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1 Introduction

The present PhD thesis consists of the following articles:

1. Tapanainen, Pasi and Timo Järvinen. 1997. A non-projective depen-
dency parser. In Proceedings of the 5th Conference on Applied Natural
Language Processing, pages 64–71, Washington, D.C., April. Associa-
tion for Computational Linguistics.

2. Tapanainen, Pasi. 1997. Applying a finite-state intersection gram-
mar. In Emmanuel Roche and Yves Schabes, editors, Finite-state
language processing, A Bradford Book. MIT Press, Cambridge, Mas-
sachusetts, chapter 10, pages 311–327.

3. Tapanainen, Pasi and Timo Järvinen. 1998. Dependency concor-
dances. International Journal of Lexicography, 11(3):187–203, Septem-
ber.

4. Chanod, Jean-Pierre and Pasi Tapanainen. 1999. Finite state based
reductionist parsing for French. In András Kornai, editor, Extended
Finite State Models of Language, Studies in Natural Language Process-
ing. Cambridge University Press, chapter 8, pages 72–85.

This summary describes a group of parsing formalisms which are
based on disambiguation in terms of regular languages. The articles
Tapanainen (1997) and Chanod and Tapanainen (1999) describe this kind
of reductionist parsers. The articles Tapanainen and Järvinen (1997;
1998) present a novel parsing framework, Functional Dependency Grammar
(FDG). FDG combines two inverse approaches: a regular language based
reductionist approach, which disambiguates the linear, surface structure
of the sentence by discarding readings of tokens, and a tree based de-
pendency model, which creates mutual dependencies between syntactic
elements.

In the regular language based systems, a reduced linguistic structure
is represented using a tagging scheme, such as the one in Voutilainen
(1997), where every word has a tag or tags describing the properties of
the word or its implicit relations to the words appearing in the left or right
hand context. The dependency graphs, however, are based on the rela-
tions between the elements of the sentence. In the original representation
(Tesnière, 1959), the order of the words in the sentence is not present in the
linguistic analysis.

In working with the Functional Dependency Grammar, we have
adopted, formalised and developed the structural syntax of Tesnière
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(1959). This is discussed in more detail in Järvinen and Tapanainen (1998)
and Järvinen (1998).

My original contribution to Tapanainen and Järvinen (1997), Tapanai-
nen and Järvinen (1998) and Chanod and Tapanainen (1999) is in the de-
sign of the parsing systems and their formalisms, whereas the linguistic
descriptions are by my coauthors, Timo Järvinen and Jean-Pierre Chanod.

In Tapanainen (1997), I present methods of applying rules in a finite-
state based rule formalism. I first show that the naı̈ve approach to ap-
ply finite-state rules in Koskenniemi (1990) is infeasible, and then present
methods of applying the rules. I have designed these methods when I
worked at the Research Unit for Computational Linguistics (RUCL) at the
University of Helsinki.

My main contribution in Tapanainen and Järvinen (1997), as mentioned
above, is in the new type of parsing formalism and the engine. Timo Jär-
vinen wrote the grammar for English. We show that the parser is fast and
more accurate than some other state-of-the-art parsers. The much shal-
lower ENGCG syntax (Järvinen, 1994), especially, creates four times the
ambiguity and makes more errors than FDG, when measured at the level
of syntactic functions (tags) attached to words.

In Tapanainen and Järvinen (1998), we discuss an application of the
parser. I implemented a novel approach to use a syntactic parser in lexico-
graphic work and we show that this approach is practical. I did this work
at the Research Unit for Multilingual Language Technology (RUMLAT) at
the University of Helsinki.

In Chanod and Tapanainen (1999), we present a paradigm where all
the tasks from the tokenisation to the syntactic analysis apply finite-state
automata and transducers. My contribution to this article is in:

� the novel non-determistic tokenisation method which was first pre-
sented in Tapanainen (1995) and Chanod and Tapanainen (1996a),

� the formalism for presenting multiword units which was first pre-
sented in Tapanainen (1995) and Segond and Tapanainen (1995),

� the combination of the tokenisation, multiword unit recognition, lex-
ical analysis and syntactic analysis, and

� the syntactic disambiguation engine which is similar to that in Tapa-
nainen (1997).

I did this work when working in the Multilingual Language Technology
and Theory group at the Xerox Research Centre in Grenoble.
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This thesis represents the whole process from tokenisation to surface
syntactic analysis. In Chanod and Tapanainen (1999), we present the syn-
tactic language analysis from tokenisation to light syntax, and in Tapa-
nainen (1997), I present more detailed methods for applying regular lan-
guage based syntactic grammars. In Tapanainen and Järvinen (1997; 1998),
we discuss explicit dependency structures with more fine-grained surface
syntactic analysis.

1.1 Surface syntactic analysis

My purpose in this dissertation is to analyse language in terms of sur-
face syntactic structures. There are several layers of language information
available. The following exposition is a condensation of Chanod and Tapa-
nainen (1999), where we discuss the tasks of natural language analysis in
terms of regular language calculus, and Tapanainen and Järvinen (1997),
where we discuss structural syntactic analysis.

� The first task is tokenisation. It segments the continuous input stream
into tokens. This is generally considered an independent step in lan-
guage analysis, but we integrated it with the other modules because
in syntactic analysis the tokens should be syntactic elements rather
than orthographic elements like words. Selecting a correct token in
a complex syntactic position is hard and generally requires that syn-
tactic analysis is already at least partly done. Thus the tokeniser pro-
duces ambiguous tokens, e.g. the string de même can be one token
(“similarly”) or two tokens (“of” and “same”).

� Lexical analysis provides each token with a set of labels denoting dif-
ferent word-classes, morphological properties and syntactic infor-
mation. These labels are typically extracted from a dictionary or
presumed at by using the form of the token. Morphological analysis,
which resolves the internal parts of word forms, is a typical form of
lexical analysis. Figure 1 shows the result of morphological analy-
sis for the English word round. The result is ambiguous because the
word round is either a noun (N), adjective (A), preposition (PREP),
adverb (ADV) or verb (V).

� A multiword unit consists of one or more words or word parts, and
appears in the parsing system as one or more tokens, but the number
of tokens does not depend on the number of words in the input.
For instance, the string il va y avoir bientôt cinq ans (“five years ago”)

3



is encoded as a single token (an adverb), whereas the string du is
divided into two tokens: de + le (preposition + determiner).

The definition language can describe one-to-one correspondences
with words and tokens, but restricts the alternative analyses for the
tokens. For instance, the following declaration

:Afrique :noire Adj:

means that the token noire (“black”) receives only the adjective read-
ing in this context. Multiword unit recognition is related to and inte-
grated with tokenisation and lexical analysis.

� Syntactic function labels mark various syntactic properties. Such la-
bels mark, for example, subjects, objects, main verbs and various
complements. Alternative syntactic labels are introduced in the lexi-
cal analysis or at run-time before syntactic disambiguation.

� Morpho-syntactic disambiguation discards ambiguous labels produced
by the previous steps. Some regular language based disambiguation
methods are discussed in more detail in Tapanainen (1997). In Fig-
ure 2, there is an analysis from the surface syntactic parser of French
(Chanod and Tapanainen, 1999) for the sentence De même les boı̂tes
de même format sont classées ensemble (literally: “Similarly the boxes of
(the) same format are classified together.”).

� Surface syntactic dependency structures are presented as graphs. I am
focusing on dependency based models and structures from Tapanai-
nen and Järvinen (1997; 1998).

� A nucleus is the basic element of the syntactic structure in the depen-
dency model. The nucleus has the same task as a multiword unit but
it is more general. Whereas a multiword unit consists of a sequence
of words or word parts, a nucleus consists of tokens which syntac-
tically and semantically belong together. Thus the nucleus is often
a non-contiguous sequence of words or word parts without internal
syntactic structure.
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round
"round" N NOM SC
"round" A ABS
"round" ADV ADWL
"round" PREP
"round" V PRES -SG3 VFIN
"round" V INF
"round" V IMP VFIN
"round" V SUBJUNCTIVE VFIN

Figure 1: Output of a morphological analyser

de-même Adv Cap MWE Adverbial ./
le InvGen PL Def Det NounPrMod ./
boîte Fem PL Noun Subject ./
de Prep ./
même InvGen SG Adj NounPrMod ./
format Masc SG Noun PPObj ./
être IndP PL P3 Verb Copl Auxi MainV ./
classer PaPrt Fem PL Verb PastPart ./
ensemble Adv Adverbial  _.

Figure 2: Output of a surface syntactic parser

1.2   Related work

Deterministic tokenisation, as opposed to non-deterministic tokenisation
(Chanod and Tapanainen, 1999),  is discussed in Grefenstette and Tapanai-
nen (1994),  Palmer and Hearst (1994) and Karttunen et al. (1997).  The
type of morphological analysis that we used is based on the two-level
model (Koskenniemi, 1983) and similar,  more advanced transducer lexi-
cons (Karttunen, Kaplan, and Zaenen, 1992;  Karttunen, 1994).  The mul-
tiword recognisation formalism is described in Segond and Tapanainen
(1995) and its compiler in Tapanainen (1995).

The use of regular language based systems for natural language pro-
cessing has a long history.  The first system that I am aware of was de-
signed by Harris (1962),  and essentially contained,   according to Joshi and
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Hopely (1999), a cascade of finite-state transducers. A later, more closely
related natural language analysis system is Taggit by Greene and Rubin
(1971), which was not originally described in terms of regular language.

In Harris’ parser, each transducer has a specific task from making word
compounds to disambiguation and bracketing phrases by using the left or
right context. In this way, it resembles chunking by Abney (1991). Chunk-
ing was later combined with finite-state intersection grammar (Section 2.4)
by Aı̈t-Mokhtar and Chanod (1997). Another derivation from the finite-
state intersection grammars is a tagging system for Turkish by Oflazer and
Kuruöz (1994). Some other finite-state based approaches are presented
in Roche and Schabes (1997), Karttunen and Oflazer (1998) and Kornai
(1999).

In Tapanainen and Järvinen (1997) and Järvinen and Tapanainen (1997),
we adopted the basic features of our linguistic dependency model from
Tesnière (1959). These features contain the notions of dependency, valency
and nucleus that have a faithful implementation in our model. See Järvi-
nen (1998) for further discussion. The closest relatives to our dependency
model come from Prague. The Functional Generative Description (Sgall,
Hajičová, and Panevová, 1986; Hajičová, 1998) is a linguistic model which
describes “systemic order” (a kind of deep structure) of sentences. An-
other close relative is dependency syntax by Mel’čuk (1987).

Heringer (1993) presents some other related models. One well-known
model comes from Hudson (1984; 1991). It differs in some crucial respects,
such as in the definition of projectivity and multiple heads which are not
allowed for in our framework. Fraser (1989) made a partial implemen-
tation of Hudson’s dependency theory, but a successful, related parser
comes from McCord (1990). Järvinen (1998) describes the linguistic simi-
larities and differences between various dependency models and ours in
more detail.

There are some early formalisations of dependency theory by Gaifman
(1965) and Hays (1964), that were defined in the terms analogical to con-
stituency (context-free) grammars. The Link grammar of Sleator and Tem-
perley (1991) is a lexical dependency based parser which has little func-
tional information. Lin (1996) has a dependency based evaluation scheme
for his Principar parser. There is a dependency parser for Czech (Holan,
Kuboň, and Plátek, 1997) and for French (Giguet and Vergne, 1997). There
has also been research on fully lexical dependency systems which mainly
produce only head-modifier information without any functional informa-
tion. These are typically probabilistic systems like those in Eisner (1996)
and Collins (1996). Some other dependency oriented approaches are pre-
sented in Kahane and Polguère (1998). Some dependency based treebanks
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are presented for Czech in Hajič (1998), for Japanese in Lepage et al. (1998)
and for German in Skut et al. (1997).

The closely related parsers, such as Taggit (Greene and Rubin, 1971),
Constraint Grammar (CG-1) (Karlsson, 1990) with its application, ENGCG
(Voutilainen, Heikkilä, and Anttila, 1992; Karlsson et al., 1995), and Con-
straint Grammar CG-2 (Tapanainen, 1996), are described in Section 2.
There are a few constraint grammar (CG-2) based linguistic descriptions.
Such grammars are written, e.g. for English (Samuelsson and Voutilainen,
1997), Swahili (Hurskainen, 1996), Portuguese (Bick, 1997) and Basque
(Aduriz et al., 1996).

There are experiments with constraint grammar acquisition. In Tapa-
nainen and Järvinen (1994), we built a system which collected finite-state
automata which best describe the partially ambiguous learning material.
Procedures for acquisition of constraint grammar rules are described in
Samuelsson, Tapanainen, and Voutilainen (1996) and later in Lindberg and
Eineborg (1998). Constraint grammars were combined with a statistical
model in Tapanainen and Voutilainen (1994) and they are even presented
as a statistical model, as in Brants and Samuelsson (1995).

1.3 Acknowledgment

Timo Järvinen (1998) wrote the first linguistic description (English) in the
Functional Dependency Grammar framework.

The linguistic descriptions for various regular language based systems
presented in this summary were written by Jean-Pierre Chanod (Chanod
and Tapanainen, 1995; Chanod and Tapanainen, 1999) for French, and
Atro Voutilainen (1997) for English. The morphological disambiguation
grammar for the CG-1 type of constraint grammar for English, ENGCG,
was made by Voutilainen (1994; 1995) and the related syntactic disam-
biguation grammar by Arto Anttila (1995) and Järvinen (1994). The CG-
2 variation of the morphological disambiguation grammar for English
comes from Voutilainen.

I am indebted to Jean-Pierre Chanod, Timo Järvinen and Atro Vouti-
lainen for valuable discussion and feedback in my work, especially in the
development of the parsing frameworks.

I am indebted to Timo Järvinen, Fred Karlsson, Kimmo Koskenniemi,
Jussi Piitulainen and Atro Voutilainen for their critical comments on ear-
lier versions of this manuscript.
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2 Finite-state constraint languages

Definition: A finite-state constraint language is a language for specifying
a disambiguation machine that discards alternative readings of syntactic
elements by contextual tests that are expressed in terms of regular lan-
guages.

I made several different engines for constraint grammars. The first
versions (Tapanainen, 1991; Tapanainen, 1992; Tapanainen, 1997) are the
so-called intersection grammars that I implemented at the University of
Helsinki. Their rule application engine is defined by the intersection op-
eration of regular languages. The later ones (Tapanainen, 1995) were built
at Rank Xerox Research Centre in Grenoble: one is an engine for a tagger
by Chanod and Tapanainen (1994; 1995), having features from both the
ENGCG-style constraint grammars (Karlsson et al., 1995) and intersection
grammars. Another one is applied in a light syntactic parser by Chanod
and Tapanainen (1996b; 1999).

The CG-1 type of engines are mutually slightly different in their expres-
sion power. So far, their expression power is less than regular languages.
The first CG-1 type of engine I made is quite faithful to the morpholog-
ical and syntactic disambiguation part of ENGCG. This work was later
continued by defining and implementing CG-2 (Tapanainen, 1996), whose
formalism is more expressive than that of CG-1, if not quite that of regular
languages.

2.1 Taggit

The Taggit program (Greene and Rubin, 1971) was used for annotating
the Brown Corpus (Francis and Kučera, 1982). Like any parsing pro-
gram, Taggit contains several steps starting from preprocessing and lex-
ical analysis, but the most interesting part in Taggit is the Context Frame
Test, which closely resembles our definition of a finite-state constraint lan-
guage. Greene and Rubin (1971, p. 2) describe it as:

After the words of a sentence have been given all their pos-
sible tags, Context Frame Tests are applied to ambiguities to
resolve them if possible. Basically, a context test decides what
tag(s) can or cannot occur in a particular unambiguous context.
These rules may be positive, choosing one tag from among two
or more, or negative, elimiting one or more tags.

The basic idea of removing ambiguity is the same as in the later Constraint
Grammar framework. The context tests in Taggit refer to one or two po-
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sitions, left or right. It should be noted that the formalism that Taggit
applied was not very powerful, but a tiny subset of regular languages.

A typical disambiguation rule in Taggit is

AT 1 ! :VB

which means that an ambiguous token in position 1 (i.e. the following
word) loses (:) the verb reading (VB) after an unambiguous article (AT).

2.2 Constraint Grammar CG-1

In Karlsson’s (1990; 1995) Constraint Grammar framework, there are seven
modules for different tasks. Two of them, i.e. morphological disambigua-
tion and syntactic function disambiguation, can be expressed with finite-
state constraint languages. I call this type of disambiguation engine CG-1.

The basic operations in this model are =0 (discard a reading), =! (dis-
card all other readings) and =!! (discard a reading or all other readings
depending on the success of the tests). A typical morphological disam-
biguation rule is

(@w =0 (V) (-1C DET)).

It discards the verb reading (V) if the previous token is unambiguously a
determiner (DET).

The rules can refer to any position in a sentence, i.e. there is no other
“window” than the sentence itself. The means to refer to distant tokens
are restricted though.

The first application in the CG-1 framework is ENGCG (Voutilainen,
Heikkilä, and Anttila, 1992; Karlsson et al., 1995). There are three imple-
mentations of the engine listed in Karlsson et al. (1995, p. 45): lisp version
by Fred Karlsson (1990), one C++ version by Bart Jongejan, CRI A/S, (cre-
ated in 1992) and one C version by myself (created in 1993), which was not
based on the original CG-1 description but rather on the most essential re-
quirements of ENGCG.

2.3 Constraint Grammar CG-2

CG-2 is an independent revision of constraint grammar. I designed (Tapa-
nainen, 1996) both a new engine and a new formalism. The objective in
developing the formalism was to make it readable and efficient to apply.
The contextual tests gained more power in CG-2 compared with the older
CG-1. The basic rule types in the formalism are the same as in Taggit and
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CG-1, namely SELECT and REMOVE. A minor difference here is that the
SELECT rule can simultaneously select a group of readings, while both
Taggit and CG-1 always select one reading.

A rule for removing the verb readings after an unambiguous deter-
miner is the following:

REMOVE (V)
IF (-1C DET);

A generalised form of this rule is: remove verb readings after an unam-
biguous determiner if there are no noun phrase head candidates between:

REMOVE (V)
IF (*-1C DET BARRIER NPHEAD);

where NPHEAD is a barrier which prevents the testing outside of poten-
tial noun phrase heads.

The CG-2 based morphological disambiguation of English is evaluated
in Samuelsson and Voutilainen (1997).

2.4 Finite-state intersection grammar

The basic idea in finite-state intersection grammar (FSIG) (Koskenniemi,
1990; Koskenniemi, Tapanainen, and Voutilainen, 1992) is that a sentence
with all its ambiguity is represented as a finite-state automaton, so that
every path from the start state to a final state of the automaton represents
one alternative analysis for the sentence. The labels on the path represent
the tokens, word-class markers, syntactic functions and clause boundaries.
A rule is similar to the morphological rules for two-level morphological
analysis. It is then compiled into a finite-state automaton. The automata
generated from the rules are intersected with the automaton generated
from the sentence. The set of strings accepted by the intersection repre-
sents the set of correct analyses. One such string is presented in Figure 2.
The similarity to the morphological analysis tools is noted by Karttunen
(1994), who applies morphological rules to a large dictionary by using a
very similar method as in the first operating analyser for the intersection
grammars (Tapanainen, 1991; Koskenniemi, Tapanainen, and Voutilainen,
1992).

The general form (Chanod and Tapanainen, 1999) of a rule in finite-
state intersection grammars is

X => LC1 RC1;LC2 RC2; : : : ;LC
n

RC
n

;
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This means that any string accepted by the regular expression X has to ap-
pear between regular expressions LC1 and RC1, or between LC2 and RC2,
and so on.

My work with finite-state intersection grammars is presented in Tapa-
nainen (Tapanainen, 1991; Tapanainen, 1992; Tapanainen, 1997), Kosken-
niemi, Tapanainen, and Voutilainen (1992), Voutilainen and Tapanainen
(1993), Tapanainen and Voutilainen (1993), Chanod and Tapanainen (1995;
1996b; 1999). In Tapanainen (1997), I present several alternative ap-
proaches for resolving the intersection of finite-state automata in this
framework. Some other approaches are presented in Piitulainen (1995)
and Yli-Jyrä (1995).

2.5 Application order of rules

A common feature for CG-1 and CG-2 is that the rules are applied in order,
but the order of application is due to the engine, and different engines
have different preferences for the application order. The first CG-1 engines
tried to apply the rules in order. In CG-2, the grammarian who writes the
rules has minor chances to control the order. The consequence is that the
rules have to be carefully written and a reading should be discarded only
in a carefully certified context. A grammarian applies a “Sherlock Holmes
strategy”: one can not always straightforwardly remove a reading, but by
using available evidence one can discard a reading here and there as soon
as they appear illegitimate. The last reading is never removed. Finally,
hopefully, the hard ambiguity can be resolved.

Most implemented engines for finite-state constraint languages have a
possibility for rough categorization by grouping the rules. The rules are
divided in Taggit into reliable and less reliable rules. The program adds
an asterisk into the tokens which are disambiguated using less reliable
rules so that the errors would be easier to find. CG-1 has a similar cate-
gorization, which Karlsson (1990) calls disambiguation rules and heuristic
disambiguation rules. The number of the rule sections in CG-2 is not lim-
ited, which makes it possible to revise the purpose of the sections. The
major purpose should not be to divide rules into reliable and less reliable
ones, but to give a function to the different sections. One functional way
to divide the rules is proposed in Chanod and Tapanainen (1995): The
first section resolves idiomatic and exceptional usage of language which
does not follow the core syntactic description. The second section con-
tains the standard rules to which most of the target language follows, and
finally, the third section disambiguates remaining ambiguous tokens by
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removing lexically rare analyses. Furthermore, blindly dividing the rules
according to how reliable they are in certain large text corpora prevents an
improbable usage ever being analysed correctly, even when the syntactic
construction is fully recoverable by syntactic rules.

2.6 Expression power

The rules of Taggit can be expressed with the following two types of CG-2
rules:

SELECT (A)
IF (-2C T1)

(-1C T2)
(1C T3)
(2C T4);

and

REMOVE (A)
IF (-2C T1)

(-1C T2)
(1C T3)
(2C T4);

where any of the tests can be missing.
The regular expression ’(� � B)

�D(� � E)
�F ’, for instance, can be ex-

pressed as

*1 D BARRIER B LINK *1 F BARRIER E

in CG-2, but it can not be expressed with a rule of the CG-1 formalism.
There is no convenient way in the current implementation of CG-2

to refer to repeated patterns such as the regular expression ’(D A N)+’
where the sequence of the labels D, A and N is repeated any number of
times. This, on the other hand, is possible in the implemented intersec-
tion grammar (Tapanainen, 1997), which accepts a wide range of regular
language operations, including concatenation, Kleene’s closures, union,
negation and intersection. This makes this intersection grammar equiva-
lent to regular languages. Figure 3 shows the hierarchy of the expression
power of the implemented engines for finite-state constraint languages.
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Figure 3: Expression power of implemented constraint language engines

2.7 Time requirement

For the time requirement, I approximate both the theoretical worst case
asymptotic running time of constraint grammars and the average speed
of CG-2, which is the most efficient implementation.

The three CG-1 engines for ENGCG have huge differences in speed.
Karlsson (1995, p. 45) lists the speeds in Sun SparcStations as following:
Karlsson (lisp program) 3-5 words per second, Jongejan (C++ program)
15-20 per second and Tapanainen (C program) 400-500 per second. The
speed noted is for the whole process including preprocessing, morpho-
logical disambiguation, syntactic disambiguation, etc. While the speed of
CG-2 can not be mechanically compared with the CG-1 engines because
of incompatible rule formalisms, there is a case when the ENGCG dis-
ambiguation description (Voutilainen, 1995) was converted (Tapanainen,
1996) from the CG-1 formalism into the CG-2 formalism. The first CG-2
implementation was two times faster than the fastest CG-1 engine above.
Currently, the CG-2 runs much faster, and in a current Pentium II machine
it analyses, with several thousands of rules and integrated lexical analysis,
over 100 MB of text in an hour.

2.7.1 Worst case asymptotic running time of CG-2

Theorem: The worst case asymptotic running time for the CG-2 type of
constraint grammars is O(n3Gk2), where n is the length of the sentence,
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G the number of the rules in the grammar and k the maximal number of
different readings a token receives.
Proof: Because constraint grammars use regular languages, the tests of a
rule can be made in linear time O(nk) to resolve whether a rule should
discard or select an alternative reading of a token. It takes time O(nGk) to
test all the rules to decide which readings to discard. It takes time O(n2Gk)

to test all the tokens.
In the worst case, there is only one rule which can remove only one

reading in the sentence, and it is the last one tested. The context of the
other rules then changes, and some of the other rules may apply. In the
worst case, again, there is only one rule which can discard only one read-
ing. Thus, it takes n(k � 1) rounds to make fully disambiguated output,
and the time needed is O(n3Gk2).

Usually, the maximal ambiguity class is a constant. If we consider the
somewhat outdated English description in the old ENGCG, the lexicon
produces eight lexical readings at most and there are some 30 syntactic
functions. This makes the upper limit for k 240. In a hypothethical case,
it might be that a very liberal compound word mechanism produces am-
biguity for each partial word in a compound word. This then cumulates
into a massive amount of ambiguity for a theoretical, very long compound
word. On the other hand, this ambiguity is restricted by the size of the tag
set in the grammar, because the constraint grammar can not remove such
readings one by one for which it does not have rules. If we redefine the
size of the grammar G0 to be the amount of tag combinations in the gram-
mar, we thus have the asymptotic time bound O(n3G02

), because G < G0

holds. This is similar to context-free (constituent) grammars.

2.7.2 Average running time of CG-2

The average running time is tested on CG-2. Unfortunately, it is hard to
reliably approximate the asymptotic time because there are not sentences
of unbounded length in natural language. It is even questionable if the
long sentences in the samples should be considered real sentences rather
than list constructions.

I used the following testing material: 3 500 rules from Atro Vouti-
lainen’s disambiguation grammar for English and two texts: a selec-
tion of novels taken from the Gutenberg archives from the 1997 distribu-
tion (some 1 000 000 sentences) and a sample of the Financial Times from
the TREC Text Research Collection, Vol. 4 CD-ROM (some 5 000 000 sen-
tences). The samples were run in a 133 Mhz Pentium PC.
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Figure 4: Average running time of CG-2 in Gutenberg texts

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

G �

����
���

��
��
���

��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
�

0:348n
0:108nlogn

0:0139n2

0:000557n3

Figure 5: Average running time of CG-2 in Gutenberg texts in sentences
with less than 50 tokens

The method was the following: the texts were disambiguated by CG-2,
which printed the running time for each sentence. The running times were
clustered: the average time for each sentence length is counted. If this
cluster is too small, the cluster is combined with a neighbouring cluster.
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Figure 6: Average running times of CG-2 in the Financial Times

The average running time is then plotted in Figures 4 to 6. In addition to
the running time, there are four function curves: linear (n), quadratic (n2),
cubic (n3) and n log n. I set a coefficient for all of these functions so that
they go through the same point which denotes the sentence length 25. The
time in the y axis is in milliseconds.

The running time curve from parsing the novels seems smooth in Fig-
ure 4, closely following the O(n log n) curve. Figure 5 shows the curves
for the short sentences in more detail. On the other hand, the curve of the
newspaper text in Figure 6 seems somewhat more complex. The newspa-
per obviously has a larger variation in the running time. Nevertheless, the
O(n log n) time seems a reasonable approximation for the average running
time of CG-2 in both cases.

2.7.3 Worst case asymptotic running time of intersection grammars

The theoretical worst case running time of the intersection grammars is
discussed in Tapanainen (1997). There, I showed that this type of engine
runs in linear time O(GS), where G is the size of the combined compiled
grammar and S is the size of the sentence compiled into a finite-state au-
tomaton. The size S is linear to the length of the sentence if the amount of
ambiguity that an individual token may get is limited. Paradoxically, Vou-
tilainen (1998) reports that due to the massive computation needed with
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his 2 600 rule grammar and my engine (Tapanainen, 1992), the engine is
unable to find a correct parse for some long sentences which have such a
parse. This seems to contradict the expectation that a linear upper bound
guarantees efficient computation.

There is another calculation in Tapanainen (1997) for the worst case
asymptotic time where the running time is computed without any knowl-
edge on the grammar. It is shown that the time needed may have expo-
nential growth when compared with the number of ambiguous tokens, w,
in the sentence.

The explanation of the paradox is that while the worst case is linear
with a fixed grammar, the coefficient G is huge. The size of the intersection
of two finite-state automata is in the worst case nm, where n and m are the
sizes of the automata. Unfortunately, the pairwise tests on the rules of the
existing grammar show that this happens often.
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3 Functional Dependency Grammar

The Functional Dependency Grammar (FDG) framework was introduced
by Tapanainen and Järvinen (1997) and its linguistic basis is discussed in
Järvinen and Tapanainen (1997; 1998) and in Järvinen (1998). Some of its
applications are presented in Tapanainen and Järvinen (1998), Tapanainen,
Piitulainen, and Järvinen (1998) and Strzalkowski et al. (1999).

The Functional Dependency Grammar has two conceptually different
components: regular language based analysis and structural dependency
graphs. The linguistic representation in structural dependency graphs
closely follows the Structural Syntax of Tesnière (1959). To my best knowl-
edge, FDG is the first computer implementation of Tesnière’s Dependency
Theory which contains the essential ideas of the theory, namely:

� The basic element of the syntactic structure is not a word but the
nucleus.

� Nuclei of the sentence have mutual directed dependencies called
connexions.

� Every nucleus has one and only one syntactic head. The connexions
thus form a tree where the head element of the main clause is the
root of the sentence.

� The variation in word order in the sentence does not affect the struc-
tural analysis when the syntactic function of the words remain the
same.

� There is a close parallelism between syntax and semantics, i.e. the
syntactic structure is motivated by the semantic interpretation rather
than by word-order configurations, morphological markings or his-
torical descriptive practice.

Tesnière has been largely ignored and misunderstood in literature as
has been noted by Engel (1996). There are certain formalisations, such as
in Gaifman (1965) and Hays (1964), that were claimed by Robinson (1970)
to be formalisations of Tesnière’s (1959) theory but have little in common
with it. This is discussed in more detail in Järvinen and Tapanainen (1998).

Because of the different nature of the components of FDG, the com-
ponents represent syntactic information in distinctive ways. The shallow,
constraint grammar type of analysis for the sentence, What would you like

18



What “what” @OBJ PRON
would “would” @+FAUXV V
you “you” @SUBJ PRON
like “like” @-FMAINV V
me “i” @OBJ PRON
to “to” @INFMARK> INFMARK>
do “do” @-FMAINV V
?

Figure 7: Shallow analysis

WHAT

YOU

WOULD LIKE

main

subj

ME

TO DO

obj

obj
subj

?

Figure 8: Structural dependency graph

me to do?, is presented in Figure 7. This analysis is a simple string of la-
bels, where the labels are interpreted as words, word-classes and surface-
syntactic tags. The structural dependency graph of the sentence in Fig-
ure 8 shows the directed relations between the nuclei of the sentence. The
directed relations contain labels which represent syntactic functions be-
tween the governing node and the subtree.

The example sentence demonstrates the independence of the compo-
nents of FDG. First, the tokens and nuclei do not have one-to-one map-
ping. Here two non-contiguous tokens, namely would and like, form a sin-
gle nucleus in the syntactic graph. Second, the linguistic interpretation of
the tokens and nuclei are, in principle, different. The token me is marked
as @OBJ (object) in the shallow analysis, which is mostly morphologically
based. In the structural graph, which is semantically motivated, the simi-
lar element, e.g. the nucleus me has the subj (subject) relation with its head,
the nucleus to do. This example shows how the two linguistic interpreta-
tions are independent from each other.
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THE

DOG
det:

DID RUN

main:

subj:

IN HOUSE

loc:

THE

det:

Figure 9: Five nuclei of the sentence “Did the dog run in the house”

3.1 Non-contiguous nucleus

The basic element of the structural analysis is called a nucleus (Tesnière,
1959). In FDG, the nucleus consists of tokens, which are defined by the
lexicon and the tokeniser of the regular language model, where the token
strings consist words and word parts in the input sentence.

In FDG, we have a nucleus predicate n, which is a reflexive symmetric
predicate of tokens T in the regular language model. Let n be a nucleus
predicate. The predicate n is symmetric and thus it holds n(t1; t2) 2 n ,

n(t2; t1) 2 n. The nucleus predicate is reflexive, which means that n(t
i
; t

i
) 2

n holds for all t
i
2 T .

Definition: Tokens t1 and t
n

belong to the same nucleus in the nucleus
predicate n if there are tokens t1; t2; : : : tn, where it holds n � 1 and
n(t

i
; t

i+1) for all i 2 [1; n� 1].
For example, let S be the sentence Did the1 dog run in the2 house and

fn(Did; run); n(in;house)g a set of nucleus predicates. Thus, the whole set
of the nucleus predicates is:

N = f n(Did; run); n(run;Did); n(in;house); n(house; in);
n(Did;Did); n(the1; the1); n(dog;dog); n(run; run);
n(in; in); n(the2; the2); n(house;house)g.

The nuclei of the sentence thus contain the following sets of tokens: the1,
dog, Did run, the2 and in house as presented in Figure 9.

3.2 Structural analysis

Definition: The dependency predicates are triples �(n1; n2; f), where n1 2
N [ frootg (head) and n2 2 N (modifier) belong to the nuclei (N ) of a
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sentence or n1 is the special nucleus called the root, and f 2 F belongs to a
set of labels denoting the functions in a selected linguistic representation.
Definition: The predicate ��(n1; nk; f) is the reflexive transitive closure of
the dependency predicate � if there are nuclei n1; n2; : : : nk, where it holds
k � 1 and �(n

i
; n

i+1; f) for all i 2 [1; k � 1].
Furthermore, we selected a linguistic theory with two uniqueness prin-

ciples. First, the so-called head nucleus n1 is unique to each modifier
n2, i.e. it holds 9x; z 2 N [ frootg : y 2 N : �(x; y; f1) ^ �(z; y; f2) )

x = z ^ f1 = f2. Second, we divide the set of predicates F = F
v
[ F

a

into two categories: valency functions F
v

and ambiguous functions F
a
.

The valency functions are unique in every head nucleus, i.e. it holds
9x; y; z 2 N : �(x; y; f) ^ �(x; z; f) ) z = y. Both of these principles
originate from Tesnière (1959).

It should be noted that Tesnière (1959) does not describe the model with
formal rules, but rather describes it verbally and via examples. Although
he maintains the uniqueness of the head, he does not require the unique-
ness principle simultaneusly to hold over all levels in natural language
analysis. He explictly presents syntactic and semantic dependencies, such
as anaphora relations, in a same graph.

In the FDG framework, several levels of analysis can be maintained as
follows. Let p be a element, which has the syntax predicate �(n1; p; f)^f 2
F , andG another predicate where it holds G\F = ; and �(n2; p; g)^g 2 G.
Then, there can be a head nucleus n2 that is not necessarily the same as the
head nucleus n1 in the syntax predicate. So far, we have not studied the
properties of this kind of forest but it is a way to extend the analysis to
cover multiple levels in natural language analysis.

Let us have an artificial language with three letters a, b and c. Also
let there be a rule stating that there is the dependency predicate ab-dep
between a preceding letter a and letter b. One or more of the instances of
the letter c can appear between the letters a and b. This linear contextual
restriction can be declared with a schematic definition like

a) c�b,

where the underscore denotes the place of the letter on the left side of the
arrow.

When we define the dependency predicate, we use nuclei as letters and
the properties of the nuclei can be tested when needed. For instance, the
previous definition could be refined as an expression

a 2 X AND b 2 Z AND c 2 Y AND X ) Y �Z,
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where the properties of the nuclei are denoted with the expressions like
a 2 X , which can be interpreted here to mean that the token a belongs to
the nucleus X, which is located in the place denoted by the arrow defini-
tion. Here, we can test properties of the nucleus, such as word-class or
shallow syntactic function.

The following rule states that there is a dependency between nuclei X
and Z, where the nuclei contain tokens a and b, respectively. In addition,
the nuclei have to appear in the given context.

�(X;Z; ab-dep) IF a 2 X AND b 2 Z AND c 2 Y

AND X ) Y �Z

3.3 Non-generative approach

Neither the regular language module nor the dependency structure of
FDG is generative in Chomsky’s (1957) sense. Chomsky maintains that
the grammar should first be able to generate all and only the “grammati-
cal” sentences of English, or any other natural language. Thus the parser
would be able to accept or reject sentences according to whether the in-
put is a grammatical sentence or not. According to him (Chomsky, 1957,
p. 23), regular languages are not very useful in analysing English syntacti-
cally because they can not produce all and only the grammatical sentences
of the language.

FDG is a parsing framework which is not intended to maintain the
grammaticality of an input sentence. Our aim is to parse also ungram-
matical sentences. When using the regular language backbone, we have
to design the regular language module so that it accepts all the legitimate
analyses and rejects some illegitimate ones. Some ambiguity is left pend-
ing and the more powerful structural dependency analysis is applied to
resolve this pending ambiguity. Furthermore, FDG builds dependency
structures as long as this can be done by using the given declarations. The
well-formedness, completeness or grammaticality of a sentence should be
interpreted from the output afterwards, if needed.

3.4 Expression power

In this chapter, we briefly consider examples which show the dependency
structures to be more powerful than regular languages. The first example
shows how FDG can create dependencies emulating an unlimited amount
of embeddings or bracketings. The other example shows a special case of
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1 �(X;Y;pair) IF “[” 2 X AND “]” 2 Y
AND Y ) X ;

2 �(X;Y; inner) IF “[” 2 X AND “[” 2 Y
AND Y ) X ;

3 �(X;Y;parallel) IF “[” 2 X AND “[” 2 Y
AND 9Z : “[” 2 Z : Y ) Z

AND �(X;Z;pair) ;
4 �(X;Y;pair) IF “[” 2 X AND “]” 2 Y

AND 9Z : “]” 2 Z : Y ) Z

AND 9V : “[” 2 V : �(V;Z;pair)
AND 9W : “[” 2W : ��(W;V;parallel)
AND �(X;W; inner) ;

Figure 10: Bracketing in FDG

indexed languages, namely anbncn, which does not belong to the context-
free grammars.

3.4.1 Context-free languages

Theorem: The FDG formalism can attach dependencies between bracket
pairs of [ and ] so that balanced matching pairs have mutual dependency.
Proof: Let the pairing of the bracketing be the functional dependencies
between the opening bracket and the closing bracket. Let the depth of the
bracketing be the maximum amount pairings inside.

With a simple bracketing such as ’[ ]’, rule number 1 in Figure 10 is
sufficient to create the pairing: let us take any token ]. If the previous
token is [ then there is the dependency predicate pair whose head is the
token [.

Let us suppose that the pairing works for the pairings of the depth n�1

and less. Let us take a pairing p of the depth n. The depths of all the pair-
ings p

i
inside the pairing p are equal or less than n� 1. Therefore, through

induction, each pairing p
i

has the dependency pair with the head [.
Next, we introduce two auxiliary dependency types. The leftmost pair-

ing p1 of the pairings p
i
has the dependency inner from the opening bracket

of the pairing p1 as a dependent to the opening bracket of pairing p. This is
declared in rule number 2 in Figure 10: any sequence of opening brackets
’[ [’ has the dependency inner between so that the previous bracket is the
head. Therefore the pairing p1 is a dependent of the pairing p.

Furthermore, all consequent pairings p
i

have the dependency parallel
between them so that the pairing p

i
is the head and the pairing p

i+1 is the
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]

pair

]

pair

Figure 11: Visualised context-free bracketing

dependent. This is declared in rule number 3 in Figure 10: any sequence
of a pairing and an opening bracket ’[ ... ] [’ has a dependency
parallel, so that the head is the first opening bracket which has the depen-
dency pair, whose dependent is the right bracket ] that is, the previous
token before the second opening bracket.

Finally, the pairing p of the depth n can be done because the following
conditions hold: the closing bracket of the pairing p is preceded by the
closing bracket c

n
of the pairing p

n
. The opening bracket o

n
is the head

of the dependency pair, which exists because the depth of the pairing p
n

is n � 1 or less. There are one or more pairings p
i
. All of them have the

dependency parallel between the pairings p
i

and p
i+1. The opening bracket

o1 of the pairing p1 is the uppermost head of this chaining. The opening
bracket before the bracket o1 is the opening bracket of the pairing p. This
is declared in rule number 4 in Figure 10.

The dependency structure built in the previous proof is visualised with
the brackets [[][[][[][]]]][[]]. The output of FDG using the mini-
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5 �(X;Y;pair) IF “]” 2 X AND “>” 2 Y
AND Y ) X ;

6 �(X;Y;pair) IF “]” 2 X AND “>” 2 Y
AND 9Z = “>” : Y ) Z

AND 9U : “]” 2 U : �(U;Z;pair)
AND 9V : “[” 2 V : �(V;U;pair)
AND 9W : “[” 2W : �(V;W; inner)
AND �(W;X;pair)

Figure 12: Additional rules for non-contiguous bracketing [n]n>n
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inner

[
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]

pair
]

pair
]

pair
]

pair
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>

pair

>

pair

>

pair

Figure 13: Visualised extended bracketing

grammar in Figure 10 is in Figure 11.

3.4.2 Indexed languages

Theorem: The FDG formalism can attach dependencies for the sequence
anbncn = a1a2 : : : anb1b2 : : : bnc1c2 : : : cn, creating a dependency chain for to-
ken sequences: a1bnc1, a2bn�1c2, . . .a

n
b1cn.

Proof: Let us select a = [ and b = ]. The mini-grammar in Figure 10
declares pairings a1bn, a2bn�1, . . .a

n
b1. Now, let us select c = >. We can

then create the triple a1bnc1 by using rule number 5 in Figure 12. Any
token > is a dependent of the preceding token ], although in the language
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Figure 14: Average running time of FDG in Gutenberg texts

anbncn there is only one such token.
By using induction, we first assume the triple

a
i�1bn�(i�1)�1ci�1 = a

i�1bn�i
c
i�1

is declared correctly. Let us start from the token c
i
. The previous token c

i�1

belongs to the triple a
i�1bn�i

c
i�1, where a

i�1 can be found by following
two times the dependency pair towards the head. The mini-grammar in
Figure 10 declares that the token a

i�1 is the head of the token a
i
, whereas

the token a
i

is the head of the token b
n�i+1. This token is the desired head

of the token c
i
. This is declared in rule number 6 in Figure 12.

The dependency structure built in the previous proof is visualised with
the brackets [[[[]]]]>>>>. The output of FDG using the mini-grammar
in Figures 10 and 12 is in Figure 13.

3.5 Average running time of FDG

The average running time is tested using the same method as used in
testing CG-2 earlier in this summary. The linguistic description by Jär-
vinen (1998) has non-contiguous structures which can not be described in
context-free languages, but the degree of the complexity is hard to approx-
imate. FDG is applied to the same material as CG-2 above. The result is
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in Figure 14 where the running time curve roughly follows the O(n log n)

curve. One can not make clear conclusions from these few tests on the
running time because they obviously depend on the linguistic description
and the properties of the given language. Nevertheless, this shows that
there exists a broad-coverage grammar for English which runs fast.
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4 Conclusion

A group of reductionist parsing formalisms based on disambiguation in
terms of regular languages are presented. The novel parsing framework,
Functional Dependency Grammar, combines such reductionist formalisms
with explicit dependency structure. The dependency graphs, however,
are based on the relations between the elements of the sentence.

I have presented a complete system for natural language processing
from tokenisation to surface syntax. The non-determistic tokenisation
method splits a sentence into several, possibly ambiguous, tokens. The to-
kenisation is combined with multiword unit recognition and lexical anal-
ysis. A token is the basic element for the reductionist surface-syntactic
parsers and a nucleus, which is a contiguous or non-contiguous sequence
of tokens, is the basic element of the dependency structures.

The Functional Dependency Grammar parser has expression power
which exceeds context-free grammars. It applies regular language com-
ponents using finite-state constraint languages and depedency graphs,
which are closely related to Tesnière’s Structural Syntax (dependency
grammar). This means that the syntactic element is not a word but a nu-
cleus which can be a non-contiguous sequence of tokens that are defined
as words or parts of words. The dependencies between nuclei form a tree.

The application of FDG to English by Timo Järvinen has been tested. It
was shown that the approach can be used for describing a broad-coverage
grammar for natural language. Furthermore, the practical parser produces
accurate results and runs fast.
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Hajičová, Eva. 1998. Movement rules revisited. In Kahane and Polguère
(1998), pages 49–57.

Harris, Zellig. 1962. String Analysis of Sentence Structure. Mouton & Co.,
The Hague, Paris.

Hays, David G. 1964. Dependency theory: A formalism and some obser-
vations. Language, 40(4):511–525.

Heringer, Hans Jürgen. 1993. Dependency syntax – formalized models.
In Joachim Jacobs, Arnim von Stechow, Wolfgang Sternefeld, and Theo
Vennemann, editors, Syntax – An International Handbook of Contemporary
Research, volume 1. Walter de Gruyter, Berlin - New York, chapter 13,
pages 316–328.
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