a logic based on limited resources. Girard demonstrates the fun-
damental difference between classical and linear logic with the following propo-
sition (1995):

if A and A ⇒ B, then B

According to the proposition above, in classical logic both A and B would hold,
whereas in linear logic A would be “consumed” when the proposition is evalu-
ated. That is to say, A would be rendered false. Girard gives an analogy of A
being the sum of $1, B being a pack of cigarettes, and the implication arrow
meaning “get”. In that case, the sum of $1 would be consumed in getting the
pack of cigarettes. Girard compares classical logic’s interpretation of this case to
a situation where the owner of A would have an unlimited amount of money,
which is rarely the case in real life.

Girard does not present linear logic as a replacement for classical logic.
Instead, he proposes it as an extension to it: a “logic behind logic” (Girard 1987:
2). Compared to classical logic, linear logic reflects a different notion of time.
The truth values of factors are expected to change as a result of linear expres-
sions. As a distinction from classical logic, Girard (1995) has presented a spe-
cialized syntax for clauses using linear logic.

Girard compares linear logic to intuitionist logic. Like intuition-based logic,
linear logic is constructive. Moreover, it can be translated from intuitionist logic
in a consistent way. Girard regards computer science as a central application
area for linear logic. He holds, for example, that linear logic can enhance opti-
mal performance by enabling parallel processing on the logical level (Girard
1987: 2-8).

Linear logic reflects physical, real-world objects. Therefore, it can be applied
to the study of such natural phenomena as the behavior of physical material or
energy. The basic concepts of linear logic yield interesting implications when
applied to object modeling. The idea of preserving objects as if they were physi-
cal material is easily correlated to computing hardware, but seems to contradict
many conventions of software design and programming. In particular, linear
logic challenges the “reference semantics” used in many conventional and
object-oriented programming languages. When applied to computer science, lin-

Refining the methodology with linear logic

85

ear logic challenges both the established von Neumann-style mathematical met-
aphor of programming languages, as well as common resource management
conventions (e.g., memory management).

5.2 Computational applications

Applications of linear logic in computing science have been studied extensively.
This includes the development of linear-logic programming languages, memory
management, and management of shared computing resources, such as input/
output hardware. Lygon (Winikoff & Harland 1996) is an example of a linear-
logic programming language, and it can be regarded as a linear-logic equivalent
of Prolog (Sterling & Shapiro 1986). Another linear programming language is
LO, which includes object-oriented-like features, such as “organizational”
inheritance (Andreoli & Pareshi 1990).

Many computer applications of linear logic focus on logic programming,
including development of new logic-programming languages. Some of the
applications are theoretical and fully adhere to the principles of linear logic.
Others are more liberal and pragmatic because they include some linear func-
tionality (Wadler 1991). Newer theoretical contributions include Girard’s Light
Linear Logic (1998) and Asperti and Roversi’s Intuitionistic Light Affine Logic
(2002).

Henry Baker has applied principles of linear logic to the implementation of
linear programming languages and techniques. He has, for example, experi-
mented with application of linear logic to the LISP, FORTH and PostScript pro-
gramming languages. He has also described how linear logic relates to object-
oriented programming languages (Baker 1994c). Baker has both described the
implementations of purely linear logical language and has proposed linear vari-
ables as extensions to existing programming languages (ibid.).

Baker argues that linear logic solves many problems caused by mathematical
thinking based on classical logic, which is the kind of mathematical thought that
forms the basis of many conventional programming languages, including FOR-
TRAN and C. In particular, Baker illustrates the benefits of linear programming
as applied to the management of shared computer resources, such as the central
processing unit (CPU) or a video display. He also states that linear logic adapts
more naturally to the modeling of physical objects than do the mathematically
oriented, conventional programming techniques.

According to Baker, linear variables are “use-once” resources. They are
“consumed” by functions that take them as parameters. Thus, variables whose
values are needed more than once must be explicitly copied before their evalua-

Music Notation as Objects

86

tion. Baker demonstrates this principle by programming examples in LISP
(1994a).

On his view (Baker 1994a: 35-36), linear objects correspond to real-world
objects: “Linear objects have ‘true’ identity.” In Baker’s “linear style of pro-
gramming”, objects may be easily moved but not easily copied or destroyed. On
the other hand, since linear functions consume their arguments, a function must
explicitly return the argument if it is intended to be used again.

The central physical resources in computing are memory, processing units,
input/output devices, and peripheral devices. Since they all are physical objects,
each of them can be used by only one party at a time. Thus, they can be seen as
true linear objects. They cannot be copied (without requiring external material
or energy). They can, however, be passed from one user to another. Moreover, in
Baker’s linear style of programming, virtual resources, such as variables, are
treated as if they were physical objects. This requires a special discipline for
handling the resources, which is ideally provided by the programming language.

According to Baker, linear logic allows only one “path” to an object (1994a:
36). In other words, there can be only one direct reference to a linear object. Fur-
ther, the object may be accessed by only one other object at a time – the object
that holds the reference. A linear object cannot be copied, unless it explicitly
provides a method for copying itself. When an object is copied, all its parts are
copied with it. (This procedure is called a “deep copy” whereas in a “shallow
copy” only references to the parts are copied.) Because there is always only one
access path to an object, objects may be part of only one aggregate at a time.

The spatial behavior of a linear programming language may be demonstrated
with a simple example. If we assume that a, b are variables, the statement

c = a + b

would yield c (as a sum of a and b), while a and b would be consumed. Another
interpretation could be that a and b are merged, and c would indicate the merger
of variables. In a computer implementation, the memory allocated for a and b
could be reused by c. Thus, memory space requirements could (ideally) remain
constant.

5.3 Considerations

Linear logic questions the principle of “reference semantics” used widely in
object-oriented programming languages. Reference semantics means that
objects are not physically stored as part of each other, even in an aggregation

Refining the methodology with linear logic

87

relationship. Rather they are accessed by a reference, which is typically the
memory address of the object.

In many high-level languages, such as Smalltalk and SELF, reference seman-
tics is considered a benefit: an object may be efficiently moved from place to
place and referred to by several objects at once. Thus, an object may logically be
part of several other objects at once. This violates the main principle of linear
programming, which states that there may be only one physical as well as logi-
cal instance of an object. Languages that use reference semantics allow multiple
logical instances of one physical object.

The high esteem for reference semantics, which is apparent in the software
engineering methods presented in the previous chapter, can be seen as a reason
for the acceptance of their inability to provide systematic principles for evaluat-
ing the resulting object models. They all fail, for example, to strictly and unam-
biguously distinguish aggregation from association. This is perhaps not
surprising, since in commonly-used, object-oriented programming languages
both association and aggregation are typically implemented in the same way: by
referencing.

Linear logic solves this problem simply and straightforwardly by allowing
only one logical instance of an object. This implies that an object may be an
immediate part of only one object at a time. To be used as a part of another
object, either it first must be removed from its previous owner, or it must be
explicitly copied. After copying, there would exist two independent objects.
Association, on the other hand, is equivalent to the name of an object – not to the
object itself.

Furthermore, when a container object has total ownership of its parts, it can
also block outside objects from access to those parts. This yields true data
encapsulation. In reference semantics, an object that (even temporarily) allows
access to its parts loses total ownership of them. Therefore, there are strong
grounds on which to state that linear logic can guarantee true encapsulation,
while reference semantics cannot.

Linear logic has been criticized as being computationally inefficient (Baker
1994b), although both Girard and Baker have regarded it as a means of improv-
ing efficiency (Girard 1987: 2; Baker 1994a). Assumed inefficiency may be one
reason why linear logic hasn’t yet gained wide acceptance among programmers
or in the development of mainstream programming languages. Another reason
may be that programmers are simply not motivated enough to learn a discipline
that differs from conventional algorithm design and implementation. A third rea-
son might be that linear logic may prove difficult to understand by persons
accustomed to classical logic, one of the cornerstones of digital computing.

Music Notation as Objects

88

Nevertheless, linear logic has an established position among logics and among
the theoretical tools of computer science.

5.4 Application in object-oriented analysis

The implications of linear logic on object-oriented analysis and object modeling
in general can be divided into two areas: 1) implications on structure, and 2)
implications on dynamic behavior. Both implications can be derived from
Baker’s statement that “there is only one ‘path’ to an object at a time”. This
automatically implies that an object can be part of only one other object at a
time. On the other hand, since every object must exist somewhere within the
object system, every object must be part of some other thing, either an object or
a larger construct such as a whole system (if it is something other than a large
object) or some undefined construct. In a pure object system all data is stored
within objects; hence we can simply assume that all objects within an object sys-
tem are part of some larger object. We may also assume that the system itself is
an object that is part of some larger, undefined “supersystem”. This structural
implication leads to a clear distinction between aggregation and other types of
association.

The main dynamic implication on object modeling is derived from the lin-
ear-logic principle that clauses or functions consume their arguments. The effect
of linear logic on dynamic modeling depends on the degree of linearity used in
the process of developing software. If a purely linear programming language is
used in the implementation, requirements imposed by linearity must also be
taken into account in dynamic modeling. Because (as suggested by Coad and
Yourdon) implementation issues should, however, be ignored at the analysis
stage, linear dynamic behavior should be modeled from the design stage
onward. This also leads to the question of whether detailed dynamic modeling
should be performed at all in an object-oriented analysis. The aggregation struc-
ture may, however, be modeled according to linear principles without assump-
tions being made about the implementation programming language. In this case,
it is up to the designers and implementers to decide to what degree linear logic is
applied beyond structural issues.

Linear logic provides a systematic means for controlling complexity. It leads
to the formation of a coherent aggregation hierarchy. Moreover, it provides a
method for systematically conducting and evaluating an analysis. There may be
other, even better, methods for systemization of the analysis process. For this
study, however, none were readily at hand. Linear logic was adopted here
mainly because it restricts the amount of aggregation relationships and forces
the building of a simple, “part-of” structure, thus making it possible to handle a

Refining the methodology with linear logic

89

system as complex as music notation. Furthermore, the distinction between
aggregation and association is clarified. Without this systematic and strict addi-
tional method, all decisions concerning aggregation would have to be argued
independently, which would make the analysis process extremely difficult and
slow.

The main criticism against linear logic stems from its computational ineffi-
ciency. Even so, computing efficiency is not the primary aim of object method-
ology in general; and since the present study is primarily theoretical, practical
issues such as performance are considered secondary here.

5.5 Formal rules for a linear object system

The main principles of a linear object system are defined by the following rules:

1. There may be only one physical instance of an object
2. Every object must have a unique identifier
3. Every object must at all times be part of some other object within the

system
4. If an aggregate is destroyed, all its parts are destroyed with it
5. An aggregate controls the access to its parts

As described above, the main implication of linear programming is that there
may be only one physical instance of an object. Rule 1 restricts aggregation,
such that an object may only be the immediate aggregate of one object only.
Aggregations may nevertheless form a hierarchical structure. To become the
immediate part of another object, it must first be removed from its present aggre-
gate. As stated by Baker (1994a), to be acquired by the next user, the object must
be returned to its original location. The only alternative to the removal of an
object would be to construct an identical but independent copy of the object.

The second rule states that every object has a unique identifier by which its
owner refers to it. From here on, this identifier shall be called an object name.
An object name does not imply the physical existence of an object. In linear
object terminology, a name is unbound to the object. Baker (1994a), in contrast,
uses the word name exclusively to mean a bound name, i.e., the actual object –
which can be referenced only once (Baker 1994a).

Derived from Rule 1, Rule 3 states that every object must have an owner. It
thus follows that a system will form a single aggregation hierarchy. One object
shall be the root of the aggregation hierarchy. As described above, even the root
object may be conceived as part of a larger, but undefined system.

According to Rule 4, aggregation controls the existence of the object. If any
parts of an aggregate are to be preserved, they must be explicitly removed from

Music Notation as Objects

90

the aggregate and placed into another object prior to the destruction of the
aggregate. As a result, there will be no objects without an owner (Rule 3).

Rule 5 means that an aggregate may either block or permit access to its parts.
Either all references to the aggregate’s parts must be passed through the aggre-
gate, or the parts must be removed from the aggregate and inserted as parts of
the accessing object. The object’s owner has control over its contents, but can
give access to those contents to only one object at a time. During the access
operation, however, the aggregate shall hand ownership over to the accessing
object. The original owner can access the object only after it has been returned
by the accessing object.

Within the scope of this study, inheritance is not affected by linear logic.
Conventional, class-based inheritation is not in contradiction with Girard’s or
Baker’s principles. Common inheritation structures – both single and multiple
inheritance – can be used in a linear object system. For example, in a static type
of class-based object system, e.g., in C++, inheritance relationships are con-
structed at the programming stage – prior to the execution of the program and
the creation of the object instances. This behavior is also visible in the notation
conventions of UML object diagrams. UML gives no predefined means of show-
ing inheritation hierarchies in object diagrams. Inheritation is shown in class
diagrams only. In dynamic programming languages, where inheritance struc-
tures may be changed during run-time, linearity can impose restrictions on the
use of some of the language’s capabilities. These considerations are, however,
ruled out here.

The implications of linear logic on dynamic modeling can be summarized as
follows:

1. An aggregate cannot allow direct access to its parts.
2. Upon a request for data or resources, an aggregate will either hand over

total ownership to the data/resource or will produce a complete copy of
the requested data.

3. Operations consume their arguments.
4. An operation must explicitly return any argument that needs to be pre-

served.

5.6 Implications for UML notation

UML provides sufficiently explicit notation to model linear-logic-based class
relationships. In particular, UML’s composition feature is equivalent to a linear
aggregation relationship. Regular UML aggregations would, however, either not

Refining the methodology with linear logic

91

be allowed or should be interpreted as compositions. Other types of associations
would be allowed, provided that the rules listed above are followed.

In linear class diagrams, association classes must also follow the formal
rules just presented in section 5.5. This means that an instance of an association
class must be part of another object in the system. Furthermore, the instance of
the association class may only exist when the respective association exists. A
suitable aggregate for the instance of the association class would be one (and
only one) of the objects associated with each other. The choice of this aggrega-
tion relationship can, however, be left to the implementation stage. Therefore,
UML notation for association classes is permissible.

In structural diagrams, linear logic, at the least, affects state diagrams.
Because operations consume their arguments, an object’s state may change con-
siderably during operations. The explicit copying requirements described above
should also be presented in the UML state diagrams. In general, however, nei-
ther UML syntax nor UML semantics would be affected.

5.7 Toward a systematic analysis process

One interesting side-effect of linear logic is that it opens a door to the systemiza-
tion of object-oriented analysis. Since there can be only one aggregation hierar-
chy with a single root object, this root object can be used as the starting point of
an incremental and iterative decomposition process. There, the target system
(i.e., the root object) is divided into parts, each of which is divided into smaller
parts. This process continues until a desired level of abstraction for the system is
reached or until primitive (i.e., indivisible) attributes are encountered.

After the aggregation hierarchy has been constructed, objects can be classi-
fied. The search for similarities in these classes can lead to the definition of
superclasses. Superclasses themselves can be investigated for similarities that
might justify the definition of higher-level superclasses. Finally, through use of
the inheritation structure, the aggregation structure may be reduced and simpli-
fied.

If the initial aggregation structure is detailed at the level of individual
attributes and operations, classical categorization may be sufficient for con-
structing the inheritation hierarchy. Otherwise, conceptual clustering or proto-
type theory could be used as well. We shall call this method Top-down
Aggregation, Bottom-up Inheritation (TABI).

Steven Travis Pope has discussed the difficulties of systemizing object-ori-
ented analysis and design processes. According to Pope, the systematic, struc-
tural, top-down decomposition techniques used in many non-object-oriented
engineering methods cannot be applied in an object-oriented environment

Music Notation as Objects

92

because “there is no top” (Pope 1991a: 34). By this Pope means that object-ori-
ented programming languages generally allow multiple, separate aggregation
structures to exist in the same object system. In a linear aggregation structure,
the root object forms a “top”. Therefore, a top-down decomposition process can
be conducted.

TABI could be used either as the main principle for organizing the analysis
process, or it might serve as a means of testing an existing structural model at
some phase of an iterative modeling process. As pointed out by Booch (1994:
229-234), however, formal methodology can have negative consequences when
applied too strictly. Therefore, TABI should be viewed as an option rather than a
mandatory process. Furthermore, when a finished model is examined, the ques-
tion of how (through what process) the model was constructed should be irrele-
vant. We thus leave further discussion of TABI for future study.

93

Chapter 6
Analysis principles for music
notation

Here, the methodology presented in the previous two chapters is applied to anal-
ysis of music notation. Basic principles of analysis are discussed, and the goals
and scope of the analytic model presented in the next chapter are described. We
revisit some current models of music representation, discussed earlier, but this
time from an object-oriented point of view.

The first of the analysis principles discussed in this chapter concerns the
choice of information to be used as the primary target of the analysis (i.e.,
choosing the orientation of the object representation). The second principle
involves how to categorize the signifiers of an object-oriented representation.
The third principle deals with the scope of the analysis. Also in this chapter, gen-
eral requirements for our analysis model are presented, and a set of preliminary
examples are given so as to clarify our method further.

6.1 Existing systems

Questions concerning the choice of orientation for analyzing music notation can
be approached through examination of existing object-oriented or object-like
representations. As will be shown below, the structural architecture of the repre-
sentation reflects the primary orientation or motivation of each one.

First we describe two systems that are not designed specifically for musical
or notational purposes: Sound Processing Kit and Adobe Illustrator. They both
have relatively simple representational structures. Sound Processing Kit is an
object-oriented software toolkit for audio signal processing; Adobe Illustrator is
a vector-based, general-purpose drawing program. In addition to these two sys-
tems, we describe a group of musical representations and briefly explain the
ways each one manifests various object-oriented features; aggregation, inherita-
tion, and associations, in particular.

Music Notation as Objects

94

6.1.1 Sound Processing Kit

Sound Processing Kit (Lassfolk 1995, 1999) is an object-oriented software sys-
tem for audio signal processing. Sound Processing Kit (SPKit) was designed for
use by programmers for implementing audio-signal processing programs, and
by educators for teaching digital-signal processing techniques. SPKit contains a
class-based object system that provides objects for individual tasks of signal
processing. These tasks range from simple arithmetic operations, to signal rout-
ing operations, to complex audio effects such as reverberation.

SPKit utilizes both inheritation and aggregation in order to conserve on pro-
gramming efforts. The SPKit inheritation structure is built on a single super-
class, the SPKitProcessor. It provides basic attributes and operations for
connecting signal-processing objects and for transmitting audio signals between
objects. All other classes in SPKit are subclasses of SPKitProcessor. Inheritation
is used in other classes as well. For example, a set of Butterworth filters (Dodge
& Jerse 1985: 189-193) is built on a superclass named SPKitButterworthFilter,
which implements the common properties of second-order, Infinite Impulse
Response (IIR) filters (see Oppenheim & Schaefer 1975: 195-269). The four
subclasses are specializations of the four basic Butterworth filter-variants: low-
pass, high-pass, band-pass, and band-reject.

Aggregation is used for constructing complex audio effects from relatively
more primitive objects. For example, the class SPKitSchroederReverb imple-
ments a classic modular reverberation algorithm invented by Manfred Schroeder
(Dodge & Jerse 1985: 229-237). Schroeder designed several artificial digital
reverberators based on two modules: a comb filter and an allpass network (a.k.a.,
allpass filter). Both of them consist of a delay line and a feedback loop. This
results in a “circular delay”, in which a signal is continuously recycled and pro-
duces a bouncing, echoing sound. Combining several of these units creates a dif-
fused reverb effect, in which individual echoes are difficult to hear. A signal-
flow diagram of one type of Schroeder reverberator is shown in Figure 6-1. The

Analysis principles for music notation

95

figure displays a digital audio signal flowing from left to right through four par-
allel comb filters and two, serially-connected, allpass networks.

A UML class diagram of the equivalent SPKit Schroeder reverberator is
shown in Figure 6-2. There, the class SPKitSchroederReverb represents the
complete reverberator. SPKitSchroederReverb contains four SPKitComb objects
and two SPKitAllpassNetwork objects. SPKitComb and SPKitAllpassNetwork
contain one SPKitFBDelay object each. SPKitFBDelay is a class that defines a
delay line, which can be included in a signal feedback loop. SPKitSchroederRe-
verb has been implemented by Janne Halmkrona.

One advantage of SPKit is that the sound-processing modules initialize
themselves automatically when connected to other SPKit objects. During the
initialization process, the objects negotiate with each other to determine basic
signal-processing parameters, such as signal-sampling rate or channel count,
and to identify which objects they are connected to. Because new classes can
inherit most of this behavior from existing SPKit classes, the system is easy to
extend.

SPKit was not intended specifically for end-users, but for programmers and
for studying the implementation of signal-processing algorithms. Therefore, its
advantages might be recognized mostly by people with experience in computer
programming. SPKit was a successful experiment in object-oriented design. In

comb filter

comb filter

comb filter

comb filter

allpass
network

allpass
network+

input signal output signal

Figure 6-1: Signal flow diagram of a Schroeder reverberator

Music Notation as Objects

96

educational use, SPKit provides a concrete tool for teaching the vocabulary of
object-oriented design and the application of signal processing theory.

SPKit is an example of a system in which representation and processing
algorithms are tightly connected to each other. The representation, i.e., the SPKit
class system, is based on the assumption that objects are connected with each
other in a specific way and order. Furthermore, it is assumed that audio-signal
processing parameters and the audio signal itself are transmitted from object to
object by using predefined transmission protocols. No interference is needed
from outside objects once a sound processing task has been started.

SPKit was a successful approach to signal processing mainly because a PCM
audio signal is itself a rather simple representation – especially as compared
with common music notation or its computer representations. A similar object
system would not work equally well in a music notation system. For example,
optimal spacing would be very difficult or even impossible to achieve by nota-
tion symbols negotiating and adjusting their positions by themselves, without
the supervision of a higher-level object – or a human being. Moreover, if the rep-
resentation of a music notation system were tied to the use of some predefined
spacing-algorithm, new results in this difficult field of research would be hard or
impossible to apply.

SPKitFBDelay

SPKitComb SPKitAllpass
Network

SPKitSchroeder
Reverb

SPKitProcessor

4 2

1 1

Figure 6-2: UML class diagram of the SPKit Schroeder reverberator

Analysis principles for music notation

97

6.1.2 Adobe Illustrator

Illustrator is a drawing program developed and marketed by Adobe Systems,
Inc. Illustrator is a vector-based program; i.e., it uses vectors as its fundamental
graphical element. In addition to vectors, Illustrator supports text fonts (which,
in fact, are also comprised of vectors) and pixel-based graphics that can be
imported from other programs.

Illustrator is heavily based on the PostScript graphics language, also
designed by Adobe. Like PostScript, Illustrator organizes vectors into “paths”. A
path is a combination of two-dimensional graphical coordinates and commands
that dictate what kind of graphical shape will be used to connect a group of coor-
dinates. Among the available shapes are straight lines and Bezier curves. The
path may be “struck” to form a line or “filled” to form a solid area with a speci-
fied color.

Illustrator also allows the formation of groups of any kind of graphical
objects it supports. Groups can also hold other groups so as to form hierarchical
aggregation structures. Virtually any number of objects within a single docu-
ment may be grouped. Conversely, the objects can be “ungrouped” for individ-
ual manipulation. Grouping allows the manipulation of several objects as a
single unit. Hence, with a single command a user can apply a graphics-process-
ing function to all objects in a group; such functions include moving the object
to another position, rotation, changing the object’s size or color, and so on.

In the data representation of Illustrator, every object – such as a path or a
group – is referred to as a certain “Art”. A group object, for instance, is named
GroupArt, and a path object is called PathArt. Other object types available are
CompoundPathArt, TextArt, TextPathArt, TextRunArt, and PlacedArt (Abobe
1993). Compound paths are combinations of paths that can be used to create
graphic objects that contain “holes” (i.e. blank areas). The various text-related
objects are used to display text which is comprised of predefined characters
from a specified font. PlacedArt is an object for pixel graphics imported from
other programs.

Illustrator serves as a good example of a representation that is both simple
and flexible. Moreover, Illustrator’s representation has been proven to work in
professional illustration tasks. Yet, even though Illustrator’s representation and
graphic capabilities are sufficient to create music notation, the program lacks
any kind of musical or music-engraving intelligence. Every object created must
be created and placed manually, which makes music engraving work difficult.
Still, Illustrator and similar applications can be used to modify the graphic out-
put of an external music notation program. Illustrator’s representation can also

Music Notation as Objects

98

be used as a model by which to design the low-level graphic kernel of a music
notation program.

Although Illustrator’s representation is not genuinely object-oriented, it
includes a simple and shallow inheritation structure. All objects can be consid-
ered special instances of a generic Art object. With GroupArt objects, the user is
allowed to construct hierarchical aggregation structures of practically unlimited
depth. Generic associations, on the other hand, are not available.

6.1.3 SCORE

Although the SCORE parameter list, described in Chapter 3.8, is not a genuinely
object-oriented representation, it can be examined from an object-oriented per-
spective. For example, SCORE includes a classification scheme for organizing
musical symbols. Figure 6-3 shows an UML class diagram of SCORE’s data
representation.

SCORE’s equivalent of a class is an Item. Each Item has a code number that
determines the type of the Item. SCORE version 3 has 17 code numbers, which
represent different types of symbols. The class diagram in Figure 6-3 shows an
inheritance structure with a single superclass, Item, on the left. In the UML dia-
gram, subclasses are named either by the type of symbol they represent or by
their code number. The latter naming convention applies to Items that represent
two or more different kinds of symbol. If two or more different symbols share
the same code number, they are modeled in the diagram as subclasses of that
code number.

Every Item is associated with a Staff, but not vice versa. This uni-directional
relationship is shown with an arrow head pointing out the direction of the associ-
ation. This feature is called “association navigation” in UML terminology
(Booch et. al. 1999: 143-144). Each Staff has a unique numerical identifier.
Staves within a single system are typically numbered from the bottom-most to
the top-most staff, from 1 to the maximum of 32, respectively. Other Items have
a Staff number attribute that indicates which Staff the Item is attached to. The
Staff, however, does not know which or how many Items are attached to it.
Moreover, SCORE allows a Staff to be removed without the attributes of the
Items attached to it being affected. Thus, SCORE allows Items to exist that are
attached to a nonexistent Staff.

Not shown in the UML diagram, each SCORE Item has a horizontal and a
vertical coordinate. The coordinates determine the Item’s position on a two-
dimensional coordinate system. For all Items except Staves, the coordinates
determine the Item’s position on a Staff. For Staves, the coordinates determine

Analysis principles for music notation

99

Item

Staff
(Code 8)

Note
(Code 1)

Rest
(Code 2)

Clef
(Code 3)

Line

Hairpin

Beam

Tremolando

Code 4

Code 5

Code 6

Code 7

Slur

Tie

Tuplet
Bracket

Trill

Ottava

Pedal Mark

Barline

Brace

Bracket

Rehersal
Number

Rehersal
Letter

Page
Number

Ending

Symbol
(Code 9)

Code 10

User Symbol
(Code 11)

Special Shape
(Code 12)

Code 14

PostScript
(Code 15)

Text
(Code 16)

Key Signature
(Code 17)

Time Sign.
(Code 18)

Music Notation as Objects

100

the position on a page or within a system. Also, all Items have a size attribute, as
well as additional attributes that are specific to the type of Item.

Many notation symbols closely associated with notes are implemented in
SCORE as parameters of the Note Item. These symbols include accidentals,
articulations (e.g., staccato, tenuto, sforzando, and the like), augmentation dots,
stems (including the stem’s direction, origin, length, and thickness), and ledger
lines. This can be regarded a logical “part-of” structure although the parts are
implemented as parameters or groups of parameters rather than as distinct Items.

One deficiency in the data structure of SCORE is the limited availability of
associations that bind related symbols together. For example, Beams are associ-
ated with a Staff, but they have no direct or explicit association with the note
stems to which they are visually connected. For example, if a Note is moved
during a manual editing process, the Beams are left hanging in their original
position. If the note is moved far from the Beam, the Beam has to be manually
moved or resized; then, with a dedicated editing command, it must be graphi-
cally connected to the nearest stem. Furthermore, stem lengths may also have to
be adjusted through the use of another editing command. SCORE associates
stems with Beam Items implicitly by interpreting their coordinates (SCORE
1992b: 85-87).

It can be argued that SCORE would benefit from the use of explicit associa-
tions and from other structural features provided by object-oriented program-
ming languages. For instance, the FORTRAN programming language could, in
principle, be used to implement associations or association-like referencing to
objects. This has been demonstrated by Rumbaugh et al. (1991: 340-365). The
main reason for lack of associations within SCORE, however, probably lies in
the design of its data structures – not in the implementation programming lan-
guage itself.

SCORE uses a simple form of inheritation by reserving the first few parame-
ters of each Item for common attributes. Further, some Items have “subclasses”
implemented by the grouping of similar symbols under a common Item. In this
respect, SCORE approaches an object-oriented architecture. SCORE’s simple
inheritation structure is mainly founded on graphic similarities between objects.
For example, Beam and Tremolando (also a beam) share a common Item num-
ber, as do Slur and Tie. Also in this respect, the SCORE parameter list can be
regarded as a graphically-oriented representation.

6.1.4 Tilia and MusicXML

Tilia and MusicXML utilize more modern representational techniques than
those used by SCORE. In particular, they support associations (called, e.g.,

Analysis principles for music notation

101

“links” or “references”) between objects belonging to different aggregation
structures. Also, they show a tendency toward logically-oriented representation,
in contrast to SCORE’s graphically-oriented approach.

In Tilia (Haken & Blostein 1994), a voice is the basic aggregational unit.
Each voice is stored as a separate list of nodes. Note and rest nodes, for example,
are parts of a voice. A voice may visually move from one staff to another. On the
other hand, more than one voice may be printed on the same staff. A “PRINT”
node in a voice determines the staff on which subsequent nodes are printed (e.g.,
nodes such as a note or rest symbols). The aggregation hierarchy of a Tilia docu-
ment is limited to two levels: voice and node. The relationship between a staff
and the nodes within a voice can be regarded as an association.

Tilia allows the creation of links (i.e., associations) between nodes in differ-
ent voices. This feature is used during the automatic formatting process in the
Lime program. Tilia includes a primitive form of inheritation, somewhat similar
to SCORE: the first four fields have a common meaning in all node types. Other
fields are specific to each node type.

MusicXML (Good 2001) allows two types of alternate aggregation hierar-
chies, called “part-wise” and “time-wise”. In time-wise representation, “note”
elements are parts of a “part” element, which is, in turn, part of a “measure” ele-
ment. In part-wise documents, the note elements are part of a measure element,
which is part of a part element. The top-level aggregation element is either
“score-partwise” or “score-timewise”, referring to either one of the aggregation
hierarchy types.

A MusicXML note stores its properties as either XML attributes or as sub-
elements, such as “pitch”, “duration” (a numeric value in beats), “type” (a text
string representing the durational value of a note, e.g., “eight” or “16th”),
“stem”, “beam”, and “lyric”. Besides note elements, measures or parts may con-
tain elements such as “key” (key signature), “time” (time signature), and “clef”.

MusicXML allows one to define identifiers for elements such as parts, mea-
sures, and beams. This in turn allows the building of associations between
objects. On the other hand, MusicXML does not offer any form of inheritance.

6.1.5 Object-oriented representations of music notation

Despite the dominant position of object-oriented methodology in software engi-
neering at the beginning of the twenty-first century, relatively few purely object-
oriented representations or analyses of music notation have been published.
Among these are the MOODS project, Glendon Diener’s TTree/glyph structure,
Andrew Eales’ Music Notation Toolkit, and Mika Kuuskankare’s and Mikael
Laurson’s ENP system. While being purely object-oriented, the MODE system

Music Notation as Objects

102

(see Chapter 3.13) is a polymorphic representation, wherein music notation is
only one form among many. Moreover, MODE is not designed for preparing
musical scores for printing or publishing purposes.

The MOODS system aims to achieve the cooperative manipulation of music
notation, and includes an XML representation for transmission of musical
manuscripts (Bellini & Nesi 2001, Bellini et al. 2002). An overview of the sys-
tem is presented on the MOODS project WWW home page (MOODS 2004).

In his Ph.D. dissertation, Glendon Diener presented a graphically-oriented
representation of music notation based on a hierarchical aggregation structure.
Diener used the representation to implement his Nutation notation program for
NeXT workstations. Diener’s representation is centered around a concept called
“glyph”. A glyph is a graphic symbol or a combination of several symbols
treated as one. A glyph can be as simple as a single note or as complex as a staff
and all the notes and other symbols on it (Diener 1990: 17-19).

Glyphs are stored in a hierarchical data structure called a TTree, which
resembles the “list” data structure of the Lisp programming language (Steele
1990). A TTree may grow in two directions, such that each leaf may be a root of
another TTree (Diener 1990: 32-35). Diener also explains that glyphs can be
implemented as objects, which would benefit from general, object-oriented fea-
tures such as inheritation (ibid.: 22-25). Furthermore, the Nutation program
includes polymorphic features for displaying musical data in various forms that
differ from and go beyond common music notation. These forms include a
piano-roll notation and Okinawan music notation (ibid.: 83-85, 99-105). In both
these forms of notation, the same basic glyph/TTree structure was used. Diener
mentions that Nutation also includes an object-oriented class system (including
an inheritation structure), but does not describe it in detail in his dissertation
(Ibid.: 22-25).

Diener’s dissertation can be regarded as a case study in using a particular
data structure for storing and manipulating notation symbols. His glyph-based
representation is consistently graphically-oriented, and the TTree system forms
a hierarchical and user-extendable aggregation structure. Diener’s text puts less
emphasis on inheritation and association relationships.

Andrew Eales (2000) published an UML description of his Music Notation
Toolkit, a software system written in C++ for the Microsoft Windows environ-
ment. Eales presented an UML diagram of the “problem domain” and a model
of the “problem domain with extensions”. The first of these could be called an
analysis model, and the second a design model, respectively. Both models
include a deep aggregation hierarchy, with classes called “Score”, “Page”, “Sys-
tem”, and “Staff” forming the highest four levels. At the bottom of the aggrega-
tion hierarchy are the classes “Chord”, “Note”, and “Rest”. In the problem-

Analysis principles for music notation

103

domain model they are parts of a “Voice”. Voices are part of a “Bar”, which is, in
turn, part of a Staff. Few inheritation relationships are presented in the model of
the problem domain. In the extended model, the class “MusicSymbol” is pre-
sented as a common superclass for most objects. “LineSymbol”, “MusicEvent”,
and “AbstractBar” are presented as additional, intermediate superclasses.

Eales’ UML diagrams show his object system to be a combination of
graphic, logical, and performance objects. Some comparisons between our own
model and Eales’ are presented in Chapter 9.

The Expressive Notation Package (ENP) by Mika Kuuskankare and Mikael
Laurson (2003) is an object-oriented music notation program intended for com-
positional and music-analytic use. ENP is written in Common LISP and in the
OpenGL graphics programming language. ENP includes an object-based repre-
sentation system with a hierarchical aggregation and inheritation structure. ENP
also supports persistent object storage as described in Chapter 4.6.

6.2 Basic criteria for a new object representation

One way to improve consistency in a music notation representation is to give
priority to either logical, graphical, or performance information. In principle,
this should make the representation consistently logically-oriented, graphically-
oriented, or performance-oriented. In an object-oriented representation, priority
can be achieved by modeling only one of these types as object and modeling the
other types as properties or relationships of those objects. Giving one of the
basic types of information absolute priority over the other types can also help to
make that representation explicitly the best-suited or most “idiomatic” one for a
chosen application. One characteristic of an explicit, “best fit” representation is
that one-to-one mapping exists between signifiers and signifieds. Here, the cen-
tral question is, What signifieds are the representation’s signifiers intended to
represent?

For notational purposes, performance information is the most difficult crite-
rion on which to ground one of the three basic types, because straightforward,
one-to-one mapping is, in many situations, hard or impossible to achieve
between notation symbols and performance signifiers, such as MIDI events – let
alone samples of audio signals in a digitally recorded, acoustical performance. If
a performance-oriented representation is intended to support representation of
music notation, then signifiers not directly tied to performance would very likely
be needed in addition to or instead of the notation symbols. This would result in
a hybrid performance/notation representation, where consistency and explicit-
ness would be hard to achieve. The proposed notation extensions to MIDI, men-
tioned above, exemplify such a situation.

Music Notation as Objects

104

Many existing computer representations are at least partly logically-oriented.
In both NIFF and MusicXML, logical information is given priority in data trans-
mission between programs. Preservation of graphic layout is considered less
important and can be generated automatically. Yet, construction or reconstruc-
tion of many (if not all) forms of logical information from a graphically-oriented
representation (e.g., from the SCORE parameter list) is a relatively simple task
as compared, for instance, to the difficulties involved with automatic spacing or
page layout (as described in Chapter 2.7). For instance, the note name and
octave range may be quite easily computed given the type of note symbol, its
position on the staff, and its environment. Therefore, the preservation and
explicit expression of detailed graphics should be a central concern, especially if
the representation is intended to preserve the full expressiveness of music nota-
tion itself. Logical information can (and perhaps should), however, be given pri-
ority, especially if notational expressiveness is considered secondary to the
preservation of some form of “logic” beyond notation symbols. In fact, the
names of both MusicXML and SMDL (Standard “Music” Description Lan-
guage) reflect this kind of approach: their names suggest that they are represen-
tations of “music” rather than (only or primarily) “music notation”. This leads to
a rather difficult, but nevertheless interesting philosophical question: “Beyond
music notation, what is music?”

If a logically-oriented approach is to be chosen as the basis for an analysis
model, a central problem would be how to find and define the logical signifiers
and, especially, what their respective signifieds would be. If the logical type of
information in music notation somehow reflects human logic or cognition, then
some kind of conceptual or cognitive analysis should be performed in order to
find objective criteria for defining these logical signifieds and to discover suit-
able principles for their categorization. The fact that there already are logically-
oriented representations cannot be used as the only evidence of the existence of
such signifieds, or if they do exist, what they would be. The principles of how
and from where the signifieds in the existing logically-oriented representations
are derived, could, however, form a relevant subject for study.

In analyzing an assumed logic beyond music notation, the analyst should
consider, for example, what a “logical note” is and how it relates to or differs
from a visual note. Even if such logical signifieds could be found, it is hard to
imagine a logically-oriented representation completely free of purely graphical
signifieds – especially if the aim of the representation is to preserve, in detail, all
information of a printed score. Very likely, such a logically-oriented representa-
tion would eventually result in a hybrid, logical/graphic design.

In a graphically-oriented representation the signifieds are visual symbols.
Thus, rigorous one-to-one mapping between signifiers and signifieds may be

Analysis principles for music notation

105

easily achieved. This is a fundamentally different situation from a logically-ori-
ented representation, where the signified can be regarded as something that the
signifiers (i.e., visual symbols) represent – rather than what they “are”. There-
fore, a graphically-oriented computer representation can be regarded as more
iconic, and a logically-oriented representation as more symbolic, in their rela-
tions to music notation.

It is obvious that logically- and graphically-oriented approaches each have
their own advantages and disadvantages. A logically-oriented representation
may be optimal and explicit for many notation-related uses in music production
or for algorithmic music analysis. MusicXML, for example, is intended specifi-
cally for these areas of application (Good 2001). For other areas, a graphically-
oriented representation is likely to be more optimal. These last areas include
music engraving (or other tasks involved with the processing and publication of
printed music), notation of Western art music (especially that composed after
World War II), manual music analysis, or other uses where the main concern is
precise and detailed graphic expression. Further, as a more iconic representa-
tion, a graphically-oriented system stands on a firmer conceptual basis than does
a logically-oriented one, because there is undeniable visual evidence of its signi-
fieds.

A central problem in graphically-oriented representation is how to relate the
visual signifiers with the other types of information. In SCORE, most logical
and performance data are discarded completely. Adobe Illustrator provides an
even simpler representation, but operates on a non-musical semantic level. In the
present study, an object-oriented approach is proposed as a solution, such that
logical information is represented as relationships between graphic symbols.

The next chapter presents a new, object-oriented analysis model, which is
based on the following two assumptions:

1. Music notation represents music by interrelated graphical symbols.
2. Music notation does not exist without the presence of at least one identi-

fiable graphic symbol.

It thus follows that a software simulation of music notation can be realized by a
system of objects, all of which have a visual appearance. Furthermore, a docu-
ment of computer-simulated music notation having no visual objects should
contain no objects at all. Therefore, all logical data should be stored as attributes
of visual objects or represented as relationships between visual objects. The
result is a consistently graphics-oriented representation, where the need and role
of logical information is acknowledged. In this representation, one-to-one map-
ping of signifiers and signifieds is easy to achieve. The analysis/interpretation

Music Notation as Objects

106

process used in forming the representation is relatively simple and straightfor-
ward.

In a purely graphics-oriented representation, purely logical constructs such
as “voice” and “part” should be ruled out as organizational objects, because they
have no explicit visual appearance. Although a voice can be read and “extracted”
from a polyphonic texture, “voice” itself has no unique and distinctive visual
shape. The same applies also to a part, although a part may sometimes have an
explicit symbol that indicates its existence, as when an instrument's name is
printed to the left of a staff. In general, any element that can be regarded as
purely logical should be questioned and, if found to be so, should be ruled out as
a potential object. Hence such an element also cannot serve as a container for
other objects. Logical aspects can, however, be modeled as attributes of or asso-
ciations between purely graphic objects. For example, if a note is regarded as a
graphic element, and thus a valid object, then a voice (or part) can be modeled as
an association between notes.

Although the performance-oriented approach was ruled out as the basis of
the analysis model, the relationship between performance information and
graphic objects must still be considered. Firstly, as acknowledged in the SMDL
design principles (Sloan 1997: 470-471), there can be several different perfor-
mances of the same score. Secondly, several scores of the same piece of music
(e.g., which differ from each other in graphic layout) can yield a similar perfor-
mance. A performance of a musical score can be considered as a unique (and
often non-reconstructible) interpretation process. Once a performance is created,
it can (and maybe even should) be modeled as a separate object-system of a
completely different kind, such as a PCM audio signal or MIDI data. Moreover,
a printed score can provide sufficient information for a human performer to cre-
ate a musical performance. Similarly, a graphically-oriented computer represen-
tation can be designed to hold sufficient information for rendering an
algorithmic performance. Therefore, there is no absolute need for storing purely
performance-related data in a graphically-oriented representation. Moreover, a
performance of a score is not a mandatory part or property of the score itself.
(The inclusion of performance data could enhance the usability of a score, but
any particular performance should not manifest itself as the only possible inter-
pretation of the score.) Hence, exclusively performance-related aspects can be
ruled out of the analysis model.

In SMDL, the analytic domain is mentioned as one form of musical docu-
ment. Also, Diener mentions analysis as one of the main uses of music notation.
In many cases, analysis of a musical score involves addition of analytic symbols
to the score itself. In some cases, musical analysis is comparable to perfor-
mance, because it may yield a different, albeit often visual, representation of the

Analysis principles for music notation

107

score. Some music notation programs, such as Nightingale, support Schenkerian
analysis (Byrd 1994), which is one example of such an interpretation process.
Although many analysis methods make use of music notation, they often use
special rules that do not fall within the scope of common-practice music nota-
tion. Therefore, Schenkerian and other analytical notation practices have been
ruled out of the present analysis model.

In a practical computer application, non-visual objects may be needed; for
example, to represent a computer file system, data input and output devices, or
for optimization of computing performance. Consideration of the need for such
objects is an issue for the design and implementation of a computer program –
not the purpose of an analysis aiming at true simulation of a “real life” system.

6.3 Categorization principles

Given that an object-oriented representation is based on modeling visual sym-
bols, the principles for categorizing these symbols should also be considered. In
the case of music notation, at least three potential principles can be listed:

1. Shape or appearance
2. Evolutionary origin
3. Function

If the analysis were based on shape or appearance, then classification of objects
could be done according to their visual similarity. This approach is used in many
general-purpose graphics programs. Examples of names of objects used in such
programs are “line”, “circle”, “ellipse”, “rectangle”, and “polygon”. When
applied to music notation, this classification principle would not require much
expertise in the problem-domain from the analyst, but would probably yield a
model lacking fundamental logical information carried by music notation. Also,
graphic terminology could be hard for a musically-educated user to understand.
Therefore, it can be argued that exclusive use of general-purpose graphical ter-
minology would render the representation unfit for explicitly musical use.

Shape or appearance may be a usable categorization principle, if the problem
domain is quite abstract or is foreign to the analyst. This approach could also be
usable when the function or origin of the system is unknown or considered irrel-
evant. For example, in the analysis of electronic music, different kinds of sounds
or sound events can be classified without reference being made to their origin,
i.e., the device or synthesis algorithm that produced them. This principle is
applied, for example, in Spectromorphology, a method developed by Dennis
Smalley (1986) for the analysis of electro-acoustic music.

Music Notation as Objects

108

Evolutionary origin may be a fruitful classification principle, if objects can
be regarded as evolutionary offsprings of a single “ancestor” or group of ances-
tors. For example, the evolution theory of natural science is based on the
assumption that all life forms have a common ancestor and thus can be classified
according to their assumed evolutionary origin.

Considering the fact that music notation is a continuously evolving system,
evolutionary origin could be seen as a valid line of questioning. However, to
build a consistent and realistic model would require extensive research on the
evolution process of music notation. Furthermore, it can be doubted intuitively
that all notation objects could, for example, be traced to a single evolutionary
ancestor. After all, music notation is man’s creation – not an independent organ-
ism. Therefore, an evolutionary approach can be regarded as theoretically inter-
esting, but impractical.

The functional approach categorizes objects according to what they do, e.g.,
their effects on musical structure. This task requires knowledge of music theory,
and decisions on classification are made according it. Function is a relevant clas-
sification principle, when, for example, a system is static (non-evolutionary) or
when the function of objects is known but the evolutionary origin of objects is
unknown or considered irrelevant.

However, since music notation is a visual system, function and appearance
cannot be completely separated. In fact, in music notation the function of a sym-
bol may be, in many cases, derived from its shape. More precisely, the function
of a notation symbol is derived from two factors: shape and context. Therefore,
both function and shape should be taken into account in the classification pro-
cess. Evolution may be taken into account by making the object structure
expandable.

We may derive the function of some music notation symbols through shape
alone. For example, a treble clef is complex and unique enough to be distin-
guishable. On the other hand, the function of simple shapes, such as dots or
lines, may be interpreted only within a context. For example, both a note stem
and a barline are vertical lines, each possibly having the same length and thick-
ness. Slurs and ties are more complex examples of music notations that have a
similar shape but different function. Nevertheless, such symbols may still share
enough relevant properties (such as a complex drawing algorithm) to be grouped
under a common class or superclass.

To conclude the discussion on classification principles: function can be
regarded as the safest primary criterion for the analysis of music notation, as
long as one's goal is the computer implementation of music-production tasks.
The other two approaches may serve as additional means of identifying and
classifying objects. For example, beams and tremolandi, slurs and ties – each of

Analysis principles for music notation

109

these have a different musical function, though each pair is closely similar in
graphic shape.

As pointed out by Raymond Leppard, the use and correct interpretation of
notation symbols have varied from composer to composer, and style to style,
throughout the history of Western art music (1988: 27-34). Therefore, miscon-
ceptions may arise if symbols in historic manuscripts are categorized solely by
their currently-established function. Moreover, since music notation has evolved
much over its long existence, it can be expected to continue to evolve in the
future. Therefore, to make the model extendable and sufficiently flexible, evolu-
tionary aspects should also be taken into consideration in the classification pro-
cess.

6.4 Scope of the analysis

In Chapter 2.4, I listed Glen Diener’s three basic uses for music-notation pro-
grams: compositional, analytical, and archival. Ideally, an analysis model should
be applicable to any of these uses. To achieve this goal, in my discussion of
musical objects I have omitted all references to how music notation is input, out-
put, edited, or stored. In other words, the purpose has been not to analyze any
specific kind of computer application. The aim, moreover, has been not to model
even a manual (non-computer-based) process of entering or processing music
notation. Rather, the target of analysis is the core of general-purpose and
abstract music-notation.

Thus, the analysis aims at providing a description of key abstractions of the
common Western music-notation system. In principle, this description should be
applicable in the design of any type of computer program that includes capabili-
ties for music notation.

Following this choice, I have not included terms or objects such as files or
input/output devices. The analysis contains only objects that can be found in a
printed musical manuscript and generalizations of those objects. Still, even a
printed score is an application of music notation, which involves application-
specific objects such as “paper”, “ink”, or “glue”. These kinds of objects, too,
were excluded from the analysis.

Retaining Booch’s description of the scope of an object-oriented analysis
(1994: 155), my analysis does not include a formal description of the behavior
of the object system. As a result, the analysis model does not include UML dia-
grams for state, use case, interaction, or activity. The purpose of the analysis was
not to define a set of rules for describing or implementing the algorithms needed
in a practical computer application. These include, for example, the ability of a
notation program to check for the correct amount of beats in a measure (e.g., see

Music Notation as Objects

110

Byrd 1994). Also beyond the scope of my analysis are the rules involved in
engraving (e.g., see Ross 1970).

The analysis model is based on the assumption, dictated by linear logic, that
a musical score may be regarded as a single, hierarchical symbol structure. On a
high level of abstraction, a whole score may be regarded as a single symbol.
Respectively, each individual note in a score can be regarded as a symbol that
may be further divided into smaller, more primitive symbols. In a computer
application, symbols may be further decomposed into the primitives of graphics,
such as pixels or vectors.

On a low level of abstraction, a single symbol might not have any musical
meaning or function. Even on a higher level of abstraction, an object may need
additional symbols to be fully functional; in other words, it may require an
“environment” or context.

6.5 Application of linear logic

It is not assumed that a linear programming language is used for implementing
our object model. The model does respect the rules of linearity, but the treatment
of the objects as linear is not assumed. Therefore, associations may be imple-
mented with pointers to memory locations, or in any other way that is supported
by the implementation programming language. The distinction between associa-
tion and aggregation should, however, be respected. An aggregation – or “com-
position”, used in my model instead of regular aggregation – always indicates
that the existence of parts is, without exception, dependent on the existence of
the “whole”, i.e., the aggregate. Respectively, an association may exist, at least
in principle, without the existence of the object, called the “associate”, referred
to by the association. These requirements should be acknowledged in the pro-
cesses of design and implementation.

6.6 General requirements

To improve and further systematize the analysis model, some general require-
ments are also presented here. The requirements are mostly derived from the
general principles of object-oriented methodology and from systematic software
engineering practices in general. Some of the requirements are also derived from
the discussion above. The requirements can be summarized as follows:

Analysis principles for music notation

111

1. Consistency and simplicity
2. Avoidance of redundancy
3. Independence of notation application area
4. Independence of computer hardware and software runtime environment
5. Independence of implementation programming language

Consistency is achieved by the inclusion of only those objects which have a
visual appearance. Nonvisual data or operations are modeled as properties of
some visual object or as associations of visual objects. Simplicity is achieved by
keeping the amount of objects, relationships and properties small while includ-
ing enough information to make the model understandable.

Redundancy is minimized by the non-inclusion of objects, properties, rela-
tionships, or adornments for a purpose that is already handled explicitly by some
other feature in the model. In particular, the model does not contain elements
whose main purpose is to enhance computing efficiency. The purpose of the first
two requirements is to keep the model compact, coherent and true to the nature
of music notation as a visual communication system.

Requirement 3 refers to the uses listed by Diener (1990: 7). The model
should be applicable to the design of any type of program that can process music
notation. This requirement also helps to keep the model compact by ruling out
most references to any detailed, application-specific means of entering, process-
ing or displaying notation data. Requirement 3 does not guarantee, however, that
the model is optimal for any specific type of application.

Requirement 4 means that the model should make no assumptions as to what
kind of computer, operating system or other hardware/software environment the
notation application runs on. This does not, however, guarantee that the model
can be implemented on all software or hardware environments.

Requirement 5 means that special features of a particular programming lan-
guage are not used in the analysis. The analysis should be implementable by the
majority of commonly used, object-oriented programming languages. For exam-
ple, multiple inheritance is not used in the analysis, because it is not supported
by all commonly used, object-oriented programming languages.

In addition to the above requirements, the following principle was used to
define the vocabulary of the model: only nouns that are part of the general
vocabulary of common music notation can be used as names of concrete classes
(i.e., classes that may have instances). Invented names may be used to denote
abstract classes (i.e., generalizations that cannot have instances), if a semanti-
cally appropriate noun does not exist in the music notation terminology. The
purpose of this principle is to keep the analysis within the scope of the problem

Music Notation as Objects

112

domain. Moreover, if invented names were allowed for concrete classes, the
model could become cryptic.

Optimization of storage space and optimization of computing performance
were not considered important as modeling requirements. As a result, no
assumptions are made about how many or about what type of data elements are
used for storing the objects or their properties. Optimizations of performance
and storage space are issues that belong to the solution domain. There, knowl-
edge of the specific application area, hardware capabilities, and implementation
programming language are needed for decision-making.

As are symbolic representations in general, my object model is an interpreta-
tion of the problem domain. Although the aim here is to present an explicit
object-representation, some practical requirements have guided my interpreta-
tion. One important practical requirement is that an object model must be realiz-
able (implementable) in practice. Moreover, the model should be implementable
using reasonable computational resources. On the other hand, the model should
be flexible, not demanding the use of any specific algorithm for music-process-
ing tasks, such as for spacing or for generation of a musical performance. These
requirements have led to the redefinition or abandonment of some problem-
domain terminology.

6.7 Preliminary examples

To illustrate and clarify some central aspects of the model presented in the next
chapter, some simple examples are given here. The examples are presented also
to show the kinds of things considered when the model was under construction.
The examples address the construction of both aggregation and inheritation
structures.

My model is intended to be explicit in respect to music notation as a graphic
system. It represents each graphic symbol with a dedicated object. As a general
principle, everything that can be seen in a printed score has an object representa-
tive in the model. Conversely, the level of interpretation with respect to logical
information is kept low, as demonstrated in the few examples below.

As described above, music notation is regarded as a hierarchical and graphic
aggregation structure, which consists of complex symbols that are constructed
from simpler ones. One hierarchical level, the whole score, may be regarded as a
single symbol. For example, the score of a symphony or a piano sonata may be
regarded as a single, unique symbol. A multi-page score may be subdivided into
pages, pages into systems, systems into staves, and so forth.

The difference between graphical, logical, and performance information can
be again demonstrated with a pair of examples shown in Figure 6-4. Figure 6-4

Analysis principles for music notation

113

a) shows a situation that could have different interpretations depending on the
weight of different types of information (as discussed in Chapters 2.6 and 6.3).
A central question is, Should the example be interpreted as a single note or as
two notes? When the notation example is played, a single sound event is pro-
duced – on the assumption that traditional interpretation practice of Western
classical music is followed. Yet, visually, we can detect two note symbols that
are connected by a tie symbol. An even more ambiguous situation is shown in
Figure 6-4 b). There, the tie is divided into two parts because of a page turn or
line break. The question here is, Should this example be regarded as containing
one or two ties?

It can be argued that Figure 6-4 b) shows logically only one tie, which con-
tinues from one page or line to another. Visually, however, there are two tie sym-
bols. The former interpretation can be called more logically-oriented and the
latter interpretation more graphically-oriented. The latter, graphically-oriented
interpretation is used in my analysis model. Similarly, Example 6-4 a) is mod-
eled as two note-objects instead of one.

The same analysis principle applies to slurs. On some occasions, however,
slurs are broken into two or more segments; for example, to provide space for
another symbol. Dashed slurs are also sometimes used. In the analysis model, a
dashed or a broken slur or tie is regarded as a single symbol. The distinction
from the example of Figure 6-4 b) is that both tie symbols shown in the figure
can be individually identified and thus named as ties. Also, other notation sym-
bols that can be broken into two or more segments are modeled as a single
object; e.g., tuplet brackets broken into two part to provide space for a tuplet
number (see Geroy & Lusk 1996: 289, 341-346). On a lower, more generic
graphic level, such segmented symbols can be treated as constructs of separate
objects. This is regarded here, however, as an issue for software design or imple-
mentation.

Figure 6-4: Examples of tied notes

a) b)

Music Notation as Objects

114

The analysis model contains a multi-level hierarchical aggregation structure.
There, the “part-of” relationships reflect the assumed importance of notation
symbols. For example, a note is considered to be more important than, for exam-
ple, accidentals or articulation symbols. As a general principle, symbols whose
existence or function is considered to be dependent on some more important
object are modeled as parts of that more important object. Thus, accidentals and
articulations are modeled as parts of a note.

To summarize, the analysis model presented in the next chapter uses graphic
information as its basis. The level of abstraction is higher, or more domain-spe-
cific, than are individual pixels on a computer screen or printed paper, and
higher than line or curve segments, which are the basic elements of vector-based
graphics programs. The level of abstraction is even higher than “paths” or areas,
which are the basic levels of abstraction in many drawing programs, such as
Adobe Illustrator. The chosen level of abstraction is intended to be understand-
able to a music engraver and/or a musician.

In the analysis model, logical information is embedded in the graphic objects
as properties or relationships between objects. Performance information is rep-
resented mainly implicitly. An interpretation process that simulates a human
musical performance is required in order to retrieve explicit performance infor-
mation from an implementation of the model.

115

Chapter 7
The analysis model

This chapter presents an analytic model of music notation as a set of UML class
diagrams. The model is not a complete formal description of the common West-
ern-music notation system. The amount of detail is suppressed to keep the cen-
tral aspects of classification decisions understandable. Too much detail could
easily blur the overall view of the problem domain.

This model presents neither a complete collection nor full description of
objects that can be found in common music notation. Rather, the analysis model
shows the main structure of an object system that should provide a usable basis
on which to build a computer application. The model should be expandable, that
is, adaptable to new objects, if such are needed for a specific application. Also,
the amount of properties in the objects themselves is small. The main reason for
this is readability. Properties are presented only if they are fundamental to
understanding the function of the object in question, or if they help to clarify a
decision made in the analysis. Thus, the properties presented in the analysis
model should be considered neither necessary nor sufficient for implementing a
working program.

All classes in the model may not be needed in every computer application.
On the other hand, an application will likely need additional classes and proper-
ties to handle such tasks as data input, data output, and storage. Furthermore,
embellishments or adornments, such as multiplicity definitions, should be con-
sidered as suggestions rather than as mandatory requirements. Practical imple-
mentation issues, such as storage space requirements or optimization, may
require the use of more or less strict adornments, depending on what is needed.

7.1 General definitions

Presentation of the analysis model begins with the root class of the inheritation
hierarchy (called CMNSymbol). This is followed by a roughly top-down decom-
position process, starting from the top-level aggregate class (called Score) and
proceeding down to elementary notation symbols (notes, rests, barlines, slurs,

Music Notation as Objects

116

beams, etc.). Inheritation and association structures are explained in my discus-
sions of the aggregation hierarchy.

The following general definitions are given for interpreting the class dia-
grams:

1. The immediate superclass of every class is CMNSymbol, unless defined
otherwise.

2. If the amount is not shown in an aggregation/composition relationship,
then the amount is one-to-any.

3. If amount adornments are not shown in an association, then the amount
is arbitrary (“any-to-any”).

It is further assumed that all class names presented in the model reside in a
unique name space. For example, the class Note refers only to the common
music notation object called “note” and to nothing else called a note, that is to
say, not to any similarly named object outside the domain of common music
notation.

Generally, the difference between an aggregation and an attribute is as fol-
lows: if a thing is a class, then it is shown as an aggregation structure; if a thing
is an atomic value, such as an integer or floating point number, then it is mod-
eled as an attribute. However, the distinction between a class and an atomic
value is not always clear or relevant. In some cases, attributes are also used as a
“short hand” substitute for aggregation. A short verbal description is given of
each class.

As in UML in general, names of abstract classes – i.e., classes that cannot
have instances – are written in italics. In the analysis model, abstract classes are
used sparingly. The main purpose for declaring a class abstract is to show that
the class name is invented rather than part of the established vocabulary of the
problem domain. Such classes are considered as not representing any identifi-
able music notation symbols. Rather, abstract classes represent some common
features of a group of identifiable symbols.

Neither the diagrams nor the explanatory text of the analysis model contain
illustrations of any music notation symbols. Instead, class names are chosen so
that the respective notation symbols can be looked up in Gerou & Lusk (1996),
Heussentamm (1987), and similar guidebooks.

7.2 The CMNSymbol class

Figure 7-3 shows the class CMNSymbol. It is the superclass of all other classes
in the model. Thus, CMNSymbol holds the properties common to all classes in
the model. In Figure 7-3, two operations are shown: Draw and Play. Draw

The analysis model

117

causes CMNSymbol to render a visual representation of itself. In turn, Play is
used for rendering a sonic representation of the object. Because all objects
within the problem domain are considered to be visual, Draw will always pro-
duce some form of graphic output. The Play operation can produce a sound
event (e.g., if the object is a note), or it can affect the sonic performance in some
other way, for example, by causing a pause, transposition of subsequent notes,
change of tempo, and so on. Play is the only purely performance-oriented prop-
erty in the model, and it is presented only as an example of a way to derive per-
formance information from the graphically-oriented object system.

Each CMNSymbol is assumed to manage a two-dimensional coordinate sys-
tem, henceforth called the “internal coordinate system”. Each CMNSymbol is
also assumed to be positioned in an “external” coordinate system, which is man-
aged by its aggregate object – typically, another CMNSymbol. The origin
attribute determines the position of the object’s internal graphic origin within the
object’s external coordinate system. The size attribute determines the object's
size (i.e., a scaling factor) relative to the size and dimensions of its aggregate
object. The dimensions attribute determines the dimensions of the object within
the external coordinate system.

The positions of all parts of a CMNSymbol are manipulated relative to the
origin of CNMSymbol’s internal coordinate system. As a consequence, when a
CMNSymbol is moved to a new location, all its parts move with it, and retain
their relational position within their aggregate CMNSymbol. The same applies
when a CMNSymbol is scaled in size: all its parts are affected by the same scal-
ing factor. However, specialized subclasses of CMNSymbol may treat position
and size information more intelligently than just as mechanical factors.

CMNSymbol

draw
play

origin
size
dimensions
value

Figure 7-1: The CMNSymbol class

Music Notation as Objects

118

CMNSymbol is also defined to hold a “value” of unspecified type. The pur-
pose of the value attribute will vary between various subclasses. For example, in
a time-signature class, the value would hold the value of the time signature; e.g.,
a fractional number such as 2/4, 3/4, etc.; or if needed, a more complex data
type. In a notehead class the value could hold the type of notehead (e.g., open,
closed, square, round), and so on with other types of value.

The techniques and data structures that a CMNSymbol uses to store and
manipulate its parts are undefined. The analysis model shows aggregation hier-
archies, but does not specify whether an aggregate uses a single data structure to
store all its parts, or if it uses distinct attributes for each part. Some exceptions to
this principle are made, however, in order to improve readability. Detailed spec-
ification of the internal structure of CMNSymbol is considered a design issue.
An example design-model of these properties is described in Chapter 9.2.

7.3 The top-level aggregation structure

A printed musical score is modeled as a hierarchical structure where the score
itself is considered as one complex symbol. The score, in turn, consists of pages,
which may contain other notation symbols, but might also contain conventional
text or graphics. The analysis model follows this kind of hierarchical organiza-
tion, but is limited to music notation symbols only. Conventional text and/or
graphics are ruled out unless they have a distinct musical or notational function;
e.g., song lyrics or names of instruments.

Figure 7-2 presents the aggregation hierarchy starting from the top-level
object, Score (on the left) to Staff (on the right). There, a Score contains an arbi-
trary number of Pages. A Page, in turn, contains an arbitrary number of Systems
or Staves. There is an important restriction, not shown in the UML diagram but
defined in the linear formal rules in Chapter 5.5. This restriction is that a Staff
instance may either be part of a System or of a Staff, but not part of both at the
same time. A System contains an arbitrary amount of Staves. All four of these
classes – Score, Page, System, Stave – are subclasses of CMNSymbol. Here, a
page of music notation is considered to be read from top to bottom and left to
right. Special notational layouts, such as circular staves, are ruled out of this
analysis.

The aggregation between Score and Page is defined as “ordered”. Although
Score is a subclass of CMNSymbol and thus holds a coordinate system to orga-
nize its parts, Pages are not considered to be stored within a single, two-dimen-
sional coordinate system. Instead, Pages can be regarded as a kind of third
dimension within a document. Pages are defined as being ordered within a Score
because (1) the reordering of pages results in a different and usually incorrect

The analysis model

119

interpretation of a score, and (2) because no other mandatory property defines
their placement in relation to each other. Nonetheless, an implementation of a
Score object might be able draw two or more Pages on a single sheet of paper
(or in the same window in a computer display). To achieve this, Score would
need to manage a two-dimensional, internal coordinate system like that of other
CMNSymbols.

Ordering of other aggregations in Figure 7-2 is undefined, because the
objects of parts are located in the two-dimensional coordinate system of their
aggregate object. Since the graphical position of each System is known by its
aggregate (i.e., Page), the Systems can be regarded as ordered “implicitly” by
their graphical locations within the Page’s internal coordinate system. The same
principle of implicit ordering applies also to Staves within a Symbol, with the
functional distinction being that staves within the same system are read or
played in parallel, instead of successively from top to bottom.

CMNSymbol is the root of the inheritation hierarchy, and Score is the root of
the aggregation hierarchy. This means that all objects are either direct or indirect
parts of a Score object. In the rest of this chapter, inheritation hierarchies are
simplified by the omission of the CMNSymbol from the class diagrams.

StaffSystemPageScore

CMNSymbol

* * *

*

ordered

Figure 7-2: Top-level aggregation structure

Music Notation as Objects

120

In music notation, staves can be grouped to form systems. This organization
is defined visually by drawing a “systemic barline” that connects the staves.
Other connecting symbols, too, such as vertical brackets and braces, are used to
form groups and subgroups within a system. The analysis model contains a Sys-
temicBarline, a subclass of a generic Barline class (described below). Sys-
temicBarline is not defined as a direct part of System, but instead as a part of
Staff. This is so because the superclass Barline is already defined as being part
of Staff. By this definition, Staff can contain any types of Barlines, including
SystemicBarlines. The specialized relationship between SystemicBarline and
System is defined by an association. The association indicates that, when a Sys-
tem is present, there is always a SystemicBarline associated with it. The other
connecting symbols are modeled with StaffConnectors. StaffConnector is a
superclass for vertical brackets or braces (classes Bracket and Brace), which
represent various, additional forms of grouping within a system.

Figure 7-3 shows a model of the System class and its main contents. Along
with Staves, System contains an arbitrary amount of StaffConnectors, which are
either Brace or Bracket objects. A StaffConnector object is associated with one
or two Staff objects. As described above, a System is associated with a Sys-
temicBarline.

*

SystemStaff
Connector

Staff Systemic
Barline

Text

BracketBrace

1..2

0..1

0..1

1

1

next prev.

grand staff

part name

Figure 7-3: System-level structure

The analysis model

121

Brace and Bracket are symbols that form logical groups and subgroups
within a System. The groups are not, however, direct equivalents of instrumental
sections, of parts, or of voices. As stated in the previous chapter, music notation
does not contain an unambiguous symbol for representing part, section, or voice.
The model permits a part to be written on more than one staff (such as a piano
part), or one staff may include several parts. Nevertheless, parts, sections, and
voices are not represented as classes or even as associations in the analysis
model.

7.4 Staff

Staff is a central aggregate in the model. Staff’s parts include staff lines as well
as many other symbols, including notes, rests, clefs, barlines, slurs, dynamic
markings, etc. These symbols are divided into two abstract classes: CoreSymbol
and Attachment. CoreSymbols are symbols that have a dominant role in forming
a line of music, both compositionally and in forming the graphic layout. Exam-
ples of CoreSymbols are notes, rests, clefs, and barlines. Attachments are sym-
bols that affect the ways in which CoreSymbols are interpreted; in particular,
notes and rests.

As shown in Figure 7-4, Staff consists of an arbitrary amount of StaffLine
objects. Staff also contains an arbitrary amount of CoreSymbols, Attachments,
and LedgerLines. Through the use of association, staves can be grouped so as to
form a grand staff. The “grand staff” association has the roles “next” and “prev.”
(short for “previous”), by which two instances of Staff can refer to each other.

CoreSymbol is a generalization that represents symbols that can be consid-
ered elementary or “primary” in music notation and that thus form a “core” of
music notation. “Attachment” is a generalization for classes; it represents sym-
bols that add information to and are, in some form, “attached” to CoreSymbols.
Generally, Attachments hold little or no musical information without the exist-
ence of at least one CoreSymbol. On the other hand, legitimate and readable
scores, at least of simple musical pieces, can be written with only Staves and
CoreSymbols.

Subclasses of CoreSymbol share some functionality both logically and
graphically. The main reason for the classification is derived from the graphic
placement of the objects. They are generally placed on staff lines or on ledger
lines. Also, they all have an explicit musical function in themselves, as long as
they are placed on a staff. Attachments, on the other hand, are generally placed
either above or below a staff, and gain explicit musical meaning only when they
are attached to (associated with) a CoreSymbol.

Music Notation as Objects

122

CoreSymbol has the subclasses DurationalSymbol and EnvironmentModi-
fier for representing two different kinds of symbols classified by their musical
function. The next sections are dedicated to describing DurationSymbols and
EnvironmentModifiers. Attachment has the superclasses, Mark and Connector,
which are described in section 7.8.

Ossia (Gerou & Lusk 1996: 228) is defined as a subclass of Staff. The asso-
ciation of an arbitrary number of Ossia objects with one instance of Staff is
described further on.

7.5 DurationalSymbol

DurationalSymbol is a CMNSymbol that instructs a performer either to produce
a sound event or to hold a pause of a specified duration. With its primary sub-
classes Note and Rest, DurationalSymbol forms the inheritance and aggregation
structure shown in Figure 7-5. DurationalSymbol is a generalization that

Staff

**

*

AttachmentCoreSymbol

Text

Durational
Symbol

Environment
Modifier

Mark Connector

1

1

1..2

0..1

Ledger
Line

Staff
Line

Beam

Ossia

next prev.

grand staffpart name

Figure 7-4: Staff-level structure

The analysis model

123

includes the common properties of Note and Rest, as well as properties that
affect the duration and spacing of symbols on a staff. DurationalSymbol con-
tains an arbitrary amount of AugmentationDot objects. DurationalSymbol is
also associated with Pause, which is a subclass of Mark. Pause is described in
more detail in section 7.8.2.

Notes and rests have common features both musically and in engraving prac-
tice. In particular, they determine the rhythmic structure of music. In engraving
practice, similar rules are used to reserve space horizontally on a staff for both
notes and rests. There are also differences; for example, in the spacing of whole
rests versus whole notes (see Ross 1970: 77-78). Still, the amount of similarities
justify the grouping of notes and rests under a common superclass.

A Rest is constructed of a rest symbol whose shape determines the basic
duration of the rest. Additional symbols that modify the durational properties of
Rest (e.g., Dots) are inherited from DurationalSymbol. Note is a more complex
symbol. Its structure is described in detail in the next section.

7.6 Note

A detailed diagram of the Note class and its parts is shown in Figure 7-6. Note is
a highly complex class that relates with several other classes. Some of Note’s

Figure 7-5: DurationalSymbol class structure

Durational
Symbol

Pause Augmentation
Dot

Staff

LedgerLine

piled

next

prev.

* *

*

1
RestNote

CueNoteGraceNote

Music Notation as Objects

124

properties are inherited from DurationalSymbol; for example, the association
with AugmentationDot. The latter two classes and the respective relationships
were shown in figure 7-5

Notehead is a central, but not mandatory part of a Note object. Notehead is
modeled as a dedicated class. The value attribute of Notehead, inherited from
CMNSymbol, is assumed to hold the type of note head (e.g., open half-note,
open whole-note, closed, etc.). In some situations the Notehead may be absent,
as when rhythms are denoted only with stems, flags and beams. This is indicated
by the 0..1 adornment in the aggregation between Note and Notehead.

Staff

Note

Arpeggio

Beam

CueNote

GraceNote

Tremolo
Beam

Tremolo
Line

Flag

Notehead

Accidental

Stem

Ornament

Articulation LedgerLine

piled

next

prev.

piled

next

prev.

*

*

*

*

1

1

10..2

0..1

chord

Figure 7-6: Note class structure

The analysis model

125

Note contains from zero to two Stem objects. Music notation sometimes uses
Notes with two stems pointing in opposite directions, as in two-voice parts
where both voices share a common note head.

A Stem may contain an arbitrary amount of Flags. Stem objects of different
Notes may be beamed. Beam, which is part of Staff, is described in more detail
in sections 7.9. Note objects may also contain Accidental, Articulation and
Arpeggio objects.

A Note may be related with other Notes through a “chord” association. Here,
Chord indicates a group of notes that are stacked one above the other, are of
equal note value, and, if the note value requires the use of a stem, share the same
stem.

Note has two subclasses: CueNote and GraceNote. They differ from plain
Notes by their interpretation and their visual appearance: smaller size and, in the
case of grace notes, spacing conventions. GraceNote is also associated with one
Note.

Note may be associated with LedgerLine objects. LedgerLines may be
stacked, indicated by a respective association. LedgerLine is part of Staff.

Note has no attribute for explicitly representing pitch or duration (i.e., a time
value). The reason for this, is that pitch is implicitly defined by the note’s verti-
cal position on the staff and by the preceding clef, key signature, accidentals and
barlines. A Note’s value is formed as a combination of a note head, an optional
stem, beaming, flags, and dots.

As described by Gerou and Lusk (1996: 26-44), Articulation indicates “how
a note or chord is played”. The authors describe five “main” articulations
(staccatissimo, staccato, tenuto, accent, and marcato), three articulations of
force (sforzando, forzando/forzato, and sforzato), and simile. According to the
model, more than one Articulation may be attached to a single Note. Ornaments
are graphic symbols that can be regarded as macro statements, where a written,
ornamented note is played as more than one note.

TremoloBeam may be associated either with a Stem or directly with a Note.
The former association refers to situations in which stems are connected with
tremolo beams. The latter association applies when no stems exist. A Note may
contain TremoloLine objects, which may be associated with a Stem. Tremolo-
Lines, which are part of the same Note, are also associated with each other, as
defined by the “stacked” association.

7.7 Environment modifiers

The EnvironmentModifier class is a subclass of CoreSymbol. It represents vari-
ous symbols that apply changes to the environments of each other or of other

Music Notation as Objects

126

notation symbols, of Notes and Rests in particular. EnvironmentModifiers may
affect either the rhythmic or harmonic structure of a Staff, a group of Staves or a
whole System. Similarly to other CoreSymbols, EnvironmentModifiers play a
dominant role in spacing.

A class diagram of EnvironmentModifier and its subclasses is shown in Fig-
ure 7-7. The subclasses of EnvironmentModifier are Clef, KeySignature, TimeS-
ignature, and Barline. Like other CoreSymbols, EnvironmentModifier is part of
Staff. An EnvironmentModifier may affect more than one system. For example,
a Barline may be drawn across several staves. This behavior is modeled using
the association with the “extends to”-role between EnvironmentModifier and
Staff. Each instance of EnvironmentModifier is always part of one and only one
Staff, while it can “extend to” an arbitrary amount of other Staves.

Barlines are further divided into the set of subclasses shown in Figure 7-8.
The subclasses of Barline are SingleBarline, DoubleBarline, and FinalBarline.
SingleBarline is a single-line symbol that marks off measures; it is the most
common type of barline. DoubleBarline is a two-line barline with both lines
having the same thickness. FinalBarline represents the end of a passage of
music, and in some cases, the beginning of a new one. The passage(s) may be
repeated. A FinalBarline symbol consists of two (or sometimes three) vertical
lines, typically one thinner and one thicker line. FinalBarline may contain an
arbitrary amount of RepeatDots (typically two for each Staff per FinalBarline).
Two FinalBarlines may be adjoint (marked by an association). Two adjoint
FinalBarlines may share a common thick line (see Gerou & Lusk 1996: 246).
Both SingleBarline and DoubleBarline may be dashed.

Environment
Modifier

Staff

KeySignatureClef BarlineTime
Signature

extends
to

Figure 7-7: Environment modifiers

The analysis model

127

Ross describes two special kinds of barlines: systemic barlines and connect-
ing barlines (1970: 151-152). Gerou and Lusk also mention the systemic barline
as a symbol that groups staves into systems (1996: 56, 308). Systemic barlines
are modeled with a respective class, SystemicBarline, defined as a subclass of
SingleBarline. The analysis model does not contain a class for connecting bar-
lines. Instead, the diagram in Figure 7-7 shows that any Barline, through its
superclass, EnvironmentModifier, may be associated with an arbitrary number
of Staves, including the Staff which the Barline is part of. SystemicBarline is
modeled as a dedicated class to indicate its specialized function of connecting
staves to form systems.

7.8 Attachments

As presented in Figure 7-4, the Attachment class contains the subclasses Con-
nector and Mark. Connector is a superclass for symbols which, either tightly or
loosely, connect two or more other symbols. Mark represents an instantaneous
event, although logically it may signify the beginning of a gradual progression.

The difference between Connector and Mark can be described as follows:
Connector marks a musical structure that has an explicit beginning and end. In
contrast, Mark is either an instantaneous event or beginning of a process which

Barline

Systemic
Barline

RepeatDot
*

0,1

0,1Final
Barline

Single
Barline

Double
Barline

adjoint
dashed dashed

Figure 7-8: Types of barlines

Music Notation as Objects

128

has either an implicit end or in which another symbol states the end. Examples
of Connectors are slurs and ties. Examples of Marks are dynamic expressions (f,
mf, ppp, etc.). They can be regarded as symbols that set a condition, which
stands until a new condition of the same type is encountered.

Attachments are not aggregates of the symbols they affect. Thus, Attach-
ments do not contain notes, rests, or other, equally high-level symbols. The rela-
tionships between Attachments and Notes, for example, are modeled as
associations.

7.8.1 Connector

A classification of Connector symbols is shown in Figure 7-9. A Connector sym-
bol may be logically continued, for example, to the next line or page. The con-
tinuation is modeled as an association between two Connector instances. It is
assumed that a Connector is associated with the CoreSymbols that start and end
some passage, indicated by the Connector.

Connector

EndingArc Tuplet
Bracket

Wedge PedalLineOttava

TieSlur

continued

next

previous

Figure 7-9: Connectors

The analysis model

129

The subclasses of Connector are Arc, TupletBracket, Ending, Ottava, Wedge,
and PedalLine. Slur and Tie share a common visual shape, but they differ in
graphical placement and function. Thus, they are modeled as subclasses of Arc,
which represents their common properties. Tuplet represents both tuplet brack-
ets and numbers. Ending represents ending brackets and numbers. Ottava is
assumed to include both a text expression (e.g., “8va”) and a horizontal line,
although this is not explicitly shown in the UML diagram. Wedge represents
graphic crescendo and diminuendo symbols (see Gerou & Lusk 1996: 134). In
SCORE terminology, wedges are called “hairpins”. PedalLine represents only
pedal symbols that contain a line indicating how long the pedal is held. An
instantaneous pedal mark is a subclass of Mark (see below), and is not consid-
ered to be a Connector.

7.8.2 Marks

The class diagram of the Mark class and its subclasses is shown in Figure 7-10.
The subclasses of Mark are DynamicMark, PedalMark, Pause, TextFrame, and
Tempo. DynamicMark objects include common text abbreviations such as f, ff,
fff, p, pp, fp, etc. Text-based markings may also represent gradual changes to
dynamics belong to this class; e.g. dim. or cresc. etc. Graphic dynamic sym-
bols, or Wedges (“hairpins”), are modeled as subclasses of Connector.

PedalMark is a class for both text (ped. etc.) and graphic symbols. Pause
represents fermata signs and pause signs. As described above, pedal lines are
represented by the PedalLine class, which is a subclass of Connector. Tempo
represents symbols that set or modify speed. These include metronome marks,
text tempo expressions (e.g., Allegro), and tempo modifiers, such as accel.,
rall., and so on.

TextFrame is divided into the subclasses Lyric and RehearsalMark. Lyric
represents a fragment of a song lyric, typically a single word or syllable, includ-
ing a trailing hyphen. RehearsalMark represents both rehearsal numbers and
rehearsal letters. TextFrame objects may be associated with each other by flows.
This follows the principle used in many text processing and page layout pro-
grams, such as FrameMaker (Branagan & Serra: 1994: 156-157).

Mark could be extended with more subclasses. Also, some of Mark’s sub-
classes could be divided into more specialized subclasses. For example, guitar-
chord frames (Gerou & Lusk 1996: 103-106) or special percussion symbols are
potential candidates for subclasses of Mark.

Music Notation as Objects

130

7.9 Beams

Beams can be divided into several subclasses. Also, a complex set of associa-
tions is defined. The class diagram is presented in Figure 7-11. The superclass
Beam is divided into the subclasses RegularBeam and TremoloBeam. Regular-
Beam represents beams that substitute flags for indicating various note dura-
tions. TremoloBeams represent beams that are used to form tremolandi with two
or more consecutive notes or chords. RegularBeams are always connected to
stems, whereas TremoloBeams may be used also with notes that do not have
stems; e.g., whole notes (see Gerou & Lusk 1996: 334).

Beam is part of Staff. If a Beam spans across several Staves, for example in a
piano score, only one of the Staff instances may contain the Beam as its part.

RegularBeam is divided into subclasses PrimaryBeam and SecondaryBeam
(see, e.g., Gerou & Lusk 1996: 62-89). SecondaryBeam may also be a Fraction-
alBeam (ibid.: 333-334). SecondaryBeams are “aligned” with a PrimaryBeam
(marked in Figure 7-11 with an association). This way a PrimaryBeam knows
which SecondaryBeams belong to the same beam group and can, for example,
control their shape and placement. Both PrimaryBeams and SecondaryBeams

Mark

TempoPedalMark PauseText
Frame

Dynamic
Mark

Rehersal
Mark

Lyric

flow

next

previous

Figure 7-10: Marks

The analysis model

131

are associated with an arbitrary amount of Stems, while a FractionalBeam is
associated with only one Stem.

TremoloBeams are divided into PrimaryTremoloBeams and Second-
aryTremoloBeams. When TremoloBeams are used with notes that have stems, a
PrimaryFractionalBeam is connected visually to the stems; respectively, Sec-
ondaryTremoloBeams are placed in-between the stems but are kept separate
from them. When used with whole-note symbols, both types of tremolo beams
are kept separate from other symbols, and they also have the same length. The
connection between a Stem and a PrimaryBeam is modeled as an association
between the two classes. SecondaryTremoloBeams are not connected to Stems,
and therefore not associated with a Stem. An association is, however, defined
between both types of TremoloBeams and Note, for situations in which a Note
has no Stem.

Regular
Beam

Secondary
Beam

Fractional
Beam

Stem
Note

Primary
Beam

Beam

Tremolo
Beam

aligned
1

1 11

1

*

*

*

*
*

*

*

*
*

Secondary
TremoloBeam

Primary
TremoloBeam aligned

1 *

Staff

Figure 7-11: Class diagram of Beam and its subclasses

Music Notation as Objects

132

133

Chapter 8
Object diagram examples

This chapter contains examples of selected features of the analysis model. The
examples are presented as music notation and their respective object diagrams.
The order of the examples follows approximately that of the previous chapter.
The examples are deliberately simplified in order to save space and enhance
readability.

8.1 Systems and Staves

The following note example shows a system with empty staves. Figure 8-1 a)
presents a note example with a system containing two staves plus a two-stave
grand staff encoded by a brace. The whole system is enclosed by a bracket. Fig-
ure 8-1 contains a respective UML object diagram. There, Stave objects are
named as st1 through st4, from topmost staff (st1) to the lowest one (st4). The
System sys1 is part of Page pg1, which is part of Score sc1. The System instance
sys1 is the direct aggregate of all other objects, except the Barline object b1. The
Brace object br1 is associated with Staves st3 and st4. St3 and st4 are also asso-
ciated with each other through a “grand staff” association.

The Bracket object bkt1 is associated with the highest and lowest staff (st1
and st4). The SystemicBarline object is part of the Staff st4 and is associated
with all other Staves as well as the System object sys1.

8.2 CoreSymbols

Figure 8-2 a) is a simple note example. The respective object diagram is shown
in Figure 8-2 b). The note example is the same as in Chapter 3. There, Note
objects are named n1 through n4 for respective notes progressing from left to
right in the note example. Score and Page objects are omitted from the diagram,
although they must exist in a complete object system, according to the analysis
model.

Music Notation as Objects

134

The value attributes of the Notehead objects are not shown in the diagram. If
the value attribute held a value indicating the type of Notehead, the value could
be, for example, “closed” for objects h1 through h3 and “open” for h4.

It is assumed that the position and dimensions of the Note objects are stored
in the respective attributes inherited from CMNSymbol. It is also assumed that
these parameters are scaled in relation to the Staff object’s coordinate system.

The object structure shown in Figure 8-2 b) is partly similar to the example
of the SCORE Parameter List shown in Chapter 3.8. The main differences are
that the object diagram has a deeper aggregation hierarchy. On the other hand,
the object diagram includes less parametric detail. This demonstrates that the
analysis model is not ready to be used in a computer program. Yet, by the addi-

st1 : Staff

st2 : Staff

st3 : Staff

st4 : Staffbr1 : Brace

sys1 : System

pg1 : Page

sc1 : Score

bkt1 : Bracket

sbl1 : SystemicBarline

grand
staff

Figure 8-1: Example of a system with staves and grand staff

a)

b)

Object diagram examples

135

tion of relatively few parameters, such as graphical coordinates for each symbol
and note head types, a simple SCORE-like application could be implemented.

st1 : Staff

b1 : Barline

l1 : LedgerLine

l2 : LedgerLine

b1 : Barline

k1 : KeySignature

value = 2 sharps

c1 : Clef

type = G

t1 : TimeSignature

value = 3/4

n4 : Note

d : AugmentationDot

s4 : Stem

h4 : Notehead

n1 : Note s1 : Stem

h1 : Notehead

n1 : Note

s2 : Stem

h2 : Notehead

n1 : Note

s3 : Stem

h3 : Notehead

Figure 8-2: A two-bar note example and equivalent object diagram

a)

b)

Music Notation as Objects

136

Obviously, a conventional, general-purpose notation program would require
many more parameters for each individual class.

8.3 Chords and Stems

Figure 8-3 shows an example of a chord made up of three half notes, along with
its respective object diagram. There, the three note objects (n1, n2, and n3) are
connected by a “chord” association. The stem is part of the Note n3. Notehead
objects have been omitted from the diagram.

8.4 Beams

Figure 8-4 presents an example of two beamed notes. A staff is omitted from the
note example as well as from the respective object model. The example contains
a dotted 16th note and a 32nd note. The stems of the notes are connected by a
primary and a secondary beam. In addition, the stem of the 32nd note is associ-
ated with a fractional beam. Though not shown in the diagram, Note and Beam
objects are parts of a Staff.

n1 : Note

n2 : Note

n3 : Note stm1 : Stem

st1 : Staff

k1 : KeySignature

chord

chord

Figure 8-3: Sample chord

a)

b)

Object diagram examples

137

An interesting question about implementation arises if an application pro-
gram is to produce the notation of Figure 8-4 a); i.e., Notes or other objects
without a visible Staff. There would be at least three alternative ways to imple-
ment it. (1) The object system could implement a way to “hide” either certain
types of symbols or any symbol at all. Thus, any or all of a Staff’s lines could be
hidden. (2) A staff with zero staff lines could be used, which is already allowed
by the analysis model. Such a “lineless” staff would be a coordinate system
invisible in itself but implicitly visible through the symbols (other than staff
lines) that it contains. (3) The situation could be regarded as a subset of the
aggregation structure of the analysis model. There, all aggregates in the hierar-
chy would be reduced from the object system down to (and maybe including)
the Staff class.

8.5 TremoloBeams

Figure 8-5 a) shows a note example with two half note symbols connected by a
group of tremolo beams. A respective object model is presented in Figure 8-5 b).

n1 : Note

d : Dot

s1 : Stem

b2 : SecondaryBeam

b1 : PrimaryBeam

b3 : FractionalBeam

s2 : Stem

n2 : Note

Figure 8-4: Example of two beamed notes

a)

b)

n1 : Note

d : Dot

s1 : Stem

b2 : SecondaryBeam

b1 : PrimaryBeam

b3 : FractionalBeam

s2 : Stem

n2 : Note

Music Notation as Objects

138

As indicated in the class diagrams in Figures 7-6 and 7-11, TremoloBeam sym-
bols are related to Notes and Stems in a complex way. This makes Tremolo-
Beams difficult to implement.

In the object diagram of Figure 8-5 b), the Staff object st1 contains the Note
objects n1 and n2 as well as the TremoloBeam object b1, b2, and b3. The class
names – PrimaryTremoloBeam and SecondaryTremoloBeam – are abbreviated
in the model. The PrimaryTremoloBeam object is associated, or “aligned”, with
both SecondaryTremoloBeam objects. The PrimaryTremoloBeam object is also
associated with the Stem objects of both Notes. The object model also contains
Notehead objects as parts of each Note.

st1 : Staff

n2 : Note

h2 : Notehead

s2 : Stem

b2 : SecTremoloBeam

b3 : SecTremoloBeam

n1 : Note

s1 : Stem

h1 : Notehead

b1 : PrimTremloloBeam

aligned

aligned

Figure 8-5: Examples of tremolo beams

a)

b)

Object diagram examples

139

8.6 Ties and Slurs

Figure 8-6 shows the same note example as in Figure 6-4 a) together with a
respective object diagram. The diagram shows a Staff object containing two
Notes, a Barline, and a Tie which is associated with both Notes.

Figure 8-7 shows an object diagram of the note example of Figure 6-4 b). It
shows two Staff objects, both containing a Note object and a Tie. The Tie objects
are connected by an association. The value attribute of the Clef object c1 indi-

st1 : Staff

n2 : Note

s2 : Stem

h2 : Notehead

b1 : Barline

n1 : Note

s1 : Stem

h1 : Notehead

t1 : Tie

Figure 8-6: Examples of tied notes

a)

b)

Music Notation as Objects

140

cates the type of clef (“G”). Respectively, the value attribute of the TimeSigna-
ture object t1 indicates the time signature 4/4.

8.7 An XML example

As an alternative object-level representation to UML diagrams, Listing 8-1
below presents an example of an object system encoded in XML format. The
XML listing represents the note example of Figure 8-2 a), and is structurally
equivalent to the object diagram in Figure 8-2 b). The XML listing is, however,
more detailed in its use of object attributes. In the XML representation, each
aggregation relationship is stored as an XML element, with start and end tags
named according to class names from the object model.

st2 : Staff

c1 : Clef

value = G

t1 : TimeSignature

value = 4/4

n2 : Note

s2 : Stem

h2 : Notehead

t2 : Tie

st1 : Staff

n1 : Note

s1 : Stem

h1 : Notehead

t1 : Tie

b1 : Barline

Figure 8-7: Examples of tied notes

a)

b)

Object diagram examples

141

The XML example presented below is simplified from a full-featured XML
document. In particular, it does not contain a formal definition of the representa-
tion in the form of a Document Type Definition (DTD) (Eckstein 1999: 9-10) or
a “DOCTYPE” reference to an external DTD. The XML example is, however,
syntactically correct and “well-formed” according to general XML requirements
(Eckstein 1999: 14-15).

The listing shows a hierarchical aggregation structure with the Score object
sc1 on the top level, System sys1 on the next level, and Staff st1 on the next
level. The Staff object, in turn, contains other objects, including StaffLines,
Notes, Barlines, and LedgerLines. All objects contain attributes named “origin”
and “size”. They are represented with respectively named XML elements. Both
origin and size contain two coordinate values, horizontal and vertical. Origin
represents the position of the object within its aggregate’s internal coordinate
system. Size, in turn, represents the width and height of the object relative both
to the size of the object’s aggregate and to an assumed “default” size.

Some of the objects contain a “value” attribute. For example, in Notehead
objects, value represents the type of note head. The SingleBarline object con-
tains the attribute “dashed”, which in the example is set to “no”. The dimensions
attribute of our analysis model was presented above in the description of the
CMNSymbol class. In this case, it is considered to be calculated automatically.
Hence, respective XML elements have not been included in the example listing.

The XML listing is presented here in order to clarify further the structure of
the object model. The XML example should be considered as only one of many
possible XML implementations of the analysis model.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Score>
 <Page id="pg1">
 <Staff id="st1">

<origin>0 0</origin><size>8 70</size>
<StaffLine id="sl1">
 <origin>0 0</origin><size>1 1</size>
</StaffLine>
<StaffLine id="sl2">
 <origin>2 0</origin><size>1 1</size>
</StaffLine>
<StaffLine id="sl3">
 <origin>4 0</origin><size>1 1</size>
</StaffLine>
<StaffLine id="sl4">

Music Notation as Objects

142

 <origin>6 0</origin><size>1 1</size>
</StaffLine>
<StaffLine id="sl5">
 <origin>8 0</origin><size>1 1</size>
</StaffLine>
<Clef id="c1">
 <origin>1.5 2</origin><size>1 1</size>
 <value>G</value>
</Clef>
<TimeSignature id="t1">
 <origin>8.999 0</origin><size>1 1</size>
 <value>3/4</value>
</TimeSignature>
<Note id="n1">
 <origin>16.499 -2</origin><size>1 1</size>
 <Notehead id="h1">
 <origin>0 0</origin><size>1 1</size>
 <value>closed</value>
 </Notehead>
 <Stem id="s1">
 <origin>0 0</origin><size>1 1</size>
 <value>up</value>
 </Stem>
</Note>
<Note id="n2">
 <origin>26.678 0</origin><size>1 1</size>
 <Notehead id="h2">
 <origin>0 0</origin><size>1 1</size>
 <value>closed</value>
 </Notehead>
 <Stem id="s2">
 <origin>0 0</origin><size>1 1</size>
 <value>up</value>
 </Stem>
</Note>
<Note id="n3">
 <origin>36.875 2</origin><size>1 1</size>
 <Notehead id="h3">
 <origin>0 0</origin><size>1 1</size>
 <value>closed</value>
 </Notehead>
 <Stem id="s3">
 <origin>0 0</origin><size>1 1</size>

Object diagram examples

143

 <value>up</value>
 </Stem>
</Note>
<Barline>
 <origin>47.456 0</origin><size>1 1</size>
 <dotted>no</no>
</Barline>
<Note id="n4">
 <origin>50.788 2</origin><size>1 1</size>
 <Notehead id="h4">
 <origin>0 0</origin><size>1 1</size>
 <value>open</value>
 </Notehead>
 <Stem id="s4">
 <origin>0 0</origin><size>1 1</size>
 <direction>up</direction>
 </Stem>
 <AugmentationDot id="d1">
 <origin>2 1</origin><size>1 1</size>
 </AugmentationDot>
</Note>
<SingleBarline>
 <origin>70 0</origin><size>1 1</size>
 <dotted>no</no>
</Barline>
<LedgerLine noteid="n1">
 <origin>15.499 -2</origin><size>1 1</size>
</LedgerLine>
<LedgerLine noteid="n4">
 <origin>49.788 -2</origin><size>1 1</size>
</LedgerLine>

 </Staff>
 </Page>
</Score>

Listing 8-1: A sample XML representation

Music Notation as Objects

144

145

Chapter 9
Discussion

This chapter further examines the decisions made in the analysis. Alternate solu-
tions are also discussed and evaluated, as are some issues concerning design-
stage modeling. Explored here is the possible simplification of the analysis
model, so as to enhance consistency, and expansion of the model by the addition
of new objects and attributes. Finally, questions concerning inclusion of logical
and performance information are engaged, and examples of implementation
solutions are described.

This chapter presents the model for a generic computer graphics system that
is capable of free-form graphics representation. The model is similar to that of a
program for general-purpose drawing or for presentation applications. Since
music notation is a graphic system, a good notation program should be capable
of representing and constructing free-form graphics, in at least a two-dimen-
sional coordinate system. Therefore, the model developed here is based on a
free-form, two-dimensional graphics system.

9.1 Commentary on the analysis

The vocabularies used for the analysis model were adapted from Gerou & Lusk
(1996), Heussenstamm (1987), and Ross (1970). These detailed and systematic
texts provided reliable and thorough descriptions of music notation. The use of
additional textbooks might have led to the consideration of other concepts, as
either potential classes or relationships. Had such concepts been considered,
however, it is unlikely that the model would require major changes to its general
architecture. I can thus be confident that my analysis model presents a relevant
and reliable model of traditional Western music notation.

The analysis model is fairly liberal with regard to multiplicity requirements
in aggregation and association relationships. This liberality was demonstrated in
the top-level aggregation structure presented above, in Chapter 7.3. As defined
in the general rules of the analysis model, all aggregations are considered one-
to-any unless defined otherwise. Hence it follows, for example, that a Score may
exist without any Pages. Furthermore, Pages may exist without any Systems,

Music Notation as Objects

146

and Systems are not required to have Staves. This situation, however, violates
the general requirement that all objects must have a visual appearance: what
makes a Score visible if it has no Pages? Moreover, how is a System visible if it
has no Staves? This logical problem might be solved by the use of stricter multi-
plicity rules.

Such situations – for example a score without any pages – may be logically
impossible in a printed document. Yet, in a computer implementation a score
could indeed exist, and even be visible, without any pages; for example, a com-
puter application might create an empty window whenever a new score is cre-
ated. Therefore, a liberal policy was followed here, in solving problems that can
be regarded as design- or implementation-dependent.

9.2 A low-level graphics system

As stated above, the aim of the analysis was not to model any specific kind of
computer application. Since music notation is a graphic system, however, some
example of a generic graphics representation system should be provided. Given
the great amount of research done in the field of computer graphics and the
amount of applications available, existing systems may well be used as a basis
for this task. The following model is based on the architecture of the PostScript
graphics model and the Adobe Illustrator drawing program. An alternative, yet
in some ways similar, architecture is included in Diener’s glyph-based Nutation
program (Diener 1990). The graphics model presented here is not part of the
analysis model itself. Rather, it should be regarded as a purely hypothetical
design model.

Our example graphics model is centered around the class CMNSymbol. The
CMNSymbol is divided into general-purpose, graphical subclasses as presented
in Figure 9-1. As described in the analysis model, CMNSymbol includes proper-
ties common to all notation symbols, including their graphic position, dimen-
sions, the ability to visualize (draw) themselves and to generate a sonic
representation of themselves. Figure 9-1 shows only a subset of the properties of
the CMNSymbol class as defined in the analysis model.

The structure of the graphics model is derived from the data representation
scheme used in existing, general-purpose, vector-based computer graphics pro-
grams, especially Adobe Illustrator (Adobe 1993).

In Figure 9-1, the CMNSymbol is presented as a superclass having two sub-
classes: CompositeSymbol and PrimitiveSymbol. CompositeSymbol is a con-
struction of CMNSymbols, which can be either other CompositeSymbols or
PrimitiveSymbols. PrimitiveSymbol is either a Shape, Text, or Import-
edGraphic. Shape is a construction of Paths, a basic element in PostScript and

Discussion

147

Adobe Illustrator. Path includes a set of coordinates that define the route through
which a virtual (i.e., invisible) line or curve is drawn. When a path is “filled”, the
area surrounded by this logical line or curve is filled with a given color. When a
path is “stroked”, a visual line of a given width and color is drawn. Color and
line width may be stored as attributes of Path or Shape.

Text consists of Characters. PostScript, for example, provides primitives for
character shapes and basic text layout, such as the spacing between consecutive
characters. ImportedGraphic is a symbol created with external software. Import-
edGraphic is used in the analysis as a means of including symbols that are
impossible or overly difficult to produce with the music notation program itself.

CMNSymbol

draw
play

fill
stroke

origin
dimensions

Primitive
Symbol

Composite
Symbol

Path Character

*

* *

Imported
Graphic

Shape Text

Figure 9-1: An example low-level graphics model

Music Notation as Objects

148

To implement the draw operation, a CompositeSymbol would invoke the
draw operation of all of the objects it contains. If the object that receives the
invocation call is a CompositeObject, it would in turn invoke its contents. Then a
PrimitiveSymbol would execute appropriate graphics routines, such as Post-
Script commands, in order to draw the symbol on an output device.

Implementation of the play operation should follow the same basic principle
of delegation, but, since most music notation symbols are CompositeSymbols, a
sonic representation would be generated on a higher level in the symbol-aggre-
gation hierarchy. The sections below describe the class structures of these
higher-level objects.

9.3 Notes, stems and chords

As pointed out by Kurkela (1986: 101), pitch is not a parameter of a note sym-
bol. In music notation, a note gains a pitch only when it is placed on a staff. This
leads to an interesting question: should, as proposed in my object model, a Note
“know” its position on a staff? that is, should it have coordinates that identify its
position on a staff as its attributes? An alternative solution would be to store the
position, and possibly size and dimensions, of each Note object as parts of its
aggregate Staff, and somehow bind them to the Notes. This could be arranged in
a generalized way by using a container class for all CMNSymbols, e.g., a class
named “SymbolContainer”.

This arrangement could yield a model that would be semantically closer to
music notation. At the same time, it would also make the model more complex,
not only by making the aggregation structure deeper, but also by making it more
difficult to access Notes, because accessing would have to be done indirectly
through the container object. In particular, this would make it more difficult for a
Staff to manage its parts. Thus, the placement of the position and dimensions of
a Symbol within the Symbol itself can be seen as a less tangled, more conve-
nient solution.

As another possible modification to the analysis model, a generalization
could be defined for some parts of Note; e.g., Arpeggio, Articulation, and Orna-
ment. However, these classes differ, not only in shape, but also in their place-
ment with respect to a note. Therefore, it is difficult to find a sufficient amount of
common properties to justify a generalization.

The analysis model lacks a class for chords. Although “chord” is part of
common musical vocabulary, its meaning is ambiguous and may be regarded as
esthetic in nature. For example, in describing Palestrina-style counterpoint, it
would anachronistic to call vertically aligned notes “chords”, although they
might appear visually as such in a printed score. Despite such difficulties, the

Discussion

149

analysis model includes an association named “chord”. The term chord was cho-
sen because of its familiarity, despite the above-mentioned esthetic connota-
tions. Association was chosen over aggregation structure in order to point out
that chords are ambiguous, since they are not purely graphic constructs. Accord-
ing to the analysis model, Notes are always direct parts of a Staff. If an aggrega-
tion structure for chords had been included, Notes would have been defined as
parts of either a Staff or a Chord. This would have led to an inconsistency like
the one in the Page/System/Staff aggregation structure, for which an alternative
design model is presented in Chapter 9.5.

9.4 Beams

Complex beam structures are difficult to represent in a computer program. This
is demonstrated by how SCORE implements beams (SCORE 1992b: 69-88;
SCORE 1993: 6.07). SCORE’s beaming capabilities have become more highly
developed in revisions of the program. This also bears upon the parametric
structure, where new parameter fields and values have been added to enable
more complex beaming arrangements.

For our analysis model, a deeper aggregation structure could be considered,
such that a PrimaryBeam and SecondaryBeams would be parts of a container
class. In Chapter 7, a shallow aggregation structure was chosen, because it is
simpler (requires less classes) and because, in the analysis model, each class
involved with beaming has an explicit visual representation.

Another alternative solution for organizing complex beam structures would
be the inclusion of a container class for a group of beams, which could be called
BeamGroup or BeamStructure. Eales included a class called BeamGroup in his
analysis model (2000: 101). In our model, this class was not included because it
is not part of common vocabulary of the problem domain. In a design model,
however, BeamGroup might prove to be a relevant and useful class.

Another alternative would be to use Beams as aggregates of Notes and Rests.
In light of Dannenberg’s general view on hierarchy and structure (1993: 21),
however, the use of an aggregation structure can complicate the model consider-
ably if other, similar structures (such as slurs) are also treated as aggregations.
Furthermore, the consistent use of such connector symbols as aggregates would
require several interweaving aggregation structures. Such a method would even-
tually violate the principles of linear logic. Also, this procedure would blur the
distinction between representation that is consistently graphically-oriented and
representation that is consistently logically-oriented.

Yet another alternative could be to model Beams as parts of Notes. This
would be consistent with how Notes relate to Stems. A possible way of model-

Music Notation as Objects

150

ing this relationship could be to define Beams as an association class for Notes
or Stems. There, an association (called, say, “beamed”) could be defined
between successive Notes or Stems, and the Beam symbol objects would be
instances of the association class Beam. There, the Beam symbols would only
exist when the respective association between Notes or Stems exists.

Conceptually, the modeling of Beams as parts of Notes constitutes the oppo-
site to modeling Notes as parts of connector objects. For the present analysis
model, a neutral relationship was chosen, such that a Beam is not part of a Note,
but neither are Notes part of Beam structures. Instead, the next higher-level
aggregate, Staff, is used as the container for both classes.

9.5 Design issues

The design stage often involves expansion of the analysis model with new
classes and relationships required by a specific computer application. The
designers should at the same time consider omitting unnecessary constructs
from the analysis model. Moreover, ambiguities and overly complex structures
should be questioned and simplified, if possible. One way to simplify the analy-
sis model deals with the organization of the top-level aggregation structure. As
shown in Figure 7.3, the analysis model defines a parallel aggregation relation-
ship between Page and both System and Staff. Yet, a Staff can alternatively be
part of a System. In music notation, it is permissible to have staves that do not
belong to any system. Nonetheless, a structure of more consistency would be
achieved, if the top-level one were modeled as shown in Figure 9-2.

In this simplification, the direct aggregation relationship between Staff and
Page has been removed. As a result, each Staff is always part of a System, even
if there is only one Staff per System. Although this arrangement might lack
similitude to the problem domain, it would result in a more efficient computer
implementation, because a Page would only be responsible for manipulating
Systems and not both Systems and Staves. If this modification was made to the
design, other relationships involving System and Staves would also have to be
modified, in particular to allow (single-Staff) Systems to exist without a Sys-
temicBarline.

An additional modification to the analysis model appears in Figure 9-2,
where all aggregation structures are defined as ordered. As discussed in Chapter
7.3, although the parts of a symbol are already implicitly ordered by their posi-
tion within their aggregate’s coordinate system, explicit ordering of logically
one-dimensional structures (such as Systems within a Page, or Staves within a
System) is likely to help in organizing the data. There would be disadvantages,
for example, due to added redundancy of information; but these would likely be

Discussion

151

small as compared to the benefits. Therefore, the ordering of other aggregation
structures should also be considered in the design stage.

Another simplification of the analysis model would involve the Sys-
temicBarline class. The only difference between a SystemicBarline and a regu-
lar Barline is that the former is justified to the left edge of system staves, and it
always spans the whole system. However, other system-wide barlines are mod-
eled as regular Barlines. If the design model of Figure 9-2 is accepted, the Sys-
temicBarline class could well be omitted from the object model. If needed, a
generic specialized class for barlines connecting more than one Staff could be
defined instead.

The complexities of automatic spacing are only partly helped by the object
model itself. The inheritance hierarchy provides some aid in the making of spac-
ing decisions. For example, CoreSymbol represents a generalization of symbols
that have a higher precedence in spacing compared to Attachments, which are
generally placed according to some CoreSymbol. The analysis model does not,
however, make assumptions about which object is responsible for spacing.

If an initialization and data transmission protocol similar to that of Sound
Processing Kit were used as the basis of a music-notation object system, the
notation objects would allocate space for themselves and negotiate with nearby
objects to determine their position on the staff, system, or page. This would
enable implementation of a hierarchical, delegated, spacing procedure that starts

StaffSystemPageScore

CMNSymbol

* * *
ordered ordered ordered

Figure 9-2: A simplified top-level aggregation structure

Music Notation as Objects

152

from the root aggregate and descends into the subparts of its lowest level. As
mentioned in Chapter 2.7, however, Gerou and Lusk suggest that, to enhance
readability, barlines on successive staves should be misaligned horizontally,
unless they belong to the same system. This suggestion can be extended to apply
to successive systems as well. This indicates that even a system cannot fully
determine the spacing of its contents without checking the spacing of other,
nearby systems. Therefore, spacing should be performed, at least partly, by an
object belonging to a high level in the aggregation hierarchy. It was considered
risky to make that or any other assumption about spacing procedure during the
analysis phase. Instead, the analysis model makes it possible to use a variety of
different spacing procedures – both automatic and manual.

9.6 Implementation issues

As noted above, the object model does not require the use of a linear-logic based
programming language. Similarly, the analysis model is liberal with regard to
the implementation programming language in general. In principle, any lan-
guage that supports at least single inheritance, aggregation and association can
be used to implement the model. If a linear-logic-based programming language
is used, the implementation of associations is one of the main concerns.

In music notation, many symbols may expand beyond a single staff; for
example, chords and beams. Therefore, associations in the object system are
also expected to span more than one staff. Similarly, there may be cross-refer-
ences between other types of objects belonging to different parts in the aggrega-
tion hierarchy.

This type of complex cross-referencing is common in conventional object-
oriented programming languages based on reference semantics. For a genuinely
linear-logic-based system, cross-referencing between different aggregation
structures may be difficult or computationally expensive to implement. One
implementation solution, which would respect the basic principles of linear
logic, would be an object structure similar to the UNIX hierarchical file system
(Ritchie & Thompson 1974), with the exception of multiple “hard links” to a
file. There, aggregations would be implemented as file system directories (some-
times called “folders”). Associations would be implemented as “soft links”
(UNIX 1989) or as “aliases”, as in the Apple MacOS file system (Apple 1992).
UNIX soft links allow links to files or directories to exist without the actual file
or directory. Attempts to access a nonexistent file would be blocked by the file
system.

Discussion

153

9.7 Score processing and dynamic behavior

Although our focus has been on structural modeling, some principal issues con-
cerning the dynamic behavior of the object model should also be discussed. This
involves application of the analysis model for the performance of common tasks
in computer-based notation.

Computer processing of music notation may be divided into five main tasks:

1. Data input and storage retrieval
2. Editing
3. Data storage
4. Printing
5. Playback

Each of the tasks involve some form of dynamic behavior. Data input and stor-
age retrieval create new objects; e.g., by commands issued by a user or from a
data input or storage representation. Editing involves making changes to an
existing score, including the moving, copying, or deletion of objects. These
tasks change the state of the object system. In Chapter 2.5, it was pointed out
especially that editing, storage, and playback capabilities are not needed in every
music notation application. At the least, however, data input causes dynamic
activity in the system.

Data storage involves saving the state of an object system, for example, to a
file. Printing and playback require the production of graphic and sonic represen-
tations of the score, respectively. Whereas storage, printing, and playback
require iteration or interpretation of the score, the state of the object system rep-
resenting the score does not necessarily change. There, dynamic behavior may
involve creation and manipulation of temporary objects that are not part of the
music-notation object system itself, but are used to store and transmit informa-
tion from the notation objects during an iterative interpretation process.

As an example, a music playback algorithm would iterate through each Page
in a Score, each System on a Page, each Staff in a System, each CoreSymbol and
Attachment on a Staff, and so on. Each Symbol encountered in the iteration pro-
cess may affect the consequent CMNSymbols. The effect of each CMNSymbol
would be maintained through the iteration. In an object-oriented system, an
obvious solution is to use an object for data storage. We shall call the class of
this hypothetical object “PlaybackEnvironment”.

According to the analysis model, CMNSymbols implement an operation
named “play”. This operation would be invoked for each CMNSymbol encoun-
tered during the playback process. The playback process would be started by
invocation of the play operation of a Score object. The Score object would iter-

Music Notation as Objects

154

ate through its Pages and successively call their respective play operations. This
process of delegating the play operation would continue down to the lowest-
level objects in the aggregation hierarchy. A PlaybackEnvironment object would
be passed along as a parameter of the playback operation and returned in an
updated state by each invocation of “play”. The state of the PlaybackEnviron-
ment would thus change according to the effect of each Symbol (such as
changes in key or time signature, changes in dynamics, effects of accidentals,
etc.). In a multi-staff system, a separate PlaybackEnvironment instance might be
needed for each Staff. Note objects would react to play operations by producing
sound events or an instruction for generating them. Most other types of Symbols
would only alter the state of PlaybackEnvironment.

A similar iterative process would be needed in all the tasks listed above. In
printing, the Score would invoke a “draw” operation on all of its parts, and each
part would invoke the draw operation on their parts, etc. In this process another
dynamic object, say, “GraphicalEnvironment”, could be used to pass on infor-
mation about the position and scale of each Symbol to be drawn.

Environment objects could be also used as a way of expanding the capabili-
ties of the object representation to cope with different musical styles. As pointed
out by Selfridge-Field (1997c: 11-12), performance of a Western art music score
requires knowledge of the conventions of the specific musical style and histori-
cal era of the composition and/or notation. For example, the correct interpreta-
tion of durational values in Baroque music scores may differ from those
conventional to a present-day reader. In the object model, specialized Playback-
Environment objects could serve to represent the performance conventions of
specific musical styles.

In interactive computer-based editing, a typical task is to find and select a
symbol that a user clicks on with a mouse or other pointing device. If a single
page of a score is visible, the search operation would be invoked on a Page
object with the x and y coordinates of the pointing device as parameters for the
operation. Using those coordinates, the Page object would invoke a search oper-
ation for its parts, and so on, until the object pointed at is found. When an edit-
ing operation is completed, adjustment of spacing may be necessary. Again, an
automatic spacing algorithm would iterate, possibly in multiple passes, through
each adjusted System and Staff.

In some editing tasks, the environment of symbols may also have to be taken
into account. For example, if notes are moved or copied within a score, it may be
necessary to preserve their pitches and durations so that they can be intelligently
placed into a new environment; for example, into another key or transposed for
another instrument. There are at least two ways to accomplish an “intelligent”,
copy-/paste-style editing task: (1) The environment of the symbols (key signa-

Discussion

155

ture, preceding accidentals, etc.) is carried with the copied notes; e.g., by means
of a dedicated environmental object. (2) A temporary logically-oriented or
hybrid representation is created by calculating the logical pitches and durations
for each note. The temporary representation would be converted back into
purely graphical representation when the notes are inserted into the new envi-
ronment.

A simpler editing task is described below in more detail. Figure 9-3 shows a
a sample UML sequence diagram (Booch et al. 1999: 245-247). It displays a
hypothetical interaction process in which a user first selects a symbol then issues
a command to delete it.

On the object level, interaction takes place between four objects of four
classes: Page, System, Staff, and Note. It is assumed that the Page of the Score
has already been selected. Therefore, a Score object is omitted from the dia-
gram. The diagram shows a simplified two-step process, where one note symbol
is first selected and then deleted from a staff. The diagram roughly simulates a
situation in which a user selects a note on a page of a score (e.g. by clicking on
the note symbol with a mouse) and then issues a “delete” command (e.g.,
presses the DELETE key on a keyboard).

In the diagram, the objects are shown on top. The program execution time
flows from top to bottom. Communication between objects is shown with
arrows. The name and arguments of the corresponding operation are attached to
each arrow. An arrow drawn with a dashed line indicates the return of control to
the caller of the operation. The execution time of an operation is indicated by a
narrow box. Each object has a “life span” shown by a dashed vertical line. A
cross symbol indicates the deletion of an object.

During the phase of symbol selection, a “selectSymbol” operation, with the
coordinates of the pointing device as its parameters, is invoked on a Page object.
The Page object compares the coordinates with the positions and dimensions of
the System objects that it contains. When the appropriate System is found, Page
calls the selectSymbol operation of that Symbol. This process continues until
the appropriate CMNSymbol, in this case a Note, is found. Control is then
returned to the user. During the deletion phase, the user invokes a “deleteSelec-
tion” operation of the Page object, which in turn iterates through its parts to
delete all of the selected symbols that they contain.

The diagram is meant only to serve as an example of a hypothetical editing
task. The exact need and behavior of algorithms depend on the application area
of a particular computer program. The structure of the analysis model allows
many different solutions for, say, selecting and deleting objects. Here, the use of
the model and detailed forming of algorithms are regarded as design-stage
issues.

Music Notation as Objects

156

9.8 Logical and performance information

“Part” and “voice” are common concepts in musical representations. Both are
supported in many notation-related representations, including NIFF and Tilia.
Part and voice, if needed within a particular application, can be added as
attributes of or associations with existing classes in the model. DurationalSym-
bol and CoreSymbol could be suitable generalizations for adding such features.
Care should be taken, however, not to introduce unnecessary redundancy into
the object system. In many cases, indication of part, and also voice, is contained
in the graphical layout of the system.

Explicit encoding of logical information may be needed, especially if the
notation program is designed to assist a user in composing or arranging music.
There are also applications in which a graphic representation alone is sufficient.
Therefore, representation of purely logical information can be regarded as a

: System: Page

findSystem(x, y)

: Staff

findStaff(x, y)

selectSymbol(x, y)

selectSymbol(x, y)

selectSymbol(x, y)

findSymbol()

deleteSelection()
deleteSelection()

deleteSelection()

: Note

highlight()

delete()

Figure 9-3: Sample sequence diagram: Deletion of a note from a staff

Discussion

157

design issue, where assumptions are made about the type of use(rs) of the nota-
tion program. In that case, the inclusion of purely logical objects may also be
considered.

Performance information presents an additional challenge to the application
of the analysis model. Addition of performance-related properties or relation-
ships to the analysis model would enable implementation of a simple, “proof-
reading” kind of playback system. Sophisticated performance systems, and
especially support for multiple, alternate performances of a single score, would
require a more complex design.

One solution, one that keeps the notation object model mostly intact, would
be to use a separate, performance-oriented representation for performance infor-
mation. In the representation, performance(s) and notation could be linked to or
synchronized with the notation system by the defining of associations between
the two representations. If none of the existing performance-oriented representa-
tions are applicable to this purpose, a new analysis task should be undertaken; it
would be based primarily on representation of performance information.

9.9 Macro statements

The “simile” articulation is a good example of problems involved in transform-
ing graphic data into logical and performance information. Simile is a “macro”
statement, which indicates a repetition of a group of previous articulations.
Repeat signs and multiple rests are other examples of macro statements in music
notation (see Heussenstamm 1987: 132-134). Another example is a vertically
expanded, or “tall”, time-signature that spans several staves (ibid.: 118).

Compared to macro statements in computer programming languages, simile
and repeat signs can be described as implicitly defined macros. They instruct the
reader to repeat a previously represented gesture or pattern. In computer pro-
gramming languages, such as C (Kernighan & Ritchie 1978), macros are defined
explicitly before use. In a computer-processed representation, implicit macros
cause similar difficulties in automatic spacing.

When performance data are generated by parsing a graphically-oriented rep-
resentation, such as my analysis model, a simple one-pass iteration process
would require all possible groupings of articulations to be remembered, in case a
simile statement should appear. As a solution, a two-pass iteration process could
be used, which would search for simile statements in the first pass and to gener-
ate performance in the second pass, where appearances of simile can be
detected. Another solution would be to parse music backwards (i.e., from right
to left) when a simile or repeat sign is encountered.

Music Notation as Objects

158

In an object system, associations could model the relationships between the
“simile” symbol and the preceding symbols to which it refers. Alternatively, the
relationships could be resolved when a performance is generated through auto-
mated interpretation of the score. The latter procedure must be used if the analy-
sis model is implemented without extensions, because simile is modeled there as
a regular articulation and does not include associations with other, preceding
articulations.

9.10 Extendibility of the model

As mentioned above, music notation is an evolutionary system. Composers and
music publishers occasionally need to expand the vocabulary of music notation
for new applications. Therefore, a computer representation of music notation
should also be extendable, which numbers among the properties of good repre-
sentations listed by Huron (1992). My analysis model is extendable through
inheritation; that is, it provides both concrete classes and abstract superclasses as
bases for new, specialized subclasses. Also, attributes may be added to existing
classes so as to extend the model’s capabilities.

The model itself does not guarantee that a computer program that imple-
ments it is extendable. Typically, class-based, static programming languages do
not contain built-in means of defining subclasses at runtime. Therefore, extra
effort would be required in the design and implementation stages, to provide a
means for end-users to define new classes (or new types of objects) according to
a prototype-like principle. This kind of capability – which would enable users
not only to design new graphical shapes, but also to give those shapes a musical
function – should be a basic requirement for a computer program that attempts
to emulate the flexibility of music notation.

9.11 Representational aspects

The analysis model can also be assessed according to Huron’s list of properties
for good representations. Some qualities of the analysis model are common,
general object-oriented features. Others are products of the influence of linear
logic. Some qualities are, in turn, products of specific decisions made during the
analysis process. Many of the qualities apply both to the model and to music
notation. There follows a brief description of the analysis model from the per-
spective of Huron’s requirements.

The model is unique; i.e., no two signifieds share the same signifier. Unique-
ness is achieved not only through classification and inheritation relationships,

Discussion

159

but also through the strictly linear aggregation structure which guarantees that
an object is at all times a direct part of one and only one other object.

The model is literally mnemonic. Class and property names are descriptive
and typically not abbreviated. In being graphically-oriented and totally literal,
the model is also consistent. Some of its details, however, can be regarded as
inconsistencies. For example, Beams are modeled as part of Staves, whereas
Stems are modeled as part of Notes (even though several notes can share a single
Stem). At the same time, Beams were represented according to principles simi-
lar to those which define symbols that connect objects horizontally (or in time),
such as Slurs or Ties. In this respect, consistency was achieved.

The object representation is, at least in principle, totally reversible. This
should apply to all well-formed object representations of any target. The object
model is not economical. This is the trade-off for literalism and descriptiveness.
The descriptive names make the model verbose, which, viewed positively, guar-
antees that the model is not cryptic.

Structurally, the model is not particularly isomorphic. Better and more
explicit isomorphism could be achieved by the addition of more features (e.g.,
ordering) to aggregation and association relationships. Here, structural isomor-
phism has been considered primarily as a design issue.

As music notation itself, the object model is highly context-dependent. On
the other hand, the model is highly explicit in representing the graphical sym-
bols of music notation. The model is not optional (as “optional” is explained by
Huron), because all objects and all of their attributes are assumed to be repre-
sented explicitly.

As mentioned above, our model is extendable through inheritation. Super-
classes, both abstract and concrete, are used in the model having features in
common with their subclasses. They also serve as “mounting points” on which
to add new classes if the model needs to be extended. For example, if a new type
of time symbol should be needed – one that in some way differs from a rest or
note – then it could be added as a new subclass of DurationalSymbol. Similarly,
the model might be extended to support Schenkerian analysis; for example, a
new subclass for Arc could be defined with the name “SchenkerianProgression”.
This class would have a similar shape but a function different from Slur or Tie.

The properties just discussed characterize how the analysis model represents
the signifiers of music notation. The properties of music notation itself as a rep-
resentation were considered in Chapter 3.3. Theoretically, for example, the anal-
ysis model can be a consistent representation of a representation that is itself
inconsistent. Some properties of music notation, such as context-dependency,
apply to the analysis model as well.

Music Notation as Objects

160

161

Chapter 10
Conclusions

Object-oriented analysis can serve as a tool not only for software design, but for
theoretical examination of a complex system. Although the main intention of
this study was to provide a representational basis for developing music notation
software, the analysis model can also be regarded in some ways as a theoretical
study of the structural relationships of music notation symbols. A central con-
straint placed on the model was that it be consistent, while respecting the vocab-
ulary and behavior of the problem domain.

The use of a rule set based on linear-logic aids in the making of consistent
decisions during the analysis stage. Linear logic can, however, be criticized for
imposing a stiff and inflexible object structure. Also, linear logic itself has not
yet gained wide acceptance in software engineering. For this study, an additional
systematic method was needed, so that analytical decisions could be tested
against generic and predefined principles, rather than every decision being
treated as a special case. For this purpose, linear logic provided an efficient tool.
Moreover, it was not presupposed that a programming language based on linear
logic would be required for implementing the model.

The graphic notation languages of object-oriented methods serve as a conve-
nient and compact tool with which to analyze systems and design software.
UML, in particular, is so widely accepted that educated software designers and
programmers can be expected to produce analyses and designs even without
including explanations of the notation conventions. For this study, only a subset
of UML was needed. A description of the subset was included in order to make
the text methodologically self-contained.

The key features of the analysis model can be summarized as follows:

1. It presents an object-oriented representation of the problem domain
2. It uses terminology that can be found in the established vocabulary of

music notation
3. It is consistently graphically-oriented
4. It uses a hierarchical class inheritation structure for categorizing notation

symbols

Music Notation as Objects

162

5. It defines a systematic and coherent aggregation structure influenced by
linear logic

6. It suggests that logical information should be modeled as object proper-
ties and associations, not as objects

7. It puts little emphasis on explicit representation of purely performance-
related information

The object-oriented representation is described with a set of UML class dia-
grams. The latter show various types of relationships between classes and some
of their central properties. The analysis model is a static, structural representa-
tion. Dynamic behavior of the class system is not described except for the few
design suggestions and examples given in Chapter 9. The analysis model is not a
complete and sufficient representation to be used as specification for a program-
ming task. An additional design task is needed to derive a usable specification.
The analysis model presents a basic class structure upon which a practical com-
puter representation can be designed.

The analysis model employs terms commonly found in textbooks describing
music notation and its uses. This should make the representation understandable
to a musically educated user. Departing from traditional terminology, newly-
coined descriptive names were given to some superclasses. These invented
names describe the common role or function of their subclasses (e.g., Duration-
alSymbol, Attachment, Connector), and names of some specialized subclasses
were derived from the names of their superclasses (e.g., PrimaryBeam, Second-
aryBeam, SingleBarline).

Because it is graphically-oriented, the analysis model is a relatively low-
level, iconic representation of music notation. The signifiers of the object model
attempt to represent, through one-to-one mapping, the respective signifiers of
music notation. This is in contrast with the many logically-oriented representa-
tions of music notation that represent certain signifieds of their source represen-
tation.

The hierarchical class inheritation structure demonstrates the similarities
among related objects through the use of superclasses. The superclasses also
serve as “mounting points” for extending the representation with additional
classes. The class hierarchy itself is static, as are class-based object systems in
general. Examples were nevertheless provided to show how the class structure
might be modified in the software design stage.

The rule set based on linear logic-based proved especially helpful in the
analysis of “part-of” relationships. Linear logic also helped indirectly, in sys-
temizing the modeling of inheritation structures. Nevertheless, many analytic

Conclusions

163

situations still had to be defined and argued on an individual basis; simple,
unambiguous solutions were not always found.

The principle of modeling logical constructs as properties and associations,
instead of as objects and aggregations, is a direct consequence of the consis-
tently followed graphics-orientation of the analysis. The analysis model repre-
sents logical constructs in a manner similar to the way they are represented by
music notation, such that logical information is implied by visual symbols. The
defining of logical associations between visual objects enabled logical informa-
tion to be expressed explicitly and without the graphic orientation of the repre-
sentation being compromised.

The analysis model puts little emphasis on the representation of perfor-
mance-related information. This is a deliberate decision. With regard to music
notation, performance information is regarded as external data that can be
derived through interpretative processes, but that should not be considered an
integral or mandatory property of music notation itself.

Of the existing representations described in this study, the analysis model
most closely resembles the SCORE parameter list. Thus, it could be argued that
the deficiencies of SCORE also apply to the analysis model. On the other hand,
it can also be argued that, in SCORE, good representation was attained despite
the primitive data-structure capabilities of its implementation programming lan-
guage. It can be argued further that many representational details of SCORE can
be successfully adapted to object-oriented representations.

There are also ways in which the analysis model departs significantly from
the SCORE parameter list. In particular, the hierarchical aggregation structure of
the analysis model is deep, and the parts of objects are themselves full-featured
objects. Also, the class inheritation structure of the analysis model is hierarchi-
cal and contains named, abstract classes that represent the common properties of
their subclasses. Aggregation-like and inheritation-like structures can also be
found on the SCORE parameter list, but there they are coded less consistently
and less systematically than they are in my model. Moreover, the analysis model
makes use of explicit associations between symbols, an operation which
SCORE does not support.

It is in no way claimed that the analysis model is the only possible, or even
best possible, object-model of music notation – even if only graphics-oriented
representation is concerned. Rather, the main asset of this study lies in the meth-
odological principles and the representational approach to music notation upon
which the analysis is based. One conclusion of this study is that music notation
is truly a complex system and thus cannot be analyzed with a simple model.
Nevertheless, modeling was required, not only to recognize that fact, but also to

Music Notation as Objects

164

see which problems of music notation can be solved elegantly by generalization
and which ones require special, complicated solutions.

Music notation is itself a representation. Therefore, a computer representa-
tion of music notation can be regarded as a meta-representation. A fundamental
analytic decision for this study was the choice between representing either the
signifiers or the signifieds of music notation. A mixture of both types would
have resulted in a hybrid, logical/graphic representation, wherein consistency
and explicitness are difficult or impossible to achieve.

Although a graphic orientation was chosen as the basis for the analysis
model, it must be acknowledged that graphically-oriented representation is not
optimal or sufficiently explicit for all musical uses. Still, because explicit visual
evidence of the signifieds is represented graphically, it can be concluded that this
type of representation rests on firm and objective conceptual bases.

165

References

Adobe 1986: PostScript Language Reference Manual. Reading, Massachusetts: Addison-
Wesley.

— 1993: Adobe Illustrator 5.5 User Guide. California: Adobe Systems Incorporated.
— 1994: Tutorial for the Adobe Illustrator Plug-in Architecture for version 5.0 & 5.5,

California: Adobe Systems Incorporated.
Apple Computer Inc. 1992: Inside Macintosh: Files. Reading, Massachusetts: Addison-

Wesley.
Andreoli, Jean-Marc – Pareschi, Remo 1990: LO and Behold! Concurrent structured

processes. ACM SIGPLAN Notices, Proceedings of the European conference on
object-oriented programming on Object-oriented programming systems, languages,
and applications. Volume 25, Issue 10.

Asperti, Andrea, Roversi, Luca 2002: Intuitionistic Light Affine Logic. ACM
Transactions on Computational Logic (TOCL). Volume 3, Issue 1.

Baker, Henry 1992: Lively Linear Lisp – ‘Look Ma, No Garbage’. ACM Sigplan Notices
27,8.

— 1994a: Linear Logic and Permutation Stacks – The Forth Shall Be First. ACM Sigarch
Computer Architecture News 22,1.

— 1994b: A “Linear Logic” Quicksort. ACM Sigplan Notices 29,2.
— 1994c: ‘Use-Once’ Variables and Linear Objects – Storage Management, Reflection

and Multi-Threading. ACM Sigplan Notices. September 1994.
Belkin, Alan 1994: Macintosh Notation Software: Present and Future. Computer Music

Journal. Volume 18, Number 1.
Bellini, P. Nesi, P. 2001: WEDELMUSIC Format: An XML Music Notation Format for

Emerging Applications. First International Conference on WEB Delivering of Music
(WEDELMUSIC'01). Florence, Italy: IEEE.

Bellini, P. – Nesi, P. – Spinu, M. B. 2002: Cooperative Visual Manipulation of Music
Notation. ACM Transactions on Computer-Human Interaction (TOCHI). Volume 9,
Issue 3.

Blostein, Dorothea – Haken, Lippold 1991: Justification of Printed Music.
Communications of the ACM. Volume 34, Number 3.

Booch, Grady 1994: Object-Oriented Analysis and Design with Applications. Second
Edition. Santa Clara, California: Benjamin/Cummings.

Booch, Grady – Rumbaugh, James – Jacobson, Ivar 1999: The Unified Modeling
Language User Guide. Second Edition. Santa Clara, California: Benjamin/
Cummings.

Music Notation as Objects

166

Boulanger, Richard (ed.) 2000: The Cound Book: Perspectives in Software Synthesis,
Sound Design, Signal Processing, and Programming. Cambridge, Massachusetts:
The MIT Press.

Boynton, Lee – Jaffe, David 1991: An Overview of the Sound and Music Kits for the
NeXT Computer. The Well-Tempered Object: Musical Applications of Object-
Oriented Software Technology. S. T. Pope (ed.). Cambridge, Massachusetts: The MIT
Press.

Branagan, Linda – Serra, Michael 1994: The Frame Handbook – Building FrameMaker
Documents That Work. Sebastopol, California: O’Reilly & Associates.

Byrd, Donald 1984: Music Notation by Computer. PhD thesis. Ann Arbor: Indiana
University.

Byrd, Donald 1994: Music Notation and Intelligence. Computer Music Journal. Volume
18, Number 1.

Castan, Gerd 2001 [1999-2000]: NIFFML: An XML Implementation of the Notation
Interchange File Format. The Virtual Score – Representation, Restrival, Restoration.
Walter B. Hewlett, Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The
MIT Press.

Coad, Peter – Yourdon, Edward 1991a: Object-Oriented Analysis. Second Edition.
Englewood Cliffs, New Jersey: Prentice-Hall.

— 1991b: Object-Oriented Design. Englewood Cliffs, New Jersey: Prentice-Hall.
Coad, Peter – Nicola, Jill 1991: Object-Oriented Programming. Englewood Cliffs, New

Jersey: Prentice-Hall.
Cole, Hugo 1974: Sounds and Signs. London: Oxford University Press.
Cooper, David – Ng, Kia-Chuan – Boyle, Roger D. 1997: MIDI Extensions for Music

Notation (2): Expressive MIDI. Beyond MIDI – The Handbook of Musical Codes.
Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT Press.

Cox, Brad J. – Novobilski, Andrew J. 1991: Object-Oriented Programming: An
Evolutionary Approach. Reading, Massachusetts: Addison-Wesley.

Crosvenor, Jonathan – Morrison, Kay – Pim, Alexandra (ed.) 1992: The PostScript Font
Handbook. Revised Edition. Wokingham, Berkshire: Addison-Wesley.

Cycling74 2004: Max/MSP. http://www.cycling74.com/products/maxmsp.html
(Accessed 2004-03-10).

Dannenberg, Roger 1993: Music Representation Issues, Techniques, and Systems.
Computer Music Journal. Volume 17, Number 3.

Déchelle, Francois 1999: jMax: an environment for Real-Time Musical Applications.
Computer Music Journal. Volume 23, Number 3.

— 2004: A Brief History of MAX. http://freesoftware.ircam.fr/article.php3?id_article=5
(accessed 2004-03-07).

Diener, Glendon Ross 1990: Modeling Music Notation: A Three Dimensional Approach.
PhD thesis. Stanford University.

Dodge, Charles – Jerse, Thomas A. 1985: Computer Music – Synthesis, Composition,
and Performance. New York: Schirmer Books.

References

167

Eales, Andrew 2000: The Music Notation Toolkit: A Study in Object-Oriented
Development. Proceedings of the NACCQ 2000. http://www.naccq.ac.nz/
conference01.html?page=13 (accessed 2004-01-12).

Eckstein, Robert 1999: XML Pocket Reference. Sebastopol, California: O’Reilly.
Foley, James D. – van Dam, Andries – Feiner, Steven K. – Hughes, John F. 1992:

Computer Graphics – Principles and Practice. Second edition. Reading,
Massachusetts: Addison-Wesley.

Foxley, Eric 1987: Music – A Language for Typesetting Music Scores. Software -
Practice and Experience 17(8): 485-502.

Forsberg, Andrew – Mark Dieterich, Mark – Zeleznik, Robert 1998: The music notepad.
Proceedings of the 11th annual ACM symposium on User interface software and
technology. New York: ACM Press.

Fraunhofer 2004a: Audio & Multimedia. MPEG Audio Layer-3. http://
www.iis.fraunhofer.de/amm/techinf/layer3/index.html (accessed 2004-03-07).

— 2004b: Audio & Multimedia. MPEG-4 Overview. http://www.iis.fraunhofer.de/amm/
techinf/mpeg4/index.html (accessed 2004-03-07).

Gerou, Tom – Lusk, Linda 1996: Essential Dictionary of Music Notation. Los Angeles:
Alfred Publishing Co.

Girard, Jean-Yves 1987: Linear Logic. Theoritical Computer Science 50.
— 1995: Linear Logic: Its Syntax and Semantics. Proceedings of the Workshop on

Advances in Linear Logic. J.-I. Girard, Y. Lafond, L. Regnier (ed.) Ithaca, New York:
Cambridge University Press.

— 1998: Light Linear Logic. Information and Computation. Volume 143, Issue 2.
Goldberg, Adele – Robson, David 1989: Smalltalk 80: The Language. Reading,

Massachusetts: Addison-Wesley.
Good, Michael 2001 [1999-2000]: MusicXML for Notation and Analysis. The Virtual

Score – Representation, Restrival, Restoration. Walter B. Hewlett, Eleanor Selfridge-
Field (ed.). Cambridge, Massachusetts: The MIT Press.

Goodman, Nelson 1985: Languages of Art – And Approach to a Theory of Symbols.
Second Edition.Indianapolis: Hackett Publishing Company.

Gourlay, John S. 1987: Spacing a line of music. Technical Report OSU-CISRC-10/87-
TR35, Department of Computer and Information Science. The Ohio State University.

Grande, Cindy – Belkin, Alan 1996: The Development of the Notation Interchange File
Format. Computer Music Journal. Volume 20, Number 4.

Grande, Cindy 1997: The Notation Interchange File Format: A Windows-Compliant
Approach. Beyond MIDI – The Handbook of Musical Codes. Eleanor Selfridge-Field
(ed.). Cambridge, Massachusetts: The MIT Press.

Grove 1980: Notation. The New Grove Dictionary of Music and Musicians. Stanley Sadie
(ed.). London: Macmillan Publishers Limited.

Haken, Lippold – Blostein, Dorothea 1993: The Tilia Music Representation:
Extensibility, Abstraction, and Notation Contexts for the Lime Music Editor.
Computer Music Journal. Volume 17, Number 3.

Music Notation as Objects

168

Heussenstamm, George 1987: The Norton Manual of Music Notation. New York: W. W.
Norton & Company.

Hewlett, Walter B. – Selfridge-Field, Eleanor 1987: A Directory of Computer Assisted
Research in musicology. Menlo Park, California: Center for Computer Assisted
Research in the Humanities.

— (ed.) 1989: Computing in Musicology – A Directory of Research. Menlo Park,
California: Center for Computer Assisted Research in the Humanities.

Hewlett, Walter B. – Selfridge-Field, Eleanor (with David Cooper, Brent A. Field, Kia-
Chuan Ng, and Peer Sitter) 1997: MIDI. Beyond MIDI – The Handbook of Musical
Codes. Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT Press.

Huron, David 1992: Design Priciples in Computer-Based Music Representations.
Computer Representations and Models in Music. Alan Marsden & Anthony Pople
(ed.). London: Academic Press.

Jacobson, Ivar 1992: Object-Oriented Software Engineering: A Use Case Driven
Approach . Reading, Massachusetts: Addison-Wesley.

Jacobson, Ivar – Booch, Grady – Rumbaugh, James 1999: The Unified Development
Process. Reading, Massachusetts: Addison-Wesley.

Kippen, Jim – Bel, Bernard 1992: Modelling Music with Grammars – Formal Language
Representation in the Bol Processor. Computer Representations and Models in
Music. Alan Marsden & Anthony Pople (ed.). London: Academic Press.

Kervinen, Jukka-Pekka – Lassfolk, Kai 1993: Helsinki Music Tools, Proceedings of the
1993 International Computer music Conference, Tokyo: The International Computer
Music Association.

Kernighan, B. W. – Lesk, M.E. – Ossanna, J. F. Jr. 1987 [1978]: Document Preparation.
UNIX System Readings and Applications Volume I. UNIX Time-Sharing System.
AT&T Bell Laboratories. Englewood Cliffs, New Jersey: Prentice-Hall.

Kernighan, Brian W. – Pike, Rob 1984: The UNIX Programming environment.
Englewood Cliffs, New Jersey: Prentice-Hall.

— 1999: The Practice of Programming. Reading, Massachusetts: Addison-Wesley.
Kernighan, Brian W. – Ritchie, Dennis M. 1978: The C Programming Language.

Englewood Cliffs, New Jersey: Prentice-Hall.
Klapuri, Anssi 2003: Automatic Transcription of Music. Proceedings of the Stockholm

Music Acoustics Conference, August 6-9, 2003 (SMAC 03). Stockholm. http://
www.cs.tut.fi/sgn/arg/klap/smac2003_klapuri.pdf. (Accessed 2004-05-21.)

Krasner, Glenn 1991: The Design of a Smalltalk Music System. The Well-Tempered
Object: Musical Applications of Object-Oriented Software Technology. S. T. Pope
(ed.). Cambridge, Massachusetts: The MIT Press.

Kurkela, Kari 1986: Note and Tone – A semantic analysis of conventional music notation.
Helsinki: Suomen Musiikkitieteellinen Seura.

Kuuskankare, Mika – Laurson, Mikael 2003: ENP-Expressions, Score-BPF as a Case
Study. Proceedings of International Computer Music Conference. Singapore: The
International Computer Music Association.

References

169

Lassfolk, Kai – Lehtinen, Timo 1988: The Time Stamped Music File Format Standard.
ANSI Document X3V1.8M/88-7. San Francisco, California: International Computer
Music Association.

Lassfolk, Kai 1995: Sound Processing Kit. Proceedings of the 1995 International
Computer music Conference. Banff: The International Computer Music Association.

— 1999: Sound Processing Kit – An Object-Oriented Signal Processing Framework,
Proceedings of the 1999 International Computer music Conference. Beijing: The
International Computer Music Association.

Laurson, Mikael 1996: PATCHWORK: A Visual Programming Language and some
Musical Applications. Doctoral Thesis. Studia Musica No.6, Helsinki: Sibelius
Academy.

Lazzaro, John – Wawrzynek, John 2004: MPEG-4 Structured Audio: Developer Tools.
http://www.cs.berkeley.edu/~lazzaro/sa/ (accessed 2004-03-07).

Leppard, Raymond 1988: Authenticity in Music. London: Faber Music.
Loy, Gareth 1989: Composing with Computers – A Survey of Some Compositional

formalisms and Music Programming Languages, Current Directions in Computer
Music Research, Max V. Mathews – John R. Pierce (ed.). Cambridge, Massachusetts:
The MIT Press.

Mathews, Max 1969: The Technology of Computer Music. Cambridge, Massachusetts:
the MIT Press.

Maxwell, J. – Ornstein, S. 1984: Mockingbird: A Composer’s Amanuensis. BYTE,
January 1984.

McNab, Rodger J. – Smith, Loyd A. – Witten, Ian H. – Henderson, Clare L. –
Cunningham, Sally Jo 1996: Towards the Digital Music Library: Tune Retrieval from
Acoustic Input. Proceedings of the first ACM international conference on Digital
libraries. New York: ACM Press.

Microsoft 1991: Microsoft Windows Multimedia Programmer’s Reference. Redmond,
WA: Microsoft Press.

MIDI 1985 [1983]: MIDI 1.0 Detailed Specification. Date: August 5, 1983. Synthesizers
and Computers. Tom Darter (ed.). Cupertino, California: GPI Publications, Hal
Leonard.

— 1988: MIDI 1.0 Detailed Specification, Document version 4.1. Los Angeles,
California: The International MIDI Association.

MOODS 2004: http://www.dsi.unifi.it/~moods/. (Checked 2004-03-01.)
NIFF 2002: NIFF 6b – Notation Interchange File Format. June 11, 2002. http://

www.musique.umontreal.ca/personnel/Belkin/N/NIFF6b.html. (Checked 2002-11-
27.)

Nordli, Kjell E. 1997: MIDI Extensions for Music Notation (1): NoTAMIDI Meta-
Events. Beyond MIDI – The Handbook of Musical Codes. Eleanor Selfridge-Field
(ed.). Cambridge, Massachusetts: The MIT Press.

Oppenheim, Alan V. – Schaefer, Ronald W. 1975: Digital Signal Processing. Englewood
Cliffs, New Jersey: Prentice-Hall.

Music Notation as Objects

170

Ornstein, Severo M. – Maxwell, Jonh T. III 1983: Mockingbird: A Composer’s
Amanuensis. CSL-83-2. Palo Alto: Xerox Palo Alto Research Center.

Pope, Stephen Travis 1991a: Object-Oriented Software Design. The Well-Tempered
Object: Musical Applications of Object-Oriented Software Technology. S. T. Pope
(ed.). Cambridge, Massachusetts: The MIT Press.

— 1991b: Introduction to MODE: The Musical Object Development Environment. The
Well-Tempered Object: Musical Applications of Object-Oriented Software
Technology. S. T. Pope (ed.). Cambridge, Massachusetts: The MIT Press.

Read, Gardner 1982: Music Notation – A Manual of Modern Practice. London: Victor
Collancz Ltd.

Renz, Kai 2000: Design and Implementation of a Platform Independent GUIDO Notation
Engine. Proceedings of the 2000 International Computer music Conference. Berlin:
The International Computer Music Association.

— 2002: An Improved Algorithm for Spacing a Line of Music. Proceedings of the 2002
International Computer music Conference. Göteborg: The International Computer
Music Association.

Ritchie, Dennis M. – Thompson, Ken 1974: The UNIX Time Sharing System.
Communications of the ACM. Volume 17, Issue 7.

Roads, Curtis 1985: Grammars as Representations for Music. Foundations of Computer
Music. Curtis Roads – John Strawn (ed.). Cambridge, Massachusetts: The MIT Press.

— 1996: The Computer Music Tutorial. Cambridge, Massachusetts: The MIT Press.
Roland, Perry 2001: MDL and MusiCat: An XML Approach to Musical Data and Meta-

Data. The Virtual Score – Representation, Restrival, Restoration. Walter B. Hewlett,
Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT Press.

Rouch, Dean K. 1988: Music Formatting guidelines. Technical Report OSU-3/88-TR-10.
Department of Computer and Information Science, The Ohio State University.

Ross, Ted 1970: The Art of Music Engraving and Processing. Miami Beach, Florida:
Hansen Books.

Rowe, Robert 1993: Interactive Music Systems – Machine Listening and Composing.
Cambridge, Massachusetts: The MIT Press.

Rumbaugh, James – Blaha, Michael – Premerlani, William – Eddy, Frederick – Lorensen,
William 1991: Object-Oriented Modeling and Design. Englewood Cliffs, New
Jersey: Prentice-Hall.

SCORE 1992a: SCORE User’s Guide & Draw Manual. Palo Alto, California: San
Andreas Press.

— 1992b: SCORE Reference Manual. Palo Alto, California: San Andreas Press.
— 1993: SCORE Version 3.10 Manual Additions. Palo Alto, California: San Andreas

Press.
Sebeok, Thomas A. 1975: Six species of signs: Some propoositions and strictures.

Semiotica 13 (3).
Selfridge-Field, Eleanor 1997a: DARMS, Its Dialects, and Its Uses. Beyond MIDI – The

Handbook of Musical Codes. Eleanor Selfridge-Field (ed.). Cambridge,
Massachusetts: The MIT Press.

References

171

— 1997b: Beyond Codes: Issues in Musical Representation. Beyond MIDI – The
Handbook of Musical Codes. Eleanor Selfridge-Field (ed.). Cambridge,
Massachusetts: The MIT Press.

— 1997c: Describing Musical Information. Beyond MIDI – The Handbook of Musical
Codes. Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT Press.

Schottstaedt, Bill 1997: Common Music Notation. Beyond MIDI – The Handbook of
Musical Codes. Eleanor Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT
Press.

Slaer, Sally – Mellor, Stephen J. 1988: Object-Oriented Systems Analysis: Modeling the
World in Data. Englewood Cliffs, New Jersey: Yourdon Press.

Sloan, Donald 1997: HyTime and Standard Music Description Language: A Document-
Description Approach. Beyond MIDI – The Handbook of Musical Codes. Eleanor
Selfridge-Field (ed.). Cambridge, Massachusetts: The MIT Press.

Smalley, Denis 1986: Spectro-morphology and Structuring Processes. The Language of
Electroacoustic Music. Simon Emmerson (ed.). London: MacMillan Press.

Steele, Guy L. Jr. 1990: Common LISP: The Language, Second edition. Bedford,
Massachusetts: Digital Press.

Sterling, Leon – Shapiro, Ehud 1986: The Art of Prolog – Advanced Programming
Techniques. Cambridge, Massachusetts: The MIT Press.

Stickney, Kimball P. 1987: Computer Tools for Engraving-Quality Music Notation. The
Proceedings of the AES 5th International Conference, Music and Digital Technology.
Audio Engineering Society.

Smith, Leland 1973: Editing and Printing Music by Computer, Journal of Music Theory
17(2).

— 1997: SCORE. Beyond MIDI – The Handbook of Musical Codes. Eleanor Selfridge-
Field (ed.). Cambridge, Massachusetts: The MIT Press.

Stickney, Kimball P. 1987: Computer Tools for Engraving Quality Music Notation. The
Proceedings of the AES 5th International Conference, Music and Digital Technology.
The Audio Engineering Society.

Stone, Kurt 1980: Music Notation in the Twentieth Century – A Practical Guidebook.
New York – London: W. W. Norton & Company.

Stroustrup, Bjarne 1991: The C++ Programming Language, Second Edition. Reading,
Massachusetts: Addison-Wesley.

— 1994: The Design and Evolution of C++. Second Edition. Reading, Massachusetts:
Addison-Wesley.

UNIX 1989: LN(1). UNIX Programmer’s Manual. More/bsd Version. Chapters 1, 8 and
7. May 1989. Berkeley, California: MT XINU.

Ungar, David – Smith, Randall B. 1991: SELF: The Power of Simplicity. LISP and
Symbolic Computation: An International Journal, 4,3, 1999. The Netherlands:
Kluwer Academic Publishers.

Wadler, Philip 1991: Is there a use for linear logic? Conference on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM). New Haven, Connecticut: ACM
Press.

Music Notation as Objects

172

Winikoff, M. – Harland, J. 1996: Some Applications of the Linear Programming
Language Lygon. Australian Computer Science Communications, 18(1), Kotagiri
Romamohanarao (ed.).

