

Towards a Framework for the Evaluation of Translators’ Aids’
Systems

Monika Höge

Department of Translation Studies

University of Helsinki

Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14914793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT II

Helsinki University Press
Helsinki

ISBN 952-10-0555-6 (Print)
ISBN 952-10-0556-4 (Electronic Version)

ABSTRACT III

Towards a Framework for the Evaluation of Translators’ Aids’ Systems

The framework for the evaluation of translators’ aids makes use of an interdisciplinary
approach that integrates findings from translation theory, software engineering, and
decision analysis. It shows that if the different mechanisms offered by these disciplines
are applied to the problem of evaluating translators’ aids’ systems, a better
understanding of the processes that are required to arrive at reliable and valid results is
achieved. To prove the feasibility of the framework empirical tests involving
translators and translators’ aids’ systems are presented.

Evaluation is perceived as a cycle that covers the phases of featurisation, modelling,
testing and assessment.

Central to featurisation is the description of the translation context. The framework
provides parameters along which the features of the institutional and individual
dimensions of the translation context can be elicited. They are based on considerations
from both translation theory and the professional context of translation, as well as
principles of requirements elicitation stemming from software engineering.

Modelling in evaluation is concerned with the structuring, categorisation and
generalisation of information in order to reduce the evaluation effort. The domain
model covers a description of typical tasks. The quality model covers a description of
the relevant system attributes and their metrics, that is, ways of measuring attributes.
The test model denotes which attributes can be measured by which type of test.

Based on software engineering principles and empirical test descriptions, three test
types are described which guarantee that the user point-of-view is adequately
considered: Scenario testing is performed to assess the appropriateness of a piece of
software for every-day work; systematic testing is performed to examine the behaviour
of software under specific test conditions; and feature inspection is a means to check
the actual functionality of a piece of software.

The assessment procedure is based on multiattribute measurement principles discussed
in decision analysis. In short, value functions are constructed for each attribute under
testing, and the additive weighted model is applied to the level of translation tasks,
thus providing a numeric suitability result between 0 and 100 for each translators’
aids’ system under evaluation.

PREFACE IV

Preface

The idea of developing a framework for evaluating translators’ aids systems occurred
during the ESPRIT projects TWB I and II (1989 - 1994), when Mercedes-Benz was
the user-organisation on behalf of which I had to evaluate the great variety of
translation tools that were developed by different European partners. Close
examination of the translation process that was to be supported by the computer
showed that the phenomena involved in evaluating translators’ aids systems could not
be adequately dealt with within the translation discipline. The lack of available
methodologies and the practical need to arrive at evaluation results in the TWB
projects made it imparative that a new way had to be found which integrated findings
from the discipline of software engineering. The requirements investigation and tests
performed in the course of the two TWB projects were merely practical, though
theoretically informed, evaluation processes.

As research assistant to the University of Helsinki, my original intention was to back
up and support the practical work with more theoretical considerations in the
disciplines of translation theory and software engineering. Starting off from the
practical angle in the TWB projects, the investigation of theoretical principles was
always guided by their practical applicability. By 1997, a first draft of an evaluation
framework was developed, which (i) was based on experiences gained during the
evaluation of the TWB projects, (ii) integrated principles and mechanisms discussed in
translation theory and software engineering, and (iii) took into account various
discussions within the EAGLES evaluation group. The framework included
theoretically based definitions of ways of modelling and testing requirements. The
evaluation framework was mainly geared to evaluation in the software development
context and was largely based on qualitative principles, describing the adequacy of a
system to support a specific translation task.

At this point, the problem of assessment and the mechanisms involved in
quantitatively describing degrees of quality attracted further interest. It had become
obvious that neither translation theory nor software engineering could provide
mechanisms to quantitatively assess the suitability of a system for a specific
environment. Considerable assistance could be derived from the discipline of decision
analysis which has been concerned with the evaluation of projects and educational
programmes since the 1960ties. The integration of mechanisms used in decision
analysis into the existing evaluation framework was more than a year’s work, leading
to the theoretically based and practically applied framework for the evaluation of
translators’ aids described in this thesis.

PREFACE V

The thesis covers more than ten years of my professional life of which I spent half as
researcher at the translation department of Mercedes-Benz and half as research
assistant and postgraduate student at the University of Helsinki, performing course
work or participating in EAGLES projects. I am grateful to Mercedes-Benz who
allowed me to submerge myself in theory more than was normal practice for EU
projects. I would also like to thank my supervisor Prof. Lauri Carlson for his support
during many years of work, in which I could regularly come over to Finland to discuss
progress. Thanks also to Khurshid Ahmad and Krista Varantola who evaluated the
thesis.

Without the help and support of IBM and TRADOS who supplied the software for
testing for free and delivered excellent hotline support, testing could not have been
performed. Likewise, I want to thank Edith Kroupa at Mercedes-Benz and Kees van
der Horst at the European Commission for providing me with a text corpus of real
texts and their translations that were used to develop the test data for the different tests.
For valuable discussions and proofreading I’d like to thank my friends Hilary Charman
and Paul Holmes-Higgins.

As to the last ten years of my private life, I am very grateful that my husband Robert
supported this project not only with his good will but also with literature, printouts and
discussion. Apart from producing some 300 pages of text, I was also busy in that
period producing two girls, Elena and Jana, who have never stopped wondering what
on earth their mother was doing all these years with that grey box called computer.
Thank you all for your patience with your ever-busy partner and mother.

TABLE OF CONTENTS VI

Table of Contents

List of Figures ... VIII
List of Abbreviations ... XII

INTRODUCTION AND APPROACH ... 1

1. TRANSLATION AND EVALUATION – THE CONTEXT.................................. 11

 1.1 The Translation Context... 11
 1.1.1 A Model of the Translation Process .. 12
 1.1.2 On Specifying Tasks, Problems, Strategies and Knowledge Bases 14
 1.1.2.1 Phase One: Text Analysis ... 16
 1.1.2.2 Phase Two: Transfer ... 20
 1.1.2.3 Phase Three: Synthesis.. 21
 1.1.3 The Professional Context of Translation... 22
 1.1.3.1 Freelance Translating .. 22
 1.1.3.2 Midsize to Large In-house Translation Departments 23
 1.1.4 Candidates for Automation.. 25
 1.1.5 Types of Translators’ Aids .. 30
 1.1.6 Translators’ Aids Products on the Market .. 32
 1.1.6.1 TRADOS 5 Translator’s Workbench ... 32
 1.1.6.2 STAR Translation Technology ... 34
 1.1.6.3 IBM Translation Manager... 35
 1.1.6.4 Atril Déjà Vu... 36
 1.1.7 Conclusion to the Translation Context.. 37
 1.2 The Evaluation Context.. 37
 1.2.1 EAGLES Evaluation Group .. 38
 1.2.2 ELRA and Evaluation.. 40
 1.2.3 ISLE and Evaluation of MT Systems .. 41
 1.2.4 DiET and Glass Box Evaluation.. 41
 1.2.5 ELSE Evaluation ... 42

 1.3 Conclusion ... 42

2. WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 45

 2.1 Elicitation of Attributes of {D} – the Needs of Translators......................... 47

 2.2 Elicitation of Attributes of {M} – the Functionality of Translator’s
 Aids Systems ... 58

TABLE OF CONTENTS VII

3. STRUCTURING AND PREPARING FOR EVALUATION 61

 3.1 Basic Approaches ... 61
 3.1.1 Approaches from Decision Analysis ... 61
 3.1.1.1 The Structuring Problem... 62
 3.1.1.2 Scale Construction .. 66
 3.1.1.3 Measurement Issues .. 71
 3.1.1.4 Construction of Value Functions .. 72
 3.1.1.5 Multiattribute Utility Theory... 75
 3.1.1.5.1 Assigning Weights to Attributes 76
 3.1.1.5.2 Defining Aggregate Utility... 77
 3.1.1.5.3 Relating Utility to Cost - The Tradeoff Problem 79
 3.1.1.5.4 Performing Sensitivity Analysis..................................... 82
 3.1.2 Approaches from Software Engineering ... 83
 3.1.2.1 Modelling Approaches in Requirements Engineering 83
 3.1.2.1.1 Generic Task Modelling... 84
 3.1.2.1.2 Structured Analysis .. 85
 3.1.2.1.3 Object-Oriented Modelling .. 86
 3.1.2.2 Quality Requirements Definition .. 87

 3.1.3 Discussing Evaluation in the Light of Software Engineering and
 Decision Analysis.. 100

 3.2 Evaluation Preparation .. 108
 3.2.1 Preparing for Evaluation Preceding Purchase Decisions........................... 108
 3.2.1.1 Weighting of Tasks in Domain ... 108
 3.2.1.2 Elaboration of Metrics from Tasks ... 109
 3.2.1.3 Developing Value Functions for Metrics...................................... 113
 3.2.1.4 Developing a Test Model .. 114
 3.2.2 Preparing for Evaluation Supporting Development 116
 3.2.2.1 Modelling for Scenario Testing .. 117
 3.2.2.2 Modelling for Systematic Testing... 119
 3.2.2.3 Modelling for Feature Inspection ... 122
 3.2.2.4 Example for Modelling Process for Task-oriented Testing 123

4. USER-ORIENTED TESTING FOR EVALUATION... 128

 4.1 Testing Approaches from Software Engineering ... 128
 4.1.1 Glass Box Testing Techniques Relevant for User-Oriented Evaluation ... 129
 4.1.2 Black Box Testing Techniques Relevant for User-Oriented Evaluation... 130

TABLE OF CONTENTS VIII

 4.2 Test Model for User-oriented Evaluation ... 132
 4.2.1 Scenario Testing .. 132
 4.2.2 Systematic Testing... 139
 4.2.2.1 Task-oriented Testing ... 139
 4.2.2.2 Interface-driven Testing .. 141
 4.2.2.3 Benchmark Testing ... 143
 4.2.3 Feature Inspection.. 144
 4.2.4 Conclusion to the Model of User-Oriented Test Types............................. 145
 4.3 Test Data Elaboration in User-Oriented Testing ... 146
 4.3.1 Approaches to Select System Inputs.. 147
 4.3.2 Types of Test Data in the Language Engineering Context 150
 4.3.2.1 Test Corpora.. 151
 4.3.2.2 Test Suites ... 151
 4.3.2.3 Test Collections .. 152
 4.3.3 Parameters Determining the Selection or Elaboration of Test Data.......... 154
 4.3.3.1 Parameters of the Domain Category ... 155
 4.3.3.2 Parameters of the System Category... 156
 4.3.3.3 Parameters of the Evaluation Category... 157
 4.3.3.4 Parameters of the Administration Category.................................. 158
 4.4 Experiences and Results of Testing in Evaluation 159
 4.4.1 The Testing Context .. 162
 4.4.2 Experiences with Feature Inspection... 164
 4.4.3 Experiences with Systematic Testing .. 165
 4.4.4 Experiences with Scenario Testing ... 177
 4.4.4.1 Introduction into the Problem of Scenario Testing 179
 4.4.4.2 User Profile Questionnaire Survey.. 183
 4.4.4.3 Training Course... 184
 4.4.4.4 Pilot Testing/Observation Session .. 188
 4.4.4.5 Field Test... 188
 4.4.4.6 Post Testing Interview... 192
 4.4.4.7 Survey of Scenario Test Results ... 195
 4.4.4.8 Conclusion to Scenario Testing .. 198

 4.5 Conclusion to Testing in Evaluation.. 199

5. ASSESSMENT IN SOFTWARE EVALUATION ... 202

 5.1 Quantitative Assessment in the Light of Evaluating Translators’ Aids 202

 5.2 Approaches to Assessment for Evaluation of Translators’ Aids 207
 5.2.1 Developing Quality Tree for Evaluation Relevant Tasks.......................... 207
 5.2.2 Checking Validity of Quality Trees for Evaluation Relevant Tasks 208
 5.2.3 Performing Additive Weighted Model on the Basis of Individual Tasks . 210
 5.2.4 Utility and Cost – the Tradeoff Problem in User-oriented Evaluation...... 213

TABLE OF CONTENTS IX

 5.3 Applying the Quantitative Assessment Procedure in a Practical Context 216
 5.3.1 Calculating Aggregate Utilities ... 216
 5.3.2 Pricing Out Procedure for Systems X and Y... 220
 5.3.3 Conclusion to Assessment in Evaluation Preceding Purchase
 Decisions ... 222

SUMMARY AND CONCLUSION .. 224

APPENDICES ... 230

Appendix 1: Excerpts of TWB Result and Test Problem Report 231
Appendix 2: Result Report for Evaluation Preceding Purchase Decision 232
Appendix 3: Test Data for Systematic Testing ... 240
Appendix 4: Test Data for Scenario Testing... 257

REFERENCES ... 266

LIST OF FIGURES X

List of Figures

Figure 1: Disciplines Related to the Problem of Evaluation of Translators’ Aids 1

Figure 2: The Evaluation Cycle 3

Figure 3: The 'Waterfall' Model of the Software Life Cycle by Sommerville (1996:9) 4

Figure 4: Combination of Development and Evaluation Cycle 5

Figure 5: Parallels between Activities in Evaluation and Decision Analysis 6

Figure 6: Construction of Value Function According to Winterfeldt/Edwards (1986:222) 7

Figure 7: The Looping Model by Nord (1991:34) 12

Figure 8: Text Analysis: "extratextual" and "intratextual" Factors by Nord (1991:36) 13

Figure 9: Top-down Approach for the Investigation of the Translation Process 14

Figure 10: Elicitation of Extratextual Factors 17

Figure 11: Analysis of Subject Matter in Industrial Documentation 18

Figure 12: Tasks Involved in Transfer 21

Figure 13: Tasks Involved in Synthesis 21

Figure 14: The “off-line” Process of Industrial Documentation by Höge/Kroupa (1991:1037)

 23

Figure 15: Distribution of Epistemic and Heuristic Knowledge Structures 26

Figure 16: ES: Phases, Task Problems and Strategies 27

Figure 17: HS/ES Phases, Task Problems and Strategies 28

Figure 18: Possible Functionality of Multilingual Text Corpus Tool 29

Figure 19: Relationship between EAGLES Evaluation Types 43

Figure 20: Domain and Machine Attributes and Specification Adapted from Jackson (1995:3)

 46

Figure 21: Model of Requirements Formulation for Evaluation 46

Figure 22: Overview of Key Guidelines for Requirements engineering According to

Sommerville/Sawyer (1997) 48

Figure 23: Configuration of {D} from Institutional and Individual Dimension 49

Figure 24: Parameters of the external Context 50

Figure 25: Parameters of the Internal Context 50

Figure 26: Parameters of the Technical Context 51

Figure 27: Parameters of the Individual Context 52

Figure 28: Example for Task Description as Outcome of Featurisation of {D} 57

Figure 29: Mapping {D} and {M} for Terminology Preparation Task 60

Figure 30: Value Tree for Evaluating Energy Technology by Winterfeldt/Edwards (1986:49)

 65

Figure 31: Example for Nominal Scale 67

Figure 32: Binary Scale for Combination of Dependent Attributes 68

Figure 33: Combination of Nominal Attributes on Binary Scale 68

LIST OF FIGURES XI

Figure 34: Example for Ordinal Scale 69

Figure 35: Sample for Direct Rating Technique 70

Figure 36: Curve Fitting Example 73

Figure 37: Typical Shapes of Monotonically Increasing Functions 73

Figure 38: Ordinal Value Function 74

Figure 39: Typical Shapes of Monotonically Decreasing Functions 74

Figure 40: Typical Shapes of non-Monotone Functions 75

Figure 41: Weighted Value Tree 77

Figure 42: Sample for Calculation of Aggregate Utility fro Option 1 78

Figure 43: Graphic Representation of Utility Versus Cost 79

Figure 44: Value Function Relating Cost to Utility for Options (1-4) 80

Figure 45: Subaggregate Utilities of four Options under Evaluation including Cost as

Attribute E 81

Figure 46: Weighted Value tree including Cost as Attribute E 81

Figure 47: Utility Measurement for Options 1,2,3,4 in Pricing Out Model 81

Figure 48: Components of Dataflow Diagram according to Yourdon (1989:pp.139) 86

Figure 49: ISO (1991:4.1-6) Quality Decomposition 88

Figure 50: Example for Determination of System Functions from Translation Tasks 89

Figure 51: Subcharacteristics of functionality according to ISO 9126 89

Figure 52: Specification of Properties of Functions from Task 90

Figure 53: Customisability as Additional Subcharacteristic of functionality 91

Figure 54: Specification of customisability-Properties from Tasks 91

Figure 55: Non-functional Quality Characteristics 93

Figure 56: Subcharacteristics of reliability 94

Figure 57: Subcharacteristics of usability 96

Figure 58: Subcharacteristics of efficiency 97

Figure 59: Subcharacteristics of maintainability 98

Figure 60: Subcharacteristics of portability 99

Figure 61: Qualitative Aspects Related to Actions 101

Figure 62: Qualitative Aspects Related to Objects 102

Figure 63: Qualitative Aspects Related to Actors 102

Figure 64: Qualitative Aspects Related to Use Cases 103

Figure 65: Qualitative Aspects Related to Dataflow Diagrams 105

Figure 66: Qualitative Aspects Related to Data 106

Figure 67: Example for Using Qualitative Aspects of Modelling Concepts for Defining

Metrics for a Termbank 107

Figure 68: Task Weighting in evaluation Preceding Purchase Decisions 109

Figure 69: Generic Actions Performed on specific Objects for Translation Task 110

Figure 70: Elaboration of Metrics for functionality of Object TM Date Store 111

LIST OF FIGURES XII

Figure 71: Elaboration of Metrics for usability of Action Editing Objects 112

Figure 72: Target Values for Binary and Binary Nominal Scales 113

Figure 73: Example for Value Function with Threshold 113

Figure 74: Example for Linear Value Function for Ratio Scale 114

Figure 75: Overview of User-Oriented Model of Test Types 115

Figure 76: Distribution of Metrics over Test Types 116

Figure 77: Relevance of Modelling Methods to Test Types 117

Figure 78: Dataflow Representation of Operative Translation task 124

Figure 79: Metrics for Task-oriented Testing of Terminology Retrieval 126

Figure 80: Metrics for Task-oriented Testing of Terminology Editing 127

Figure 81: Field Test- Laboratory Test – A Comparison 138

Figure 82: Failure Priority ID Score 140

Figure 83: Valid and Invalid Equivalence Classes from Myers (1979:46) 148

Figure 84: Example for the Elaboration of Test Data 150

Figure 85: Overview of Critical Issues of Types of Test Data 153

Figure 86: Parameters Determining Selection of test Data 155

Figure 87: Factors Influencing Evaluation 159

Figure 88: Factors that Influence the Testing Process 161

Figure 89: Excerpt of Result Report (t2) from Appendix 2 163

Figure 90: Examples for Calculation of v in Binary Nominal Scales 165

Figure 91: Parameters and their Effect on Test Data Elaboration 166

Figure 92: Text Analysis of Test Data used for (t1) and (t2) 168

Figure 93: Experiences with Benchmark Tests for (t1) – TM Preparation 171

Figure 94: Benchmark test Results (t2) Setup 1 173

Figure 95: Test Suite Generation for Retrieval Benchmark Setup 2 174

Figure 96: Benchmark Test Results (t2) Setup 2 – Part 1 175

Figure 97: Benchmark Test Results (t2) Setup 2 – Part 2 176

Figure 98: Problems Tackled in Scenario Tests – Part 1 178

Figure 99: Central Problems of the Reporting Phase 179

Figure 100: Technical Details of Translation Memories 181

Figure 101: Qualitative suitability Evaluation 196

Figure 102: Qualitative Evaluation of interoperability, fault tolerance and understandability

 197

Figure 103: Qualitative learnability Evaluation 197

Figure 104: Qualitative operability Evaluation 198

Figure 105: Qualitative time behaviour Evaluation 198

Figure 106: Distribution of Evaluation Relevant Metrics per Test Type 199

Figure 107: Distribution of Scales Applied during the Different Test Types 199

Figure 108: Inter-relationships between Quality Characteristics in Evaluation 203

LIST OF FIGURES XIII

Figure 109: Quality Trees and Variations in Depth 204

Figure 110: Quality Tree Relative to Task 207

Figure 111: Procedure for Validating Task Quality Trees 209

Figure 112: Sample for Changes in Requirements 210

Figure 113: Example for Calculation of Overall Utility Based on Task Utilities 213

Figure 114: Sample for Relating Task Utilities to Utility of Cost 214

Figure 115: Redistribution of Weights in Pricing Out Procedure 215

Figure 116: Example for Pricing Out Procedure Applied in User-oriented Evaluation 215

Figure 117: Results of Applying Additive Weighted model on Task 1 217

Figure 118: Results of Applying Additive Weighted model on Task 2 218

Figure 119: Results of Applying Additive Weighted model on Task 3 219

Figure 120: Results of Applying Additive Weighted model on Task 4 219

Figure 121: Overall Utility of Both Systems Based on Task Utilities 219

Figure 122: Example for Relating Task Utilities to Utility of Cost 221

Figure 123: Redistribution of Weights in Pricing Out Procedure 221

Figure 124: Evaluation Scores of System x and y after Pricing Out Procedure 221

LIST OF ABBREVIATIONS XIV

List of Abbreviations

CASE computer aided software engineering
CAT computer aided translation
EAGLES expert advisory group on language engineering standards
ES epistemic
EU european union
FL foreign language
HTML hypertext markup language
HS heuristic
IEEE institute of electrical and electronics engineers
ISO international organisation for standardisation
KA knowledge acquisition
LE language engineering
LGP language for general purposes
LRE linguistic research and engineering
MT machine translation
NLP natural language processing
PH person hours
RE requirements engineering
SE software engineering
SGML standard general markup language
SL source language
ST source text
TA task analysis
TAKD task analysis for knowledge descriptions
TB termbank
TDH task description hierarchy
TL target language
TM translation memory

TT target text
XML extended markup language

INTRODUCTION AND APPROACH 1

Introduction and Approach

Research and development in the area of Language Engineering is of importance in an
increasingly globalised world from an economic, political, and cultural viewpoint.
Many financial, commercial and industrial transactions require multilingual processing
of language, and the classification, processing, storage and retrieval of documents. The
European Union has launched independent programmes and initiatives for the
development of Language Technologies. One area of interest within this field is the
evaluation of the resulting prototypes by different user groups. It has been repeatedly
found that performance measurement and evaluation is a badly neglected activity and
needs to be encouraged in future programmes in relevant projects.

Tools supporting the translation process belong to the rather complex, yet rapidly
growing area of Natural Language Engineering. The evaluation of these systems has
so far been primarily application dependent in that for each evaluation scenario, the
evaluators tailored specific procedures and techniques from the set of techniques used
in other evaluations. It is important to compile a list of methods used in a range of
evaluation scenarios, examine these techniques and evaluate the tools used. This
compilation, examination and critique may lead to a methodology – a systematically
organised set of methods, tools and techniques that introduce rigour into the evaluation
of translators’ aids whilst allowing the evaluator to have a choice of methods, tools
and techniques. Research in this area is impeded by its interdisciplinary nature and the
requirement for integrating findings from different scientific areas such as software
engineering, decision analysis, and translation.

decision
analysis

translation

evaluation
of

translator's aids

software engineering

Figure 1: Disciplines Related to the Problem of Evaluation of Translators’ Aids

Among the three disciplines related to the evaluation of translators’ aids, software
engineering has the largest impact on the development of a methodology for software

INTRODUCTION AND APPROACH 2

evaluation. Many of the procedures relevant to the development of software are, to
some extent and with a different focus, also relevant to software evaluation. There are
also a great many parallels between the processes involved in decision analysis and
those involved in evaluation. Struening/Guttentag (1975) and Guttentag/Struening
(1975) document experiences in which decision analysis procedures have been applied
for evaluation purposes since the social science research carried out in the 1960s.
Evaluators of software systems can learn from experiences made in the evaluation of
social programmes, particularly with respect to the definition, organisation and
weighting of attributes that are relevant when it comes to choosing between different
alternatives. Most importantly, the discipline of translation serves as a basis for the
definition of those problems that are involved in the particular instance of evaluation,
that is, the evaluation of translators’ aids.

Considering the above three disciplines and adapting their approaches to the problem
of the evaluation of translators’ aids, the approach adopted in this thesis is that of an
evaluation cycle, which starts off with examining and describing features of both the
user and the systems under evaluation. Followed by modelling, which involves the
elaboration and structuring of the system context, the quality attributes relevant, and
the test types that will allow the measurement of the required attributes. Testing
delivers values for the attributes that are identified during modelling. Assessment,
finally, validates test results and relates them back to the users.

TESTING

elaboration of
test environment
test instruments
test data

ASSESSMENT
START OF E VALUATION
CYCLE

FEATURISATION O

validation
utility calculation

MODELLING

domain model
quality model
test model

F

{D} {M}

Figure 2: The Evaluation Cycle

INTRODUCTION AND APPROACH 3

Translation and Evaluation of Translators’ Aids

The goal of the evaluation of translators’ aids’ systems is to help support translation
work. The extent to which these systems can help translators in their everyday work
can only be determined on the basis of a sound understanding of the problems
involved in the translation process. Consulting relevant theoretical literature on
translation and the translation process, it has become obvious that the major flaw of
current investigations is that translation has mostly been considered in isolation,
neglecting the fact that it is a major part of the documentation life-cycle. When it
comes to defining appropriate translators’ aids, the focus must not be only on the
problems encountered by the translator to produce an adequate target text but also on
the technical background, the strategies applied by the author of the source text, the
final users of the document, and the context in which translation is carried out. In
chapter 1, the nature of the translation process is described in detail with reference to
both theory and practice in order to find out where and the extent to which it would
make sense to support the translator with computational translators’ aids.

Software Engineering and Evaluation of Translators’ Aids

One of the most widely studied models of software development is the so-called life-
cycle model. Based on the biological analogy of conception, birth, growth, maturity
and death, leading software engineers such as Sommerville (19965:9) or Thaller
(1993:104) suggest that software development includes inception or refinement,
specification, analysis, design, implementation, testing, delivery and operation.

requirements
definition

system and
software design

operation and
maintenance

integration and
system testing

implementaion
and unit testing

Figure 3: The 'Waterfall' Model of the Software Life Cycle by Sommerville (1996:9)

According to the IEEE (1059:9) Guide for Software Verification and Validation Plans,
evaluation ascertains the value or worth of a system for a particular environment and
uncovers problems in the software product which relate to the basic user need for the

INTRODUCTION AND APPROACH 4

system to be fit for use in its intended setting. This involves most importantly assuring
that
- the product conforms to its specification
- the product is correct
- the product is complete, clear, and consistent
- the product complies with all appropriate standards
- the product meets all specified quality attributes.

In fact, many of the steps in the development cycle and the evaluation cycle have
crucial problems in common. The main differences are due to the fact that in the
development cycle (D) a new product is developed and in the evaluation cycle (E) a
given product is evaluated. This implies differences in the order in which steps are
taken, in the direction in which they are taken, and in the relative importance of the
steps. The following figure describes the common features of both processes in a
schema of which the two cycles are temporal projections.

implementation (D)

TASK FEATURISATIONS

requirements modelling (D)

user profile (E)

TOOL FEATURISATIONS

system specification (D)

tool featurisation (E)

TOOL

application (D)
product (E)

requirements definition (D)

definiton of value functions (E)

requirements analysis (D,E)

testing (E, D)

QUALITY REQUIREMENTS

set of feature structures

TASK
domain (D)

user (E)

assessment (E)

evaluation (D,E)

Figure 4: Combination of Development and Evaluation Cycle

In Figure 4 those aspects that are relevant to the development cycle are marked with
(D) and those that are relevant to the evaluation cycle are marked with (E). The task or
action, which is to be supported computationally, is a central entity in both cycles.
While in the development cycle there is a focus on the description of the overall
domain in which a task occurs, in user-oriented evaluation the user's view of the task
is a central issue. The process of requirements analysis results in the featurisation of

INTRODUCTION AND APPROACH 5

the task, that is, a description of the features or characteristics of the task. In the
development cycle the featurisation of the task is but one part of the overall process of
requirements modelling, while in evaluation, the featurisation of the task is the central
criterion for the definition of different user profiles, which capture regular variations
in requirements. In the development cycle the next step is to define the future features
of the system in terms of functional and non-functional quality requirements. This
process is commonly called requirements definition. The definition of quality criteria
in evaluation, however, asks for the mapping of tasks onto tool features, or, in other
words, value functions are only defined for those features of a task that can be
performed by a tool in one way or the other. Consequently in evaluation, the
featurisation of the task has to be followed by the featurisation of the tool, that is, the
description of the features or the characteristics of the tool. In the development cycle,
there is also a form of tool featurisation, which results from the definition of
requirements. This form of tool featurisation is called system specification, which
forms the basis for the process of implementation. Testing is performed in both cycles.
In the development cycle, testing is performed at the component, integration and
system levels. In the evaluation cycle, the way of testing is determined by (i) the goal
behind testing, that is, what do we want to achieve, and (ii) the nature of the pre-
developed value functions. Assessment closes the evaluation cycle by measuring the
extent to which the tool is capable of performing the tasks, or in other words, by
mapping the results of testing onto a utility scale.

Decision Analysis and Evaluation of Translators’ Aids

According to French (1986), decision analysis refers to the careful deliberation that
precedes a decision, more particularly, to the quantitative aspects of that deliberation.
Testing delivers values for those attributes that are identified in the modelling phase.
Decision analysis may help in interpreting these values in a rational way. There are
some obvious parallels between the activities involved in the evaluation cycle as
described in Figure 2 and the activities involved in the decision analysis process as
depicted by leading decision analysts such as Keeney/Raiffa (19933);
Winterfeldt/Edwards (1986).

INTRODUCTION AND APPROACH 6

ACTIVITIES IN DECISION
ANALYSIS PROCESS

ACTIVITIES IN
EVALUATION

EVALUATION PHASE

identifying the problem definition of task and tool featurisation phase
develop decision maker
model

task and tool featurisation

matching problems and
structures

matching task and tool
features

modelling phase

develop value tree develop quality model
define objects in value
relevant terms

definition of measurable
attributes

scale construction definition of metrics, that is a
way of measuring a specific
attribute, leading to an
attribute/value pair

construction of value
functions

definition of target values

utility measurement comparison between target
and actual values

assessment phase

Figure 5: Parallels between Activities in Evaluation and Decision Analysis

Winterfeldt/Edwards (1986:222) illustrate how decision analysis works by means of
the following example: A new job involves house moving. Which of the apartments at
hand is the best choice? The following figure shows the construction of a value
function with respect to the attribute location of apartments.

object

location of appartments

Li

natural scale

driving distance

d (Li)

value function

relative value of
driving distance

v (d)

utility scale

utilities of values of
driving distance

u (v)

distance

100

50

100

100
value

10 20 30
km

40 50
L1

L2

L4

L3 L5

W

Figure 6: Construction of Value Function According to Winterfeldt/Edwards (1986:222)

Location of apartments is but one of a set of attributes that are of importance for the
decision described. Other attributes in the set may be price of apartment, architecture,
environment etc. If more than one attribute needs to be considered, the decision
process roughly involves the following steps:

1. Elaborating value functions for each attribute under consideration
2. Assigning relative weights to attributes
3. Defining aggregate utility for different options
4. Relating utility to cost and performing tradeoffs

INTRODUCTION AND APPROACH 7

5. Performing sensitivity analysis

The contents of assessment defines how diverse values can be combined and
compared. This is where the theory of measurement comes in. How can different
values be compared? The principles of measurement and evaluation stemming from
decision analysis will be described and employed in evaluation of translators’ aids
wherever possible.

To conclude, Galliers and Sparck Jones (1993:140) suggest that the principal question
when elaborating a framework for user-oriented evaluation is whether evaluation
criteria, measures and methods can be generalised? That is, is an evaluation
necessarily task - even application - dependent, or can specific evaluation techniques,
as opposed to abstract concepts, be applied across individual cases?

The difficulty in establishing an evaluation framework lies in recognising those
aspects of evaluation that can be compared and used across different evaluation
scenarios and in formulating guidelines on how to proceed. In this thesis it will be
argued that there are three issues that may be relevant to software evaluation,
specifically the evaluation of translators’ aids, which are
(i) an awareness of the needs of the users of the system;
(ii) an understanding of the functionality of the system under evaluation; and
(iii) the knowledge of techniques on how to test and assess the performance of the

system.

In this thesis it will be argued that the need for an evaluation framework for translators
arises in two typical situations:

(i) In the translation industry, preceding a purchase decision
 Translators under pressure from shortening product life-cycles and an increase in

international communication do not feel they have the time to implement
available systems into the existing translation environment. Purchase decisions
are not infrequently postponed due to a lack of methods for evaluating different
alternatives in terms of costs and benefits. Thus, despite the growing number of
translation support systems offered, decision makers are reluctant to implement
available systems into the existing translation environment.

(ii) In translation system development, supporting the development process
 The development of translators’ aids’ systems requires computer-based

knowledge of the practical problems faced during translation

INTRODUCTION AND APPROACH 8

To sum up, the outstanding objective of this work is to identify evaluation procedures,
describe techniques and formulate guidelines for their use, which help evaluators and,
if possible, even enable end users to perform evaluations of specific systems for their
particular purposes. The framework for the evaluation of translators’ aids which will
be developed in this thesis

• is user-oriented, that is, geared towards user groups or user representatives as
the agents of evaluation;

• focuses on aspects that may be relevant to translators as users of the tools;
• is based on findings of the three major disciplines concerned, that is, software

engineering, decision analysis and, translation.

The main achievements of the framework for evaluation developed in this thesis can
be summarized as follows:

i. Based on the investigation of the translation process in terms of epistemic and
heuristic knowledge structures used for problem solving, a theory was
elaborated why and how the translation process can be supported by the
computer;

ii. Applying decision theoretic, problem-oriented analysis onto requirements
engineering principles, a method was found to bridge the gap between the
elaboration of user requirements and the development of measurable primitives;

iii. Taking into account basic software engineering principles, a goal-oriented
model of test types for user testing was developed which bridges the gap
between prototype and product testing;

iv. Applying decision analytic and measurement theoretic principles onto
requirements, an assessment procedure was developed that allows to
quantitatively compare the adequacy of different systems for a specific context
and shows where tradeoffs have to be made in terms of costs vs. quality;

v. Procedures were developed that describe how evaluation results can be obtained
by performing four major evaluation phases, that is, (i) featurisation of user and
system; (ii) modelling of domain, quality and test information; (iii) testing; and
(iv) assessment;

vi. Possibilities for the re-usability of resources in evaluation were identified and
elaborated in terms of
- procedures for featurisation, modelling, testing and assessment;
- parameters relevant to the elicitation of translators’ requirements;
- metrics applicable for translators’ aids’ systems.

INTRODUCTION AND APPROACH 9

Chapter 1 provides an overview of the context of both translation and evaluation. It
will be investigated the extent to which translation theory can help in defining
evaluation relevant information. The nature of translation tools and the most prominent
systems on the market will be described. The evaluation context is characterized by
numerous international initiatives that strive to develop tools to further evaluation
work. It will be pointed out what the difference is between these approaches and the
framework developed for this thesis.

Chapter 2 discusses the activities that fall under the first step in the evaluation cycle,
that is the elicitation and description of features of the user and the system. Parameters
will be presented along which information about the domain of translators can be
gathered in form of questionnaire surveys, interviews or observations.

Chapter 3 is concerned with preparing for evaluation by means of structuring the
manifold information gathered during the elicitation process. It employs methods from
software engineering and decision analysis, leading to a procedure for evaluation that
allows the definition of measurable primitives.

In chapter 4 a test model will be presented which is based on both software
engineering considerations and experiences in practical software testing. The
elaboration of test data will be discussed from the angle of software and language
engineering. Experiences and results of exhaustive practical testing procedures with
two commercially available translators’ aids’ systems will be presented.

Chapter 5 concludes the evaluation cycle, showing how to adapt and make use of
quantitative evaluation procedures stemming from decision analysis. The evaluation
model for assessment will show that it is possible to arrive at numerical, comparable
results integrating the outcome of the practical testing procedures described in chapter
4.

The thesis concludes with a summary of achievements and conclusion of the
endeavour of developing a framework for the evaluation of translators’ aids’ systems.
It will prove what Bechtel (1986:pp.30) argues, that is, crossing the disciplinary
boundaries often provides a better understanding of complex problems. In other words,
applying the different mechanisms offered by translation theory, software engineering
and decision analysis leads to a better understanding of the phenomena involved in the
evaluation of translators’ aids.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 10

1. Translation and Evaluation – the Context

When evaluating translators’ aids’ systems, the first step should be the analysis of the
context of translation. What types of tasks, problems and strategies are applied during
translation, and where could these find support in computational tools; what types of
tools are being developed to support the translator; and which are those that are most
prominent on the translation market?

Similarly the approaches and efforts of evaluating translators’ aids have to be
considered. What are the most important attempts of evaluating translators’ aids, what
efforts have been made; what is the basic complexity of this undertaking; and where to
look for the most pre-eminent evaluation research efforts.

1.1 The Translation Context

Lörscher (1991:5) and other scientists complain that the investigation of the translation
process is still largely a desideratum. The most important reason for this is that there
have been few attempts to assess the translation process in an empirical rather than
theoretical-speculative way. Though the application of think-aloud protocols is the
most often practised empirical method, doubts have been raised with respect to its
adequacy to throw light on the entire translation process. According to Goguen/Linde
(1993:157), normally, when translating a text, one does not talk aloud about one's
ideas and thoughts and thus the situation as such is rather artificial. Hönig (1991:82)
complains that subjects only verbalise the conscious part of their thoughts and
moreover are only inclined to say what they are expected to. Also, the more
professional translators become, the more translation becomes an automatic,
unconscious process and the less they are inclined to verbalise their thoughts.
Consequently think-aloud protocols report only part - and a highly selective part at that
- of the mental processes. Kußmaul (1991:91) therefore proposes to use the method of
dialogue protocols, where two people are asked to translate a text together and have to
discuss their activities while they are getting on with the job, explain and justify their
translation, make suggestions for improvement, ask for advice and criticism, all of
which are features of natural discourse.

Since the way translation problems are perceived and solved differ from translator to
translator, the first step in investigating the translation process is to apply the
principles of generalisation and simplification in order to arrive at general phase-
models of the translation process (chapter 1.1.1). Following this top-down approach
the models are filled with empirical data concerning the actual tasks performed, the

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 11

problems encountered the strategies applied and the knowledge needed for solving
these problems 1.1.2).

1.1.1 A Model of the Translation Process

There are two major types of models, which have been established in the course of the
last three decades, that is, the two-phase model and the three-phase model. The major
difference between the two models is not the actual number of steps or phases
involved in the translation process but rather the fact that in the latter case, that is, the
three-phase model, the transfer from the source into the target language is considered
to be performed via a supralinguistic medium, whereas in the first case, source and
target language units are considered to be directly correlated. There is no consensus
among linguists as to which one comes closer to the "real" nature of translation.

Nord (1991), Wilss (1992) and many other translation scientists agree that translation
cannot be considered a sequential process. This means that at each step forward the
translator "looks back" on the factors already analysed, and that every piece of
knowledge gained in the course of the process of analysis and comprehension may be
confirmed or corrected by later findings. To accommodate this fact, Nord (1991:pp.30)
developed the so called “looping model” which describes translating as a circular,
basically recursive process comprising an indefinite number of feedback loops, in
which it is possible and even advisable to return to earlier stages of the analysis. The
"looping model" takes into account the textual and pragmatic background of the source
and target texts. This model has been selected for the purpose of this study and the
translation process will be viewed in the larger context of industrial documentation.

SC
SITUATION

TC
SITUATION

ST ANALYSIS

TT SYNTHESISTRANSLATION-RELE-
VANT ST ELEMENTS TRANSFER

SOURCE
TEXT

ANALYSIS OF-
TT SKOPOS

TARGET
TEXT

Figure 7: The Looping Model by Nord (1991:34)

As the above figure shows, Nord considers the first step in the translation process is to
analyse which factors are relevant to the realisation of the eventual purpose of the
target text (she calls this TT “skopos”). Nord identifies a set of "extratextual" and

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 12

"intratextual" factors that are the basis for the formulation of basic translation
instructions. The following figure outlines the interplay between extra- and intratextual
factors in text analysis, which Nord expresses by means of a set of "WH-questions".

TEXT ANALYSIS

extratextual
factors

who?
to whom?
what for?
by which medium?
where?
when?
why?

intratextual
factors

what?
(what not)?
in what order?
using which non-verbal elements?
in which words?
in what kind of sentences?
in which tone?
to what effect?

compatible?

anaylsis of TT skopus

anaylsis of ST

Figure 8: Text Analysis: "extratextual" and "intratextual" Factors by Nord (1991:36)

The second step in Nord's model starts with a rough analysis of the source text and its
textual material, leading again to both a set of extratextual and of intratextual factors.
First, the translator only has to get a general idea on whether the material provided by
the source text is compatible with the translation instructions. However, Nord realises
that both procedures of text analysis are in reality closely related and often have to be
combined, demonstrating the recursive character of the model. Since the situation
normally precedes textual communication and determines the use of intratextual
procedures, it seems natural to start with the analysis of the external factors, although,
in view of recursiveness and circularity, the order of the analytical steps is not a
constituent of the model.

Whereas most linguists agree on the set of intratextual factors relevant to translation,
there is no consensus considering the exact kind of extratextual information relevant to
a translator. There are different information requirements, depending on whether
translation of literature or of technical documents is concerned. Having performed a
rough analysis of extratextual and intratextual factors, the next step in Nord's model is
to comprehensively analyse all ranks of the source text, focusing on those elements
that are of particular importance according to the purpose of the target text. In practical
terms the translator might even during analysis of the source text come across
questions which have something to do with the purpose of the target text and thus has
to contact the client/author in order to get the missing piece of information.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 13

After finishing the source text analysis, the translator is able to pinpoint the
translation-relevant elements of the source text and adapt them to the purpose for
which the target text is intended. In the transfer step, these elements are matched with
corresponding target language elements, and the decision is made which of the
potentially appropriate target language elements will be suitable for the target text
function. The final structuring of the target text closes the circle. The translation is
successful, if the target text is compatible with the pre-defined purpose of the target
text.

1.1.2 On Specifying Tasks, Problems, Strategies and Knowledge Bases

The procedure developed in this thesis is to bring together the relevant facts and most
enlightening ideas from various sources and to integrate them into the framework of
the looping model briefly described above. Nord's text-oriented model will be further
enriched with data from other translation theorists, data gained in empirical research
and approaches from cognitive psychology. The combined model will be applied to
the context of industrial documentation. It integrates experiences gained by the author
of this thesis during a 5 years research contract in the translation department of
Mercedes-Benz AG.

As has already been pointed out, the objective of this chapter is to investigate the
extent to which tools could possibly be provided which assist the translator in his/her
work. For this purpose a top-down approach will be adopted, starting from the above
defined translation phases, considering the tasks involved, outlining the problems
encountered, determining the strategies employed, and specifying the type of
knowledge base tapped to solve the overall translation task. The following figure
demonstrates the approach used in this thesis.

K
N
O
W
L
E
D
G
E

PHASE

PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM
PROBLEM

TASK
TASK
TASK

STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY
STRATEGY

Figure 9: Top-down Approach for the Investigation of the Translation Process

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 14

Each translation phase, that is, analysis, transfer and synthesis consists of various
tasks, which are procedures that are concerned with one type of work, e.g. the analysis
of intratextual factors as opposed to the task of analysis of extratextual factors. During
each task the translator has to solve different problems. The number of problems
encountered depends strongly on the individual, that is, expertise, experience etc.
comes into play. Since different strategies are applied by different individuals to solve
translation problems, it is rather difficult to pinpoint one strategy to one particular
problem. Attention will be paid to those strategies that are generally acknowledged.
Whereas phases, tasks, problems and even strategies are by and large objectively
observable units, it is difficult to determine how the internal processing of the data
works and how the translator taps his/her knowledge base. Researchers influenced by
cognitive psychology distinguish between two basic structures of memory - epistemic
and heuristic memory (Dörner, 1979:27). Similarly Wilss (1988:82) distinguishes
between "deklarativem" vs. "übersetzungsprozessualen Wissen" or (1992:115)
between "statisches Sachverhaltswissen" vs. "dynamisches Wissen" or (1992:45)
between "Akkomodation" vs."Assimilation". Hönig (1991:78f), distinguishes between
"controlled workspace" and "uncontrolled" which roughly fall into the same two
structures of memory. In short, the epistemic part of the memory or knowledge base
determines the ability to solve problems reproductively, that is, to retrieve something
which has been stored beforehand, or in other words, to access available expert
knowledge. According to Wilss (1988:86) translators gradually build up an
"encyclopaedic memory" which is first of all consulted during the translation process.
Since access to the epistemic memory often functions automatically, such procedures
are not necessarily reported in empirical investigations. Only if epistemic procedures
are not successful, the translator has to apply his/her heuristic knowledge, has to be
creative and stimulate cognitive resources and develop new problem solving methods.
Thus Wilss (1988:86) argues that the more extensive the epistemic knowledge base,
the less time has to be spent applying heuristic strategies. Experience not only builds
up the epistemic memory but also trains heuristic knowledge strategies. Thus
Sternberg (1984:283) concludes: “... experts are more competent in handling familiar
tasks within the domain of expertise. They are also more proficient at learning new
tasks, because global processing resources are more readily available for the intricacies
of the task or situation confronted ... Experts are also able to perform more distinct
kinds of tasks in parallel, because whereas the global system is conscious and serial in
its processing, multiple local processing systems can operate in parallel.”

On the basis of the above-presented facts, for each step an overview will be given
which outlines the specific tasks involved. Attention will be focused on those tasks,
which seem to have potential for automatisation. In this case the related problems and

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 15

strategies will be described. For each problem it will be discussed whether the
translator is likely to have used epistemic or heuristic problem solving strategies. It is
envisaged that the picture gained by means of this approach will provide an insight,
which may help to determine programs and routines that could be implemented to ease
and speed-up translation work.

1.1.2.1 Phase One: Text Analysis

Text analysis refers to both the analysis of the TT skopos as well as to the analysis of
the ST. Both types of analyses have in common that they elicit information with
respect to extratextual and intratextual factors. Since the two kinds of analyses are
closely interrelated and, moreover, for the purpose of this study a strong distinction
between the definition of the TT skopos and the analysis of the ST is not relevant, the
following will only outline as task 1 the definition of extratextual factors and as task 2
the definition of intratextual factors.

The two major disciplines that consider extratextual factors are communication science
and pragmatics. Nord (1991:39-70) elaborates the factors of medium/channel, place,
and time of communication. The following figure follows Nord's investigation and
provides an overview of sub-tasks undertaken when determining extratextual factors.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 16

EXTRATEXTUAL
FACTOR

PROBLEMS TO BE SOLVED

SENDER • Who is the sender of the text?
• Has the sender written the text himself?
• What information about the sender can be obtained from the

text?
• What clues can be obtained from other situational factors?

SENDER’S
INTENTION

• Are there any statements of intention?
• What intention can be conveyed by the text type?
• What clues can be obtained from other situational factors?

RECIPIENT • What information can be obtained about the recipient?
• What can be learned about the recipient form the information

about the sender?
• What clues can be obtained from other situational factors?

MEDIUM/
CHANNEL

• Has the text been taken from a written or spoken document?
• By which medium is it transmitted?
• What clues can be obtained from other situational factors?

PLACE • Where was the text produced or transmitted?
• Is any information about place presupposed to be part of the

recipients’ background knowledge?
• What clues can be obtained from other situational factors?

TIME • When was the text written?
• Is any information about place presupposed to be part of the

recipients’ background knowledge?
• What fundamental problems arise from a possible time lag

between ST and TT situation?
• What clues can be obtained from other situational factors?

MOTIVE • Why was the text written or transmitted?
• Is the ST recipient expected to be familiar with the motive?
• Was the text written for a special occasion?
• Is the text intended to be read or heard more than

once/regularly?
• What problems can arise from the difference between the

motive for ST production and the motive for translation?
• What clues can be obtained from other situational factors?

Figure 10: Elicitation of Extratextual Factors

Analogous to Nord's general questions, the following specific aspects have to be
considered in industrial documentation:
• who is the author of the text (education/expertise/position)?
• who will be the target user of the document (education/economic

situation/interest/age/sex etc.)?
• what is the overall message that has to come across?
• which will be the typical situation in which the target text will be received

(medium/place/time)?
• which form/style will be most appropriate for the given combination of

user/situation?
• which is the envisaged effect (emotional/practical) of the text on the user of the

documentation?
These are among the aspects the translator has to consider either before or during
reading/analysing the source text. The most promising source of information in the

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 17

industrial context is the client, that is, the translator has to contact either the author of
the source text or even his/her manager in order to get a satisfactory picture of the
envisaged TT situation.

Nord (1991:84-143) distinguishes between eight intratextual factors, that is, subject
matter, content, presuppositions, text composition, non-verbal elements, sentence
structure, and suprasegmental features. Whereas Nord concentrates on the question
how to find information on the different intratextual factors, the following
investigation will focus on the kind of problems the translator has to face on the level
of intratextual factors. Moreover, since this chapter is mainly concerned with industrial
documentation, Nord's model will be adjusted to this situation, that is, only relevant
items will be discussed, additional considerations included.

Subject Matter and Content
Among all intratextual factors, subject matter and content are the most important ones
for industrial documentation. The following figure summarises aspects of subject
matter and content that are relevant in the context of this study.

ANALYSIS OF
SUBJECT
MATTER

PROBLEMS STRATEGIES KNOWLEDGE
STRUCTURE

definition of subject
matter?

coherent text ?
(only one subject matter)

analysis at level of lexical
items

HS

 text combination?
(several subject matters)

 hierarchy of subjects?
isolation of
information units

difficult syntactico-
semantic structures?

paraphrase ST segments HS

determination of
extralinguistic
reference

knowledge on subject
matter available?

text documentation in SL ES

 comprehension of
individual concepts

terminology elaboration
and look-up/text
documentation
- definitions
- concept structures

ES

Figure 11: Analysis of Subject Matter in Industrial Documentation

The number of problems which are likely to occur with respect to the subject matter
largely depends on the question whether the text covers one or more topics. In order to
find out what the text is all about, the translator analyses the topic structure of a text
and arrives at a network of semantic relations, which provide him/her with an
overview of the overall subject matter. In case it is difficult to isolate information units
in the ST, the respective parts are paraphrased in the SL. Within each topic the
translator is faced with comprehension problems on the level of individual terms or on
the level of subject knowledge. In these cases there is the need to clarify the

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 18

extralinguistic references to the lexical items and their relation to each other within the
overall topic by means or text documentation or by considering definitions and
concept structures of the relevant concepts. Whereas the definition of the subject
matter and the isolation of information units are heuristic processes, the determination
of extralinguistic references can be considered data-oriented and epistemic. The
translator will first of all consult his/her "encyclopaedic memory" in order to solve the
problem of extralinguistic reference. Only if this process is not successful, s/he will
turn to the strategies described.

Presuppositions
The problem of presuppositions occurs when sender and receiver do not share the
same background knowledge. In industrial translation a situation may occur, when the
external reality of both sender and receiver are not congruent. In this case the
translator has to apply heuristic problem solving strategies and add certain aspects of
the external reality, which the receiver of the document is not likely to have access to.
A typical example would be the translation of computer manuals for speech
communities in which people are less computer literate, for instance, when selling
Japanese computers in Cuba.

Text Composition
Text composition may pose some minor problems to the translator in industrial
documentation on the macro and micro levels of the text. There may, for instance, be a
composition specific macrostructure in the target language (e.g. for letters) that has to
be noted in the translation instructions. Also different speech communities may have
different conventions with respect to the microstructure of specific technical texts (e.g.
whether complex or simple sentence structures are preferred). The translator would
normally try to retrieve from his/her encyclopaedic memory (ES), how macro- and
microstructures are defined.

Non-Verbal Elements
Non-verbal elements are signs taken from other, non-linguistic codes, which are used
to supplement, illustrate, disambiguate, or intensify the message of the text. In
industrial documentation there are a number of non-verbal elements to be found.
Despite this frequency of occurrence, the probability that translation problems arise is
rather low (not considering the aspects of form). This is due to the fact that the more
technical the subject matter, the more standardised are the ways of expressing reality.
Again the encyclopaedic memory is likely to have stored such aspects and if not, text
documentation in both languages will help to solve the problem.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 19

Lexis
The characteristics of lexis are considered in most approaches to the translation
process. The choice of lexical features is strongly determined by extratextual factors.
Thus aspects such as metaphors or repetition of lexical elements as well as certain
rhetoric figures are of minor importance in the case of industrial documentation.
However, sometimes there may be particular reasons for the choice of lexical units
such as the archaic language for legal documents. To solve such a problem, the
translator would normally consider texts of the same area, which again can be
considered as epistemic rather than heuristic strategy. Another lexical problem which
might occur is that certain lexical fields are used, that is, in-house terminology,
metalanguages etc. The translator in this case would have to retrieve from epistemic
memory or, if not successful, apply heuristic problem solving strategies to analyse the
lexis and determine the translation instructions to be considered in the TT.

Sentence Structure
The sentence structure is likely to be different in industrial documentation than, for
instance, in literature. The question of the density of terminology in individual
sentences may arise, which would have to be analysed carefully (HS) to be later
represented in the TT. Attention should also be paid to the question whether co-
ordinated or sub-ordinated sentence structures are used and whether the same structure
is likely to be used in the target language speech community. Again only heuristic
procedures will lead to the goal.

Suprasegmental Features
In documentation suprasegmental features are signalled by optical means, such as font,
italics, bold, quotation marks etc.. The translator is usually asked to translate form-
neutral, so suprasegmental features have to be kept. It is the translator’s heuristic
knowledge that tells him/her, which elements have to be highlighted in the target
language as compared to the suprasegmental features of the target language.

Having analysed the above intratextual and extratextual factors, the translator arrives
at translation instructions, which pinpoint translation relevant elements and point out
what has to be kept in mind during the transfer and synthesis phases.

1.1.2.2 Phase Two: Transfer

The most sophisticated account of what has to be considered in the transfer phase has
been elaborated by Nida/Taber (1982: pp. 99-119) and Hohnhold (1990: pp. 35-95).
For the purpose of this chapter two major tasks will be considered, that is, transfer of
extralinguistic knowledge and semantic adjustment.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 20

TASKS IN
TRANSFER

PROBLEMS STRATEGIES KNOWLEDGE
STRUCTURE

transfer of
extralinguistic
knowledge

TL terms belonging to a
particular concept?
(synonyms, variants,
antonyms)

text documentation in TL;

ES

 set expressions or
standardised terms?

concepts belonging
together in TL? (relations,
fields, systems)

 special subject hierarchy
available?

 fixed scope of terms? comparing SL and TL
documents

HS/ES

 most suitable term for the
TT skopos?

semantic
adjustment

idioms? adjust to TL or paraphrase HS

 formula? adjust to TL HS

Figure 12: Tasks Involved in Transfer

On the basis of the information elaborated by means of data-oriented epistemic means,
the translator has to decide, which terms to use in the TL and whether the scope of the
terms he considers appropriate suits the TT skopos - a procedure which is of heuristic
nature. Finally semantic adjustments have to be considered (HS) if the SL or TL texts
comprise idioms or formulas.

1.1.2.3 Phase Three: Synthesis

In the synthesis phase, translation units have to be combined into an acceptable TL
text. In the following, two tasks will be distinguished, that is, the combination of
translation units and the checking or evaluation of the translation against the pre-
defined TT skopos.

TASKS IN
SYNTHESIS

PROBLEMS STRATEGIES KNOWLEDGE
STRUCTURE

combination of
translation units

syntax OK?

consider context of terms
in other TL documents

HS/ES

 morphology OK?
irregularities?

consult dictionaries
text documentation in TL

HS/ES

 technical collocations to
be considered?

text documentation in TL ES

 phrasing conventions?
evaluation of
translation against
TT skopos

TL text congruent with TT
skopos?

comparison of features
mentioned in TT skopos
with features of the text

HS

Figure 13: Tasks Involved in Synthesis

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 21

The phases, tasks, problems, strategies and knowledge structure elaborated above are
by no means meant to be exhaustive. In some cases, both knowledge types were
referred to, because a combination seemed likely. The strategies applied by translators
and the type of knowledge applied to solve problems will form input into the
development of metrics that measure the quality of different translators’aids’ systems.
Those systems that support strategies that are typically applied by translators to solve
the various translation problems discussed, will rank high in the overall assessment
procedure.

1.1.3 The Professional Context of Translation

The above discussion of the translation process is meant as a step towards the more
detailed description of problems and strategies involved in translation with a focus on
industrial translation as opposed to the translation of literature. What the requirements
of translators as users of translation tools eventually are, however, largely depends on
the professional context in which the translation job is located. In other words, what is
needed depends to a certain extent on (i) how many people work together; (ii) which
resources they can share; (iii) and how they divide up the work. Along these criteria it
is useful to distinguish between two major translation contexts, that is, freelance
translating and midsize to large translation contexts. The following two sections take
into consideration Fulford/Höge/Ahmad (1990); EAGLES (1995) and observations of
the author during her 5 year research work at the translation department of Mercedes-
Benz.

1.1.3.1 Freelance Translating

What characterises freelance translators as opposed to translators working alongside
other translators in midsize translation companies or in-house translation departments,
is above all the variety of text types and subject areas they have to deal with. Due to
this immense complexity, nowadays many freelancers, if they can afford it, tend to
specialize in only a few subject areas. The type of translation work freelancers usually
undertake is translating, and only few are also proofreading or revising target language
texts. Most freelance translators have between five and 10 clients they regularly work
for. They translate hundreds of pages a year into a single language direction.
Consequently freelancers cannot fall back on large specialized resources of either
terminology or translated texts. Freelancers equally have to deal with administrative,
translation and technical problems involved in the context of the translation job.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 22

1.1.3.2 Midsize to Large In-house Translation Departments

Translators in midsize to large in-house translation departments occupy a specific role
in the overall process of documentation. Consequently industrial translation must not
be considered as a discipline in its own right but rather as the final stage of the larger
documentation process. The way the process of documentation is performed,
determines the responsibilities of the individual translator. The documentation process,
was formerly characterised by paper as the primary medium. It involved a number of
time-consuming loops in which the documents had to be composed, checked and
printed by third parties. The mere task of the translator then was to transform a text
from one language into another and to try to fit the translations into the given galley
proofs.

AUTHOR
draft

TRANSLATOR
translation

USER
printed document

COMPOSING
galley proof

PRINTING
printout

COMPOSING
galley proof

PRINTING
printout

yok?

n

yok?

n

Figure 14: The "off-line" Process of Industrial Documentation by Höge/Kroupa (1991:1037)

Within the last decade, however, the introduction of new technologies have led to a
considerable change in the overall process of documentation (Höge/Hohmann/Le-
Hong 1995: 4). This has gradually resulted in an increase of responsibilities on the side
of both authors and translators. Authors had to start thinking about formal matters of
presentation and similarly the translator has become to be responsible for the final
shape of the TL documents, taking over most of the composing and printing jobs
formerly performed by different people.

Moreover, with shortening product life cycles, there is a strong demand that the
document life cycle be reduced to its minimum, while at the same time the volume of
technical documents is increasing (more products, more documentation). In medium to
large translation departments, the amount of texts that need to be translated varies from
one to tens of thousands of pages a year (cf. EAGLES, 1994:141). This situation puts
great demands on authors and translators equally. Both are asked to develop strategies

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 23

to ease and to speed up their work, resulting in a change of both responsibilities and
workflow.

On the author side, two main strategies could be observed which reduces text
production effort, that is, standardisation and re-use of text. Investigations on the
repetitiveness of certain text types by Fulford/Höge/Ahmad (1990:17) showed that it is
above all technical documentation that bears a great amount of repetitions both within
the same document, within documents of the same type or even other versions of the
document. The principal assumption for this kind of investigation was that repetitions
are only the rule in less sophisticated text types such as manuals. However, a new
trend in documentation is gradually emerging: authors, generally under time-pressure,
also started to compile stylistically sophisticated text modules for the description of
products or parts thereof in public relation documents. Instead of reformulating the
same facts about a particular product (for instance, a new turbo diesel engine), authors
now combine a great number of such modules within one overall text. This way an
enormous amount of time can be saved without decreasing the stylistic level of the
documents.

On the translation side, however, strategies to decrease translation work are only
gradually being employed. The current situation for most translators is still that they
receive their documents either as a printout or on a floppy, work with their text
processors, consult dictionaries (maybe on-line dictionaries), card files, magazines and
alike and finally produce their target texts. Many in-house translators realise during
translation that there is "a good deal of repetition" in the texts they are working on, but
when being asked to quantify repetitiveness in documents, they cannot give more than
a general impression, and decide that it is less time-consuming and less effort to re-
translate passages instead of looking for previously translated texts. Accordingly, an
important task in the analysis of the source text is to determine the quantity of actual
translation work, that is, to watch out for recurring passages of text within the same
document or within other, already translated documents.

Translators in midsize to large translation departments are usually highly specialized
both in terms of subject area and text type. While they tend not to be responsible for
either administrative or technical problems involved in the translation process, the type
of translation work has changed from mere translation to translation and layout.
Moreover, having to deal with large texts such as car manuals, one translator is often
only responsible for a specific part of the text. Problems of the consistency of
terminology and, probably, also of style have to be dealt with. In multinational
companies the extent of translation work also frequently covers proofreading and

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 24

revision of foreign language texts as well as the preparation of terminology for use
throughout the international company.

To conclude, from the above description of typical professional contexts of translators
it follows that there are major differences between freelancers and midsize to large
translation departments with respect to
(i) the type of tasks tackled during translation;
(ii) the workflow, that is, the sequence of tasks; and
(iii) the importance of the different tasks
On the basis of the above criteria, typical user profiles of translators may be drawn up,
which represent the general requirements of these major two professional working
contexts.

1.1.4 Candidates for Automation

So far, the basic issue concerned with the motivation of this chapter has not been
tackled, that is, why should new translation tools be developed or existing ones
improved? The major reason for introducing translation tools is that every profession
has to keep pace with technology to guarantee competitiveness. Thus, if generally all
product life cycles are getting shorter and the factor "time" is of increasing importance,
the translator, too, should seek to increase the quantity of his/her work while keeping
the quality at least at the same level. This, however, cannot be achieved without tools
that support various tasks in the translation process.

The following approach is meant to bridge the gap between the theory of translation
and theoretically possible translation tools. Wilss (1992:105) points out that there is
some basic parallel between the human brain as information processing device and the
computer. Both "systems" process information that has somehow been entered, is
stored in the memory and that can be retrieved by different operative search strategies.
Considering the tasks, which have been defined and elaborated above, the main
interest will lie in the distribution of the types of knowledge involved when solving
translation problems, that is, epistemic, data-oriented versus heuristic, process-oriented
knowledge. The interpretation of the data will be based on the hypothesis, that for
epistemic, data-oriented knowledge there is a high potential of automation, whereas
heuristic processes are difficult to be described and therefore, at the current state of
technology, their automation is only gradually being investigated.

The following table gives an overview on the distribution of knowledge types among
the problems discussed above. According to the figures, there is an equal distribution
between the application of epistemic and heuristic problem solving strategies even in

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 25

the context of industrial documentation. One may assume, that for literature
translation, the percentage of heuristic structures will be much higher than for
technical documentation, where the extralinguistic reality is more likely to be similar
between sender and recipient.

TYPE OF KNOWLEDGE INVOLVED NUMBER OF PROBLEMS DISCUSSED
epistemic knowledge (ES) 12
heuristic knowledge (HS) 12
heuristic and epistemic (HS/ES) 4
total of problems discussed 28

Figure 15: Distribution of Epistemic and Heuristic Knowledge Structures

Future research in the area of both heuristic translation strategies and the emerging
technical discipline of neural networking may result in a better understanding of the
matter and, in the long run, even lead to the development of tools that support heuristic
translation strategies. Currently, even state of the art technology, however, mainly
allows that problems and strategies that involve epistemic knowledge are supported by
the computer. Consequently, the more intelligent tasks, such as reflecting, considering,
and deciding are still mainly performed by the human translator. However, if Wilss'
(1988:86) assumption is true, that is, that the more epistemic knowledge is available
during the translation process, the fewer translators have to perform heuristic
processes, the introduction of efficient tools based on epistemic knowledge, would
nevertheless decrease heuristic activities of human translators. The following table is a
summary of those previously discussed problems that are solved by the aid of
epistemic strategies.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 26

PHASE TASK PROBLEM STRATEGY
ST analysis determination of

the quantity of the
actual translation
task

repetitions within the
document or already
translated documents?

compare sentences within
the same document or the
document with existing
text corpus

 determination of
extralinguistic
reference

knowledge on subject
matter available?

text documentation in SL

 comprehension of
individual concepts?

terminology elaboration
and look-up/text
documentation SL
- definitions
- concept structures

 text composition composition specific
macrostructure?

text documentation/
parallel text1

 different conventions with
respect to the
microstructure?

text documentation/
parallel text

non-verbal
elements

usage of non-verbal
elements conventionally
bound ?

text documentation/
parallel text

 lexic particular reasons for the
choice of lexical units?

parallel text

transfer transfer of
extralinguistic
knowledge

TL terms belonging to a
particular concept?
(synonyms, variants,
antonyms)

text documentation in TL/

 set expressions or
standardised terms?

text documentation in TL/

 concepts belonging
together in TL? (relations,
fields, systems)

text documentation in TL/

 special subject hierarchy
available?

text documentation in TL/

TT synthesis combination of
translation units

technical collocations to
be considered?

text documentation in TL

 phrasing conventions? text documentation in TL

Figure 16: ES: Phases, Task, Problems and Strategies

Considering the above table, it is rather striking that all of the strategies employed are
based on the use of text corpora. No matter whether for analysis, transfer or synthesis,
text corpora are the adequate means to support the translator during all steps of the
translation process.

Apart from straightforward epistemic aspects, it is interesting to consider those
problems briefly that were classified as a mixture between epistemic and heuristic
(HS/ES). As the following table shows, these problems generally involve a number of
heuristic processes that have to end with the decision on the part of the translator (HS),

1 note: in the translation theory context the term parallel text denotes texts of the same type in the

source language (e.g. other legal documents); in the translation system development context,
parallel text is often referred to as translations of a text, e.g. a parallel text corpus is a text corpus
that includes source language texts and their translations.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 27

which can mainly be made on the basis of either the availability of a certain amount of
data (ES) or simple mathematical operations.

PHASE TASK PROBLEM STRATEGY
ST analysis investigation of

sentence structure
density of terminology
within a sentence?

identify terms in ST
count number of terms in
ST
represent same density of
terminology in TT

transfer transfer of
extralinguistic
knowledge

fixed scope of terms? define concept of terms in
ST
consider concepts in TL/
text documentation in TL
decide which concepts suit
best for given text/situation

 most suitable TL term?
TT synthesis combination of

translation units
syntax OK?
irregularities?

apply general syntax rules

consider context of terms
in TL/
text documentation in TL

 grammar OK?
irregularities?

apply general grammar
rules
for irregularities consult
dictionaries or
text documentation in TL

Figure 17: HS/ES: Phases, Task, Problems and Strategies

The investigation of the sentence structure is a classical combination of applying
heuristic processes in finding out, which of the elements of a sentence can be classified
as term. Though this process is characterised by a number of complex sub-processes
(e.g. consider lexical, semantic, syntagmatic aspects etc.) one may nevertheless
imagine that one may arrive at similar results (here the determination of terms) on the
basis of other, more algorithmic, processes such as the comparison of the SL text with
an LGP (Language for General Purposes) data corpus. The results of such alternative
processes would still have to be checked by a human translator and the final decision
would remain in his/her hands. In addition to the rather complex problem of
determining terminology, other sub-processes involve the simple counting of terms,
which again can be defined as algorithm.

Determining the scope of a term involves both the definition of extratextual factors
(situation etc.) which is the result of heuristic investigations, and the simple looking-up
of the terms in TL text documents. The final decision about which term suits best in
the TT has to be made by the translator.

The combination of translation units can also be considered a classical problem. It
involves the application of rules (syntax, grammar) but also has to consider those

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 28

aspects that are not covered by rules, that is, irregularities in grammar or
complementation. Again, the multilingual text corpus provides data for solving the
problem, determining irregularities.

Taking into account all aspects mentioned in both the ES and HS/ES context, it
becomes obvious that the potential to automate a great part of the tasks is striking. It
goes far beyond the scope of this chapter to build up a detailed specification for a tool
that integrates all aspects elaborated above. Nevertheless, a rough outline of the
functionality of such a text corpus tool will be given in the following figure.

TOOLS

TEXT
CORPUS

IDENTIFICATION OF REPETITIONS
- compared to previous translations
- within the same text

RETRIEVAL OF ENCYCLOPAEDIC MEMORY
- on-line encyclopaedia with translation-relevant information
- hypertext organisation following associations etc

FULL TEXT RETRIEVAL
- monolingual and bilingual
- according to search parameters (e.g. text type, subject, date)

TERMINOLOGY DATABASE
- including user-defined information categories
- sophisticated retrieval and modification interface

TERMINOLOGY ELABORATION
- text analysis facilities (elaboration of infomation categories)
- identification of terms, proposal for term in TL (based on parallel text)

Figure 18: Possible Functionality of Multilingual Text Corpus Tool

The above figure shows that there is no reason why the translator should be confronted
with different tools, comprising independent engines that make use of independent
data resources. The translator is in the end always confronted with text and has to
apply different operations on this text in order to arrive at his result, the "correct"
translation. Thus it must be the first goal to provide the translator with tools to handle
multilingual text corpora and to apply operations on the corpora - either automatically
or "manually". A toolbox approach would make sense, in which translators "plug in"
those tools which are of interest to their particular translation environment.

The above developed model of an “ideal” multilingual text corpus tool was based on
the analysis of translation tasks. The following section presents an overview of types

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 29

of translation tools that are actually being developed both in the research and industrial
context.

1.1.5 Types of Translators’ Aids

Within the last decade a great number of translators’ aids products surfaced, many of
them to fall back into oblivion again after a short while. Which of the software
products on the market are actually successful largely depends on the functionality of
the modules they offer. The modules that are being developed in the industrial and
research context cover multilingual dictionaries, multilingual thesauri, terminology
management databases, translation memories, text alignment tools, and, last but not
least, terminology elaboration tools.

Multilingual dictionaries typically consist of one or more alphabetically organised
bilingual dictionaries and the corresponding retrieval software. Most retrieval software
systems allow access to several dictionaries, though only one can be active at any one
time. There are some computational systems that can assist dictionary editors to build
up user dictionaries, which are then handled in a similar manner to the read-only
dictionaries provided. Inflectional morphology look-up, where the input word is
morphologically reduced to its word stem, is a rare but welcome feature of the tools
currently on the market. More sophisticated packages offer add-ons for merging,
inverting, importing and exporting dictionaries.

Multilingual thesarui are relative newcomers among translation software. They offer
two or more monolingual thesauri, cross-referenced by concepts rather than
alphabetically. By means of these links, the user can rapidly browse through the
subject hierarchies in different languages. Multilingual thesauri in particular support
written language and are interesting for all those who have to translate into or write in
the foreign language.

Terminology management databases typically consist of a terminology database
together with retrieval and modification software, which allows users to access and
enter data in different background databases. The underlying term model has been the
subject of ongoing debate for years. They are either term or concept-oriented and in
most cases only offer a pre-defined set of information categories, such as grammar,
definitions, context and the like. If at all possible, it needs considerable effort to adapt
the given set of information categories to particular user needs. As in multilingual
dictionaries, inflectional morphology in look-up routines is rare. Most systems
currently offer utilities for maintaining termbases such as reversing, merging,

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 30

exporting, importing and printing facilities. A new feature of some more sophisticated
systems is the support of terminology extraction from existing texts.

The concept of translation memories (TM) has been around for more than twenty
years now but has only recently become an important commercial entity. Basically a
translation memory makes use of already existing translations in that it tries to match a
new source text - sentences or parts thereof - with existing source texts. Some TMs can
only retrieve exact matches, whilst others apply fuzzy matching algorithms that allow
the retrieval of near matches, for which the TM then automatically offers the
translations of the previous versions. The quality of the matching algorithm and the
underlying way of storing the data largely determine the performance of the systems.
TMs are typically integrated into translation workstations and used in conjunction with
terminology databases/multilingual dictionaries or even MT (machine translation) raw
output.

In conjunction with TMs, more sophisticated systems offer text alignment tools, the
results of which can subsequently be imported into a translation memory system. Thus
the TM can make use of existing translations that originally were not translated by the
aid of the TM. Central problems to text alignment tools are (i) the segmentation of the
source and target language texts into translation units, and (ii) the alignment between
the corresponding source and target language translation units. The closer translations
are to the original, the higher the quality of the output of text alignment tools.

Recent developments include terminology extraction tools. Terminology extraction
techniques and associated tools have been developed that can assist in the elaboration
of terminology at all stages in such a process: from the identification of existing or
emerging terms, through locating terms within a terminological hierarchy and finding
their associated collateral, to the validation of terms. There are few tools or techniques
that support all stages of terminology elaboration, and fewer still that consider the
importance of managing the resources from which the terminological evidence is
being "mined" or "discovered". The techniques that have been applied within this area
come from two main approaches: statistical or semantic. The statistical approach
comes from a line of research that goes back to the 19th Century and can be found
today within the discipline of Corpus Linguistics. The focus of the statistical approach
is to use concordance analysis, that is, the quantitative, numerical analysis of the
occurrence of words. In contrast, semantic approaches typically apply deep linguistic
analysis on smaller quantities of data to achieve their goals.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 31

Since there is much progress in both hard/software and language engineering research,
a classification such as the one presented above cannot be more than a cursory
snapshot of a rapidly moving target. However, the classification showed that there is a
certain overlap between the model of the ideal multilingual text corpus tool and what
is actually being developed. Thus the identification of repetitions is realized in form of
translation memory systems and terminology databases as well as elaboration tools are
actually developed. The retrieval of encyclopaedic memory, as was proposed in the
text corpus tool model, is only realized on a rather low level in the form of
multilingual thesauri, and the full text retrieval module is still a desideratum.

1.1.6 Translators’ aids Products on the Market

Considering the following survey, it is important to note that only the key players of
the 1999/2000 translation market are briefly described. There are many more systems
that offer to some extent language engineering facilities that are geared to the non-
professional multilingual market, which, however, will not be considered further here.

1.1.6.1 TRADOS 5 Translators Workbench1

The Translators’Workbench offers a comprehensive translation solution, which can be
integrated into Microsoft Word for Windows. TRADOS 5 is XML based and offers
two product lines, that is, Freelance Edition and Team Edition. Central elements are
the terminology database Multiterm® and a translation memory system which retrieves
already translated segments with their translations from pre-stored databases. It
produces fuzzy matches for all segments that are not identical but similar to those
stored in the database. The “concordance” function further allows scanning the
database for a source sentence, or a part of a source sentence and retrieves the
corresponding matches. The user does not have to leave the normal text-processing
environment when doing the translation, but additional windows are opened for the
source language text, the target language text and the terminology database
information. For each translated segment, the translations are stored in translation
memory databases from where they can be retrieved during the very translation
process or accessed for later translations. The workbench offers many options to
customise the environment and therefore improve the output of the system. It supports
the management of large translation projects, allowing the analysis and calculation of
effort. Already existing translations can be aligned and imported into translation
memory databases using the WinAlign® program, which visually supports the

1 For more information see http:/www.trados.com.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 32

alignment process. A range of tuning options provides precise control over the
alignment process. The workbench is open for other applications such as Machine
Translation Systems like SYSTRAN or Logos. The TRADOS S-Tagger offers
interfaces to other DTP applications like FrameMaker and Interleaf. The TagEditor
allows the translation of HTML/SGML texts, offering the full workbench functionality
and user-friendly editing facilities. With TRADOS 5 three new features have been
implemented:

(1) WorkSpace®, a workflow management software that integrates all TRADOS
functions into an overall interface;

(2) Extraterm®, a statistically based terminology extraction tool, which offers
possible translations to terms in a source language on the basis of an existing
bilingual text in TRADOS format or a translation memory.

(3) Xtranslate®, a reference file based tool for update translations, which finds
translations of segments in the same textual context and, therefore, reduces
quality checking to a minimum.

The T-Window Collection, furthermore, includes a translation environment for
Microsolf PowerPoint®, Exel®, clipboard and executable files. Multiterm IX®, finally,
is a client-server based architecture for the distribution of terminology via intra or
internet. The TRADOS products are supported throughout the world with thirteen
offices in ten countries on three continents.

Supported Languages
• all Windows 95, 98 and NT supported languages (soon also including Arabic and

Hebrew);
Supported Formats
• all popular formats: WordDoc, RTF, Online-Help RTF, PowerPoint, FrameMaker,

FrameMaker+SGML, FrameBuilder, Interleaf, Ventura, QuarkXPress, PageMaker,
SGML/HTML, RC (Windows Resource), Bookmaster (DCF), Troff.

System Requirements
• operating systems: Windows 95, 98, 2000 and NT.
• hardware environment: PC with Intel Processor and alt least 64 MB RAM
• networking environment: all popular environments such as Windows NT, Novell

Netware, IBM LAN Manager.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 33

1.1.6.2 STAR Translation Technology1

With Transit 3.0, Star Translation Technology offers a multilingual publishing solution
with three major components, that is, Transit, the translation environment including a
reference-based translation memory and alignment tool; TermStar, the terminology
database for local and local area network applications, and Webterm, the terminology
database for Inter- or Intranet applications. It also offers speech recognition technology
that facilitates speech input. Already translated documents serve as the basis for the
translation memory system. Before starting the translation all relevant files are
analysed and translation segments identified. The translation editor can adopt the look-
and-feel of Microsoft Word with the additional functionality of translation memory
(including fuzzy matching) and TermStar, as well as notice board and project
management facilities. For each translation segment, a total or fuzzy match is searched
in the translation memory files and the current document. Terminology that can be
found in the TermStar database is offered in a separate window. The Star Translation
environment offers various possibilities for customisation for specific users or projects
as well as project analysis functions calculating how much of a text could be pre-
translated and to which extent. On the market are the following different scale Star
Translation products: Transit and TermStar Professional 3.0, which are extensive
networking solutions including project management facilities; Transit and TermStar
Workstation 3.0, which do not include export/import facilities, TermStar Viewstation
3.0, which has read-only access to TermStar; and Smart 3.0, the local translation
solution including Transit, TermStar and project management facilities.

Supported languages
• Chinese, Japanese, Korean, Thai, Indonesian, Vietnamese, Arabic, Turkish, Danish,

German, English, Finnish, French, Greek, Italian, Catalan, Dutch, Norwegian,
Portuguese, Swedish, Spanish, Bulgarian, Croatic, Polish, Romanian, Russian,
Serbic, Slovakian, Slovenian, Chechic, Ukrain, Hungarian as well as language
variants such as British and American English.

Supported formats
• Text and DTP formats: Microsoft Excel, ~ PowerPoint, ~Word, Adobe

PageMaker,~ FrameMaker, Corel Word Perfect, Interleaf, QuarkXPress,
configuration possibility for ASCII or ANSI based file formats

• Software localisation: Windows Help files (RTF), Windows Resource Files, C/C++
source code, Java source code, source code of other programming languages, SPS
programs

1 For more information see http:/www.star-group.net

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 34

• Generic Data Formats: SGML, HTML, XML

System Requirements
• operating systems: Windows 95, 98, 2000 and NT
• hardware environment: PC with Intel Pentium CPU, 133MHz or higher; and at least

32 MB RAM for Windows 95; 48 RAM for Windows 98, 2000 and NT; 80 MB
hard disk, CD-ROM drive, SVGA Graphic card (800x600)

1.1.6.3 IBM Translation Manager1

The Translation Manager 2.6 offers a large-scale translation solution that is built up on
a specific translation editor, which integrates both dictionary look-up and translation
memory functionality. It can be used as stand-alone or networking application on an
OS/2 or Windows platform. It makes use of a folder concept combining documents,
translation memories and dictionaries including as many files as required in any format
into folders. All relevant source language texts are located in a translation folder and in
a first step analysed prior to translation. The analysis process defines translation
segments, identifies matches and near matches, and terms in the dictionary. The
translator proceeds segment by segment in the translation editor and is presented the
results of the analysis process in different windows, that is, one for the SL segment,
one for the matched translation segment and one for terminology. For each translated
segment, the translations are stored in translation memory databases from where they
can be retrieved during the very translation process or accessed for later translations.
Translation memory databases can be created from existing translations with visual
support for the alignment process. The Translation Manager allows the creation and
update of terminology lists, offers various statistic project management facilities such
as for word count, progress, or repetitions and offers interfaces for Machine
Translation programs.

Supported languages
• Spell checking and full language support for more than 30 languages, including

Eastern European, DBCS and BIDI languages;

Supported formats
• SGML/HTML, MS Word, RTF, Word Perfect, AmiPro, FrameMaker, FrameMaker,

Interleaf, Ventura, QuarkXPress, PageMaker, MRI

System Requirements

1 For more information see http:/www.ibm.com/software/ad/translat

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 35

• operating systems: OS/2 Warp Version 3.0 or higher; Windows 95, 98, and NT
• hardware environment: PC with 486/66MHz or higher; and at least 32 MB RAM;

200 MB hard disk, CD-ROM drive

1.1.6.4 Atril Déjà Vu1

Déjà Vu stores translations in a "memory database" and reads over the source text,
instantly retrieving applicable translations whenever it finds something equal or
similar to the SL sentence. Déjà Vu includes TermWatch, a fully integrated
terminology management system, as well as a File Alignment Wizard that helps to
create memory databases from existing translations. It offers additional functions such
as Pretranslate, which inserts both any exact matches found and fuzzy matches as
suggestions in the correct places; or Assemble, which takes a closer look at the
memory database than Pretranslate, and in many cases can put together a translation
out of pieces that were not sufficient for Pretranslate. It further allows scanning the
database for a source sentence, or a part of a source sentence. Words in the
TermWatch terminology database can be looked up and, if not available, the Learn
function evaluates source and target sentences in the memory database to give the
most probable translation for an unresolved term in the lexicon, or for an untranslated
expression in the source text. Project management facilities count words and
characters per file or per project, and allow analysing a project's internal repetition
factor. They also support the completion of large multifile and multilingual translation
projects.

Supported languages
• Spell checking facilities are included for US English, UK English, German,

Spanish, Finnish, French, Italian, Dutch, Danish, Brazilian Portuguese, Norwegian
(Bokmal) and Swedish. New dictionaries can be created;

Supported formats
• Word (including Word 2000), RTF, Help Contents, PowerPoint, FrameMaker,

PageMaker, QuarkXPress, Interleaf, Java Properties files, HTML (including ASP),
HTML Help, SGML, RC, C/C++, IBM TM, Trados Workbench, and plain text
files

System Requirements
• operating systems: Windows 95, 98, and NT
hardware environment: Pentium processor with 32 Mb RAM is recommended

1 For more information see http:/www.atril.com

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 36

1.1.7 Conclusion to the Translation Context

The first part of this chapter has gradually led us from translation theory and practice,
resulting in a model of the ideal multilingual text corpus tool, over the types of
translators’ aids in development, to the actual products on the market. In short, on the
basis of both the detailed analysis of the translation process and the consideration of
the practical translation context, the development of translators’aids’ systems could be
justified. It became obvious that what is being developed and what is currently on the
translation market does, to a large extent, correspond to what can be considered useful.

Of the products currently on the market, the TRADOS TWB is the most prominent,
though the description of the systems on the market showed that in terms of general
functionality there are no big differences between the competitors. So, one may ask,
what is it that makes one system superior to the others? The answer to this question
lies in the needs of specific users, the performance of the systems, and the assessment
of this performance with respect to those needs – the basic tasks of evaluation.

1.2 The Evaluation Context

The evaluation of translators’ aids has been an acknowledged necessity for several
decades now. Particularly the evaluation of machine translation systems received some
attention as early as in the nineteen sixties. The ALPAC report (1966) was one of the
first evaluation reports that attempted to measure the adequacy of machine translation
in terms of informativeness and fidelity. Though the measures used were both ill-
defined and merely based on subjective judgements, the committee's extremely
negative conclusions about what machine translation could achieve in the short to
medium term influenced the funding of machine translation research for a considerable
time. Since then there have been numerous evaluations of machine translation systems,
many of them on behalf of potential customers or in the context of translation
teaching. Representative examples are the evaluations of SYSTRAN in CETIL (1979)
or Heid (1990); and METAL by Slocum et al. (1985), JEIDA (1992); ARPA (1994). A
comprehensive review of machine translation and evaluation efforts can be found in
King (1984) and Falkedal (1991).

More recently evaluation has concentrated on translators’ aids’ systems rather than on
machine translation. Again there are many attempts to evaluate these systems (i) in the
context of translation systems research and development; (ii) on behalf of potential
customers or (iii) in translation teaching. Examples for this type of evaluation are:
WHA (1993); Spies (1995); Schüller (1995); Reinke (1994). However, what all of

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 37

these evaluations have in common is that they consider specific evaluation problems
only or present a mere comparison of features of translators’ aids.

The necessity to develop a methodology for the evaluation of translators’ aids’ systems
has been repeatedly discussed and so far a number of attempts have been undertaken to
perform methodically informed evaluation of translators’ aids’ systems. Thompson
(1991 and 1912) are typical examples of theoretically driven efforts towards
evaluation methodology. One of the first practically driven efforts to develop an
evaluation methodology for translators’ aids was performed in the context of the
Translators’Workbench Projects (2315 and 6005) within the ESPRIT II framework
edited by Kugler/Ahmad/Thurmair in 1995 or described by Höge/Hohmann/Le-Hong
(1995).

Efforts have been made to adjust and apply evaluation methodologies that were
already established in the fields of other natural language processing areas such as in
database queries or fact extraction performed by Chinchor (1991) or Flickinger et al.
(1987).

There are a number of initiatives that have taken up the evaluation topic at large. One
of the most important attempts to produce a framework for the evaluation and
assessment of natural language processing systems was undertaken in the EAGLES
evaluation and assessment group, which was called into life by the European Union.
EAGLES was the basis for several other initiatives such as ELRA, ISLE, DiET, or
ELSE. In the following, EAGLES and its successors will be described briefly in order
to gain an overview of the work that has been performed in this area.

1.2.1 EAGLES Evaluation Group

A prerequisite for the advent of language engineering technologies is the availability
of a basic infrastructure comprising reusable linguistic resources, specifications for
standards and related software tools - the objectives of EAGLES.1 Part of this thesis,
specifically the test types which will be described in more detail in chapter 4, went into
the EAGLES Evaluation Group final report.2

EAGLES was formally established in January 1993. With a Community funding of
around 1.25 Million ECUs the group intended to draw up a set of language
engineering guidelines in 1995. It was split into two operational phases of 15 months

1 http://www.ilc.pi.cnr.it/EAGLES/home.html
2 http://issco-www.unige.ch/ewg95/ewg95.html

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 38

each and had the active participation of more than 30 research centres, industrial
organisations, associations and research networks covering most EU countries.

EAGLES was intended to respond to the lack of common technologies and standards
for the language industries. From a practical point of view, the major objectives of
EAGLES were
(i) to produce agreed specifications and guidelines for specific areas of language

engineering and make recommendations for a more uniform approach; and
(ii) to bring together the different approaches of industry and academia and foster

their collaboration. Five main areas were identified to form working groups:
 (1) Text Corpora
 (2) Computational Lexicons
 (3) Linguistic Formalisms
 (4) Evaluation and Assessment
 (5) Spoken Language Resources and Methods

The working group on evaluation and assessment was split up into three subgroups,
that is, Writer's Aids, Translators’ aids and Information Management Systems. Jointly
the three groups strove to set up guidelines for the evaluation of language engineering
products and to exemplify the validity of the guidelines by applying them in the three
areas of interest. The Evaluation Group managed to bring together the principal
concepts of evaluation of language engineering systems and the experiences made in
different areas within a number of EU projects.

According to EAGLES one of the principal questions in evaluation is to define what
evaluation is for, that is, is an evaluation intended as means of demonstrating scientific
merit, or of determining commercial viability, or of aiding development, and related to
this, who evaluation is for. EAGLES argued that depending on both the intention
behind the evaluation exercise and the target user of the evaluation results, different
procedures are likely to be applied (Galliers/Sparck Jones, 1993:139). EAGLES
distinguished between three types of evaluation, that is

• adequacy evaluation: the activity of assessing the adequacy of a system with
respect to some intended use of that system.

• progress evaluation: the activity of assessing the actual state of a system with
respect to some desired state of the same system.

• diagnostic evaluation: the activity of assessing the state of a system with the
intention of discovering where it fails and why.

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 39

Due to time and budget restrictions, the efforts to develop a methodology for
evaluation was restricted to adequacy evaluation. An example of adequacy evaluation
is when a potential customer investigates whether a system, either in its current state or
after modification, will do what he requires, how well it will do it and at what cost. Or,
in other words, adequacy evaluation involves a pre-defined set of needs and evaluates
a system's ability to fulfil those needs. It can be compared to the kind of evaluations,
which are performed by consumer organisations for cars, washing machines,
hardware, software etc. This Consumer Report Paradigm was a central precept for the
elaboration of the evaluation framework for adequacy evaluation in EAGLES. The
EAGLES final report, however, shows that despite all efforts, no definite methods
could be found that led to the assessment of translators’ aids’ systems in terms of user
needs.

1.2.2 ELRA and Evaluation

ELRA (European Language Resources Association)1 was established in Luxembourg
in February, 1995, with the goal of founding an organization to promote the creation,
verification, and distribution of language resources in Europe. A non-profit
organization, ELRA aims to serve as a focal point for information related to language
resources in Europe. It is also concerned with the validation of language resources as
well as of machine translation evaluation. Before distribution can proceed, for
everything except research use, the product must be subject to quality control and
validation. In the first place, the development or research project must draw up a
manual for validation, and persuade producers to adopt it as a means of adding to the
marketability of their products. In the context of ELRA, the term "validation" is used
as a synonym to evaluation, that is, it refers to the activity of checking the suitability
for the market, the adherence to standards, and the quality control of the product.

The ELRA validation work is applied to three areas of activity:

• Speech guidelines for validation procedures to be carried out in order to
ascertain a certain quality standard of spoken language resources are distributed
by ELRA. The methods proposed are chosen such that they are a good balance
between achievable quality standards and associated costs of the validation
procedure.

• Text: Aiming to fulfil its objectives regarding the production of a
validation manual, ELRA works in close co-operation with highly
recognised research centres in order to come up with validation manuals.

1 www.icp.inpg.fr/ELRA

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 40

The work being carried out capitalises on previous projects including,
but not limited to EAGLES.

• Terminology: methods and tools for validation and standardisation of
terminological resources are being produced. These resources are essential to a
variety of applications, such as translation, document management, and
software localisation.1 .

1.2.3 ISLE and Evaluation of MT Systems

ISLE (International Standards for Language Engineering)2 is both the name of a
project and the name of an entire set of co-ordinated activities regarding the Human
Language Technology field. ISLE acts under the aegis of the EAGLES initiative and
has produced a draft classification of machine translation evaluations. Its goals are:

• to work toward a theory about the methodology for evaluating Natural
Language Processing / Computational Linguistics applications in general;

• to develop a general framework in which existing evaluation measures for
particular language engineering applications can be formulated in a systematic
and organized way;

• to illustrate the theory and methodology, and to take further previous work, by
creating a specific framework for classifying evaluations of Machine
Translation systems. This work involves gathering and classifying individual
evaluation measures in the most suitable groupings, and creating criteria for the
application of each measure.

While ISLE evaluation research is currently geared towards Machine Translation
Evaluation, it is planned to be also tested with and adapted to other language
engineering applications in the near future.

1.2.4 DiET and Glass Box Evaluation

DiET (Diagnostic and Evaluation tools for Natural Language Applications)3 aimed to
develop data, methods and tools for the glass-box evaluation of language engineering
components, building on the results of previous projects covering different aspects of
assessment and evaluation. It aimed to extend and develop test-suites with annotated
test items for grammar, morphology and discourse, for the English, French and
German languages.

1 more information can be found at the University of Surrey website under http://www.surrey.ac.uk/

or under http://www2.echo.lu/langeng/en/le2/interval/interval.html of the European Commission
2 http://www.ilc.pi.cnr.it/EAGLES96/isle/ISLE_Home_Page.htm
3 cf. http://www2.echo.lu/langeng/en/le3/diet/diet.html

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 41

1.2.5 ELSE Evaluation

The ELSE project (Evaluation in Language and Speech Engineering)1 was contracted
by the European Commission to study the possible implementation of comparative
evaluation in Europe. It distinguishes between five types of evaluation:

• Basic research evaluation tries to validate a new idea or to assess the amount
of improvement it brings over older methods.

• Technology evaluation tries to assess the performance and appropriateness of a
technology for solving a problem that is well defined, simplified and abstracted.

• Usage evaluation tries to assess the usability of a technology for solving a real
problem in the field. It involves the end-users in the environment intended for
the deployment of the system under test.

• Impact evaluation is the evaluation of the socio-economic consequences of a
technology.

• Program evaluation can be seen as an attempt to determine how worthwhile a
funding program (like LE) has been for a given technology.

1.3 Conclusion

The mere fact that so many evaluation initiatives were called into life, and research
work of so many scientists was directed towards the development and improvement of
evaluation methodologies shows that the need for such an evaluation methodology is,
in fact, striking.

Jargon florishes readily in evaluation research. However, despite all the differences in
naming and focus, all approaches have in common, that they try to relate the human
precept of how some system should behave to the actual performance of this system.
The complexity of this problem has been addressed in each of the existing approaches
and a great deal of effort has been put into the development of methods to solve these
problems. Depending on the final goal of testing, the depth of understanding as well as
the evaluation procedures may vary, while the central concepts remain the same. This
is particularly true for the different types of evaluation as defined by EAGLES, that is,
adequacy, diagnostic and progress evaluation. Though they are performed at different
stages of the development cycle, and with a different focus, they share the central
concepts.

1 cf. http://www.limsi.fr/TLP/ELSE/

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 42

start of
development cycle system development product

diagnostic evaluation

progress evaluation

adequacy evaluation

Figure 19: Relationship between EAGLES Evaluation Types

The framework for the evaluation of translators’ aids’ systems which will be presented
in this thesis has evolved during more than a decade of evaluation work - both research
and practical. Efforts of the above described initiatives and many practical evaluation
examples have been taken into account, leading to a theoretically sound and
practicable evaluation framework for translators’ aids. While the framework shares the
basic ideas with those developed in the context of the above initiatives, the major
difference is that of practicability. The start-off of this framework was the practical
need to produce evaluation results in the ESPRIT TWB Projects. Thus, many a theory
was discarded at a very early stage due to the inability to produce any significant
results. The evaluation procedures were applied with various translation tools
developed by the different partners. When the TWB projects ended, the European
Union considered the then evaluation procedures as one of the most outstanding
research results produced in the TWB projects. At the time, the major achievements
were the qualitative results gained by means of the test types developed for evaluation,
and the approach used to improve and monitor the progress of the systems. At that
stage, the framework had been geared towards evaluation supporting system
development.

Being part of the EAGLES context, focus was shifted towards adequacy evaluation,
that is, evaluation preceding purchase decisions in translation industry. Consequently
A central issue was how to arrive at quantitatively measurable primitives that are
needed for adequacy evaluation as opposed to implementable primitives needed in the
system development context. When the EAGLES Initiative concluded, the base work
for adequacy evaluation was founded, yet adequate means to formulate measurable
primitives from user requirements were not yet found. Motivated by the tendency
towards formalisation of evaluation procedures that was gaining ground during
EAGLES, postgraduate research at the University of Helsinki led to a major
breakthrough towards formalisation, quantification and assessment. Modelling
procedures from Software Engineering were applied to the context of evaluation,

CHAPTER 1: TRANSLATION AND EVALUATION – THE CONTEXT 43

resulting in ways to produce measurable primitives from user models. Practical testing
performed with the TRADOS Translators’Workbench and the IBM Translation
Manager products could deliver quantifiable results. There was only one step left in
the process that had to be dealt with, that is, assessment. This involved the process of
relating the views of users back to the test results . The discipline of decision analysis,
concerned with the motivation and rules behind multiple choice decisions provided
instruments that could be adapted to the context of software evaluation and eventually
led to the assessment of test results in terms of user needs.

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 44

2. What Translators Want - Featuring Users and Systems

According to the Dictionary of Contemporary English the term “want” denotes the
condition of lacking something necessary or very useful. In the previous chapter the
translation context was discussed and useful functions of a multilingual corpus tool
were identified. Roughly comparing these functions to the functionality of the
translators’ aids’ systems on the market, it became obvious that these systems roughly
offer most functions that would be useful for translators. What could not be shown,
however, was the extent to which the functionality of these systems actually
corresponds with what translators want. The condition of wanting presupposes an
awareness of two things, that is (i) needs, and (ii) possible solutions. In other words, in
order to determine how useful a specific translators’ aids’ system is for a specific type
of translator, the features of both translator and system have to be determined and
mapped onto each other.

This type of mapping between the system on the one hand and the user context on the
other is well known in the requirements engineering context. Jackson/Zave
(1993:pp56) developed a model which describes the nature of requirements
formulation. Their approach concentrates on the description of domains (or "real
worlds") and requirements (or "problems") on the one hand and system properties on
the other. In the place of the traditional term "environment" their approach makes use
of the term "domain". They argue that "domain" is a broader concept that denotes the
overall subject matter of the system's computations and provides the context in which
those computations have useful meaning or effect. A domain is a topic for description
in its own right, independently of any description that eventually will be made of the
system to be constructed. Requirements are a special type of domain descriptions,
which describe the desired state of affairs, while ordinary domain descriptions assert
certain truths about the domain. Within the same domain different users may have
different requirements, forming different subsets of the overall set of domain
properties. The purpose of the system is to bring about observable effects in the
domain. In formal terms the relevant space of descriptions in requirements formulation
is described as covering two intersecting sets of attributes. The set {Di} is a set of
attributes of the problem domain, and the set {Mi} is a set of machine attributes. The
intersection of D and M is S, the area of specifications, where attributes exist in both
the problem and the machine area. Figure 20 illustrates the intersection.

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 45

D1 D2

D3 D4

S1
S2

M1
M2

M3 M4

Figure 20: Domain and Machine Attributes and Specification Adapted from Jackson (1995:3)

In other words, the intersection {S} is a set of implementable primitives, that is, small
units of functionality, both needed by the user and possible to be implemented. A
detailed description of all elements of {S} provides the basis for the system
specification.

In the same spirit a model can be developed for the evaluation of translators’ aids’
systems. However, while in the development context, the intersecting set denotes
implementable primitives, in the evaluation context this set has to denote measurable
primitives. Evaluation requires the description of the domain {D}, above all, the
definition of tasks users perform (a subset of {D}) and features that programs offer to
perform certain tasks (a subset of {M}). In evaluation the intersection of D ∩ M is E,
that is, the evaluation space. The nature of the different sets in evaluation is as follows:
{D} a set of attributes stemming from the tasks users perform and the technical and

organisational environment in which they are performed;
{M} a set of attributes, that is, features systems offer to perform specific tasks;
{E} the intersection set of attributes which are both relevant to users in the domain

and covered by the system under evaluation.

D1 D2

D3 D4

M1
M2

M3 M4

E2
E1

Figure 21: Model of Requirements Formulation for Evaluation

The meaning of the three sets in the context of evaluation may be characterised as
follows:

 {D1...n} is a set of attributes of the problem domain representing different tasks,

that are not covered by the system(s) under evaluation. {D1...n} may be different

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 46

for different users and systems. User-oriented evaluation has to determine the
scope of {D1...n} and rate the importance of these attributes for users. If {D1...n}
covers an attribute of overriding importance, the system under evaluation
failed.

 {M1...n} is a set of machine attributes that are not explicitly defined by users and

as such are not directly relevant to evaluation. {M1...n} may be different for
different users and systems.

 {E1...n} is a set of evaluation attributes for which measurement ways have to be

found, since they represent attributes of the problem domain which are
provided by the systems under evaluation. {E1...n} may be different for different
users and systems. Comparing the scope of {E1...n} for different systems leads
to the identification of evaluation relevant attributes. In other words, only
those attributes are relevant to evaluation in which the systems under
evaluation differ. In decision analysis, Winterfeldt/Edwards (1986:41) point
out that evaluation relevant attributes have to be considered in the light of
their measurability, that is, only if they allow sensible measurement, attributes
are value relevant. Testing should deliver attribute/value pairs for the different
systems with respect to all attributes of {E1...n} that are both evaluation and
value relevant.

2.1 Elicitation of Attributes of {D} – the Needs of Translators

As the evaluation model shows, the first step in defining measurable primitives is to
look at the domain {D} and the machine {M} in their own right. Jackson/Zave’s
(1993:pp56) distinction between ordinary domain descriptions and requirements,
which describe the desired state of affairs, is also relevant to evaluation. The aim of
this section is to define domain properties, that is, to assert certain truths about the
translation domain. The definition of requirements which describe the desired state of
affairs is topic of chapter 3.

The process of eliciting domain properties for evaluation can benefit from the
experiences made in requirements analysis and elicitation in the software development
context. Sommerville (1996:pp88) notes that requirements elicitation and analysis is
generally difficult because stakeholders, that is, everyone who may have some direct
or indirect influence on the system requirements, often do not really know what they
want or can expect from computers, except in the most general terms, and

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 47

consequently, make unrealistic demands. Sommerville/Sawyer (1997:63-110) present
thirteen guidelines for eliciting requirements in the software development context.

REQUIREMENT
ELICITATION GUIDELINE

KEY BENEFIT COST
introduction

COST
application

beneficiary

1. Assessment of system
feasibility

Reveals if a system is
actually needed and
technologically realistic.

Low Low to
moderate

SE/
users

2. Sensitivity to
organisational and political
considerations

Helps the software
engineer understand why
some requirements are
suggested

Low Very low SE/
users

3. Identification and
consultation of system
stakeholders

Discovery of all likely
sources of requirements

Very low Low SE

4. Recording requirements
sources

Requirements traceability
from original sources

Low Low SE

5. Defining the system’s
operating environment

Fewer installation
problems for delivered
system

Low Low SE

6. Using business concerns
to drive requirements

Requirements are
focussed on core
business needs

Low
but senior
managers to
be included

Low Users/
SE

7. Investigating domain
constraints

Domain constraints lead
to the identification of
critical requirements

Low Moderate SE

8. Recording the rationale
for requirements

Improves the
understanding of
requirements

Low Low –
Moderate

SE

9. Collecting requirements
from multiple viewpoints

Better requirements
coverage

Moderate–
High

Moderate SE

10. Prototyping (poorly
understood) requirements

Better understanding of
the real needs of system
users

Moderate Low – high Users

11. Using scenarios to elicit
requirements

Users find it easy to
understand scenarios
and to describe
associated requirements

Fairly high Low Users

12. Defining operational
processes

Reveals focussed
requirements and
requirements constraints

Fairly high Moderate SE

13. Revising requirements Lower cost, faster
elicitation of requirements

Moderate –
High

Moderate SE/users

Figure 22: Overview of Key Guidelines for Requirements Engineering According to

Sommerville/Sawyer (1997)

In the context of the elicitation of domain properties for evaluation, major focus must
lie on

• guideline 2, that is, a sensitivity to organisational and political considerations;
• guideline 3, that is, identification and consultation of system stakeholders;
• guideline 6, that is, using business concerns to drive requirements;
• guideline 7, that is, investigating domain constraints;

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 48

• guideline 9, that is, collecting requirements from multiple viewpoints; and
• guideline 12, that is, defining operational processes.

Applying these guidelines to the context of eliciting domain properties for the
evaluation of translators’ aids, the following dependencies in the translation domain
{D} can be identified:

D1

D2

D3
D4

D5

Dn

attributes of {D}

individual d imensioninsti tutional d imension

external context

internal context

technical context

Figure 23: Configuration of {D} from Institutional and Individual Dimension

The institutional dimension denotes the organisational environment and covers those
attributes of {D} that are independent of the individual. As the above figure illustrates,
it is useful to distinguish between the external context, the internal context and the
technical context.

The elicitation of domain properties for translators’ aids can be performed along a pre-
established list of parameters that are relevant in the translation domain. The lists
which can be found below are based on and further develop the user requirements
studies performed by Fulford/Höge/Ahmad (1990) in the context of the ESPRIT TWB
project No. 2315, and the requirements analysis part developed in the context of
EAGLES (1995). They should be used as a guideline that outlines the most important
parameters, while each specific environment may still ask for the adaptation or
addition of parameters.

The external context in translation relates to those aspects that serve as environment to
the translation activity.

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 49

EXTERNAL CONTEXT
PARAMETER POSSIBLE CATEGORIES
nature of enveloping organisation agriculture; industry; services...

domestic company; international company ...
size of organisation employees; turnover...
international activity amount; nature...
language policy national language as official language;

foreign language in common use;
foreign language as official language;
national and foreign language as official languages;
several foreign languages in common use;
several languages as official languages
...

documentation policy quantity of text produced in foreign language;
languages in which documentation is distributed;
annual translation volume per language;
...

terminology policy joint resources with other companies;
company resources;
department resources;
individual resources;
...

Figure 24: Parameters of the External Context

The internal context of translation relates to details of the translation work.

INTERNAL CONTEXT
PARAMETER POSSIBLE CATEGORIES
type of translation organisation freelance; translation company; centralised translation

activity; decentralised translation activity; subcontracted
translation activity; bi/multilingual organisation...

texts source language(s)
target language(s)
text types
domain (or subject area)
characteristics
frequency of translation
...

quantity of translation work pages/time
quality of translation work raw translation; normal quality; high quality ...
extent of translation work proof-reading of foreign language texts;

updating existing translations;
carrying out new translations;
editing and translating text;
editing, translating, establishing text layout;
interpreting;
...

extent of terminology work using existing terminology;
updating terminology;
elaborating new terminology;
checking terminology;
...

type of job professional translator; interpreter; editor; domain
expert; support personnel;...

role of personnel typist; translator/interpreter; terminologist; proof-reader;
head of language groups ...

Figure 25: Parameters of the Internal Context

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 50

The technical context of translation concerns technical details in which translation is
embedded.

TECHNICAL CONTEXT
PARAMETER POSSIBLE CATEGORIES
hardware environment type of computer; power; storage capacity; ...
storage media hard disk; diskette; tape; CD ROM; ...
operating environment DOS; OS/2; UNIX; Windows; ...
software environment desktop; text processing; databases...
documentation management hypertext; imaging; full text retrieval; indexing; ...
nature of documents text; graphics; photographs; animation; video; ...
text input form dictation; hand-written; typewritten; printout; floppy;

network; e-mail; OCR; ...
text output form dictation; hand-written; typewritten; printout; floppy;

network; e-mail; ...
text transmission post; FAX; network; e-mail; ...

Figure 26: Parameters of the Technical Context

Constraints that are set in the external context of translation largely determine the
internal context, which, again, determines the technical context. If, for instance, the
nature of the enveloping organisation (external context) is car manufacturing, the
characteristics of the texts (internal context) will include graphics, which require a
software environment (technical context) that can deal with graphics.

The individual dimension, finally, covers those aspects that are dependent on the
individual, that is, which may be different from one user or stakeholder to another
even within the same institutional setup.

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 51

INDIVIDUAL DIMENSION
PARAMETER POSSIBLE CATEGORIES
knowledge/experience native language(s)

foreign language(s)
language direction(s)
language proficiency
domain proficiency
years of experience
...

tasks type of tasks
sub-tasks (manual/computer supported)
frequency of task
rating of importance of task
language directions
typical problems
problem solving strategies
reference materials
type of information from reference materials
type of support
...

terminology

terminology

type of terminology support
type of terminological information
strategy for terminology elaboration
aids for terminology elaboration
terminology maintenance
integration of terminology work
frequency of terminology work
...

Figure 27: Parameters of the Individual Context

Among the most important individual parameters are the individual's knowledge and
experience both in the working domain and with computers. As pointed out before,
experience and knowledge are responsible for the development of individually
different strategies for problem solving, and consequently, to some extent, determine
which characteristics of a translation support system are considered important. There
is, however, a strong dependence between the individual and the institutional
dimension: constraints which are put on the individual by his/her institutional setup
and the role which the individual plays within the larger context of the institution, are
also responsible for the type of tasks and problem solving strategies applied by the
individual. For instance, one and the same translator will have different requirements
in terms of translation support systems, if working as freelancer or within a centralised
translation department. People who work in the same context are likely to perform
similar tasks. If tasks are similar there may be an overlap of attributes relevant to
evaluation, despite individual differences.

Knowing which information has to be gathered during the elicitation process,
however, is only part of the whole process. The next question is, where to get the
information from, that is, who is the ideal information provider. The distinction
between the institutional and individual dimension of translation is particularly useful

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 52

when identifying appropriate information providers. Accordingly, data on the external
context of translation has to be elicited from persons in the management board; data on
the internal context from both management and translators; data on the technical
context of translation from technical support personnel; and, finally, data related to the
individual dimension from translators.

Apart from determining the type of information that needs to be elicited and the
information provider, the elicitation of domain properties asks for the choice of the
adequate elicitation method. The institutional dimension denotes the general
background to the translation activity. It establishes a picture of facts which determine
the environment of the translation process. According to Wilson (1990:200) the most
appropriate elicitation techniques for the elicitation of facts are questionnaires and
interviews.

Oppermann (1988:10) points out that questionnaires are frequently used for all phases
of software development and evaluation. They are used to elicit both quantitative and
qualitative data. Goguen/Linde (1993:156) argue that they can be useful instruments
when the population is large enough and the issues addressed are clear enough to all
concerned. The reliability of results arrived at by means of questionnaires strongly
depends on the number and representativity of persons questioned. Oppermann
(1988:10) complains that questionnaires are likely to only deliver those results that are
welcome to the designers of the questionnaire, that is, the choice of questions biases
the results. This is due to the fact that the way of posing questions may implicitly
suggest the "correct" answer.

There are various possibilities to perform interviews. Diaper (1989-3:229) and other
knowledge engineers distinguish between focussed and structured interviews. In a
focussed interview, the interviewee is prompted with a question related to his/her
working environment, that is, typical tasks, problems etc. and his/her general opinion
towards the system under testing. The interviewee is thereafter given the opportunity
to express him/herself freely while being interrupted as little as possible. The principal
aim of the focussed interview is to obtain a typology of objects and agents in the
domain, to establish basic factual knowledge, and to achieve a breakdown of the
problem. The structured interview is used for obtaining detailed information on
specific topics. Goguen/Linde (1993:154) point out that the success of the interview
turns on the premise that (a) relevant questions can be decided in advance of the
interaction and (b) questions can be phrased in such a way that, as long as they are
read without variation, they will be heard in the intended way and will stimulate a

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 53

valid response. However, making use of natural language, the interview is inherently
available for multiple interpretations of the meaning of both questions and answers.

The individual dimension is concerned with details of the translation activity.
Elicitation should lead to the recognition of strategies, causal knowledge, procedures
and rules. The most appropriate elicitation techniques for this type of knowledge are
interviews and observations. On page 148 Cordingley (1989) describes observations as
the activity of noting and recording features of 'naturally occurring' settings, and of the
events and actions within them, either directly or indirectly by means of video or one-
way mirrors. During observation one or more observer(s) sit close to the subject, while
watching and taking notes. Diaper (1989-3:213) complains that observation is a very
delicate matter indeed, since it is extremely difficult to record sequences of behaviours
in their correct order. Though video recording is not as intruding as direct observation,
its effect on the behaviour of the user should not be underestimated. There is an
ongoing debate as to the extent to which people alter their behaviour, once they
become aware that they are being observed. According to Cordingley (1989), there is a
body of opinion that there is no significant alteration; another that although people
may adapt their behaviour initially, they soon forget the observer and revert to their
usual behaviour patterns; another that although there may be alteration it does not
invalidate the material; yet another that it is possible to take the alterations into
account while interpreting the data; and finally some suggest that the technique is so
flawed as to be at best useless and at worst misleading.

Cordingley (1989:pp.170) presents detailed so-called Personalised Task Elicitation
Questions which are a good starting point for either interview or observation leading to
the elicitation of information about tasks that may be relevant in evaluation. They
cover the following topics:

(1) Basic description
 What: what is done

(2) Temporal ordering
 Before: what processes come before it in time and have a message or a material

flow leading to it
 Next: what processes come after it in time and have a message or a material flow

leading from it
 Concurrent: what processes happen to occur at the same time but which do not

share a common 'before' or 'next' relationship to it

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 54

(3) Contingency information
 Or: alternative processes; which one is done depends on predetermined control

conditions ('Or' processes do dot send messages or materials to one another)
 And: all processes are to be done but in any order ('And' processes may or man

not send messages to one another)

(4) Establishing hierarchies
 Why: one is done for the purpose of the other(s); 'Why' relationships establish

superordinate/subordinate relationships in hierarchies of purposes; usually the
superior sends a control message to the subordinate and receives a data message
(a report on progress) back from it

 How: one is done as a means of achieving the other(s); 'How' relationships
establish superordinate/subordinate relationships in enabling hierarchies

(5) Production information
 Control: control messages start and stop processes; the express conditions for

activating processes; identify their source(s) and destination(s)
 Concurrent controls: all messages have to be present and all have to arrive at

the same time for the process to be activated
 'or' controls: if any of the messages is present then the process is activated
 'and' controls: all messages have to be present but they can have arrived in any

order for the process to be activated
 Data: messages which are the informational inputs to processes; identify their

source(s) and destination(s) and whether they come and go directly or via a store
(a 'pool')

 Materials: the physical inputs and outputs of processes
 Products: the outputs of the process; they may be messages (data or control) or

materials
 Tools: what is used by people to help them carry out a process; distinguish

between types in terms of the process the tool is aiding

(6) Scope information
 Boundaries: Define in terms of the start (successive before?), the end (successive

next?), the top level purpose (successive why?), and functional primitives
(successive how?)

 Who: the agent, object or processor doing the process
 Where: the physical location of the process, message or material flow
 Linked to: non-functional relationships such as 'similar to'

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 55

(7) Evaluative information
 How well: attainment compared against some goal
 How liked: how (the full range of) target users like doing it
 How easy: whether (the full range of) target users find it easy to do

(8) Ergonomic information
 Health, safety comfort: identify 'hazards'

To conclude, the aim of section 2.1 was

(i) to provide a brief insight into the complexity of requirements elicitation
from the software engineering point of view;

(ii) to produce an exhaustive list of parameters and questions that might be
relevant to the elicitation of properties in the translation domain {D}; and

(iii) to describe some basic aspects of the elicitation techniques that are
appropriate for the type of information elicited.

The effort that is put into needs elicitation has to depend on the size of the evaluation
project, that is, whether performing evaluation on behalf of large organisations like the
European Union, producer organisations and the like, or whether to perform evaluation
on behalf of some translation department or agency. While in the former case large
questionnaire surveys, observation and interviewing actions will be necessary on a
representative number of translators, in the latter case, the interviewing of several
translators, eliciting their tasks and background, will be sufficient.

The following task description is one possible outcome of the elicitation process which
leads to the definition of the truths about a domain. The task description is based on
the experiences gained by the author while doing research at the Mercedes-Benz
translation department between 1989 and 1994. It distinguishes between
administrative, technical, preparatory and operative tasks related to the overall process
of translation in a computerised translation environment.

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 56

TASKS SUBTASKS ACTIONS
administrative

project
organisation

assigning project codes
defining text attributes
distributing source texts among translators
calculation of prices
monitoring of deadlines
invoicing

technical support

installation installing programs
adapting environment

 configuration configuring editor
configuring termbank
configuring translation memories

translation
preparation

terminology
preparation

extracting new terms from texts
elaborating terminological information
updating terminology
importing terminology
exporting terminology
producing terminology lists/dictionary printouts

 translation memory
preparation

configuration of new TM databases
updating databases
alignment of parallel texts
importing databases
exporting databases

operative
translation tasks

SL text reception starting programs
opening SL text
creating TL document

 terminology

starting of termbank
opening of termbank(s)
accessing termbank from editor
searching terms
browsing in termbank
selecting termbank entries
pasting terms into text
editing terminology
updating termbank
entering new terms

 translation

starting translation memory
opening translation memory/ies
creating new translation memory
selecting attributes for translation memory
changing fuzzy match percentage
retrieving sentences from translation memory
choosing translations from matches
retrieving parts of sentences/terms from translation
memory
updating translation memories
editing translations in translation memory
databases
entering/saving new translations into translation
memory

 TL text delivery

spell checking
saving new translations
printing
copying to floppy/network drives
mailing TL texts
exiting programs

Figure 28: Example for Task Description as Outcome of Featurisation of {D}

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 57

The above task description shows what kinds of actions a system that would be useful
for the above context must support in one way or the other. It can be used as the
starting point for the definition of measurable primitives relevant to this specific
environment which will demonstrated in chapter 3.

In general the elicitation of properties of the translation domain along the above
presented parameters and questions, making use of the discussed elicitation
techniques, will deliver a broad variety of domain properties of different translators.
Determining regular variations of these properties, it is possible to define so-called
user profiles, which, according to Douglas (1995:4) behave like a parameterisation of
domain properties and requirements statements.

In the software development context, user profiles can be used to distinguish between
different types of interaction with the system (e.g. in Windows login, that of
administrator, vs. user). Mayer (1993:93) developed different user interfaces for the
interaction with a terminology database, depending on user profiles (translators and
terminologists). When consulting the terminological database, each user can set
specific parameters that are relevant to his/her interaction with the terminological
database and the user interface is adjusted accordingly, for instance, in terms of
dialogue language or information categories of the termbank.

In the context of evaluation, user profiles could be used to determine typical needs of
specific types of translators and contexts. Depending on the typical tasks translators or
users of translators’ aids’ systems perform, similar attributes and measurable
primitives are likely to be relevant. The above task description could be considered a
starting point for the definition of a user profile for translators in mid-to-large size
translation departments. Future research should be directed towards this area,
particularly in view of the reusability of resources. If it is possible to establish detailed
lists of measurable primitives for specific types of users, these lists should be made
generally available. The future evaluator could then simply select the user profile that
comes closest to the context of the evaluation scenario, and adapt it to the specific
circumstances, thus saving a great deal of time and effort.

2.2 Elicitation of Attributes of {M} – the Functionality of Translators’ Aids’
Systems

The principal motivation behind the elaboration of {M} in user-oriented evaluation is
to allow the identification of possible elements of {E}. In other words, it has to be
determined whether there is an overlap between the tasks that are described in {D} and
the functions of {M}. Therefore, for evaluation purposes, the elaboration of {M} is

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 58

driven by the nature of the tasks that are central to {D}. Once it is clear, which tasks
are central to evaluation, the first step is to examine whether the systems under
evaluation offer functions to perform the given tasks. This can be achieved by studying
the system documentation or specification. This process leads to the identification of
{E}, that is, those attributes that have to be considered during the evaluation process. It
moreover leads to the identification of features of {D} that are not covered by {M}. If
these features have a high priority in the domain, they may function as knock-out
criteria and, therefore, lead to the termination of the evaluation process for this specific
system.

The elicitation of features of {M} differs with respect to the two evaluation situations.
When evaluating the adequacy of existing systems for translation industry, the features
of the different systems are a given. Considering central functions and their features as
they are described in the system documentation and comparing it with the central tasks
as elicited before, helps to answer the following questions, which are central to any
evaluation process (Winterfeldt/Edwards, 1986:41):
• Are there dominated systems, that is, systems that do not offer functions to perform

central tasks that other systems offer? If yes, the dominated system can be dropped.
• Which are the evaluation relevant attributes, that is, where is it likely that the

systems differ in terms of their performance? Only evaluation relevant attributes
should be considered for later evaluation.

When performing evaluation in the context of translation system development, the
attributes of {D} should contribute to the definition of {M}. Ideally this step of the
evaluation process starts before system specification and development. If the system
specification is already finished, the features of {D} should be compared to the
features listed in the system specification. Important questions to be tackled at this
stage are:
• Is the implementation of all features of {D} planned?
• If not, what are the reasons for not considering specific features of {D}? Are there

technical restrictions to the implementation of a specific feature of {D}? Is it a
question of time/effort?

• How important are those features of {D} that are not implemented to the user?

Further evaluation processes depend on the nature of {E}, that is, the overlap between
{D} and {M}. The following figure is an example of how the mapping between {D}
and {M} can be performed in both evaluation situations for the task of terminology
preparation. If evaluation precedes a purchase decision the table allows the
identification of dominated systems. If evaluation supports development, the table

CHAPTER 2: WHAT TRANSLATORS WANT – FEATURING USERS AND SYSTEMS 59

considers at this stage, whether functions to perform the subtasks are part of the
system specification {S}, and roughly how things are planned to be implemented or, if
not, what the problems are.

SUBTASK EVALUATION
PRECEDING PURCHASE

EVALUATION
SUPPORTING DEVELOPMENT

 function available? in {S}? COMMENT
 SYS 1 SYS 2 SYS 3
extracting new terms from
text

0 0 0 0 problem: identification of
terms vs. words

elaborating terminological
information of new terms

0 1 0 1 term can be located in
text corpus, context,
grammar info elaborated
semi-automatically

updating terminology 1 1 1 1 different interfaces for
different user types
planned

importing terminology 1 0 1 1 only TIF format
exporting terminology 1 1 0 1 as on-line termbank and

dictionary type printouts
producing terminology
lists

0 1 1 1 along different filters

Figure 29: Mapping {D} and {M} for Terminology Preparation Task

The above table shows that there are no dominated systems, since there is no system
that is worse than others in all respects. When supporting system development it
makes sure that every technically possible function is considered.

To conclude, the chapter “What Translators Want” elaborated how the basic properties
of the translation domain can be determined and how they can be mapped onto the
features of translators’ aids’ systems, resulting in a set of features of {E}. The next
step in the process of evaluation, which will be described in chapter 3, is that of
defining translator’s requirements, that is, describing the desired state of affairs for
each of the features of {E}. This description asks for a quality definition of each
evaluation relevant feature, and the development of a scale on which each feature can
be measured.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 60

3. Structuring and Preparing for Evaluation

In the previous chapter it was discussed, how truths about the translation domain can
be elicited and, roughly, how they can be mapped onto the functions offered by
translators’ aids’ systems. The next step, that is, the development of measurable
primitives for evaluation can be considered a top-down approach in which the domain
presents the top node. The structuring of this domain leads to a great number of
measurable primitives for which values have to be obtained. Consequently ways of
structuring and measuring the translation domain have to be investigated. The
structuring of evaluation problems consists of defining and organising the objectives,
attributes and values on which different alternatives under evaluation should be
compared. There is ample evidence that in the context of the evaluation of social
science programmes, decision analysis procedures have been successfully applied
since the 1960ties (cf. Struening/Guttentag (1975); Guttentag/Struening (1975),
Edwards/Newman (1982)). In the context of software engineering, the structuring of
domain problems is reflected in the procedures of quality requirements definition and
modelling. In section 3.1 basic approaches from decision analysis (3.1.1) and software
engineering (3.1.2) will be presented and applied to the problem of evaluating
translators’ aids’ systems. In section 3.1.3 the impact of the different approaches on a
framework for the evaluation of translators’ aids’ system will be discussed.

In section 3.2 methods for preparing the evaluation process will be presented for the
two evaluation contexts that are relevant to this framework, that is, evaluation
preceding purchase decisions (3.2.1), and evaluation supporting software development
(3.2.2).

3.1 Basic Approaches

Evaluating the adequacy of different options for a specific context implies that the
evaluator has to make decisions at various levels. How these decisions are made on a
rational basis has, so far, been neglected in the context of software evaluation research,
which has primarily been based on findings from software engineering. In order to
decide whether and to which degree it makes sense to apply decision analysis
principles to the evaluation of software systems, the different approaches of the two
disciplines have to be considered in more detail.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 61

3.1.1 Approaches from Decision Analysis

Decision analysis is concerned with the evaluation of alternatives with respect to
multiple attributes. Recent text books and monographs on decision analysis include
Meyer (1999), Byrnes (1998), Golub (1997) or Schick (1997); For recent learned
articles in this area see Rapoport ed. (1998); and Bouyssou ed. (1998). There is an
overlap of concepts between decision theory and many other disciplines such as
measurement theory, behavioural research, economics, statistics, psychology,
philosophy, and, sociology. For the evaluation of translators’ aids’ systems the overlap
between decision analysis and measurement theory is of particular interest: describing
quantitative representations of qualitative relations, and delineating the circumstances
in which such representations are possible and in which they are not. Keeney/Raiffa
(1993) is a key text for this area. Central concepts are: structuring problems;
representing these in quantitative terms; performing utility measurement for
multiattribute problems; and performing tradeoffs.

Apart from measurement theory, the overlap between decision analysis and
behavioural research is particularly relevant to the user-oriented evaluation of
translators’ aids’ systems, since it involves the description, structuring, and
measurement of qualitative information elicited from people. Winterfeldt/ Edwards
(1986) and Edwards/Newman (1982) are key texts in this area, discussing among other
things problems related to (i) eliciting judgments from people; (ii) handling subjective
elements in value structuring; (iii) performing experimental validation; (iv) handling
consistency and reliability issues of value and utility judgements.

3.1.1.1 The Structuring Problem

The task of specifying what is relevant to a specific problem domain, of structuring
what the options are, and of defining the relation between options and outcomes is
what decision analysts call the structuring problem. The intertwined processes of
articulating objectives and identifying attributes are basically creative in nature and
cannot be performed sequentially, step-by step. According to Winterfeldt/Edwards
(1986:pp.29) when elaborating details of the problem, the analyst must understand two
things: the vocabulary of the problem area and the structure of the organisation. The
primary methods employed in decision analysis to gain an insight into both vocabulary
and organisation structure is to examine written material and organisational charts and
to interview employees. Edwards/Newman (1982:pp.33) point out that for each
problem the stakeholders have to be identified. A stakeholder is a person that has an
interest or a stake in the object being evaluated. Individual stakeholders are likely to
have different views on the problem and its environment. The values of the different

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 62

stakeholders have to be examined and their influence on the decision process
determined.

The principal assumption in decision analysis is that if you know what your problem
is, what your options are, and what values bear on their merits, you can make
assessments and then do arithmetic that will lead you to an instrumentally rational act.
It is possible to structure problems in form of value trees which delineate the decision
maker’s preferences. The term value tree, which will be used in this thesis, goes back
to Winterfeldt/Edwards (1986), other decision analysts such as Keeney/Raiffa (1993),
Keeney (1980), Hogarth (1985); use the term objectives hierarchy, while French
(1989) uses the term hierarchy of attributes. Value trees are hierarchies of objectives
and attributes on the basis of which different alternatives can be evaluated. They are
"and" trees which map the decision maker's problems onto the structure of the objects
under evaluation. According to Winterfeld/Edwards (1986:36) central questions when
developing value trees are:
• what are the major objectives and concerns of the decision maker?
• what attributes differentiate the different alternatives under evaluation?
• how can these attributes be measured?
• how are attributes, objectives and values related?

Keeney/Raiffa (1993:pp.38) discuss the characteristics of attributes of a value tree. In
general, characteristics of value trees should be comprehensive. An attribute is defined
as comprehensive if, by knowing the level of an attribute in a particular situation, the
decision maker has a clear understanding of the extent that the associated objective is
achieved. Some attributes are objective, that is, there is a commonly understood scale
for that attribute and its levels are quantitatively measurable (e.g. response time
measured in seconds). When there is no objective index available (e.g. in the case of
like or dislike of particular functions), subjective scales must be constructed. It is
important to note that, though striving for quantifiable values, many decision analysts
admit that various attributes are not objectively measurable. Winterfeldt/Edwards
(1986:41) point out that the direct judgement of such attributes is a measurement
procedure like any other. Faithful representation of an inherently subjective value
structure, not objectivity, is the goal of structuring value trees. An attribute should be
measurable, that is, if possible levels of the attribute can be assigned, and the decision
maker's preferences can be assessed in terms of utility functions or rank ordering. In
decision analysis, measurable attributes are frequently called value relevant.
Furthermore, attributes that are taken up in the final decision process should be
evaluation relevant, that is, if all alternatives under evaluation score the same on a
given attribute, that attribute is not relevant to evaluation and should not be part of the

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 63

final calculation process. An attribute is judgmentally dependent, if the evaluation of
an alternative with respect to one attribute depends on how the alternative performs
with respect to the other. It is environmentally correlated, if the value of one attribute
strongly influences the value of another. Winterfeldt/Edwards (1986:44) illustrate this
type of dependency by means of the following example: if the decision has to do with
production volume, for a manufacturing plant, cost of production and cost of
distribution are environmentally correlated, since it costs more to ship more units.

In principle one should strive for straightforward assessment, avoiding problems like
judgmental dependency or environmental correlation. Often difficulties can be
removed by restructuring the parts of the tree that produce the problem. For instance,
the problem of environmentally correlated attributes can be dealt with by combining
the two correlated attributes into a new one. Winterfeldt/Edwards (1986:44) give the
following example: in an apartment evaluation problem, the two environmentally
correlated attributes distance from campus and facilities for transportation can be
combined into accessibility of the campus.

When constructing value trees, the analyst should stop disaggregating when the
dimensions at the lowest level are measurable, and easy to assess judgmentally. Figure
30 is an example of a value tree presented by Winterfeldt/Edwards for evaluating
energy technology.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 64

DIRECT COST

DIRECT BENEFITS

RISKS

OTHER IMPACTS

environmental

health

socioeconomic

political

structures

site preparation

transportation

other maintenance

utility finances

rates

reliability

system stability

flora and fauna

air and water
history, culture

aesthetics

accidents

normal pollution

employment

business growth

residents' concerns

acceptability

economic

power system

investment

operation

Figure 30: Value Tree for Evaluating Energy Technology by Winterfeldt/Edwards (1986:49)

Keeney/Raiffa (1993:43) argue that when dividing an objective into subobjectives on
the one hand, care must be taken to ensure that all important issues of the higher
objective are accounted for in one of the subobjectives. On the other hand, a
proliferation of the tree may be both not necessary for the decision procedure and
unmanageable. The "test of importance" is used to filter out those attributes that are
not relevant to the particular decision process. The test of importance implies that
before any objective is included in the hierarchy, the decision maker is asked whether
he feels the best course of action could be altered if that objective were excluded. An
affirmative response would imply that the objective should be included, a negative
response that it should not. Winterfeldt/Edwards (1986:41-45) argue that the
relationship between the lower level dimensions and a higher dimension should be
hierarchical and directed; it should avoid cross-links with other higher level value
categories, and create an exhaustive and nonredundant list of explanatory value
dimensions. Keeney/Raiffa (1993:51-53) and Winterfeldt/Edwards (1986:43) consider
the following, often conflicting, criteria relevant to examine the validity of a value
tree:
• completeness: all relevant values are included;

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 65

• operationality: the lowest level values or attributes are meaningful and assessable;
• decomposability: the attributes can be broken down into parts and are judgmentally

independent;
• absence of redundancy: no two attributes or values mean the same thing;
• minimum size: the number of attributes should be kept small enough to manage.

The quality of a tree may be clear only after assessment of the numerical values.
Generally, attributes are easiest to think about if either more is preferred to less, or less
is preferred to more. However, sometimes attributes may be nonmonotone, that is,
have an ideal point or saturation level which will be discussed later.

According to Winterfeldt/Edwards (1986:pp.44) the use of value trees for evaluating
options is straightforward: the analyst obtains values for the operational attributes
(branches of the tree), converts the values to utilities, weights the attributes and carries
out the appropriate calculations to generate an overall evaluation of the option. In
practice, however, this approach has difficulties. For instance, there may be too many
branches to carry out a sensible evaluation, or some branches of the tree may be
irrelevant because the options do not differ in their performance on them. According to
Keeney/Raiffa (1993:45) the vertical depth of the proliferation of the hierarchy does
not necessarily force the analyst to quantify preferences down to this level of detail.
The hierarchy after a given level may serve merely as a qualitative checklist that helps
to think more clearly about higher level attributes. Simplicity and the ease of the
judgmental task must be balanced against the operationality of the attributes.

In the context of the evaluation of translators’ aids’ systems it will have to be
examined whether value trees can be mapped onto software quality characteristics,
since they both represent a hierarchy of attributes relevant to the domain. The different
characteristics and problems related to developing value trees may also be relevant
when developing metrics measuring the quality of translators’ aids’ systems.

3.1.1.2 Scale Construction

When the attributes relevant to evaluation are identified, it has to be determined, how
an attribute can be quantitatively represented. Measurement theory forms the basis for
any type of numerical representation used in evaluation and decision processes. The
following scale construction issues which are relevant to evaluation follow, above all,
Winterfeldt/Edwards (1986); Keeney/Raiffa (1993); French (1986), Baird/Noma
(1978); Nunnally (1975); Durham/Durham (1975); Wilson/Wilson (1975).

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 66

Attributes of {E} can be represented by different types of values , that is, numerical,
binary, and nominal:
 A numerical value includes any number. Typical examples for metrics that deliver

numerical values are the measurement of the size of objects such as programs in
byte, or the number of databases entries, the measurement of processing time etc.

 A binary value can only take two possible forms, that is, 0 or 1. Metrics that
typically take binary values are those measuring the availability of a feature, where
0 means 'not available' and 1 'available', or also those assessing statements in
boolean terms where 0 means 'false' and 1 means 'true'.

 A nominal value represents a qualitative characteristic of a system. A typical
example for a metric delivering a nominal value in the language engineering context
is: languages treated by parser? English, German,....

Qualitative relations and numerical representations are related in form of scales, in
which relations between different attributes (empirical relative) can be mirrored by
analogous relations between values on these scales (numerical relative). In other
words, a scale is a function on the objects in the system which provides the numerical
representation of the qualitative relations. Scales relevant to evaluation purposes are
nominal, ordinal, rating and ratio scales.

A nominal scale establishes the relationship of nominal values between different
systems. There is neither order nor equidistance within the possible set of answers. A
typical example for a nominal scale in the language engineering area would be the
metric: operating system.

systems under testing operating system
sys 1 DOS
sys 2 Windows 3.11
sys 3 Windows 95
sys 4 OS/2
sys 5 Windows 3.11

Figure 31: Example for Nominal Scale

In general, n-valued nominal scales can be transformed to binary nominal scales by the
mapping A→2A , or, in other words, a nominal value can be measured by either its
existence (1) or its non-existence (0). If, for instance, the nominal value of the metric
operating system is 'Windows 95', the binary nominal scale would classify a system
with 1, if it works under Windows 95 and with 0 if it doesn't. Binary nominal scales
are used in checklists.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 67

The binary nominal scale also allows the combination of judgmentally dependent
nominal values. If, for instance, attribute A 'Windows 95' asks for the existence of
attribute B 'pentium processor', the binary nominal scale allows the representation of
this problem in the form:

SYSTEMS 1 2 3 4
Attribute A 1 1 0 0
Attribute B 1 0 1 0
A ∪ B 1 0 0 0

Figure 32: Binary Scale for Combination of Dependent Attributes

This type of combination of features can be performed on n number of pairs of
judgmentally dependent attributes, always delivering a binary value as result.

Given that each nominal attribute in a list of attributes is judgmentally independent
and has the same weight, the extent to which different systems fulfil a set of attributes
can be measured by summing up the binary values for the attributes. The system which
scores highest is the best choice. The following scale illustrates this:

 System 1 System 2 System 3
Attribute 1 0 1 0
Attribute 2 1 1 0
Attribute 3 1 0 1
Attribute 4 0 1 1
Sum 2 3 2

Figure 33: Combination of Nominal Attributes on Binary Scale

As the above table shows, given independence and same weight, system 2 would be
superior to system 1 and 3, since the sum of binary values representing the existence
/non-existence of attributes is higher than for 1 and 3.

An ordinal scale presents the relation of values that are members of a pre-defined
ordered set, where value 1 < value 2 < value n. There is no indication of "how much"
in an absolute sense any of the objects possess the attribute, neither is there any
indication of how far apart the objects are with respect to the attribute. A typical
example for a metric that can be represented in an ordinal scale is understandability of
definitions delivered with termbanks, where the set of values would be {not
understandable < mostly understandable < understandable} or in numerical terms: {0,
1, 2).

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 68

systems under testing understandability numerical values
sys 1 understandable 2
sys 2 not understandable 0
sys 3 mostly understandable 1
sys 4 understandable 2
sys 5 mostly understandable 1

Figure 34: Example for Ordinal Scale

For a comparison of ordinal values the principle of dominance has to be considered,
where
 a dominates b if
 a i ≥ b i for i = 1,2,...q with a i > b i in at least one case.
The efficient set also known as the undominated set or the Pareto optimal set
(Keeney/Raiffa (1993:70) is the set of undominated alternatives:
 efficient set = {a ∈ A| there does not exist b∈ A such that b dominates a}

The importance of the efficient set is that the decision maker can confine his attention
to it, discarding all other alternatives, because a dominated alternative can never be
optimal.

A given type of task solution may require that certain minimum values are attained,
which Keeney/Raiffa (1993:78) call boundary conditions or aspiration levels.
Solutions for which the critical value is below the threshold are eliminated.
Consequently for assessment, the boundary conditions must be checked first.

A rating scale is a specific type of ordinal scale that encodes preferences between
different objects of a set. While objects in ordinal scales are pre-ordered, objects in
rating scales are ordered by the user in the rating process. The following example
illustrates this: A subject in a termbank test has to rate the importance of information
categories in termbanks: The set of possible categories is:

• Definitions
• Context
• Grammar
• Graphics

The answers given by the user are:

1. Grammar
2. Definitions
3. Context
4. Graphics.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 69

The question of discreteness is important for rating scale values: can one infer
information about comparisons of differences from the scales? In other words, is
number 3 three times better than number 1? If two objects are rated on the same scale,
and one gets 1 and the other 3, does it mean just that one object is better than another?
Or, that it is somewhat or clearly better than another? Or, that it is three times better
than another? French (1986:76) points to the fact that there is a great danger of reading
too much into the numerical representation of both ordinal and rating scale values,
since they encode only preference order information and are not capable of providing
any idea of strength-of-preference. It follows that a comparison of values, particularly
of mean scale values, is not considered quantitatively meaningful.

Winterfeldt/Edwards (1986:211), however, do not agree that procedures based on
strength-of-preference judgements are more inaccurate and untrustworthy than
preference or indifference judgements. They argue that strength of preference is a
subjective magnitude like any other, for instance, brightness of a room, that is
routinely studied by psychophysicists since Fechner (1860). As a consequence,
Winterfeldt/Edwards (1986:217) conclude that utility measurement can make use of
direct rating, a technique used in psychophysics. It requires the subject to consider at
least three stimuli: two stimuli that provide end points and one that is used to elicit the
numerical judgement. In direct rating, the anchors are usually a "bad" or least preferred
stimulus that is arbitrarily assigned a value of 0, and a "good" or most preferred
stimulus that is arbitrarily assigned a value of 100. Winterfeldt/Edwards (1986:227-
229) elaborate the following example for direct rating:

A fresh M.D. considers a number of positions as an assistant professor of
surgery offered in the following cities: Ann Arbor, Boston, Chicago, Los
Angeles, San Francisco. The analyst first asks the decision maker to select
the worst and the best city in terms of location. The decision maker instantly
comes up with: worst: Chicago; best: San Francisco. The attributes on which
the decision was based mainly were: climate, cultural life, size of city,
pollution. After the meaning of the scale has been clarified, the other cities are
ranked between the two extremes: 1. San Franciso, 2. Boston, 3. Los
Angeles, 4. Chicago (reconsidered), 5. Ann Arbor. When translating this
qualitative information into a quantitative value scale, the different cities are
located between 0 = Ann Arbor and 100 = San Francisco.

0 15 40 50 60 100

AA CH LA BO SF

Figure 35: Sample for Direct Rating Technique

Ratio scales are characterized by

• value 1 < value 2 < value n

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 70

• equidistance
They have a fixed origin or absolute zero point and, therefore, are the only scales in
which the concept "x is n-times as much as y" has any meaning. Consequently,
differences in ratio scales can be compared across systems.

3.1.1.3 Measurement Issues

Scientifically speaking, measurement consists of rules for assigning numbers to
objects to represent quantities of attributes. These rules must be explicitly formulated
for a measure to be valid and reliable.
 Validity refers to the extent to which it is possible to generalise from the

circumstances of an experiment to the circumstances in real life.
 Reliability concerns the extent to which measurements are repeatable - by the same

individual using different measures of the same attribute or by different persons
using the same measure of an attribute.

According to Nunnally/Durham (1975:311), an element of error is involved in any
type of measurement, whether it is the measurement of the temperature of liquids,
blood pressure or intelligence. Due to the subjectivity of psychological attributes,
however, their measurement is more error prone than that of physical reality. The
frequent usage of rating scales in psychological measurement, moreover, stresses the
problem of reliability. Nunnally (1975:108) points to the major problems related to
reliability:
• It is difficult to explicitly instruct subjects as to how to perform rating tasks.

Consequently not only the data as such but also the method rests on intuition;
• There is a high variability from rater to rater and from occasion to occasion.
A cardinal way to increase reliability is to employ multiple raters and average their
responses. Another means to increase test reliability is to make use of standardised
measures. Standardisation is achieved if different examiners give approximately the
same scores to the same subjects. Apart from increasing reliability, the usage of
standardised measured saves money, provides more detailed information and allows
comparison of tests.

The nature of the experimental design is another important issue in measurement. It is
a vast subject in its own right and will only be touched here briefly. Tests eliciting
psychological attributes are frequently called quasi or pseudo experimental, since there
are a number of individual variables which cannot be controlled. According to
Nunnally (1975:134), Nunnally/Wilson (1975:228), Edwards/Guttentag/Snapper
(1975:143), central features of quasi experimental design are:

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 71

1. The usage of comparison groups in which one group is given a specific
treatment and the other (control group) is not.

2. Observations or interviews are performed before and after the treatment

Typical sources of error in quasi experimental design are: (i) variations within tests
such as motivation, stress, health of subjects; and (ii) variations between tests such as
systematic differences in tests, subjective scoring, or change of attitude of subjects.
Also, when involved in pre- and post-testing activities, subjects are more informed
with respect what to look at in the tests, if they participated in pre-testing activities.
Though quasi experimental design as well as rating scales as measurement techniques
are ranked low in terms of reliability, behavioral scientists agree that it is often not
possible to study psychological attributes without relying on both.

For a more detailed discussion of measurement issues see Nunnally (1975);
Nunnally/Wilson (1975); Nunnally/Durham (1975); Hausen/Müllerburg/Schmidt
(1987). In the context of evaluating translators’ aids’ systems, the nature of the
experimental design and the related problems as presented above, will be considered
when developing test types determining the quality of translators’ aids’ systems.
Particularly the concept of validity and reliability as well as the problem of subjectivity
as discussed above will be taken up again in the context of the user-oriented evaluation
of translators’ aids’ systems.

3.1.1.4 Construction of Value Functions

In short, value functions show where the scale value of an attribute is located between
the two extremes of 0 and 100, where 0 means not acceptable and 100 means as well
as one could hope to do. Mapping all scale values related to an attribute onto value
functions makes the different values for the different objects under evaluation
comparable, which is a pre-condition for aggregating a final utility score.

The exploitation of qualitative properties of scales leads to the construction of specific
types of value functions. The first question to consider when elaborating value
functions is whether more of a certain attribute is always better or always worse than
less. If so, the value function is called monotone figure . If more is always better than
less the value function is monotonically increasing (see figure 37). If more is always
worse than less, the value function is monotonically decreasing (see figure 39).
Considering real-world evaluation problems, there are often a priori reasons to assume
that the value function takes a certain shape. Although natural scales and value scales
are often monotonically related, that relation may not be linear. Apart from linear
value functions, the most frequent shapes of value functions in the context of decision

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 72

theory are concave and convex. Winterfeldt/Edwards (1986:240) illustrate with the
following example how the shape of the value function can be determined by means of
defining the midpoint value.

An executive argues: "If I have to drive at all, the first
30 minutes of driving time to the airport are more tedious.
After that an extra five minutes won't bother me much." In
other words, a fixed extra amount of driving time
seems less tedious after longer initial drives than
after shorter ones. This indicates that the value of
driving 30 minutes must be in the lower quadrant. It
also indicates that the midpoint in value must be
below 30 minutes driving (left quadrant). The shape
of the resulting value function is convex.

Value
Midpoint

Possible
Midpoints
in Value

Time to Airport (min.) 60

Possible
values for
30 Minutes

0

Figure 36: Curve Fitting Example

Monotonically Increasing Functions - More is Always Better than Less

(iii) convex

(i) linear

The value increases proportional to
an increasing value on the scale

Value Midpoint is in the left quadrant.
Midpoint of scale value is in the higher
quadrant.

(ii) concave

Value Midpoint is in the right quadrant.
Midpoint of scale value is in the lower
quadrant.

Figure 37: Typical Shapes of Monotonically Increasing Functions

Winterfeldt/Edwards (1986:237) point out that among decision theorists it is a
commonly acknowledged fact that in real world problems there are only few attributes
that do not produce monotone value functions. It has been argued that psychological
measures tend to fit the linear model. Ordinal value scales, for instance, always
produce monotone value functions. In other words, a strictly increasing function (φ)
has a strictly positive gradient everywhere. This means that a higher ordinal value will
always result in a higher function value. Thus, for all x1, x2 it is true that

φ (x1) > φ (x2) ⇔ x1 > x2

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 73

X
2

X
1

X
1

X
2

Figure 38: Ordinal Value Function

Monotonically Decreasing Functions - More is Always Worse than Less

(iii) convex

(i) linear

(ii) concave

The value decreases proportional to
an increasing value on the scale

Value Midpoint is in the right quadrant.
Midpoint of scale value is in the higher
quadrant.

Value Midpoint is in the left quadrant.
Midpoint of scale value is in the lower
quadrant.

Figure 39: Typical Shapes of Monotonically Decreasing Functions

Non-Monotone Functions

If monotonicity is violated, the analyst must explore possible peaks, preference
thresholds or saturation levels and adjust the function accordingly. The most important
non-monotone functions are illustrated in the following figure.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 74

(i) saturation level

More is better than less up to a certain
point from where the value does not
increase with an increasing value
on the scale.

(iii) single peakedness

More is better than less up to a certain
peak point from where more becomes
worse than less.

More is worse than less up to a certain
peak point from where more becomes
better than less

(ii) preference threshold

Until a lowest acceptable scale value
is achieved, the function value is zero.
If the lowest acceptable value is
achieved, the function may be
monotonically increasing.

Figure 40: Typical Shapes of Non-Monotone Functions

Along the above principles, value functions can be elaborated for each attribute
relevant to the decision process. Winterfeldt/Edwards (1986:258) argue that striving
for precision is not the ultimate aim of the elaboration of value and utility functions.
Rarely more than five points, including the two extremes of 0 and 100 have to be
assessed directly. The rest can be done by curve fitting as illustrated in the figures
above.

3.1.1.5 Multiattribute Utility Theory

Most decision processes involve multiple attributes that have to be first assessed
individually and then combined to an overall utility score. If a decision problem
involves more than two attributes, intuitive judgements of the overall value of objects
is exceedingly difficult. Multiattribute Utility Theory explores how different values
from different attributes can be combined in order to arrive at a utility score for each
alternative under evaluation. Useful discussions of Multiattribute Utility Theory are
presented by Keeney/Raiffa (1993); Winterfeldt/Edwards (1986); French (1986 and
1989); Hogarth (1985); Edwards/Newman (1982); Edwards/Guttentag/Snapper (1975).

In general the procedure of multiattribute evaluation involves the following steps:
1. Assigning relative weights to attributes

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 75

2. Defining aggregate utility for different options
3. Relating utility to cost and performing tradeoffs
4. Performing sensitivity analysis

The problem of multiattribute evaluation can best be demonstrated on the basis of a
simplified example that was developed for this thesis. Let us assume that the decision
problem which will be further exemplified in this chapter is that of purchasing one of
four given software packages with specific attributes and a given price (including
maintenance).
 cost of option 1: 3.000 $
 cost of option 2: 3.500 $
 cost of option 3: 1.000 $
 cost of option 4: 2.500 $
Further details of the example will be added where relevant in the following chapters.

3.1.1.5.1 Assigning Weights to Attributes

Weights capture the essence of value judgements. The most frequently used technique
for assigning weights to attributes is to determine the relative importance of branches
and leaves of the value tree in a two step process:

1. Weights are assessed within each of the major branches (A, B, C, D) to compare the

relative importance of the attributes within each branch by dividing 1 up among the
attributes of each branch.

2. Given these assignments, weights on the attribute level are obtained by multiplying
through the tree. For example, A (.43) x AA (.25) = .11. The weights of the twigs of
the branches (measures) again sum up to 1.

Figure 41 is the weighted value tree as it is elaborated by the decision maker in the
example. A, B, C, D are top-level attributes and AA, AB ... DB are measures of these
attributes, the exact nature of which is not relevant here.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 76

A

AA
AB
AC
AD

B
BA
BB
BC

C

CA
CB
CC
CD

D DA
DB

.43

.24

.19

.14

.25

.16

.20

.39

.40

.27

.33

.37

.28

.10

.25

.32

.68

.11

.07

.08

.17

.09

.07

.08

.07

.05

.02

.05

.05

.09

Figure 41: Weighted Value Tree

The numbers resulting from weighting process are in principle subjective. Different
stakeholders, that is, people who have an interest in the object being evaluated, are
likely to assign different weights. A possible procedure to deal with conflicting
weights is presented by Winterfeldt/Edwards (1986:261) and Edwards/Newman
(1982:23):
1. Discuss the individual assessments and their differences with all stakeholders

concerned;
2. Perform a second weighting process;
3. Average the second weighting of all stakeholders to arrive at a final set.
Following the above procedure the weighting process is more likely to reflect the
general preferences.

3.1.1.5.2 Defining Aggregate Utility

Keeney/Raiffa (1993) discuss different models for computing aggregate utility. In the
context of this thesis the additive weighted model will be described briefly. As it was
reported by Edwards/Guttentag/Snapper (1975:157) from social science research, the
additive model proved to be sufficient in most practical evaluation projects. This
model defines the overall value (or aggregate utility) of an option x (x = 1,2,...,n) as

v(x) = ∑i∈ I wivi(xi)

where vi(xi) is the value of option x on the ith attribute;
 wi is the importance weight of the ith attribute; and
 v is the value of x.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 77

Strictly speaking the additive weighted model assumes value independence between
attributes. To recall, value independence is violated, if the evaluation of an alternative
with respect to one attribute depends on how the alternative performs with respect to
the other. Though value independence is not easily satisfied, practical evaluation
experience showed that in the presence of even modest amounts of measurement error,
quite substantial amounts of deviation from value independence will make little
difference to the ultimate number of v. As Edwards/Guttentag/Snapper (1975:157)
conclude from practical evaluation experience: “A frequently satisfied condition that
makes the assumption of value independence very unlikely to cause trouble is
monotonicity, that is, the additive approximation will almost always work well if, for
each dimension more is preferable to less or less is preferable to more throughout the
range of the dimension that is involved in the evaluation, for all available values of the
other dimensions.”

According to Winterfeldt/Edwards (1986:309) a clever analyst can structure virtually
any evaluation problem so that an additive model is appropriate, doing away with
value dependence by restructuring processes such as combining or splitting up
attribute measures, if necessary.

Considering the example, the following table shows how the calculation of the
aggregate utility works for option 1, using hypothetical values for the different
measures.

TWIG
LABEL

WEIGHT
wi

VALUE
vi(xi)

WEIGHT x
VALUE
wivi(xi)

AA .11 90 9.9
AB .07 50 3.5
AC .08 30 2.4
AD .17 90 15.3
BA .09 30 2.7
BB .07 40 2.8
BC .08 80 6.4
CA .07 20 1.4
CB .05 30 1.5
CC .02 20 0.4
CD .05 50 2.5
DA .05 60 3.0
DB .09 70 6.3
SUMS 1.00 58.1

Figure 42: Sample for Calculation of Aggregate Utility for Option 1

To conclude, the additive weighted model provides the evaluator with means to
determine the utility of an alternative under evaluation with respect to the different

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 78

attributes that are considered important in the evaluation context. There may, however,
be many pitfalls in this procedure, if, for instance, attributes are not chosen well;
measurement procedures are not performed adequately; or, weights are distributed
insensible to preferences. In the context of the evaluation of translators’ aids, care
must be taken to avoid these pitfalls in order to guarantee valid evaluation results.

3.1.1.5.3 Relating Utility to Cost - The Tradeoff Problem

To make a final comparison, cost is related to utility. To take up the above example,
let us assume that the calculation of aggregate utility for the further options 2, 3 and 4
result in the following overall ranking:
1. option 1: 58.1
2. option 2: 53.2
3. option 4: 48.78
4. option 3: 43.47
Considering both aggregate utility and cost of the options of the example, the
following graph can be drawn where costs are plotted on the vertical axis, with less is
better than more and aggregate utility is plotted on the horizontal axis with more is
better than less.

cost
in

1
2

3

4

70605040302010

0.5

1.5

2

2.5

3

3.5

aggregate utility

1000 $
1

direction of
preference

Figure 43: Graphic Representation of Utility Versus Cost

Without considering tradeoffs, the decision maker can infer from figure 43 that, as it
is, option 2 is inferior to option 1, because it is more expensive and has a lower
aggregate utility. For the remaining options (1, 3, 4) the decision maker has to consider
how value trades off against cost. In other words, how much achievement on objective
1 is the decision maker willing to give up in order to improve achievement on
objective 2 by some fixed amount? According to Keeney/Raiffa (1993:66) and

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 79

Winterfeldt/Edwards (1986:6), tradeoffs are judgements which depend on the decision
maker's personal assessment of the relative desirability of the available options.

There are various ways dealing with tradeoffs. In the context of this thesis the pricing
out procedure presented by Keeney/Raiffa (1993:pp.125) will be discussed in more
detail. Pricing out implies that money (earnings/savings) is treated as one of the
attributes in assessment on a par with the other attributes rather than only in the final
stage when the other criteria have already been summed up. Including money as one of
the criteria, rather than something outside evaluation underlines the point that money
is not the only thing valued.

Applying the pricing out procedure to the example, the first step would be to establish
a relationship between utility and cost in form of a value function. Let us assume that
for the decision maker in the example the utility of an option decreases not
proportional to cost. While the price is rather low, the decision maker does not mind
too much to pay more for an increase in utility. However, once the price is above a
certain point, the decision maker is less willing to pay more for an increase in utility.
This results in a concave, monotonically decreasing function where
• more is always worse than less
• the value midpoint is in the right quadrant
• the scale midpoint is in the higher quadrant

1
2

3

1 2 3 4

cost in 1000 $

utility

100

50

4

Figure 44: Value Function Relating Cost to Utility for Options (1-4)

The above figure shows where the four options under evaluation are situated on the
curve. According to the pricing out method, money will be introduced as additional
attribute E, with the following values for the different options: v(1E) = 65; v(2E) = 50;
v(3E) = 93; v(4E) = 75.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 80

option
number

attribute
A

attribute
B

attribute
C

attribute
D

attribute
E

1 71.6 50.0 30.8 66.2 65
2 48.4 50.0 64.0 59.2 50
3 43.9 47.5 13.8 75.6 93
4 63.6 60.0 32.4 6.4 75

Figure 45: Subaggregate Utilities of four Options under Evaluation including Cost as Attribute E

The next step of the pricing out method is to consider the weight of attribute E as
compared to attributes A - D. It is important to note that in the example attribute E
consists of no sub-attributes or measures. In other circumstances it is also thinkable to
split up cost into smaller units such as purchase cost, maintenance, hardware etc. The
pricing out methods asks that the new attribute E has to be included in the original
value tree and the distribution of weights reconsidered (see figure 46).

A

AA
AB
AC
AD

B
BA
BB
BC

C

CA
CB
CC
CD

DA
DB

.25

.16

.20

.39

.40

.27

.33

.37

.28

.10

.25

.32

.68D

E

.15

.33

.10

.22

.20

.08

.05

.07

.13

.09

.06

.07

.05

.04

.02

.04

.03

.07

.20

Figure 46: Weighted Value Tree including Cost as Attribute E

In a last step, the additive utility function can be applied to the value tree, leading to a
final result which inherently considers cost as one of the attributes relevant to
evaluation. For x = (1,2,3,4); with wA = .33; wB = .22; wC = .15; wD = .10; wE = .20; the
results of the analysis after Keeney/Raiffa's pricing out method would be as follows:

X VA WA(VA) VB WB(VB

)
VC WC(VC) VD WD(VD) VE WE(VE) V(X)

1 71.6 23.62 50.0 11 30.8 4.62 66.2 6.62 65 13 58.86
2 48.4 15.97 50.0 11 64.0 9.6 59.2 5.92 50 10 52.49
3 43.9 14.48 47.5 10.45 13.8 2.07 75.6 93 18.6 53.16
4 63.6 20.98 60.0 13.2 32.4 4.86 6.4 0.64 75 15 54.68

Figure 47: Utility Measurement for Options 1,2,3,4 in Pricing Out Model

Making use of the pricing out method, the options would rank as follows:

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 81

1. option 1: 58.86
2. option 4: 54.68
3. option 3: 53.68
4. option 2: 52.49

Once the analyst has arrived at a ranking of options in terms of both cost and utility
along the procedure presented above, it has to be made sure, that the analysis process
is without major flaws and actually represents the views of the decision maker. This
final phase of the decision analysis process is called sensitivity analysis.

3.1.1.5.4 Performing Sensitivity Analysis

The most important function of sensitivity analysis is to give the client confidence in
the robustness of the analysis. Sensitivity analysis is not special to decision analysis. In
the context of operations research and management science, computer programs help
to perform sensitivity analysis. In the context of this thesis the discussion will be
reduced to its most basic principles. A more detailed discussion can be found in
Winterfeldt/Edwards (1986:388-401); Edwards/Newman (1982:81-92).

Sensitivity analysis consists of changing some of the numbers that went into the
multiattribute utility calculation. Most sensitivity analyses are one-dimensional, that is,
they vary one parameter at a time. The most important kind of sensitivity to look at is
the sensitivity to weights, since weights are purely subjective numbers about which
people tend to disagree. In short, for this purpose the evaluator has to consider the
values of the individual attributes for all alternatives under evaluation a priori to
weighting and compare this to the weighted figures. If there is an unexpected
discrepancy the evaluator can change the weights of individual attributes and consider
the extent to which the change of weights affects the ranks of the alternatives under
evaluation. The utility calculation can be considered robust, if minor changes of
weights do not affect the ranking of alternatives.

Apart from considering the sensitivity to weights, the reliability and validity of
measures can be reconsidered during sensitivity analysis. Subject to examination could
be measures that (i) have a high overall weight in the value tree; or (ii) deliver a broad
range of values between options. The questions to follow at this stage are:
• Does the measure actually make sense or should it be reformulated?
• Are the results repeatable?
• Was the experimental design without flaws?
• Are there any calculation errors?

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 82

The decision analysis process can be said to be finished successfully, if sensibility
analysis either showed the robustness of the original analysis or could detect and
correct flaws.

To conclude, the procedures used in decision analysis may have an important impact
on the development of evaluation and assessment procedures of translators’ aids’
systems, since it is concerned with measuring and combining values related to
different attributes. It may allow the comparison of the suitability of different
translators’ aids’ systems for a particular work context on a quantitative basis.

3.1.2 Approaches from Software Engineering

The ultimate aim of structuring approaches in software engineering lies in detecting
and defining properties software systems must have in order to be accepted by clients,
and not in quantitatively measuring the extent to which the system fulfils
requirements. The discipline of requirements engineering presents a great number of
highly formalized modelling approaches which are used to structure the domain so as
to deliver important input to system specification. In section 3.1.2.1 only those
approaches will be outlined, that have some relevance for the evaluation of translators’
aids’ systems. In section 3.1.2.2 the principles of quality requirements definition,
which is used to define how systems should ideally behave in order to fulfil user
requirements, are described.

3.1.2.1 Modelling Approaches in Requirements Engineering

Sommerville (1996:99-115) provides a broad overview of modelling techniques,
which mainly differ in their focus and underlying principle. In the context of this thesis
attention will be focused on the description of mainly three approaches to modelling:

1. Generic Task Modelling is concerned with getting domain expertise into
representations usable for subsequent design. In the context of evaluation it can
be used to identify those issues of the translation task that are relevant to the
elaboration of measurable primitives. Applying generic Task modelling
procedures to the translation task in evaluation, the effort of the elaboration of
metrics will be reduced, since, if parts of tasks are generic, the metrics
measuring them will then be generic as well.

2. Structured Analysis is concerned with the separate description of a system's
functions and data. In evaluation it will lead to the elaboration of measurable
primitives for those functions and data of translators’ aids’ systems that are
under testing. It will serve as means to understand the relationship between the

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 83

different aspects involved in the translation process, which is to be supported by
the computer.

3. Object-Oriented Modelling is concerned with the description of objects, their
inherent information and behaviour as well as the operations performed on
these objects. It will be used to elaborate metrics on the basis of an
understanding of the inter-relationships of objects and operations involved in
the overall translation process. It will also help in the definition of testing
scenarios.

3.1.2.1.1 Generic Task Modelling

For the evaluation of translators’ aids, the description of the translation task plays a
central role. In the software development context the principal objective of generic
task modelling is to guide the transformation of user requirements into design
specifications, that is, to define implementable primitives. For evaluation purposes,
generic task modelling should lead to the definition of measurable primitives. On a
general level, task analysis is concerned with the questions: what is a task, how
comprehensive is it, when does it terminate? There is some consensus that tasks can be
seen and defined within a four-level hierarchy of project, tasks, subtasks and activities.
There is a vast amount of literature on methodologies for task analysis at hand, which
mainly differs in terms of focus, formalisation, and presentation. For the exhaustive
discussion of the topic see Diaper (1989-1,2,3) and (1990); Hewitt/Hobson/Sapsford-
Francis (1990); Wilson (1989); Carroll/Grudin/McGrew/Scapin (1990);
Ip/Damodaran/Olphert/Maguire (1990); Johnson/Johnson (1990); Sewell (1990);
Dzida/Freitag/Hoffmann/Vlader (1990); Sharratt (1990). What all methodologies have
in common is the principal procedure, which can roughly be summarized, in the
following four steps:
1. Elicitation: by means of different elicitation techniques details of the working

context are elicited;
2. Description: specific actions carried out by the user and specific objects

handled by the user are described;
3. Grouping: similar actions are grouped to establish subtasks and tasks;
4. Generification: from specific subtasks and tasks more general task descriptions are

elaborated.

The task modelling approach developed by Dan Diaper (1989 and 1990) seems to be
the one that is most appropriate to lead to the definition of measurable primitives in the
context of the evaluation of translators’ aids’ systems. TAKD (Task Analysis for
Knowledge Description) consists of a methodology that describes the generation of a
hierarchical description of tasks and a knowledge representation grammar. While the

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 84

representation grammar may be useful in the context of software specification, its
degree of formalisation is not needed in the context of evaluation. Focus, therefore,
will be put on the elaboration of task hierarchies. The TAKD methodology takes as
input an activity list, which contains a prose description of activities carried out by an
observed task performer. Data is extracted from this description in the form of specific
objects and specific actions. Specific objects may be physical objects (mouse etc.) or
informational objects (files, programs etc.), which are grouped into a specific object
list. Specific actions denote the activities performed by a person that are directed
towards specific objects. According to Diaper (1989-2:114) there are surprisingly few
different specific actions that people carry out in computing tasks. In most cases
similar actions are repeated on different specific objects. For each specific action the
related objects are noted and a hierarchy of actions is developed. Similar actions are
then grouped together and a generic description of a task developed from it. The
resulting generic actions can be represented in form of generic statements.

3.1.2.1.2 Structured Analysis

A central element of structured analysis is the dataflow diagram. It allows the
presentation of a system as a network of functional processes. In the context of
evaluation, the dataflow diagram may be useful to develop metrics from the
description of the functional processes. It may further be used to make sure that the
context of the functions under testing is considered properly when preparing tests of
translators’ aids’ systems, and thus make sure that the tests can be applied
successfully. Yourdon (1989:pp.139) describes the components of a dataflow diagram
as follows:
 The process shows a part of the system that transforms inputs into outputs. It is

graphically represented by a circle, named or described with a word, phrase or
simple sentence that denotes the nature of the process.

 The dataflow is used to describe the movement of information from one part of the
system to another. It is graphically represented by an arrow into or out of a process,
into or out of a store, into and out of a terminator. If possible, the kind of
information transferred is named. One may distinguish between input flows, output
flows, dialogue flows, and diverging flows.

 The data store is used to model a collection of data at rest. Stores are typically
named with the plural of the name of the information that is carried by flows into or
out of the store. A flow from a store is normally interpreted as a read, or an access
to information in the store. A flow to a store is often described as a write, an update,
or possibly a delete of information in the store.

 The terminator represents external entities with which the system communicates.
Typically, a terminator is a person or group of people outside the control of the

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 85

system being modelled, or also, in some cases, some other computer system with
which the system modelled will communicate. It is graphically represented by a
rectangle.

terminatorstore

process
input flow

output flow

dialogue flow

diverging flow

Figure 48: Components of a Dataflow Diagram according to Yourdon (1989:pp.139)

In the context of software development the dataflow diagram is supplemented by data
dictionaries, which list the data elements pertinent to the system; process
specifications, which describe in detail what is happening inside each process; and
entity-relationship diagrams, which describe the relationship between the stored data.
While for software development this attention to detail may be necessary, the
evaluation of translators’ aids’ systems does not ask for this level of description.

3.1.2.1.3 Object-Oriented Modelling

Object-oriented models consider a system as a number of interacting objects. Jacobson
(1992:465–493) describes a great number of object-oriented methods, which can be
distinguished mainly with respect to their object types; formalisation of methods;
degree of formalisation; and user orientation. For the purpose of user-oriented
evaluation of translators’ aids’ systems, the use case model, as described by Jacobson
(1992:128-132) is of particular interest. It may be used to elaborate metrics on the
basis of an understanding of the inter-relationships of actors, objects and operations
involved in the usage of translators’ aids’ systems. It may also help in the definition of
different testing scenarios.

The use case model uses actors to represent the roles users (human or other systems)
can play and use cases to represent what users should be able to do with the system.
Actor is a class and is defined to be everything external to the system with which the
system communicates. Different users are instances of the class actor. Each actor will
perform a number of use cases to the system. A use case is a special sequence of
related transactions performed by an actor and the system in a dialogue. Each use case

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 86

is a specific way of using the system and every execution of the use case may be
viewed as an instance of the use case. The following questions will help to identify use
cases:
- what are the main tasks of each actor?
- will the actor have to read/write/change any of the system information?
- will the actor have to inform the system about outside changes?
- does the actor wish to be informed about unexpected changes?

3.1.2.2 Quality Requirements Definition

The process of quality requirements definition leads to a number of quality
characteristics of software which denote what is generally considered as good
characteristic of a software system. Today's approaches to quality requirements
definition largely go back to the early models by Boehm/Brown/Lipow (1976) and
McCall/Richards/Walters (1977). Further exhaustive examples for different quality
models can be found in Boehm et al. (1978); Christ et al. 1984; Murine (1983), and
(1986); Gaines (1987); Höge/Wiedenmann/Kroupa (1991). Quality requirement
models make use of a top-down approach, starting with the top level concept of
quality, and splitting it up into a varying number and varying levels of quality
attributes. For each quality attribute that cannot be split up into further attributes,
metrics have to be developed. McCall/Richards/Walters (1977:2.2) define metrics as
measures of the attributes related to the quality characteristics. Most quality models
focus on different quality characteristics and provide different definitions and
implication schemes. There is also much dissent concerning the principal terminology
used for the decomposition of quality. Whereas some stick to the terms quality factors
and criteria, others prefer quality characteristics and attributes. The International
Organisation for Standardisation (ISO) developed a standard for the definition of
quality requirements in 1991, ISO 9126, which will be used in this context.

ISO 9126 decomposes the general concept of quality into six quality characteristics
and twenty-one subcharacteristics. For each area of application those quality
characteristics and subcharacteristics need to be identified which are of particular
importance and metrics have to be developed accordingly.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 87

SUITABILITY
ACCURACY
INTEROPERABILITY
COMPLIANCE
SECURITY

MATURITY
FAULT TOLERANCE
RECOVERABILITY

UNDERSTANDABILITY
LEARNABILITY
OPERABILITY

TIME BEHAVIOUR
RESOURCE BEHAVIOUR

ANALSYABILITY
CHANGEABILITY
STABILITY
TESTABILITY

ADAPTABILITY
INSTALLABILITY
CONFORMANCE
REPLACEABILITY

FUNCTIONALITY

RELIABILITY

USABILITY

EFFICIENCY

MAINTAINABILITY

PORTABILITY

Figure 49: ISO (1991:4.1-6) Quality Decomposition

The ISO definition of each of the above quality characteristics will be presented and
discussed in the light of translators’ aids’ systems. It will be demonstrated how it is
possible to arrive at metrics when applying the software quality characteristics to the
translation task. According to Sommerville (1996:118) and many other software
engineers it is useful to distinguish between functional and non-functional
requirements. Roughly, functional requirements are system services which in the ISO
model fall under the quality characteristic functionality, while non-functional
requirements set out constraints under which the system must operate.

The Quality Characteristic functionality

Functional properties or functional requirements, as they are called in the requirements
engineering context, are related to the type of tasks users perform with the system, that
is, in this context, those involved when translating documents. The quality
characteristic functionality covers all aspects that are relevant in order to perform these
tasks. ISO 9126 defines functionality as follows:
A set of attributes that bear on the existence of a set of functions and their specified
properties. The functions are those that satisfy stated or implied needs

Functionality determines how well a system {M} can accomplish given tasks {D}.
The system function can be taken as a specialisation of the task, that is, a way to
perform a task, and consequently is not ontologically different from the task as such.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 88

In chapter 1, conclusions were drawn with respect to the required functionality of
translation systems from
(i) the types of tasks that are performed during the translation process;
(ii) the types of problems encountered; and
(iii) the types of strategies that are generally employed to solve them.

To recall, one of the source text analysis tasks, for instance, is determination of
extralinguistic reference. The following figure shows how this task led to the
determination of the required function.

TASK PROBLEMS STRATEGIES FUNCTIONS
determination of
extralinguistic
reference

sufficient knowledge on the
subject matter of the source
text

text documentation
in SL

on-line text
corpus

 comprehension of the details
of the source text

terminology look-up termbank

Figure 50: Example for Determination of System Functions from Translation Tasks

Following the same approach, a number of central functions or modules for
translators’ aids’ systems were identified in the same chapter, that is
• identification of repetitions in texts and retrieval of translations
• retrieval of encyclopaedic information
• full text retrieval
• terminology database
• terminology elaboration

The above modules represent the "set of functions" that are relevant to all translators’
aids’ systems to a certain extent. It can be taken as a functional skeleton of
translators’ aids’ systems. The required properties of the functions may be different
from user group to user group. To elaborate the specific "properties" of each of the
above functions for the specific usage context, the different tasks performed by the
translator have to be considered in view of the subcharacteristics of functionality as
defined by ISO 9126, that is, suitability, accuracy, interoperability, compliance, and
security.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 89

suitability Attribute of software that bears on the presence and appropriateness of
a set of functions for specified tasks.

accuracy Attributes of software that bears on the provision of right or agreed
results or effects.

interoperability Attributes of software that bear on its ability to interact with specified
systems.

compliance Attributes of software that make the software adhere to application
related standards or conventions or regulations in laws and similar
prescriptions.

security Attributes of software that bear on its ability to prevent unauthorised
access, whether accidental or deliberate, to programs and data.

Figure 51: Subcharacteristics of functionality according to ISO 9126

For each task performed by the translator in the specific context, the evaluator has to
determine the strategies and required attributes. Each of the attributes relevant to the
translator then can be considered in view of the subcharacteristics of functionality, that
is, suitability, accuracy, interoperability, compliance and security. The following table
demonstrates this procedure for the task determination of extralinguistic reference:

STRATEGIES ATTRIBUTES SUB-
CHARACTERISTIC

PROPERTIES

terminology look-
up

definitions of
terms in SL

SUITABILITY • retrieval module
• definition in SL as info

category
• definition useful for

problem
• concept structures

(thesaurus) included
 ACCURACY • definition correct
 INTER-

OPERABILITY
• can be accessed from

text processing
 COMPLIANCE • standard terminology

interchange format
 SECURITY • password check

• read/write access rights
 concept

structures
SUITABILITY • thesaurus

• sub- and
superordinated
concepts

 ACCURACY • type of concept relation
specified (part/whole,
effect etc.)

 INTER-
OPERABILITY

• can be accessed from
text processing

 COMPLIANCE • existing thesauri
• standard relationships

(part/whole, effect etc.)
 SECURITY • read/write access rights

Figure 52: Specification of Properties of Functions from Task

To summarise, the specification of the functionality of translators’ aids’ systems can
be based on the tasks that are performed during the translation process. Considering
the translation tasks in the light of the ISO subcharacteristics of functionality leads to

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 90

the determination of functional properties of these tasks. According to ISO 9126
(4.1), these properties have to "satisfy the stated or implied needs" of translators. The
needs of translators, however, may vary considerably in different situations.
Consequently, one of the sub-characteristics of functionality should reflect the extent
to which a system allows its adjustment to specific needs by customers themselves. In
other words, the performance of many translators’ aids’ systems strongly depends on
the possibilities the systems offer to put particular constraints on the processing of
system inputs or the elaboration of data resources. For translation memories, for
instance, one and the same fuzzy matching algorithm will deliver totally different
results, if one system offers the possibility to define certain strings that are to be used
as variables (e.g. product names, versions of products, company names etc.) during the
database search and the other system does not. Therefore, for translators’ aids’
systems, each system should also be considered in terms of its customisability, leading
to the following add-on of subcharacteristics of functionality:

Customisability Attributes of software that allow the user to set specific constraints on a
systems' inputs, processing of inputs and data resources.

Figure 53: Customisability as Additional Subcharacteristic of Functionality

In the above example for determination of extralinguistic reference, customisability
could lead to the following properties:

STRATEGIES ATTRIBUTES SUB-
CHARACTERISTIC

PROPERTIES

terminology
look-up

definitions of
terms in SL

CUSTOMISABILITY • retrieval of
definitions with
constraints: e.g.

• only specific
authors;

• only after certain
input date;

 concept
structures

CUSTOMISABILITY • retrieval only of
concepts in
specific subject
area

Figure 54: Specification of Customisability-Properties from Tasks

The above examples demonstrated how functional properties of systems can be
elaborated from a mapping of tasks to quality characteristics. In a next step properties
or attributes need to be mapped onto scales in order to allow the measurement of the
extent to which a property has been fulfilled by a system under evaluation.

Starting from the definitions of the subcharacteristics of functionality as presented
above, measurement specific issues need to be elaborated. Referring to the definition
of suitability, the “presence” of features can be measured on nominal scales, by

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 91

transforming n-valued nominal scales into binary nominal scales. Binary nominal
scales are used in checklists. Measuring the “appropriateness” of a set of functions is
much more complex than measuring their presence. The appropriateness of a function
can be measured on
(i) ratio scales, if a numerical value can be specified as result of the measurement

process (e.g. number of entries in a termbank);
(ii) ordinal scales, if the preferences of system behaviour are determined subjectively

by decision makers (e.g. preference of one solution over another);
(iii) binary scales, if the result of a measurement procedure is either that a function

does or does not what it is supposed to do (e.g. retrieve only terms of a specific
subject area).

The major problem of developing metrics for appropriateness is when using ordinal
scales. Ordinal scales are artificial constructs to elicit subjective aspects of quality. The
design of the scale determines the types of answers that can be given. The most
frequently used types of ordinal scales offer 5 degrees where strength of preference
can be specified. When developing ordinal type metrics one has to be aware of the
problems of subjectivity and discreteness when comparing results obtained by means
of ordinal scales.

Metrics for accuracy ask for measuring “right or agreed results or effects”, which can
be done on
(i) binary scales, if there is a clear definition of right and wrong (e.g. a FL

equivalent in termbanks);
(ii) nominal scales, if certain nominal values can be specified as required properties

(e.g. information on translator, change date etc., coming up with TM retrieval);
(iii) ratio scales, if numerical values are the outcomes of measurement operations

(e.g. number of hits in termbank);
(iv) ordinal scales, if a threshold can be defined which the results of the measurement

have to surpass (e.g. acceptability of translation proposal)

Interoperability involves measuring the “ability to interact with specified systems,”
which can be performed on
(i) nominal scales, if systems can be specified with which interaction is wanted (e.g.

editor interaction with termbank, translation memory and MT system);
(ii) binary scales, if the possibility to interact with a specific system is questioned

(e.g. interaction with CD ROM machine translation system possible?)

Measuring compliance asks for investigating, whether systems “adhere to standards”.
This can be performed on binary scales, whenever a comparison is possible between

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 92

the system under testing and the standard (e.g. window for opening TM databases the
same as opening files in Windows?). Similarly, for security, metrics for assessing the
“ability to prevent unauthorised access” can be measured on a binary scale, whenever
an interaction requires read/write control (e.g. modifying a termbank).

Metrics measuring customisability consider the “constraints” that can be set on
specific functions. This can be done using
(i) binary scales, if the existence of a specific constraint is checked (e.g. possible to

retrieve only terms by specific author?)
(ii) nominal scales, if a set of constraints is required (e.g. TM retrieval module with

variables for time, date, brand names, and type names?)
(iii) ratio scales, if the number of constraints that the system offers is relevant (e.g.

insertion of project names, project numbers, order numbers in termbank entry
possible?)

Non-Functional Quality Characteristics
While functional quality characteristics are closely related to the type of software
system, that is, in this case a language engineering system, non-functional quality
characteristics are equally relevant to any type of application software. The depth of
the definition of non-functional properties depends on the role a non-functional quality
characteristic plays in a specific evaluation process. Before elaborating non-functional
properties, the evaluator has to determine the role of the non-functional characteristic
for the specific analysis process. There is a great danger that the evaluation procedure
becomes unmanageable, if too many non-functional characteristics that play minor
roles are considered in the final decision process.

Under non-functional quality characteristics will be subsumed the ISO characteristics
reliability, usability, efficiency, maintainability, portability. The following table
outlines the ISO 9126 (4.2-4.6) definitions for the above characteristics:

reliability A set of attributes that bear on the capability of software to maintain its

level of performance under stated conditions for a stated period of time.
usability A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.
efficiency A set of attributes that bear on the relationship between the level of

performance of the software and the amount of resources used, under
stated conditions.

maintainability A set of attributes that bear on the effort needed to make specified
modifications.

portability A set of attributes that bear on the ability of software to be transferred
from one environment to another.

Figure 55: Non-Functional Quality Characteristics

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 93

Each software function or module can be evaluated to some extent in terms of its
reliability, usability, efficiency, maintainability and portability. It is important to note
that while the functional properties of a translators’ aids’ system can be determined
mainly on the basis of a task-description {D}, non-functional properties of translators’
aids’ systems should take the system context {M} into consideration, otherwise
inadequate preferences may be determined. For instance, when considering the
operability of a system, it is inadequate to specify that buttons are preferred to menus,
since one system may have a quicker menu solution than another may have a button
solution. In the following the different non-functional quality characteristics will be
discussed briefly.

Reliability
ISO 9126 (A.2.2.1-2.2.3) subsumes maturity, fault tolerance and recoverability under
the quality characteristic of reliability.

maturity Attributes of software that bear on the frequency of failure by faults in the

software.
fault tolerance Attributes of software that bear on its ability to maintain a specified level

of performance in cases of software faults or of infringements of its
specified interface.

recoverability Attributes of the software that bear on the capability to re-establish its
level of performance and recover the data directly affected in case of a
failure and on the time and effort needed for it.

Figure 56: Subcharacteristics of Reliability

Maturity is a quality characteristic that is typically of great relevance in the software
development process. Accordingly, maturity is one of the most basic quality
subcharacteristics for progress evaluation, since the goal of progress evaluation is to
show an improvement of the software between two stages of development, mirrored
(amongst other things) by a reduced frequency of failures by faults in the software.
The “frequency of failure” can be measured on
(i) ratio scales, if the number of failures is counted (e.g. number of system

breakdowns during operation);
(ii) interval scales, if the time between the failures is measured (e.g. standard metric

MTBT mean time between failures).

Fault tolerance is concerned with both “software faults” and “infringements” of its
specified interface. For user-oriented evaluation fault tolerance concerns aspects of
communicating with the system. In general, it has to be assessed whether the software
can cope with what is passed to it, either through programmatic interfaces or through
the user interface (the operating system converts user interface events into
programmatic calls to the software). A fault tolerant system should perform input

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 94

check routines and should not die when erroneous data is passed. On the user interface
side, there is another aspect of fault tolerance, which should not be neglected, that is,
in case of user errors, for instance when the user performs an unintended action. In this
case it has to be investigated whether there are “cancel” or “undo” options for user-
initiated processes. The “ability to maintain a specified level of performance” can be
measured on
(i) binary scales, if it is examined whether the system, after a fault has occurred,

takes up processing or not (e.g. can TM be opened after breakdown?);
(ii) nominal scales, if it is examined what options there are to maintain performance

after a fault (cancel, undo, and escape options?);
(iii) ratio scales, if the effort is measured to maintain the level of performance (e.g.

counting the keystrokes necessary to undo an unintended operation).

The above definition of recoverability is threefold, that is, it investigates (i) whether
the system will take up processing after a failure, (ii) whether the data that was being
processed when the failure occurred is still correct and consistent, and (iii) what effort
is needed to get system and data back to normal. Recovery tests are typically
performed whenever a great amount of data is processed, and various data sources are
accessed (e.g. batch translation making use of MT, translation memories, termbanks,
checking tools). The extent to which data (input as well as output) can be recovered
correctly and consistently has to be investigated. Other aspects are whether the
different modules affected deliver correct and consistent data after recovery, and
which actions are necessary to get things back to normal. Metrics measuring the
“capability” as well as the “time and effort to re-establish a specific level of
performance” are mapped onto
(i) binary scales, if it is examined whether the performance can re re-established at

all (e.g. are modifications of termbank saved after system breakdown?);
(ii) nominal scales, if it is examined what options there are to re-establish a level of

performance (cancel, undo, and escape options?);
(iii) ratio scales, if the effort is measured to re-establish the level of performance (e.g.

time needed to re-enter the modifications in a termbank).

Usability
According to ISO 9126 (4.3) users may include operators, end users and indirect users
who are under the influence or dependent on the use of the software. For evaluation
purposes it is important to make clear whose point of view is considered when
defining the target properties of the system under evaluation. According to ISO
Usability must address all of the different user environments that the software may
affect, which may include preparation for usage and evaluation of results. ISO 9126

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 95

(A2.3.1-2.3.3) subsumes the characteristics understandability, learnability, and
operability under usability.

understandability Attributes of software that bear on the users' effort for recognizing the

logical concept and its applicability.
learnability Attributes of software that bear on the user's effort for learning its

application (for example, operation control, input, output).
operability Attributes of software that bear on the users' effort for operation and

operation control.

Figure 57: Subcharacteristics of Usability

As the above table shows, in the ISO standard, the key issue of all subcharacteristics of
usability is “effort.” For systems, which produce or offer textual information,
understandability can have a very high priority. The “effort for recognising the logical
concept” can be measured on different levels, making use of different scales:
(i) binary scales, if it is examined whether the concept can be understood at all (e.g.

functionality of translation memories);
(ii) ratio scales, if the effort to understand the system is measured (e.g. frequency of

calling help);
(iii) ordinal scales, if the extent to which a concept can be understood is questioned

(e.g. understandability of interface layout).

Learnability is closely linked to both understandability and operability: if a system is
understandable, the user can memorise more easily what kind of input or action is
needed in order to solve a particular task; if a system rates high with respect to
operability, that is, offers a well designed and flexible user interface, the user will
learn quickly how to interact with the system. Metrics for measuring the “effort for
learning an application” can be mapped on the following scales:
(i) ratio scale, if it is examined how much help is needed (e.g. hours of training

programme);
(ii) nominal scale, if it is examined what type of help is used (e.g. training

programme, documentation, on-line help, user hotelmen etc.).

The primary focus when evaluating a system's operability lies on the assessment of the
user interface, that is, the extent to which the user interface supports the tasks that need
to be undertaken with the software. The effort of handling given user interfaces,
however, is not objectively assessable. It is based on likes and dislikes of individual
software users, who may have a different computational background: someone who is
not used to handling the mouse will be quicker using key combinations for operation
control, while for experienced users of windowing systems, key combinations will not
always be acceptable. Using subjective criteria as the starting point in evaluating
operability, and asking users what they like and how much they like it, therefore, is

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 96

wrong-headed. One must ask what they want to accomplish and how they can do it,
and deduce preferences from that. This is particularly important, since effort also
depends on the type of task, e.g. for tasks that mainly involve using the keyboard (e.g.
typing), key combinations are often quicker, since one does not have to move the hand
to the mouse for operation control; for tasks that involve the usage of the mouse to a
great extent (e.g. drawing), direct manipulation will be quicker. Measuring “effort for
operation” the following scales can be used:
(i) ratio scale, if the effort can be numerically assessed (e.g. number of keystrokes to

achieve a task);
(ii) nominal scale, if the system can be examined along a pre-existing checklist (e.g.

key-shortcuts, macros, etc.);
(iii) ordinal scale, if the strength of preference is examined (e.g. font size readable:

easy ---- unreadable);
(iv) binary scale, if the existence of individual possibilities for operation control is

examined (e.g. change of font size possible?).

Efficiency
In our current technological era that is characterised by performance in terms of speed
and capacity, efficiency naturally has become more and more important in the
evaluation of software systems. The most basic reason for integrating new software
components into existing environments is to improve the efficiency of processes, that
is, increasing quantity (and possibly quality) while keeping the cost factor constant (or
possibly decreasing).

ISO 9126 (A.2.4.1-2.4.2) identifies two major factors that determine the efficiency of
systems, that is, time and resources. While the time factor is of growing importance,
the resource factor is less critical today than it used to be some years ago. This is due
to vast developments in hardware environments (processors and memory).

time behaviour Attributes of software that bear on response and processing times and

on throughput rates in performing its function.
resource behaviour Attributes of the software that bear on the amount of resources used and

the duration of such use in performing its function.

Figure 58: Subcharacteristics of Efficiency

Time behaviour is a function of quantity of data processed and processing power:
quantity of data processed is negative implicative, while processing power is positive
implicative. While time behaviour can be most easily assessed for batch programs, it is
impossible to define objective metrics for the time behaviour of an interactive system.
The more system behaviour depends on user interaction or input, the more difficult it
is to define units that can be measured objectively.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 97

The resource behaviour of software system depends to a large extent on the
complexity of programs (e.g. whether performing simple pattern matching or building
up neuro networks) and the way the function is programmed: one and the same
function could require different resources when being programmed by different
programmers with different programming skills. Metrics of efficiency are mapped onto
ratio scales, since they are concerned with quantities of time and resources. Typical
examples for translators’ aids’ systems are
• response time for database queries;
• response time for batch alignment program;
• MB RAM needed for application etc.

Maintainability
From the ISO 9126 definition of maintainability, one can conclude that it does not
play a central role in the user-oriented evaluation of translators’ aids’ systems, since it
is mainly concerned with the effort for modifications to existing software systems
which is relevant to system developers only. ISO 9126 (A2.5.1-2.5.4) subsumes the
following subcharacteristics under maintainability:

analysability Attributes of software that bear on the effort needed for diagnosis of

deficiencies or causes of failures, or for identification of parts to be
modified.

changeability Attributes of software that bear on the effort needed for modification,
fault removal or for environmental change.

stability Attributes of software that bear on the risk of unexpected effect of
modifications.

testability Attributes of software that bear on the effort needed for validating the
modified software.

Figure 59: Subcharacteristics of Maintainability

Portability
The importance of portability is steadily growing, since the computer has entered
nearly all areas of life, confronting largely an audience with non-computational
background. While some years ago, it could be expected from a computer user that
he/she is at least acquainted with the principal knowledge of the then current operating
system (mainly DOS), today's user does not want to be bothered with anything that
goes beyond confirming or rejecting system messages. Thus all problems that are
related to the integration and usage of new software in a specified individual
environment need to be supported largely by today's systems. ISO 9126 (A.2.6.1-
2.6.4) subsumes the following characteristics under portability:

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 98

installability Attributes of software that bear on the effort needed to install the software in
a specified environment.

conformance Attributes of software that make the software adhere to standards or
conventions relating to portability.

adaptability Attributes of software that bear on the opportunity for its adaptation to
different specified environments without applying other actions or means than
those provided for this purpose for the software considered.

replaceability Attributes of software that bear on the opportunity and effort of using it in the
place of specified other software in the environment of that software.

Figure 60: Subcharacteristics of Portability

The primary requirement related to the portability of systems is that a system must
work after installation. Both installability and conformance have a direct effect on this
requirement: if too much effort or knowledge is needed for the successful installation,
in many cases an installation will fail and the user will not get the system running; in
turn, the source of many installation problems is a lack of conformance of the system
to be installed with those systems that are already running. Another, probably
secondary, requirement related to portability is that the system supports the adaptation
to the specific environment, which increases the usefulness of the system in that same
environment. Finally, a more sophisticated requirement related to portability would be
that the system could be used instead of other, already operable, systems in that same
environment. Accordingly, a system's behaviour with respect to its installability and
conformance, its adaptability to different environments, and, finally its replaceability
is a decisive factor influencing the final user acceptance. The effort to install can be
measured on
(i) ratio scales, if the effort can be numerically assessed (e.g. time of installation

program);
(ii) binary scales, if the success of the installation is questioned (e.g. installation

successful?).
“Adherence to standards” can be measured on
(i) binary scales, whenever a comparison is possible between the system under

testing and the standard is possible (e.g. windows messages used for
installation?);

(ii) ratio scales, if the number of violations can be counted (e.g. number of
unexpected results of installation).

The “opportunity for the adaptation” of the system to another environment can be
measured on the following scales:
(i) binary scale, if the possibility of adaptation is assessed (e.g. adaptation of

termbank from one-user to multi-user possible?);
(ii) ratio scale, if the effort of adaptation can be numerically assessed (e.g. time

spend to adapt system)

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 99

Finally, the “opportunity of using one system instead of another” can be assessed on a
binary scale (e.g. exchange of IBM Text alignment tool for Trados possible?). The
effort can be measured on a ratio scale (e.g. time necessary to adapt environment?).

3.1.3 Discussing Evaluation in the Light of Software Engineering and Decision
Analysis

The presentation of approaches from the disciplines of decision analysis and software
engineering showed that there are interesting overlaps between these two rather
different disciplines that can be exploited in the context of the evaluation of
translators’ aids’ systems. Both software engineering and decision analysis make use
of very interesting methods to structure of domain problems. Decision analysis
moreover delivers the baseline for measuring attributes and presents processes that
allow the comparison of different systems under evaluation.

In short, user-oriented evaluation of software systems can benefit from decision
analysis in various ways:
• the structuring of values in decision analysis throws an interesting light on the

process of how to develop attribute hierarchies for translators’ aids’ systems;
• scale construction issues in decision analysis can be applied with measurements in

software tests;
• the discussion of problems of subjective measurement is of fundamental importance

to evaluation which centres around user problems;
• the presentation of measurement issues in decision analysis underlines the problems

that are also faced in user-oriented software testing;
• the elaboration of value functions in decision analysis may provide means to relate

actual test results to target values; and,
• multiattribute value theory may be used to assess the performance of one or more

software systems in numerical terms.

Similarly the evaluation of translators’ aids’ systems can apply the modelling
approaches used in software engineering. They were originally geared to defining
software characteristics as input into the software specification document but can be
used for reducing the effort of developing metrics for evaluation. Describing domain
problems in form of models serves to make sure that one truly understands the many
facets of the problem under investigation. Software engineering defines modelling as
the activity of describing, classifying and categorising domain problems. In the context
of evaluation, focus must be put on how to exploit the principles of classification and
categorisation. The basic idea behind classification and categorisation is that problems
belonging to the same class or category share central properties. Consequently, in

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 100

evaluation, if different problems share central properties, they can also share the
metrics to measure these properties to a certain extent. In other words, modelling
should be used in evaluation to reduce the effort to develop metrics.

Mapping the software quality characteristics discussed in section 3.1.2.2 onto the
different modelling concepts presented in 3.1.2.1, that is, actions, objects, actors, use
cases, dataflow, and data, a great number of qualitative aspects can be identified
which can form the starting point for the development of metrics for any user-oriented
evaluation procedure. In the following, each of the modelling concepts will be
considered in the light of the different quality characteristics, and aspects that
determine these quality characteristics will be listed. It has to be noted that the
following lists of qualitative aspects denoting the properties of the different modelling
concepts, mainly consider those quality characteristics that are particularly relevant to
user-oriented evaluation, that is, functionality, usability, reliability and efficiency.

ASPECT RELATED TO ACTIONS QUALITY
CHARACTERISTIC

processes involved to perform action
different options to perform action
appropriateness of processes for actions
suitability of outcome of action
objects handled during action
data accessed during action
type of input necessary to perform action
type of constraints on action
interaction with other actions
interaction with objects/functions
similarity of actions
security of actions
type of result as output of action
customisation of actions

functionality

effort to perform action
different ways to perform action
difficulties in performing actions
difficulties in understanding actions
typical sequence of actions
help necessary during performance of action

usability

possibilities to undo actions
failures during performance of actions
types of failures
possibility to stop actions

reliability

time needed for action
resources needed for action
correctness of action output

efficiency

Figure 61: Qualitative Aspects Related to Actions

Having decided, which actions are relevant to the evaluation process, the evaluator
simply selects those qualitative aspects relevant to the specific evaluation process and
elaborates scales for measuring the aspects. The same is true for all of the following

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 101

modelling concepts. An example of how to use these qualitative aspects of data for the
development of metrics will follow the lists of the different modelling concepts.

ASPECT RELATED TO OBJECTS QUALITY
CHARACTERISTIC

function in which it is involved
characteristics of object
type of object
size of object
operation modes
appropriateness of object for purpose
objects with which it interoperates
similarity with other objects
constraints on object
importance of object within use case
adaptation of object to specific needs

functionality

failures in objects
types of failures
action which leads to failure of object

Reliability

naming of object
mnemonic labels to objects
understandability of object names
understandability of object function
frequency of usage of object
layout/shape of objects
handling of object
presentation of object (interface)

Usability

time needed to operate
resources needed to operate
amount of data processed

Efficiency

Figure 62: Qualitative Aspects Related to Objects

ASPECT RELATED TO ACTORS QUALITY

CHARACTERISTIC
objects handled by actors
interaction with system functions (which, how frequently)
background of actors (educational, computer literacy, age ...)
effect of background on task performance
effect of background on quality of data output
role of actor
actions performed by actor
interaction with other actors
data handled by actors
output produced by actors
input produced by actors
typical sequences of related transactions performed by actor
adaptation of system to type of actor

functionality

effect of background on understanding of functions
effect of background on handling functions
effect of background on learning to use functions

usability

effect of background on quantity of data output
effect of background on time needed for an action

efficiency

Figure 63: Qualitative Aspects Related to Actors

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 102

ASPECT RELATED TO USE CASES QUALITY
CHARACTERISTIC

typical sequences of related transactions
variance in transactions
objects handled during use case
adequacy of processes for use case
adequacy of data for use case
adequacy of objects use case
quality of output of use case
actions involved in use case
interaction between actors and objects in use cases
processes involved in use case
data accessed during use case
customisation of data used during use case
customisation of actions
customisation of objects

functionality

help needed during use case
understanding of actions involved in use case
handling of objects involved in use case
understanding of object names involved in use case
effort to learn to use the system for use case

usability

stopping of actions during use case
recovering data lost during use cases
failures during use cases

reliability

time needed to perform use case
quantity of output of use case
resources needed during use case

efficiency

Figure 64: Qualitative Aspects Related to Use Cases

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 103

ASPECT RELATED TO DATAFLOW DIAGRAMS QUALITY
CHARACTERISTIC

flows

stores

processes

terminators

nature of flow
nature of data transmitted
(objective/subjective/manipulable...)
size of data transmitted
form of data transmitted
where does it come from, where does it go
correctness of data transmission (nothing lost)

nature of data stored
form of data transferred into/out of store
origin of data in store (manual/automatic)
quality of data retrieved from store
procedure of building up data stores
structure of data store
interaction with other internal stores
interaction with other external stores
compliance with internal/external standards
access rights to stores
handling of data consistency in stores
modifying stores: who, how
customisability of data in stores

what is it for?
what happens inside?
data handled in processes
nature of input into process
nature of the transformation of input into output
complexity of process (number and types of inputs,
algorithms/procedures)
quality of output of process
characteristics of process input
target characteristics of process output
effect of background of actors to quality of output

type of terminator (human/computer system)
nature of terminator
role of terminator within the diagram
characteristics of terminator
effect of characteristics of terminator (e.g. personal
background) on processes
effect of background on quality of data output
data transmitted from terminator to processes
data transmitted from terminator to stores
data received by terminator from processes
data received by terminator from stores
role of terminator in external environment
what happens with the data received?

functionality

flows

stores

processes

understandability of information flow
effort of transferring data
effort of learning how to transfer data

effort of building up data stores
effort of accessing data in stores (steps)
effort of modifying data in stores
effort of learning how to work with stores
effort of understanding the structure of the store

effort of understanding the process

usability

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 104

ASPECT RELATED TO DATAFLOW DIAGRAMS QUALITY
CHARACTERISTIC

terminators

handling of process inputs/outputs
effort of learning to handle process inputs/outputs

effect of background of terminator on:
effort of understanding role of terminator in context
effort of learning to handle flows/stores/processes
effort of handling flows/stores/processes

flows

stores

processes

terminators

interrupting flows: what happens to the data
transmitted?
possibilities to undo information flows

reliability of data in stores (check routines etc.)
recoverability of data in stores

failures occurring during process
stopping of initiated processes
undoing processes
cancel running processes
recovering data
confirmation of critical processes
escape functions

reaction on errors on side of terminators
error messages

reliability

flows

stores

processes

terminators

time needed to transmit data
resources needed to transmit data

volume of data stored
limits to data stores
resources needed to store data
time needed to retrieve data from store

time needed to process
resources needed to process
effect of hardware/software environment on
performance of process
effect of background of actors on performance of
process

effect of background on quantity of data output
effect of background on time needed for an action

efficiency

Figure 65: Qualitative Aspects Related to Dataflow Diagrams

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 105

ASPECT RELATED TO DATA QUALITY
CHARACTERISTIC

characteristics of data (char, boolean, integer, real)
type of data (e.g. in NLP domain, text type)
form of data (e.g. character sets etc.)
complexity of data (language pairs, bi-multilingual)
size of data in flows (strings, texts, etc.)
size of data in stores
correctness of data
suitability of data for purpose
availability of data to other processes
availability of data to other actors
availability of data to external systems
integration external data
security in access of data
customisability of data
compliance of data with standards

functionality

understandability of data (e.g. definitions)
effort of handling data
effort of learning how to handle data

usability

recovering lost data
check routines before entering data
consistency management of data

reliability

quantity of data processed in given time
resources needed to store data
resources needed to retrieve data

efficiency

Figure 66: Qualitative Aspects Related to Data

These lists are meant as a starting point that can in integrate findings of future
evaluation processes. How the process of developing metrics can be guided by these
lists of aspects will be demonstrated by the aid of the example below. The table shows
how metrics for the functionality of the data in a termbank can be developed from the
aspects given in the above figure.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 106

QUALITATIVE ASPECT METRIC SCALE
characteristics of data integration of graphics? binary
type of data information categories? binary nominal
form of data character sets? binary nominal
complexity of data languages?

structure (concept/term oriented)?
binary nominal
binary

size of data in flows number of characters possible per
term?

ratio

size of data in stores limit in number of entries per
language?

ratio

availability of data to other
processes

integration of termbank into TM
retrieval?
access of termbank from editor?

binary

availability of data to other
actors

multi-user access? binary

availability of data to external
systems

remote login?
terminology export?

binary
binary

integration of external data terminology import? binary
security in access of data password check?

different rights to different users?
binary
binary

customisability of data integration of new information
categories?

binary

compliance of data with
standards

terminology exchange formats? binary nominal

suitability of data for purpose adequacy of
definitions?
translations?
context?

ordinal

Figure 67: Example for Using Qualitative Aspects of Modelling Concepts for Defining Metrics for a

Termbank

When evaluating a translation memory system, the same qualitative aspects will
inevitably lead to the definition of slightly different metrics that are appropriate for
evaluating TM systems. Consequently, being generic in nature, the lists of qualitative
aspects for the different modelling concepts satisfy the often recommended need for
reusability of resources.

Once metrics are developed for those attributes relevant to the specific evaluation
process, it has to be decided how the outcome of the tests will effect the adequacy of
the software for the particular user, or in other words, how it will reflect decision
makers preferences. Consequently, value functions for each metric under testing can
be used in evaluation to express the extent to which the result fulfils the desired
properties of the system, and at the same time, make the results of test of different
systems comparable. In the software engineering context this concept is covered under
the term “target value”, which describes what the ideal outcome of a test is.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 107

3.2 Evaluation Preparation

The procedures used for modelling in evaluation strongly differ with respect to the
type of evaluation situation. For evaluation preceding purchase decisions the aim of
modelling is to identify evaluation and value relevant attributes while at the same time
trying to keep the effort as low as possible. For evaluation supporting development,
the aim of modelling is to identify any possible way in which the developer can benefit
from the presentation of detailed user requirements. Consequently modelling in the
latter case involves a great deal of effort and should deliver detailed information that
needs to be integrated into the software development phase.

3.2.1 Preparing for Evaluation Preceding Purchase Decisions

Evaluation preceding purchase decisions ask for quality and utility assessment in
numerical terms. The evaluation and assessment procedure that will be advocated in
this thesis is one based on the definition of tasks as central element. The following
steps can be applied as evaluation preparation:
1. Weighing the importance of the individual tasks to the evaluation process;
2. Elaborating task information, defining generic actions performed on specific

objects; considering quality characteristics for generic actions and objects relevant
to each task, and elaborating metrics measuring value relevant attributes;

3. Developing value functions for metrics;
4. Determining the appropriate test type for each metric.

An example will demonstrate the above depicted procedure. The example is based on
the task description (cf. figure 28) as outcome of the domain featurisation process.

3.2.1.1 Weighting of Tasks in Domain

Evaluation preparation is a very time-consuming business. Effort should be directed
mainly towards those tasks that are central in the domain. Consequently, in a first step,
the evaluator has to discuss with the client of the evaluation process, how important
the different tasks are. Here again it is important to note that different stakeholders
may have different views about the importance of tasks. For user-oriented evaluation it
is crucial to consider the views of users separately from those of decision makers.
Whenever there is a clash between what decision makers and users consider important,
a discussion between the two groups will have to resolve the problem. The following
figure shows the outcome of the weighting process in the example.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 108

task names task
short

weight
users

weight
decision maker

weight
consolidated

administration t1 .05 .20 .15
technical support t2 .10 .15 .15
translation preparation t3 .25 .20 .20
operative translation t4 .60 .45 .50
SUM 1.00 1.00 1.00

Figure 68: Task Weighting in Evaluation Preceding Purchase Decision

The above figure shows that there is a big clash between the weights distributed by
users and decision makers mainly with respect to the tasks administration and
operative translation. The users in the example being translators in a translation
department, naturally rate operative translation very high and administration rather
low, mirroring the amount of time spent for the two tasks in every-day working life. In
contrast to this, the decision maker can estimate an increase in overall productivity, if
the effort in administration and technical support is reduced by the introduction of
software. After consolidation, the importance of the operative translation task is still
overwhelming, while also considering those aspects to a certain extent that make up
the working environment of translation. It follows that the distribution of weights as
demonstrated above is not only a precondition to the final utility calculation, but it also
shows, where the major effort in elaboration of metrics has to be put.

3.2.1.2 Elaboration of Metrics from Tasks

In the context of evaluation preceding purchase decisions, the major objective of
defining tasks in terms of generic actions and objects is to pinpoint those actions and
objects that are of central importance and thus to reduce the effort of elaborating
metrics and performing tests. The following table is based on the same task description
and defines generic actions that are performed on specific objects during the operative
translation task.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 109

GENERIC ACTIONS SPECIFIC OBJECTS
starting of objects editor program

translation memory program
termbank program

opening of objects SL text file
TL text file
translation memory data stores
termbank data stores

initiating retrieval of objects SL/TL sentence pairs from TM store
terms from termbank

selecting best object TL sentence
TL term

initiating alternative search when no
match is offered

parts of SL sentences
terms using wildcards

browsing in objects for information TM data store
termbank

editing objects TL text
TM data store
termbank

spell checking of edited objects TL text
TM data store
termbank

storing of objects TL text
TM data store
termbank

printing of objects TL text
distributing objects TL text

updated TM data store
updated termbank

exiting of objects editor program
translation memory program
termbank program

Figure 69: Generic Actions performed on Specific Objects for Translation Task

In the operative translation task of the example we are concerned with 11 different
objects and 12 different types of actions. At this stage it is already possible to rule out
some of the objects that are not evaluation relevant. For instance, the evaluator can
easily check with product documentation, which editor the systems are using. If each
of the systems under evaluation makes use of WinWord, there is no need to elaborate
metrics related to the functionality, usability, reliability, and efficiency of the object as
such, only with respect to the interaction between the object and other objects of the
list.

To illustrate the procedure of developing metrics from the qualitative aspects
presented in section 3.1.3 the object TM data store will be considered in terms of
functionality and the action editing of objects will be considered in terms of usability.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 110

QUALITATIVE ASPECT METRIC SCALE
characteristics of object language pairs?

multi-directional?
binary nominal
binary

type of object database/files? binary nominal
size of object number of language pairs?

number of translated pages?
storage space needed?
RAM space needed?

ratio
ratio
ratio
ratio

operation modes interactive/batch?
translation segments:
sentence/parts of sentence ...?

binary nominal

binary nominal

appropriateness of object for
purpose

match type: total/fuzzy
suitability of fuzzy match proposals?
success in variable handling?

binary nominal
ordinal

ratio

objects with which it
interoperates

import of aligned segments?
export of aligned segments?

binary
binary

compliance with other objects interchange formats? nominal
constraints on object attribute labels for TM databases:

author/date/project etc.?
type of variables defined: date/
names/...

binary nominal

binary nominal

adaptation of object to specific
needs

changing of fuzzy match number?
adding attribute labels for TM
databases?
definition of variables?

binary

binary
binary

Figure 70: Elaboration of Metrics for functionality of Object TM Data Store

Starting from the qualitative aspects presented for actions in 3.1.1, a great number of
metrics could be defined that are relevant to the evaluation of a translation memory
system. Many of the metrics developed above for TM data stores are also relevant to
evaluating termbanks (e.g. language pairs, match types: total/fuzzy, import, export
etc.). When considering other, less complex objects such as SL/TL sentence pair, the
list of metrics will be much shorter, since only few of the qualitative aspects in section
3.1.3 can be applied.

The list of generic actions presented in figure 71 is particularly useful when evaluating
the usability of a system. It shows that many of the actions performed by the user are
rather similar, and therefore, the interaction with the system should be performed
similarly. The following table presents metrics developed to measure the usability of a
system with respect to the editing of objects.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 111

QUALITATIVE ASPECT METRIC SCALE
effort to perform action number of steps:

(mouseclicks/keystrokes)?

ratio

different ways to perform action type of user profiles?
number of user profiles?
user-definable shortcuts?

nominal
ratio
binary

difficulties in understanding
actions

frequency of help usage for
beginners?
time spent with help?

ratio
ratio

difficulties in performing actions frequency of user errors?
time spent to get back to work?

ratio
ratio

compliance of interface in
similar actions

adhering to interface standards?
same steps used for actions that
are subsumed under same actions
type?

binary
binary

Figure 71: Elaboration of Metrics for usability of Action Editing Objects

As the above tables show, the development of metrics for evaluation purposes involves
a great deal of effort. For each evaluation environment it has to be determined, how
exhaustively the development of metrics should be performed. In many cases, the
evaluation budget will automatically lead to a selective development of metrics, that is,
only for particular tasks, or for specific objects or specific actions.

With respect to the scales used for measuring, it is important to note that metrics where
ratio, binary and nominal scales are applied, produce few problems in terms of
measurability or value relevance, and should therefore be used whenever possible. In
terms of objectivity these scales also generally rate high (unless measuring subjective
notions such as "like" or "dislike" on binary scales). It is in many cases useful to
transform nominal scales into binary nominal scales, which allow easy measurement in
form of checklists. Representing notions of preference, ordinal scales naturally rate
lower in terms of objectivity than ratio, binary and nominal scales. The variability of
results of metrics using ordinal scales (from individual to individual, from occasion to
occasion) has to be taken into consideration when determining the reliability of the
metric. When interpreting the result of metrics using ordinal scales, the evaluator has
to be careful with reading too much into the numerical representations of ordinal
values. Similarly to decision analysis, user-oriented evaluation, however, cannot do
without measurements on ordinal scales altogether. Ordinal scales always have to be
critically examined in terms of their value relevance. An awareness of the dangers
behind these scales helps to reduce the number of problems that may occur when
making use of ordinal scales. The validity of metrics, finally, is a very critical issue but
cannot be easily determined here. In general, the less abstract the metric applied in an
experiment, the less the danger of it not representing circumstances in real life.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 112

3.2.1.3 Developing Value Functions for Metrics

As the above examples of metrics show, many of the metrics are measured on binary
or binary nominal scales. Consequently the values concerned are either 0 for not
available/met or 1 for available/met. The following example illustrates how the target
value for binary and nominal binary scales can be defined:

METRIC SCALE TARGET
changing fuzzy match number? binary 1
definition of variables binary 1
language pairs
German - English
German - French
German - Spanish
German - Italian

binary nominal
1
0
1
1

Figure 72: Target Values for Binary and Binary Nominal Scales

Ordinal scales represent an ordered set of values, where value 1<2<n. Though ordinal
value scales tend to produce monotone value functions, when it comes to utility, one
may imagine that there may also be preference thresholds. The metric suitability of
fuzzy match proposals illustrates this, where the proposals can be rated as:
0 not suitable at all
1 single words can be used
2 parts of sentences can be used
3 minor alterations necessary
4 variables of fuzzy match are automatically changed by system
The evaluation client may now say that, as long as only single words can be used, the
fuzzy match proposal is useless. This will result in the following value function:

0 1 2 3 4

v(1)

v(2)

v(3)

v(4)

Figure 73: Example for Value Function with Threshold

Based on the above value function for the metric suitability of fuzzy match proposals
the values of the options can be located on the curve as
v(0) = 0; v(1) = 0; v (2) = 32,5; v (3) = 65; v(4) = 100.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 113

When developing value functions for ratio scales the evaluator has to define the
acceptance level, that is, what is the upper limit of the scale. The next step is to
consider whether there are preference thresholds, cut-off points or peaks. If this is not
the case the function is likely to be monotone. Then one has to decide, whether the
function is increasing or decreasing and which shape the function has. The following
example illustrates this procedure: Considering the metric frequency of user errors, the
evaluator decides the upper limit of errors per action should be 5, that is, if more than
5 errors occur during the performance of the particular action the value is 0.
Furthermore the evaluator finds that "more is always worse than less" and thus
concludes that the function is monotonically decreasing. To the client each additional
error is equally important. In other words, the value decreases proportionally to the
scale value, leading to a linear decreasing function. The following value function
illustrates this:

0 3

v(2)

v(3)

4 521

v(1)

v(0)

v(4)

v(5)

Figure 74: Example for Linear Value Function for Ratio Scale

Based on the above value function for the metric frequency of user errors, the values
of the options can be located on the curve as
v(0) = 100; v(1) = 80; v(2) = 60; v(3) = 40; v(4) = 20; v(5) = 0

The elaboration of value functions as demonstrated above will inevitably lead to a
number in the range between 0 and 100 for each metric applied to each system.

3.2.1.4 Developing a Test Model

In user-oriented evaluation, the development of metrics should be driven by the goals
of evaluation, that is, what exactly do we want to find out about a piece of software;
and related to this, the technique of testing, that is, how do we want to find it out.

The author of this thesis developed a model of test types during 5 years of practical
evaluation work in the ESPRIT Translator’s Workbench projects. It distinguishes
between three test types with different goals behind testing, which will be described in

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 114

more detail in chapter 4. The following table only provides a brief overview which is
relevant in the context of evaluation preparation.

TEST TYPE SUB-TYPES GOAL
scenario testing field tests

laboratory tests
to assess the appropriateness of a
piece of software for every-day work

systematic testing task-oriented testing
interface-oriented testing
benchmark testing

to examine the behaviour of
software under specific conditions

feature inspection --- to check the functionality of the
software

Figure 75: Overview of User-Oriented Model of Test Types

In evaluation preceding purchase decisions it is of utmost importance to reduce the
effort of testing as much as possible. Therefore, the first step should be, for each task
under evaluation, to compile a list of all metrics that are relevant to the evaluation
procedure and perform feature inspection by means of going through the
documentation of the systems under evaluation. Binary or binary nominal scales are
typical scales in feature inspection. There are, however, also a number of ratio scales
that can be applied in feature inspection, such as for number of termbank entries, or
RAM space needed etc. Many of the metrics applied during feature inspection will
prove not to be evaluation relevant, since all the systems under evaluation have the
same attributes, for instance terminology import? Y/N terminology export? Y/N. This
does not, however, mean that these metrics are irrelevant, it only implies that they will
not occur in the final assessment calculation.

For all those metrics for which values cannot not be obtained through feature
inspection, the evaluator has to consider which test to use. For each of the remaining
test types, that is task-oriented, interface- oriented, benchmark and scenario testing, a
list of metrics has to be compiled prior to testing.

Considering the metrics for functionality and usability in the above example, derived
from objects and actions involved in the sample task, the following distribution of test
types is appropriate:

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 115

METRIC SCALE TEST TYPE
user-definable shortcuts? binary feature inspection
language pairs? binary nominal
multi-directional? binary
number of language pairs? ratio
storage space needed? ratio
RAM space needed? ratio
database/files? binary nominal
interactive/batch? binary nominal
translation segments: sentence/parts
of sentence ...?

binary nominal

match type: total/fuzzy binary nominal
import of aligned segments? binary
export of aligned segments? binary
interchange formats? nominal
attribute labels for TM databases:
author/date/project etc.?

binary nominal

type of variables defined: date/
names/...

binary nominal

changing of fuzzy match number? binary
adding attribute labels for TM
databases?

binary

definition of variables? binary
frequency of help usage for
beginners?

ratio

scenario testing

time spent with help? ratio
frequency of user errors?
time spent to get back to work?

ratio
ratio

number of steps:
(mouseclicks/keystrokes)?

ratio task-oriented testing

type of user profiles?

nominal

number of user profiles?

ratio

adhering to interface standards?

binary

same steps used for actions that are
subsumed under same actions type?

binary

Figure 76: Distribution of Metrics over Test Types

With the above list of metrics for each task under evaluation related to the test type by
means of which it is to be assessed, evaluation preparation is finished and testing can
begin. How testing is performed in evaluation preceding purchase decisions will be
discussed and demonstrated by means of exhaustive examples in chapter 4.

3.2.2 Preparing for Evaluation Supporting Development

It has been pointed out before that evaluation supporting development has to be
exhaustive and productive rather than assessable in numerical terms. In other words,
the procedures involved in evaluation should be input into the software development
process from requirements definition to operation and maintenance. For modelling in

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 116

the context of evaluation supporting development, the following questions are
relevant:
1. What do we want to achieve through evaluation (goal)?
2. What type of test is appropriate?
3. What type of modelling is adequate to develop metrics for different test types?

For evaluation supporting development it makes sense to consider the different
modelling concepts discussed in the software engineering section 3.1.2.1. The
following figure shows the central concepts of the three modelling approaches and
their relevance for the elaboration of quality attributes and metrics for the particular
test types.

task-oriented
testing

interface-
oriented
testing

benchmark
testing

feature
inspection

scenario
testing

OBJECT ORIENTED
 MODELLING

STRUCTURED ANALYSIS

dataflow data

TASK ANALYSIS

actions

actors

objects

use-cases

Figure 77: Relevance of Modelling Methods to Test Types

The modelling procedure in evaluation supporting development can be performed in
two major steps, that is
1. Describe {D} and {M} by means of the modelling concepts that are most relevant

to the specific test types;
2. Elaborate metrics along the qualitative aspects presented in section 3.1.3

considering the details elaborated in modelling {D} and {M}, and define targets.

3.2.2.1 Modelling for Scenario Testing

The above figure shows, if the motivation behind evaluation is to assess the
appropriateness of a piece of software for every-day work, there are mainly five
modelling concepts that are of interest, that is, actions, objects, actors, use cases and
data.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 117

Actions and objects are concepts stemming from Task Analysis (TA) and denote the
activities performed by a person that are directed towards specific objects, where
objects may be physical or informational. The generification of actions into generic
task models as performed in TA provides an overview of what type of actions are
performed with the system, in other words, it leads to the definition of standardised
tasks. Moreover it is interesting to study the frequency with which a specific action is
carried out during the performance of a task. Frequently performed actions require
specific usability standards which need to be tested. In scenario testing the rough
definition of objects provides merely a framework for the exact definition of actions.
When modelling objects for the purpose of scenario testing, the most important
activity is to find the central objects, while their organisation, interaction, operations
and internal nature only need to be considered on a more general level. Thus there is
no need to apply the complex procedures of object-oriented modelling for the
modelling of all objects.

The modelling of actors and use cases is of central importance in the context of
scenario testing. According to Object-Oriented Modelling actors represent the roles of
the users (human or other systems). For scenario testing it is of utmost importance to
define typical roles human users perform with the system, since depending on the
roles actors play, different quality attributes will be relevant to testing. For instance, in
the context of a translation department, a head of a translation group plays a different
role than a translator. He/she will have different actions to perform, with different
objects and different constraints on these objects (different read/write rights etc.). For
scenario testing typical use cases, that is, typical sequences of related transactions
performed by an actor and the system in a dialogue, have to be identified. Typical
roles lead to the identification of typical use cases.

Finally the modelling of data is also important for scenario testing. It has to be found
out, which type of data is involved during the performance of typical use cases. This is
particularly important because a scenario test can only be performed successfully,
when the relevant data is available and accessible during the test. In many cases this
involves a careful and extensive preparation of the various types of data that are
involved in the performance of a single use case. For scenario testing, it is sufficient to
model the data on a very general level. It is based on the analysis of the use case
selected for the test.

A scenario test is a test of one particular use case, where the actions of the subject are
observed and checked against the performance of the system. During the scenario test

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 118

it will be examined whether and to which degree the system satisfies these attributes.
Modelling actions, objects, actors, use cases, and data leads to the identification of
attributes a system should have in order to support every-day work. These attributes
need to be considered when preparing the instruments used during the tests such as
scenario checklists or interviews. The following procedure for modelling requirements
for scenario testing is most appropriate:

1. description: specific actions carried out by the user and specific objects

handled by the user are described;
2. grouping: similar actions are grouped to establish subtasks and tasks;
3. generification: from specific subtasks and tasks more general task descriptions are

elaborated, depicting standardised tasks;
4. definition: actors are identified;
 roles of actors are defined;
 use cases are defined for different roles;
5. analysis: actions performed in different use cases are analysed with respect

to their frequency of occurrence;
 data involved in the performance of specific use cases is analysed

along the following principle:
 1. Identify and name the data that is involved;
 2. Name the characteristics of the data;
 3. Define the relationship between the different data

3.2.2.2 Modelling for Systematic Testing

The principal goal of systematic testing is to examine the behaviour of software under
specific conditions, covering three sub-goals and the related test types:
(i) examining whether the software supports the performance of pre-defined tasks:

task-oriented testing
(ii) examining whether the functions offered work properly: interface-oriented

testing
(iii) examining the performance of the system: benchmark testing

Different modelling concepts are relevant to the development of attributes that are
tested in the different test types.

(i) Modelling for Task-Oriented Testing
In order to find out whether the software supports pre-defined tasks, it is necessary to
look at actions, objects, dataflow and data. While scenario testing asks for the
grouping of similar actions into generic task descriptions that lead to the description of

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 119

a standardised task, for task-oriented testing it is more interesting to study the diversity
of actions that may be involved in the performance of a given task. In scenario testing
the mere reason for modelling objects is to provide a framework for the description of
actions. In task-oriented testing, however, objects that play a central role need to be
considered in more detail. This is due to the fact that in task-oriented testing not
standardised tasks or use cases are the central point of focus but rather specific object-
action relationships. One way of describing objects was presented in the section on
Object-Oriented Modelling, covering their interaction, composition, operations and
nature. Another way that represents a certain description of the environment of objects
that are related to a specific function was presented in the section on Structured
Analysis, that is, dataflow diagrams.

The following procedure for modelling requirements for task-oriented testing is most
appropriate:
1. description : {D}: specific actions carried out by the user and specific objects

handled by the user are described;
 {M}: central functions are described in form of dataflow diagrams;
2. analysis: actions are analysed with respect to their diversity: which

different possibilities are at hand to perform the task?
 objects and processes are analysed with respect to their

importance: which are the critical objects and processes in the
task?

 flows are analysed with respect to their nature: what type of data is
transmitted?

 data and data stores are analysed along the following principle:
 1. identify and name the data that is involved;
 2. name the characteristics of the data;

(ii) Modelling Techniques for Interface-Oriented Testing
In order to examine whether the functions offered work properly it is necessary to look
at objects, dataflow and data. The objective behind this type of test is not to find out
whether the program suits a given purpose (like in scenario and task-oriented testing),
but rather whether the given functions work properly, that is, without failure. To recall,
in interface-oriented testing the software is examined from top to toe, considering each
individual function as it is sequentially offered in the menu bar or in the windows. The
best preparation for this type of testing is to gain an insight into the nature of the
objects concerned and the data processed. Dataflow diagrams, which need to be
developed for the central functions, form a basis for the pre-definition of the most
central metrics.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 120

The most appropriate procedure for modelling requirements for interface-oriented
testing can be described as follows:
1. description: by means of learning what is relevant in both {D} and {M} the

objects will be found (starting point: terminology of problem
domain, software documentation); central functions are described
in form of dataflow diagrams

2. analysis: central objects are analysed with respect to their
 interaction
 composition
 operations
 nature
 data is analysed along the following principle:
 1. identify and name the data that is involved;
 2. name the characteristics of the data;
 3. define the relationship between the different data

(iii) Modelling Techniques for Benchmark Testing
In order to examine the performance of language engineering systems the central
concepts are dataflow and data. Benchmark tests can be applied either to individual
functions, modules or to the overall system. To recall, in the strict technical sense, a
benchmark test is the measurement of system performance without being dependent on
personal variables. Dataflow diagrams in the first instance help to identify which
functions or processes are suitable for benchmark testing, by investigating the nature
of terminators and flows. Principally one may say that processes that communicate
with non-human terminators fulfil this basic requirement of benchmark tests. In case
of a human terminator the nature of the flow has to be defined. Only if the data
transferred to a process is objective (e.g. Y/N), or not manipulable (e.g. entering a term
in a terminology database) the process is suitable for benchmark testing. For the
development of metrics and the selection of test data the nature of the process and the
related stores have to be defined exhaustively.

Benchmark testing asks for the following procedure for requirements modelling:
1. description: central functions are described in form of dataflow diagrams
2. definition: for each dataflow diagram
 the nature of terminators
 the nature of flows and
 the nature of the data transferred is defined
3. analysis: for the function under testing

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 121

 the nature of the process is specified
 the nature of the data in the store is analysed along the following

principle
 1. identify and name the type of data involved
 2. name the characteristics of the data
 3. name the relationship between input/output data

3.2.2.3 Modelling for Feature Inspection

If the motivation behind evaluation is to check the overall functionality of the
software, there are mainly four modelling concepts that are of interest, that is actors,
objects, dataflow and data. Feature inspection aims at mapping the technical features
of one or more systems onto the profile of one or more user groups or vice versa.
Feature inspection is not concerned with the way functions are implemented but rather
whether or not those functions that are considered important are present. Modelling for
feature inspection, therefore, is concerned on the one hand with the rough description
of systems in form of dataflow diagrams, and on the other with a description of typical
roles of actors. The description of typical roles of actors usually precedes the
description of the system. The interest of modelling roles of actors for feature
inspection does not lie in the special sequence of transactions (use cases) like in
scenario testing, but rather in the objects, which are involved in the execution of a
specific role, that is, their interaction, composition, operations, and nature. The model
of objects identified when describing the role of actors has to be mapped onto the
processes and terminators of the dataflow diagram. The data handled by the users has
to be mapped onto the data stores and data flows.

Feature inspection asks for the following modelling procedure:
1. description: actors are identified
 roles of actors are defined
 central functions are described in form of dataflow diagrams
2. analysis: objects related to the roles of actors are analysed with respect to

their
 interaction
 composition
 operations
 nature
 data handled by actors is analysed along the following principle:
 1. identify and name the data that is involved;
 2. name the characteristics of the data;
 3. define the relationship between the different data

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 122

3. mapping: objects are mapped onto processes and terminators of the dataflow
diagrams

 data is mapped onto the data flows and stores

To conclude, it is important to note that being part of the development process, the
primary aim of the evaluator is to provide as much constructive input into the
development process as possible. This guarantees that the software will meet user
requirements to a large extent. While in the context of evaluation preceding purchase
decisions, the development of value functions is of great importance, at this stage, the
evaluator supporting development rather has to set priorities with respect to the
implementation of those aspects that are not yet properly considered.

3.2.2.4 Example for Modelling Process for Task-oriented Testing

Again, the following example will be based on the task description in figure 28.
Details for terminology look-up as part of the operative translation task will be
elaborated in order to show how modelling in evaluation supporting the development
process is performed. The procedure follows the steps relevant to the process of
modelling for task-oriented testing as described above.

The description step focuses on the gathering of the relevant information in order to
gain an overview of the problem.
{D} The description of actions related to terminology in the operative translation task

is part of the task description (starting of termbank, opening of termbank(s),
accessing termbank from editor, searching terms, browsing in termbank,
selecting termbank entries, pasting terms into text, editing terminology, updating
termbank, entering new terms). The description of objects handled in context
with terminology are termbank, SL term, TL term, terms with wildcards.

{M} Central functions of the operative translation task are demonstrated in the
following dataflow diagram, modelling translator as terminator; segmentation,
matching, term recognition, and term retrieval as processes; and SL text file,
aligned SL/TL segments and term base as stores.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 123

1

2 3

4

5

6 7

8

SL text

segmentation matching

term recognition term retrieval

term base

translator

aligned
SL/TL
segments

Figure 78: Dataflow Representation of Operative Translation Task

 The flows in the above diagram transmit (1) SL text; (2) SL sentence or
alternatively parts of SL sentence; (3) SL/TL sentence pairs; (4) TL sentence; (5)
SL text; (6) SL terms or alternatively terms with wildcards; (7) SL/TL terms; (8)
TL term.

Analysis involves the definition of the nature of those aspects described before. It
leads to a clear understanding of the task, which is a precondition for the exhaustive
development of metrics. As presented above, analysis asks for the consideration of the
following problems:
Diversity of actions related to terminology look-up
Among the actions presented above, the critical ones are considered searching terms
and editing terminology. The diversity of these actions will be further investigated:
terminology retrieval: are there different procedures for searching terms?

• automatic retrieval during translation: asks for term recognition;
• term lists prior to translation/interpreting: terms in specific text, or retrieval

according to constraints (which ones?);
• typing in of terms during translation: possible problems w.r.t. character sets,

maximal length of term, compound terms;
terminology editing and entering terms: are there different ways to edit terminology?

• editing during translation: asks for checking of rights of translator; handling
of translation proposals of unauthorised translators?

• editing after finishing translation task: asks for way of storing information
that needs to be added/deleted/changed.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 124

Critical objects and processes in terminology look-up
term recognition: problems: lemmatisation, compounds, variations in compounds (e.g.

man machine interface, human machine interface, user interface...).
term retrieval: problems: different hits (polysemes in SL); one hit with various options

(multiple translations); no hit, which other strategies can be applied (wildcards
etc.)

Nature of flows in terminology look-up
term flow: one "word" (character string from blank to blank) at a time: problems:

number of characters limited? compounds, declined and conjugated forms.

Nature of data stores in terminology look-up
SL text: characteristics: language, text type, subject area, size;
termbank: characteristics: orientation (term, concept), languages, information

categories, administrative info, size, entries, uni/multidirectional.

The above description and analysis of terminology look-up showed that the most
critical actions are searching terms and editing terms. The starting point for the
elaboration of metrics that measure the quality of the above two actions is the list of
qualitative aspects relevant to the different modelling concepts (here: actions, objects,
dataflow and data. The main objective in using the qualitative aspects presented in
section 3.1.3 is to make sure that everything that might be of importance is considered.
Naturally, when a number of different concepts are relevant, there is a certain overlap
of qualitative aspects. For instance, the evaluator will find that the aspect of
interaction/interoperation will be mentioned with regard to actions, objects, and
stores. The best way to proceed, therefore, is
1. For each action under investigation, go through the list of aspects related to the

different modelling concepts and pick out those that are important.
2. For each aspect relevant to the action, elaborate metric considering the problems

identified in the analysis and description phase.

The following tables are the result of the process of selecting qualitative aspects
denoting functionality and reliability, and elaborating metrics for terminology retrieval
and terminology editing.

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 125

QUALITATIVE ASPECTS
functionality

METRIC SCALE

different options to perform action
(search terms)

processes: automatic retrieval/ manual
retrieval/ term lists?

binary nominal

suitability of output of automatic
retrieval

number of terms in sentence/number of
terms recognised
lemmatisation component?
languages supported with
lemmatisation?

ratio

binary

nominal

suitability of output of manual
retrieval

recognition of compound terms? binary

suitability of output of term lists terms in text/terms on list ratio
constraints on retrieval

retrieval according to constraints
possible?

binary

type of constraints on retrieval type of constraints:
author, subject area, date of entry ...

binary nominal

interaction with other actions automatic retrieval integrated into
output of TM retrieval?

binary

interaction with other objects retrieval from editor possible? binary
nature of data transmitted usage of different character sets in

editing window supported?
binary

size of data transmitted max. number of characters for retrieval
term?

ratio

nature of data stored information categories? binary nominal
origin of data in store source of TL term available

(author/date)?
source of information categories
available?

binary nominal
binary nominal

structure of data store term/concept oriented binary nominal
interaction with other internal stores access to different databases

possible?
binary

compliance with internal/external
standards

standard used: TIF ... binary nominal

effect of characteristics of terminator
(e.g. personal background) on
processes

different user profiles for retrieval
(translators, terminologists,
interpreters....)

binary nominal

characteristics of data (char,
boolean, integer, real)

integration of graphics? binary

form of data (e.g. character sets etc.) languages: en, de, fr, sp, ...

which character sets are supported?

binary nominal

nominal

complexity of data (language pairs,
bi-multilingual)

unidirectional/multidirectional? binary nominal

size of data in stores number of entries per language?
number of information categories?

ratio
ratio

availability of data to other actors multi-user?
number of users possible?

binary
ratio

suitability of data for purpose suitability of definitions?
suitability of contexts?

ordinal
ordinal

QUALITATIVE ASPECTS reliability METRIC SCALE
failures during performance of
actions

number of system breakdowns during
retrieval?

ratio

types of failures name failures and error messages nominal
action which leads to failure of object name steps that led to failure nominal
possibility to stop actions possible to stop retrieval process? binary
escape functions does escape stop retrieval process? binary

Figure 79: Metrics for Task-oriented Testing of Terminology Retrieval

CHAPTER 3: STRUCTURING AND PREPARING FOR EVALUATION 126

QUALITATIVE ASPECTS
functionality

METRIC SCALE

security in access of data password check before editing? binary
different options to perform action
(editing terms)

options: editing during translation/
editing after translation/proposing
changes by unauthorised translators?

binary nominal

procedure of building up data stores

"quick" editing possible (only minimal
information)?

binary

type of input necessary to perform
action

which info categories are a must for
"quick" editing (minimal information)?

nominal

customisability of data adding of new information categories
possible?

binary

availability of data to other actors edited info immediately available to
other users?

binary

availability of data to other processes stops system second editing process
with same term by different user?

binary

consistency management of data consistency/redundancy check during
editing?

binary

interaction with external stores copying of information from TM
possible?

binary

origin of data in store author/time label on each info category
edited?

binary

size of data in store limit of number or characters for info
fields?

binary

suitability of edited data check routines for entered info binary
constraints on data objects declaration of status of edited

information (e.g. red/amber green)
possible?

binary

QUALITATIVE ASPECTS reliability METRIC SCALE
confirmation of critical processes confirmation window after editing?

after each info cat?
after each term?
when changing to other processes?

binary nominal

possibilities to undo actions after confirmation and saving, undo
possible?

binary

possibility to stop saving process does "escape" work while saving
changes?
other possibilities to stop saving
process?

binary

nominal

interrupting saving process: what
happens to the data transmitted?

all changes preserved for new editing
(going back to the point directly before
hitting save)? or dismissing all
changes?

binary

failures during editing process number of failures during editing ratio
types of failures name type of failure nominal
recoverability of data in stores after system breakdown, newly edited

info available?
binary

reaction on errors on side of
terminators

error messages for user errors during
editing?

binary

Figure 80: Metrics for Task-oriented Testing of Terminology Editing

Considering that the above metrics for task-oriented testing refer to only two actions in
a translation environment as complex as the one described in the task description, it
becomes clear, how much effort has to invested in the development of metrics for all
tasks involved in the overall translation process.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 127

4. User-oriented Testing for Evaluation

The test model, which was briefly mentioned in the previous chapter, will play a
central role in the user-oriented evaluation of translators’ aids’ systems. It is based on
general software engineering principles for software testing, while at the same time
considering the specific problems in user-oriented evaluation. This chapter will outline
the basic testing principles from software engineering in section 4.1. Section 4.2 will
provide a detailed insight into the test model developed for evaluation. In section 4.3
the problem of test data generation will be discussed and examples given for the
evaluation of translators’ aids’ systems. Section 4.4, finally, will present practical
experiences and results of the user-oriented tests performed with two commercially
available translators’ aids’ systems.

4.1 Testing Approaches from Software Engineering

Software testing is a rather complex area in which there is little consensus with respect
to terminology or principal classifications. The US Institute of Electronic/Electrical
Engineering (IEEE) is one of the sources for computing scientist that has produced a
number of documents for guiding professionals in software testing and validation
(IEEE 1059). However, IEEE is primarily aimed at software engineers rather than
users. According to Sommerville (1996:pp.448) the testing process includes three
major activities:
• component testing performed by programmers with individual units and modules

after completion. It ensures that the program logic is complete and correct;
• integration testing includes tests on the sub-system and system level. The aim of

the system test is to compare the system to its operational requirements and original
objectives. It also validates system and product structure design;

• user testing is the final stage in the testing process before the system is accepted for
operational use. The system is tested with data supplied by the end-user rather than
simulated test data. It aims at comparing the program to its initial requirements and
current needs.

Of the above processes it is user testing that is to some extent directly applicable to the
evaluation of translators’ aids. However, it may also be possible to think of tests in
evaluation supporting development, in which only individual components of the
software are tested with users, for instance, only assessing the type of information
categories offered in the termbank (translation, definition, context, grammar etc.). The
concept of integration testing may also be relevant to tests in the evaluation of
translators’ aids, since it makes sure that the communication between the different

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 128

modules relevant in a translators’ aids’ system (editor, termbank, translation memory)
works properly.

Principally, there are two different approaches to testing, that is, glass box (or white
box) and black box testing, often also often referred to as code testing vs. acceptance
testing, or structural vs. functional testing. In glass box testing, test design takes into
account the knowledge of program internals. In black box testing, test design relies
mainly on the knowledge of the system requirements.

4.1.1 Glass Box Testing Techniques Relevant to User-Oriented Evaluation

There is one manually performed glass box testing technique that is particularly
relevant in the context of user-oriented evaluation, that is, program inspection (Fagan,
1976). Software inspection is defined in software testing textbooks as a group review
process that is used to detect and correct defects in a software workproduct. It is a
formal, technical activity that is performed by the workproduct author and a small peer
group on a limited amount of material and produces a formal, quantified report on the
resources expended and the results achieved. During inspection either the program or
the design of a workproduct is compared to a set of pre-established inspection rules.
Inspection processes are typically performed along checklists, which cover typical
aspects of software behaviour, and involves examining by reading, explaining, getting
explanations and understanding of system descriptions, software specifications and
programs. While most testing techniques are designed to test one specific software
quality characteristic, a major advantage of inspection processes is that any kind of
problem can be detected and thus results can be delivered with respect to every
software quality factor.

Software inspection as performed by software engineers may be adapted to user-
oriented evaluation. While in glass box testing, the software engineer compares the
source code to the specification along pre-defined rules and checklists, it may be
possible, to compare a translators’ aids’ system in user-oriented testing to the
requirements checklist by examining, reading and understanding both software system
and user documentation. The fact that results can be delivered with respect to any
software quality factor is another advantage that may be exploited in user-oriented
testing.

Another glass box testing technique that may have some influence on the development
of user-oriented testing methods is described by Sommerville (1996:471) and others as
path or branch testing. It involves the execution of the program during which as
many as possible logical paths of a program are exercised and requires that tests be

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 129

constructed in a way that every branch in a program is traversed at least once.
Problems when running the branches lead to the probability of later program defects.
The major quality attribute measured by path testing is program complexity.

It is the principal idea of path testing, that is, to follow each possible branch of the
program at least once, that may be taken up in user-oriented testing. Even in user-
oriented testing, it has to be made sure that the execution of each function offered by
the translators’ aids’ system will not cause problems. Therefore, it is likely that similar
tests in user-oriented testing will mainly measure the ISO quality attribute stability
rather than complexity.

4.1.2 Black Box Testing Techniques Relevant to User-oriented Evaluation

According to Sommerville (1996:466) black box testing implies that the selection of
test data as well as the interpretation of test results is performed on the basis of the
functional properties of the software (sub) system. Among the most important black
box tests are functionality testing, volume tests, stress tests, recovery testing, and
benchmarks. Crucial for black box testing techniques is the identification of the
mapping between ‘inputs causing anomalous behaviour’ by the system onto ‘outputs
which reveal the presence of defects’. This is of considerable importance for language
engineering in that input is invariably vulnerable to ambiguity and the same is true for
output. In textbooks it is repeatedly noted that the above types of black box testing
should, if possible, not be performed by the author of the program. In new testing
approaches, after the software developers successfully finished glass box testing, the
testing of software systems is outsourced.
 Functionality testing can be performed in different ways, either testing each

program feature or function in sequence, or testing module by module, that is, each
function where it is called first.

 The objective of volume tests is to find the limitations of the software by
processing a huge amount of data. A volume test can uncover problems that are
related to the performance of a system. It uncovers aspects such as incorrect buffer
sizes, a consumption of too much memory space, or, last but not least, response
time problems.

 During a stress test the system has to process a huge amount of data or perform
many function calls within a short span of time. A typical example could be to
perform the same function from all workstations connected in a LAN within a short
period of time .

 The aim of recovery testing is to make sure to which extent data can be recovered
after a system breakdown. Does the system provide possibilities to recover all of the
data or part of it? How much can be recovered and how? Is the recovered data still

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 130

correct and consistent? Particularly for software that needs high reliability
standards, recovery testing is very important.

 The concept of benchmark tests involves the testing of program efficiency. The
efficiency of a piece of software strongly depends on the hardware environment and
therefore benchmark tests always consider the soft/hardware combination. Whereas
for most software engineers benchmark tests are concerned with the quantitative
measurement of specific operations, some also consider user tests that compare the
efficiency of different software systems as benchmark tests. In the context of this
document, however, benchmark tests only denote operations that are independent of
personal variables.

Each of the above listed black box testing techniques does, to a certain extent, affect
the development of test types for user-oriented evaluation. Testing each function in
sequence will make sure that each function is tested at least once and thus guarantees
that the software fulfils its intended function. Particularly those functions that process
natural language have to be closely examined in terms of inputs and expected outputs.
Volume tests are important for translators’ aids, since the amount of data processed,
for instance, by translation memories may be huge. Stress tests can make sure that a
translation memory or terminology database can be accessed via the net by a large
number of users simultaneously. Recovery testing may be of some relevance to
translation memory databases, since it can show, whether the data entered during the
translation session is uncorrupted after a system breakdown. Benchmark tests, finally,
play an important role in the context of the evaluation of language engineering
products, since they measure the efficiency of these systems, which, to a large extent
depends on the quality of the system output, that is, on the correctness and
appropriateness of natural language text.

Acceptance testing is also a type of black box testing, since the generation of test
cases is performed on a purely functional basis, involving real data and real users. In
1979, Myers (1979:114) complained that computing industry has placed insufficient
attention on studying and defining good human-factor testing considerations. This is
still valid today. For tests involving users, methodological considerations are rare in
SE literature. Rather one may find practical test reports that distinguish roughly
between field and laboratory tests, for instance in test reports by Karat (1990);
Crellin/Horn/Preece (1990); or Moll/Ulich (1988). In the following the most important
aspects of these tests will be described briefly.
 In field tests users are observed while using the software system at their normal

working place. Apart from general usability-related aspects, field tests are
particularly useful for assessing the interoperability of the software system, that is,

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 131

how the technical integration of the system works. Moreover, field tests are the only
real means to elucidate problems of the organisational integration of the software
system into existing procedures. Particularly in the language engineering
environment this problem has frequently been underestimated. A typical example
for the organisational problem of implementing a translation memory is the
language service of a big automobile manufacturer, where the major
implementation problem is not the technical environment, but the fact that many
clients still submit their orders as print-out, that neither source texts nor target texts
are properly organised and stored and, last but not least, individual translators are
not too motivated to change their working habits.

 Laboratory tests are mostly performed to assess the general usability of the
system. Due to the high laboratory equipment costs, laboratory tests are mostly
performed by big software houses such as IBM or Microsoft. Since laboratory tests
provide testers with many technical possibilities such as video recording, and one-
way mirrors, data collection and analysis are easier than for field tests.

4.2 The Test Model for User-oriented Evaluation

Testing is the process of applying metrics and delivering attribute/value pairs.
Considering both methodological attempts to software evaluation and practical user
test reports in the broad software engineering area, one may roughly distinguish
between three principal goals in user-oriented testing, that is,
(i) to assess the appropriateness of a piece of software for every-day work
(ii) to examine the behaviour of software under specific conditions
(iii) to check the actual functionality of a piece of software
During the TWB projects a goal-oriented model of test types was developed and
proved to be appropriate for practical user-oriented evaluation problems
(Höge/Hohmann/Le-Hong, 1995; Höge/Hohmann/Le-Hong, 1993; Höge/Kroupa,
1991). Following the above goals of testing, the test types are (i) scenario testing; (ii)
systematic testing; and (iii) feature inspection. Special characteristics of the different
test types in terms of testing environment; tasks; systems under testing; users;
instruments, evaluation setup; and costs will be discussed. Moreover it will be
investigated, which type of quality characteristics can typically be assessed by which
type of test.

4.2.1 Scenario Testing

Though according to Karat (1990:352) the need to test systems in real work
environments is receiving increased attention, there has been hardly any
methodological attempt to define the exact nature of these kinds of tests. Myers

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 132

(1979:119) complained that user tests were often not considered the responsibility of
the development organisation but rather that of the customer or end user, who,
however, normally does neither have sufficient time nor the necessary software testing
skills to develop proper methodologies.

The term "scenario" has entered software engineering in the early 1990s. According to
Lubars/Potts/Richter (1993:14) or Gough/Fodemski/Higgins/Ray (1995:pp10),
scenarios are considered a more informative way of conveying information both
during requirements definition and testing. A scenario is based on the description of a
specific use case, that is, it covers a special sequence of related transactions performed
by an actor and the system in dialogue. It is a more comprehensive concept than use
case in that it also considers the environment and its parameters. A scenario test is a
test case which aims at a realistic user background for the evaluation of software as it
was defined and performed, for instance, in the TWB projects and later also adopted
by the EAGLES evaluation group. It is an instance of black box testing where the
major objective is to assess the suitability of a software product for every-day routines.
In short it involves putting the system into its intended use by its envisaged type of
user, performing a standardised task. Of the two types of acceptance tests described in
software engineering, that is, field and laboratory test, the field test comes closest to
the concept of scenario testing in the model of user-oriented test types. Both types of
user tests involve different testing environments, tasks, requirements on test system,
user participation, instruments, testing expertise, and time and money constraints.

A field test is a type of scenario test in which the testing environment is the normal
working place of the user, who is observed by one or more evaluator putting down
notes, taking times etc. Karat (1990:352) points out that from a psychological point of
view, the field test is considered to be the least obtrusive test in that it involves
basically the same physical and social environment factors as normal work does.
Among the physical environment factors, which are still likely to influence the
behaviour of the user, are the layout of the office space, crowding and noise level. The
most important social environment factors are office atmosphere and the normal pace
of work (people stopping by and requesting information etc.). However, despite the
advantage of displaying the every-day physical and social environment factors, a
certain variance in behaviour can result from the psychological effects of being
observed while working.

The task to be performed by different users during the field test should be standardised
so that there is a chance that every user will encounter the same kind of problems and
will have to perform similar operations to succeed. However, even standardised tasks

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 133

will be tackled differently by different users. As pointed out in chapter 1, each person
has a different epistemic knowledge base and will apply different heuristic strategies to
solve problems. The test task should correspond to the model, which was developed
during evaluation preparation. Ideally the overall test task fits well into the
organisational routine of the user's every day work and was developed beforehand in
consultation with a number of users of the same environment. An advantage of field
tests as compared to laboratory tests is that the test task can include problems of data
transfer between the test system and existing systems. To ease evaluation, the overall
test task needs to be divided into sub-tasks and actions, each identifying an operational
unit of performance. For each sub-task or action the metrics that are of interest should
be defined beforehand, so that the evaluator(s)' attention is automatically focussed on
particular aspects of performance. The procedure of doing so will be described in more
detail in the following chapter.

The development and application of metrics related to the test task are complex. The
metric time-on-task, for instance, has two pleas on objectivity:
(i) apply same task with and without software support
(ii) keep personal variables constant
In the context of translation, comprehensive tasks are likely to involve rather complex,
individually varying, problem solving strategies, which makes it difficult to compare
results of metrics such as time-on-task. Colgan/Brouwer-Janse (1990:255) report of the
problem that it is impossible to fulfil both pleas when considering complex tasks. On
the one hand, applying the same task with and without software support would mean
that the same user is confronted with the same task twice. Consequently, in the first
test round a translator would be encountered with more problems, for which he/she has
to develop strategies than in the second case, when he/she can tap his epistemic
knowledge base to retrieve solutions which have been elaborated before. A variation
of the test task, on the other hand, will lead to a different type and amount of problems
that have to be solved by the user and will thus blur the test results to some extent. A
variation of users is no solution either, since it will involve a different epistemic
knowledge base and different heuristic strategies. Consequently the metric time-on-
task can only be applied on the level of rather small sub-tasks, which do not involve
complex problem solving strategies. An example for such a small sub-task would be:
look up term in dictionary; test case (1) paper dictionary; test case (2) on-line
dictionary.

Closely related to the problem of the test task are the requirements on the system under
testing. If the test task can be considered as part of the daily organisational routine, the
software system under testing needs to be in a highly operable condition. Thus field

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 134

tests are most beneficial, if the systems under testing are at least ß-versions of products
to be launched in the near future or off-the-shelf products. The more the system
presupposes a deviation of the task from the normal routine, the less informative are
the results of the field tests.

For both kinds of scenario tests it is important that a representative number of users
participate in the tests. According to Oppermann (1988:12) there are a great number of
personal variables involved that can have a decisive influence on the performance of
the system, that is, in all cases computer literacy, motivation or day-time. For the more
complex language engineering applications, such as translators’ aids’ systems,
furthermore education, experience and expertise need to be considered. The
organisational environment of field tests, which do not involve much extra expenditure
for equipment etc. normally allow the participation of more subjects than in laboratory
tests of comparable costs.

The instruments commonly used in field tests range from the simple observation of
users and noting their behaviour on evaluation checklists, to pre-and post-testing
interviews, think aloud, and, last but not least, logfile recording, each of which will be
briefly discussed here.

Effective observation depends to a large extent on the suitability of the checklist. Thus
the checklist needs to be well organised, providing the possibility to take up every item
that relates to those quality characteristics of interest. At the same time an evaluation
checklist needs to be flexible enough to follow unexpected user behaviour. Whereas it
is pretty easy to fill in inspection checklists, effective checklisting in scenario tests is
very difficult. This is mostly due to the fact that the observer has to do two things at
the same time, that is, observing and noting. Thus it is advisable to perform pilot
observations with a draft checklist before actually entering a test, if the observer has
no checklisting experience and/or the appropriateness of the checklist has not been
tested before. Experience proved that for evaluation checklists, it is most adequate to
use a table format that has at least the following columns:
• description of sub-tasks
• function performed
• user comments
• observation remarks
• user errors/problems
• help request
• system failure
• time of action

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 135

According to Moll/Ulich (1988:73); or Crellin/Horn/Preece (1990:330) pre-testing
interviews are performed in order to elicit the subjects' personal background, opinion
and expectations concerning the system that is going to be tested. The information
gained by means of pre-testing interviews gives valuable hints when interpreting the
scenario test results. Testing in the TWB I and II projects proved that post-testing
interviews are an important, if not necessary, part of each scenario test. They are
performed after the observational data (video tapes or checklists) and logging
protocols are analysed. Each aspect that needs further clarification is taken up in the
post-testing interview. When performed in conjunction with video observation or think
aloud, the behaviour and comments of the subjects in particular situations can be
discussed with the subject and analysed jointly. A combination of both pre-and post-
testing interview is particularly useful, since it also allows the assessment of the
change of mind of subjects during the testing exercise. Moll/Ulich (1988:pp73), for
instance, reported that at the beginning of a test, attitudes towards the usefulness of
help systems were quite positive, while at the end, after having used the help system
various times it was much more negative.

Think aloud protocols are used in many empirical investigations. They are a means of
qualitative data collection. Vainio-Larsson (1990:325); Moll/Ulich (1988:74); and
Crellin/Horn/Preece (1990:331) point out that the motivation behind using think aloud
protocols is to collect information on the users' own reasons for their behaviour or, as
Goguen/Linde (1993:156) put it, to get a direct verbalisation of specific cognitive
processes. According to Cordingley (1989:143), instructions for the knowledge
provider are likely to include:
• say out loud everything you are thinking from the first time you see the problem

until you solved it
• talk aloud constantly
• do not think about what you are going to say
• do not explain what you are saying

Criticisms of think aloud protocols are based on doubts concerning their validity and
reliability. Goguen/Linde (1993:157), for instance, argue that think aloud protocol
analysis "... is based on a simplistic cognitivist model of human thinking as essentially
computational, involving abstract representations of concepts, and their transformation
by algorithms that are precisely specified by computer programs." Moreover, think
aloud protocols presuppose that users are able to describe their actions, which is often
not the case for routine processes. Think aloud protocols are only appropriate for
subjects who are trained to verbalise their thoughts. Also, Hönig (1991:82) argues that

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 136

what users are able to verbalise, represents only the conscious part of their thoughts
and thus neglects important subconscious aspects. Another problem of applying think
aloud protocols is that it may have a negative effect on the user behaviour it is even
more intrusive than pure observation, and, finally, Vainio-Larsson (1990:325)
complain that "... many users have difficulty in acting and reflecting simultaneously."
Due to criticism concerning both validity and reliability of think-aloud protocols, in
testing practice they should only be used as a complementary method. As such they
are valuable, since they can provide clues to problems that stem from the interpretation
of data gathered by means of other techniques

Logging and playback programs are general data collection programs that can be used
with actual product code or prototypes of the user interface of a product under
development. Vainio-Larsson (1990:325) argue that recording not verbalised
operations, that is, all keystrokes and mouse activities, including incorrect inputs,
provides useful information on quality characteristics related to the usability and
functionality of the software. For instance provides the frequency of use of a certain
function within several testing sessions some hints on the task-relevance of the
function, the occurrence of cumulative handling errors of users provide information on
the understandability as well as on the learnability of the function, the suitability of
the help function can be assessed from the number of cases in which after the
consultation of help solutions were found etc.. Diaper (1989-3:229) points out that the
major advantage of using logging and playback programs is that they work
automatically, are error-free and broaden the scope of results, since they provide the
evaluator with a large amount of extra data and insight. Contextual information on the
user behaviour, however, which is vital for correct data interpretation, has to be
elicited by means of additional instruments such as observation or interviews.

The choice of instruments depends on various factors such as time and money
constraints, technical facilities, evaluation expertise etc. Due to the limited possibilities
of retrospective data analysis present in field tests, it is important that the data gained
with the aid of the different instruments (notes on user behaviour, interaction etc.) be
analysed right after finishing the test, because otherwise important contextual
information is likely to get lost.

The evaluation setup of field tests generally puts heavy demands on the expertise and
experience of the evaluator. The system under testing needs to be organisationally and
technically integrated into the existing environment. The normal working routine
should be interrupted as little as possible during the test. Whereas laboratory tests
provide the evaluator with various possibilities to record and re-play the different test

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 137

situations, evaluators in field tests mostly have to rely on what they identify as
important information during the various situations in a test.

The final costs of a scenario depend on personnel and equipment. The major difference
in costs between field and laboratory tests lies in the equipment. Field tests ask for
comparatively little equipment expenses because hardly any investment in additional
technical evaluation instruments is obligatory. Thus, according to Karat (1990:355)
field tests mostly invoke less costs than their laboratory counterpart.

The following table outlines the major differences between field and laboratory tests in
terms of those parameters that were discussed above.

 FIELD TEST LABORATORY TEST
testing environment normal working place

least (but still slightly) obtrusive
same physical/social environment
factors

laboratory
obtrusive
new working environment
integration of developers into tests
possible

test task representative integrated tasks
fits into every-day routine
includes problems of data transfer

non-integrated tasks
possible to test specific modules
only

test system required operable system or ß version prototypes or operable systems
users more users/budget less users/budget
instruments direct observation

think aloud
checklisting
pre- and/or post-testing interviews
logging programs

indirect observation
- one-way mirrors
- video recording
- audio recording
think aloud
logging programs

evaluation setup

technical and organisational integration
into existing environment
interruption of working routine

experimental setup
no integration into environment

comparison of costs moderate high

Figure 81: Field Test - Laboratory Test - A Comparison

Of all test types it is mainly the scenario test that can provide the most detailed
information on the quality subcharacteristics understandability, learnability and
operability. Additionally scenario tests can provide detailed information on suitability,
interoperability and customisability. Depending on the test task, information can also
be elicited on a system's maturity, fault tolerance, and recoverability, as well as on
time- and resource behaviour. In addition to these central characteristics, the problems
encountered during system installation and adaptation may provide information about
a system's changeability as well as about installability, and adaptability. Karat
(1990:353); Lewis/Henry/Mack (1990:338) and many more report that typical metrics
applied in scenario tests are time on task, completion rate, error free rate, time needed
for training programme, frequency of help/documentation use etc.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 138

The quasi experimental design in scenario tests delivers to a large extent subjective
results. The most commonly used techniques to reduce subjectivity in scenario tests,
therefore, are to calculate averages and variances on a sufficiently large number of
subjective judgements, while trying to avoid inferences with other systems. However,
striving for a "cleanroom" approach for scenario tests by selecting test persons and
subjects that do not to have inferences with other systems is dangerous, since while
achieving more objectivity, the results are likely to become less representative. Thus,
in user-oriented evaluation the conviction is shared with behavioural scientists like
Edwards/Guttentag/Snapper (1975:145), who argue that it is often not possible to
study user-related issues without making use of quasi or pseudo experimental design,
despite all its shortcomings in terms of objectivity.

4.2.2 Systematic Testing

Under the term systematic testing all testing activities are subsumed that examine the
behaviour of software under specific conditions with particular results expected.
Whereas the objectives behind scenario testing ask for the integration of users into
testing, systematic tests can be performed solely by software engineers and/or user
representatives. Systematic testing follows three major objectives:
(i) examining whether the software offers functions for pre-defined tasks;
(ii) examining whether the functions offered work properly; and
(iii) examining the performance of the system functions.
Accordingly user-oriented systematic testing will be split up into task-oriented testing
(section 4.2.2.1), interface-driven testing (section 4.2.2.2), and, benchmark testing
(section 4.2.2.3).

4.2.2.1 Task-oriented Testing

Task-oriented testing is performed to examine whether and the extent to which a piece
of software offers functions to perform specific tasks. Task-oriented testing is related
to scenario testing in that its major purpose is to assess the overall functionality of the
system by means of relevant data inputs, as well as to examine the quality of the data
output. Yet, there are several reasons why one may decide in favour of task-oriented
testing instead of performing scenario tests, that is,
(i) restricted budget
(ii) time constraints
(iii) no users available
(iv) no laboratory available
(v) functionality of prototypes restrictive in performance

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 139

The final success of task-oriented testing lies in the exhaustive definition of a
representative number of test tasks and subtasks, which should be both relevant to the
application domain, and supported by the system under consideration. It focuses on
performing critical functions of a system, that is tasks that involve a complex
interaction between processes, stores, and terminators on the one hand, or objects and
actions on the other. Whereas in scenario testing, the test task needs to be
standardised, task-oriented testing can define a broad range of test tasks, which may all
be relevant to one user or the other. Whereas in field tests, for instance, problems in
the performance of the test task (e.g. system failures etc.) lead to an interruption and
therefore a rather costly failure of the whole testing process, task-oriented testing
allows a repetition of test tasks, while documenting the problems encountered. While
in scenario testing each sub-task has to be defined beforehand, task-oriented testing
leaves more space concerning an investigation of the possible ways of performing a
given task with a given system.

Testing instruments that are applied during task-oriented testing are mainly restricted
to checklists containing the tasks, sub-tasks and related metrics and test problem
reports. Test problem reports provide developers with the detailed description of
problems that occur during testing. According to Thaller (1993:123) they can be very
important instruments in the context of evaluation supporting development, since they
aim at the improvement of the software. The most important part of test problem
reports is the detailed description of the problem and the actions that led to the
problem. A diagnosis of the failure is given and the action required is described, if
possible. Another important aspect that needs to be noted in test problem reports is the
priority ID of the failure. The following failure priority score, which is presented by
Deutsch (1982:289), can be considered generally representative.

1 fix immediately - catastrophic error, test cannot proceed
2 fix before test completion - serious error, severe degradation in performance,

but can continue test process
3 fix before system acceptance - moderate error, specification can be met
4 fix by a specific date or event
5 hold for later disposition
T non-repeatable occurrence - problem will be tracked for reoccurrence
X new problem - problem assumed to be serious but insufficient data available for

analysis, investigation required

Figure 82: Failure Priority ID Score

A sample test problem report sheet of the TWB Projects will be provided the appendix
1.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 140

The costs of task-oriented testing are comparatively small and depend on the number
of tasks tested. Apart from the technical environment of the evaluator (hard-and
software) no extra investment into testing equipment or instrument is necessary for
task-oriented testing.

The primary quality characteristic under investigation in task-oriented testing is
functionality. In this sense task-oriented testing comes close to what software
engineers call "functionality testing," that is, investigating whether the program does
what it is supposed to do. Being able to test a great number of different tasks, the
suitability of the software, that is, the presence, appropriateness and accuracy of a set
of functions for specified tasks can be closely examined. When performed at the final
installation place of the software, task-oriented testing can also deliver valuable results
concerning the interoperability of the software. For this purpose, the tasks must cover
the communication with other applications and/or users within the given environment.
The compliance of a system's user interface, as well as system interface- and data
formats to standards can be tested thoroughly. It can be tested whether the system
meets required security standards for the access of data stores or the performance of
functions. Also, the effect of the system's customisability on the output of the data can
be examined. Task-oriented testing can further provide some information on the
system's reliability in terms of its maturity (relating to the problems encountered
during testing), its fault tolerance (related to the problems of incorrect inputs) and
recoverability (related to incorrect actions). In addition, the usability of the system can
be assessed - though with a different focus and in a different way than in scenario
testing. One of the most frequently applied metrics of operability in task-oriented
testing, for instance, is counting of steps necessary to perform a certain task, or
evaluating the user interface layout (interface fonts, windows, icons, buttons etc.).
Similar to scenario testing, there is no particular focus on testing efficiency during
task-oriented testing. Nevertheless some results may be obtained concerning a the
time- and resource behaviour of a system while performing specific tasks.

Task-oriented testing can be carried out during the software development process at
any stage of the software life-cycle as well as with any off-the-shelf software product.
Users are only involved in the definition of the test task and not as subjects.
Consequently, the overall organisation of task-oriented testing is less demanding than
for scenario tests.

4.2.2.2 Interface-driven Testing

While both scenario and task-oriented testing are mainly geared to examine the
handling and functionality of the software, the philosophy behind interface-driven

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 141

testing comes closest to the software engineer’s principal aim, that is, the discovery of
software problems. Interface-driven testing follows the software engineer’s principle
of testing by following each possible path or function in sequence. Consequently,
while in both scenario and task-oriented testing only particular functions are
performed, namely those that are necessary to perform the test tasks, in interface-
driven testing each function of the software is executed at least once.

Similar to task-oriented testing, interface-driven testing can be performed at any stage
of the software life-cycle as well as with off-the-shelf products. The test does not have
to fit into any operational environment and does not involve users. Instead of
following pre-defined tasks, the evaluator explores any possible way of handling the
system. The modelling of central functions, objects and data is the basis for the
definition of the most important metrics. However, as is also true for task-oriented
testing, not every metric relevant to interface-driven testing can be defined prior to
testing. This is due to the fact that the test is not performed along a certain pre-defined
task and the evaluator, therefore, cannot anticipate at what stage he/she will encounter
which type of function. It may be necessary, therefore, that the evaluator has to
develop metrics and elaborate test data, perform tests and document the results on an
ad hoc basis while executing the software. Only when executing a certain function, the
evaluator can guess which data is needed to perform certain operations with the
functions offered by the user interface (the WHAT HAPPENS IF ... test). The costs of
interface-driven testing mainly lie in the recruitment of experienced evaluation
personnel that is capable of the ad hoc generation of metrics and data.

In interface-driven testing the major focus lies on delivering results on the system's
reliability, including characteristics such as maturity, fault tolerance or recoverability.
In the case of a terminology elicitation system, for instance, a volume test can be
performed by executing the option "do concordance" with an unusually big file. For a
translation memory a stress test could be performed, accessing, for instance, a certain
number of parallel texts by different users on the LAN at the same time. Recovery
tests could be performed with a termbank when, e.g. simulating a system breakdown
(e.g. on a PC by the key combination control/alt/del) before and after having properly
saved terminology modifications. Apart from reliability, interface-driven testing
delivers results about a system's functionality. Valuable results can be elicited
concerning the system's compliance with other standards, e.g. whether a windows
application consistently makes use of the same windows system messages as other
applications do, or whether the system is internally consistent concerning its naming of
functions and processes etc. Also system security is one of the characteristics that only
interface-driven testing can sufficiently investigate, since unlike in task-oriented and

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 142

scenario testing, it is certain that every function is performed and checked. If
performed in the environment where the system is going to work, the interoperability
of the system with other devices can be assessed. Finally, the customisability of the
overall system can be tested. The testing of usability is possible in interface-driven
testing, though it is not a major focus. The results about understandability and
learnability are subjective, going back to only one individual. The results on
operability are not necessarily as subjective. The counting of steps to perform
functions, for instance, is an important objective metric that can be performed for all
functions and compared between systems. Interface-driven testing does not focus on
testing the efficiency of a system. In practical terms, interface-driven testing often
allows the identification of functions that do not involve personal variables, that is,
which can at a later stage be benchmarked. In rare cases, results are obtained about
time- and resource behaviour.

4.2.2.3 Benchmark Testing

The benchmark test examines the performance of systems, either of individual
functions and modules, or of the overall system. In the strict technical sense, a
benchmark test is the measurement of system performance without being dependent on
personal variables. Thus, following the narrow definition of benchmark, there are very
few possibilities to apply benchmarks on the module or even system level of
interactive systems. Software engineers like Lewis/Henry/Mack (1990:337); or
Oppermann (1988:12) use the term benchmark in the wider sense to denote the
comparison of the overall performance of different interactive systems. In the context
of this thesis, however, the term benchmark will only be used in its original technical
sense, that is, denoting objective, reliable system measurement. Examples of
benchmark tests in the language engineering area are on the function level, e.g. the
measurement of success rates for automatic terminology retrieval functions, the
measurement of translation retrieval rates for translation memories, or the
measurement of time for the parsing of a text. For a detailed description of a number
of benchmarks applied with translators’ aids’ systems see Schüler (1995).

A benchmark tests in the strict technical sense roughly involves the following
activities:
• the identification of functions independent of users by means of modelling
• the definition and elaboration of data that the function is supposed to process
• the definition of the expected correct data output
• the investigation of possible sources of error
• the measurement of time or resources spent.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 143

Benchmark tests allow the comparison of the performance of different systems. When
performing the same benchmark with different systems, it has to be kept in mind that
both system parameters and environment variables be kept constant. Only if different
translation memories, for instance, have access to the very same background material
and are tested with the very same test text, the comparison of the benchmark results
makes sense.

The metrics applied in benchmark tests measure largely time and resource behaviour.
For language engineering applications such as translators’ aids there are also
benchmarks measuring the accuracy of system output both in terms of their
correctness and the expected quantity (e.g. recall rates). The type of results achieved
by means of this type of benchmark tests are mostly numbers, e.g. the time needed to
perform a certain function, the resources needed when performing a function, the
amount of output data produced in a given time or the ratio between input and correct
output data.

4.2.3 Feature Inspection

The aim of feature inspection is to describe the technical features of a piece of
software as detailed as possible, so that it allows the comparison between systems of
the same type. There is a conceptual similarity between feature inspection and the
glass box concept of inspection, which involves the comparison between a piece of
software and a pre-defined feature checklist. Similarly to glass-box inspection, it is
essentially a manual testing technique that does not necessarily involve the execution
of the program. To a certain degree, feature inspection can be performed on the basis
of the software documentation. However, while its glass box counterpart is a means to
actively seek for software problems, feature inspection in user-oriented evaluation has
a more descriptive character, that is, checking the availability of features rather than
the absence of errors.

Spies (1995:97–115) presents a detailed comparative feature checklist for translators’
aids’ systems. Successful feature inspection depends mainly on the quality of the
feature checklist along which the evaluator examines the software. Feature checklists
incorporate mainly binary nominal, in some cases also ratio scales. Particular attention
has to be paid to the definition of user profiles, capturing possibly disjoint
requirements of the customers of the evaluation process. In practical terms this means
that the evaluator elaborating a feature checklist needs to study a broad range of user
requirements including organisational constraints of different setups. Moreover, the
evaluator has to get acquainted with a broad range of systems of the same type, in
order to be able to grasp (possibly disjoint) underlying philosophies.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 144

Any feature checklist in the context of evaluation needs to be both standardised in the
sense that it should be independent of situational variables and open in the sense that it
can cover different approaches to a problem without being prescriptive in nature. Since
most feature checklists are based on the state of the art of development, they only
describe features that are common technology. If, however, new technical solutions
have been found to an "old" problem these solutions are not likely to be instantly part
of feature checklists..

Similarly to glass box inspection, feature inspection can tackle every quality
characteristic. The major focus, however, lies on investigating the system's
functionality. As pointed out before, feature inspection is not concerned with the way
features are implemented but rather whether or not those features that are considered
important are present.

4.2.4 Conclusion to the Model of User-Oriented Test Types

The three test types discussed above are based on common software engineering
principles and are the result of constant reconsideration and refinement on the basis of
both practical test cycles in an industrial translation environment and scientific
evaluation research. Practical testing experience showed that the three test types take
into account the specific requirements of user-oriented evaluation of language
engineering products more than any of the existing testing models. Existing glass and
black box testing techniques and methodologies are geared to testing as part of the
software life-cycle and the software engineer as agent of evaluation. The user-oriented
model discussed above is geared to the testing of language engineering systems by
evaluation agents who do not necessarily have a computational background.

However, as any model asks for categorisation and simplification, the model of test
types developed in this section may also not be able to directly accommodate every
situation imaginable in the context of evaluation. Moreover, for existing testing
environments that were not primarily elaborated according to the above goal-oriented
approach, it may be difficult to fit individual testing procedures into one or the other
category of tests. Particularly complex setups always have asked and always will ask
for hybrid test types. Thus the model has to be understood as point of orientation in the
jungle of evaluation techniques rather than a fixed frame into which any setup has to
be pressed.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 145

4.3 Test Data Elaboration in User-Oriented Testing

In a technical sense, a test establishes a quality relationship between system inputs and
outputs. The selection and preparation of test data, therefore, is closely linked to the
test types and instruments, which are to be used in a test. IEEE 1059:15 defines the
principal goal in the selection or elaboration of test data to be to uncover errors,
omissions, and unexpected results. In user-oriented testing, however, the principal goal
is to determine how well a system does what it is supposed to do and only secondly to
uncover errors, omissions and unexpected results. Another difference between user-
oriented and development-oriented testing that has to be noted in connection with test
data selection is that in user-oriented testing the selection or elaboration of test data
cannot be based on a deeper understanding of the program internals. What is it then
that drives the selection of test data in user-oriented evaluation of language
engineering products? In order to throw some light onto this question the following
chapter strives to
• give a brief overview of general issues related to the selection or elaboration of test

data in the context of software engineering as well as what is relevant to user-
oriented evaluation;

• present the types of test data that are most frequently used in the language
engineering context, their characteristics, advantages and drawbacks;

• elaborate which parameters have to be considered for test data selection and
elaboration in user-oriented evaluation of language engineering products; and

• give an example for test data elaboration to evaluate the adequacy of a translation
memory component for an international car manufacturer.

Balkan et al (1994-1:pp.27) identify three characteristics of test inputs (or test items as
they are frequently called) that are of particular interest to NLP evaluation, that is,
nature, coverage, and origin.
• The nature of test items for language engineering applications denotes both

linguistic and extra-linguistic phenomena. Linguistic phenomena may cover
instances of morphology, syntax, semantics, extra-linguistic phenomena include
numbers, acronyms, formatting, punctuation, lists, figures etc.

• The coverage of test items refers to the degree to which different phenomena are
used as test items (breadth of coverage) and to the degree to which a combination of
phenomena is tested (depth of coverage). In the framework of TSNLP (Test Suites
for Natural Language Processing), Balkan et al. (1994-2:6) give the following
example of high level phenomena:

 breath of coverage: morphology
 syntax
 semantics

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 146

 extra-grammatical
 depth of coverage: ill-formed data
 interaction and co-occurrence.
• The origin of test items is of particular importance to the evaluation of language

engineering systems. Particularly the question whether test items are artificially
constructed to cover specific phenomena, or based on or even extracted from real
text? A frequently applied distinction of test data with respect to its origin is
between test collections, test suites and test corpora, which will be discussed
under 4.3.2.

4.3.1 Approaches to Select System Inputs

In the software engineering context, there is a strong need for vigorously choosing test
data that, on the one hand does not influence the development strategy, but on the
other provides good feedback upon use to both developers and users. In general, data
input for testing purposes can be characterised with respect to its validity, where valid
data includes all inputs a program should be able to process and invalid (or erroneous)
data includes all inputs that a program should not process, that is, should mark or
reject. The definition of both valid and invalid inputs is based on the functionality of
the program, that is, what exactly is the program supposed to do? A simple example
would be a client database, which at some stage requires the client's date of birth as
input. Offering six blank characters as input space, the only type of valid input is
number: day/month/year. Instances of invalid input would be characters instead of
numbers, or numbers over 31 for day, over 12 for month.

Myers (1979:36-46) discusses two approaches to test data selection, that is, random
testing, where test data is selected or generated randomly and functional testing,
where functional properties of the system guide the selection of test data.

The most important classical approach to the selection of test data in functional testing
is equivalence partitioning. It is based on the fact that programs normally behave in a
comparable way for all members of a class. It aims at selecting those subsets of
possible system inputs with the highest probability or finding the most errors. This
involves the identification of different input phenomena and the
partitioning/categorisation of these phenomena into a finite number of equivalence
classes such that one can reasonably assume that a test of a representative value of
each class is equivalent to a test of any other value of that same class. The
identification of equivalence classes is a heuristic process that starts from statements in
the system specification. For each condition in the system specification, classes of
inputs are specified that the system is supposed to process (valid equivalence classes)

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 147

and those that the system is supposed to mark (invalid equivalence classes). Myers,
provides the following tabular example for the elaboration of equivalence classes for a
simple condition stated in the specification of some program:

EXTERNAL
CONDITION

VALID EQUIVALENCE
CLASSES

INVALID EQUIVALENCE
CLASSES

"the item count can be
from 1 to 999"

1<item count<999 item count <1

 item count >999

Figure 83: Valid and Invalid Equivalence Classes from Myers (1979:46)

The second important classical approach to test data selection is boundary value
analysis, in which the boundary conditions of a system are explored. According to
Myers (1979:50), boundary conditions are those situations directly on, above, and
beneath the edges of input equivalence classes and output equivalence classes. This
mainly involves the selection of test inputs that represent the ends of accepted ranges
of inputs, such as maximum and minimum values.

It is interesting to note here that apart from the above two generally acknowledged
approaches to test data elaboration, Myers presents another approach which he calls
error guessing. Given a particular program, evaluators surmise, both by intuition and
experience, certain probable types of errors and then write test cases to expose these
errors.

In the context of testing language engineering products the selection of test data is an
important issue, since the complexity and ambiguity of language needs to be taken into
account in order to deliver reliable results. A mixture of the above approaches from
software engineering may be useful to select relevant test data in evaluation of
translators’ aids’ systems. Of the three approaches discussed above error guessing is
the one that comes closest to the approach that is naturally followed in user-oriented
evaluation. It is based on a thorough understanding of the problem domain and a
general insight into the capabilities of the systems under consideration. Error guessing
delivers results on the behaviour of a system in those situations that are considered
critical. However, only making use of error guessing in the elaboration of test data and
test case design would lead to a very low coverage of test cases. Consequently error
guessing needs to be complemented by engineering strategies that will lead to a higher
coverage of test cases in user-oriented evaluation. The approaches to equivalence
partitioning and boundary value analysis are particularly interesting in this respect.
The identification of classes of inputs that share principal characteristics and therefore
are likely to yield similar results is relevant to both the detection of errors and the
definition of how well a system does what it is supposed to do. In user-oriented testing

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 148

of language engineering systems the identification of classes of input is impeded by
the following problems:
(i) testing is performed on a higher level, that is, on the level of integrated systems

rather than of modules;
(ii) in a black-box situation, the evaluator has no access to program internals;
(iii) the processing of natural language is not a totally rule-based problem.

Due to the above presented facts, in user-oriented evaluation of language engineering
systems, the classical approaches cannot be performed exactly in the same way as in
the development context. Yet what can be taken over is the way to approach the
problem of data elaboration. The following strategy can be employed in user-oriented
evaluation for each function to be tested:
1. Problem domain definition: identify roughly what the user expects of a particular

function in terms of what type of data should be processed and how the results
should be (specify attributes of {D}).

2. System functionality definition: identify roughly what the system is supposed to
be capable of doing (specify attributes of {M}).

3. Error guessing: consider which situations are particularly error prone
(experience/intuition).

4. Test cases definition: define the type of input for error-prone situations.
5. Input text examination: examine the type of data that should be processed in terms

of its characteristics.
6. Input categorisation: organise the characteristics of the data into different

categories that relate to the same problem.
7. Test cases definition: identify test cases for each category.
8. Boundary value definition: identify, if possible, boundary values for each input

class

To illustrate the applicability of the above proposed procedure the following example
will be given that sketches the procedure of test data elaboration for a benchmark test
which is supposed to measure the suitability of a translation memory retrieval
component.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 149

STEP TASK DESCRIPTION

1 Problem domain
definition

the system should provide translations to source language
sentences that are identical or similar to those that were
already translated;
it should propose the translations in a way that the least
necessary amendments have to be made

2

System functionality
definition

the system performs segmentation, that is, separates different
translation units
the system stores translation units together with their source
language equivalent
the system retrieves identical or similar source language
sentences and presents their translations
the system recognises numbers and adapts them in the
translation proposals

3 Error guessing variation in sentence structure
identical parts of sentences

4 Test cases definition handling of variations in sentence structure
split sentence with two segments into two separate sentences
unite two separate sentences into one sentence
change of sequence of main and sub-clauses
handling of only identical parts of sentences
deletion of sub-clauses

5 Input text
examination

variation in formatting
variation in brand names
variation in type numbers
variation in dates
variation in acronyms

6 Input categorisation handling of formatting
handling of variable numbers
handling of variable characters

7 Test cases definition handling of formatting
for formatted text strings: remove formatting, change
formatting
for non-formatted text strings add formatting
handling of variable numbers
change type numbers, date numbers
handling of variable characters
change names, acronyms

8 Boundary value
definition

not identified in this case

Figure 84: Example for the Elaboration of Test Data

4.3.2 Types of Test Data in the Language Engineering Context

It has been pointed out before that test data can be distinguished in terms of their
origin. In the language engineering context a frequent distinction of test data is
between test corpora, test suites and test collections, which can be located at some
point between the two poles of real text and artificially constructed test inputs. It is
important to note that, though it is theoretically possible to draw clear lines between
the three types of data, the boundaries become somewhat fluid in practical evaluation
exercises. Apart from the origin of test items, major issues related to the elaboration of
test data are representativeness, re-usability, cost, complexity of construction, and size.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 150

In the following the three types of test data will be discussed considering the above
issues, mentioning some of the advantages and drawbacks associated with each.

4.3.2.1 Test Corpora

Corpora consist of large quantities of naturally occurring machine readable text. The
interest in corpora has grown with the power of increased computing capacity to
process and store large amounts of data. Some of the best known corpora are the BNC
(British National Corpus), the Brown Corpus of English, the Trésor de la Langue
Francaise, and the bi-lingual (English-French) corpus drawn from the Canadian
Hansard. In addition there are various initiatives that aim at the collection of what may
be called 'general' corpora, such as the data collection initiative (DCI), launched by the
Association for Computational Linguists, the Linguistic Data Consortium, and last but
not least, the European Corpus Initiative.

The idea of making use of existing corpora for testing purposes is based on the
assumption that, if the corpus is large enough, any linguistic or extra-linguistic
problem that is of practical interest is bound to occur at least once. Yet, each text
reflects properties related to the pragmatic background in which it was written.
Therefore the problem of representativeness arises when making use of general test
corpora. Specific evaluation scenarios mostly ask for a specific type of test input in
terms of text type or language. Thus for evaluation, particular attention has to be paid
to the question of what a particular corpus is representative for. The re-usability of test
corpora is very high, since the same corpus may be used for testing various
applications with a broad range of functionalities. The collection of corpora is a
delicate matter in which ownership and copyright problems require careful
consideration. The usage of existing corpora for testing purposes, however, ask for
comparatively little money investment, since most of the corpora are available on FTP
or WWW sites to a broad community. Another advantage of test corpora, is that the
coverage of a test corpus is a matter of the size of the corpus rather than of a complex
and costly construction of test inputs.

4.3.2.2 Test Suites

According to Balkan et al. (1995-2:3) test suites are artificially constructed sets of
inputs that represent specific, pre-defined phenomena, which are systematically
ordered to probe the system's behaviour with respect to these same phenomena. The
elaboration of test suites involves the definition of the validity and nature of system
inputs as well as the detailed consideration of its breath and depth of coverage. Balkan

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 151

et al. (1995-1:pp.42) present the following principles frequently adopted for test suite
design:
* one input sentence per phenomenon allows the identification of the system's

behaviour with respect to that phenomenon.
* changing one parameter at a time allows the identification of a system's problem

with interacting phenomena.
* less complex to complex phenomena allows the identification of a system's limit

of capacity.

According to Balkan et al. (1995-1:pp.44) advantages of test suites over test corpora
mainly lie in the control over test data and its coverage: while the occurrence of
critical phenomena in a test corpus is only accidental, a test suite allows the testing of
a particular phenomenon in isolation, or combination, and allows a variation of
parameters. Another advantage lies in the possibilities of the presentation of both test
inputs and outputs by means of systematic annotation schemes. Moreover, the use of
annotations, the classification of phenomena and the need for in-depth coverage of
phenomena are some test suite characteristics that constitute a good basis for re-
usability.

Yet problems related to the complexity of the construction of test suites for language
engineering applications are broadly recognised: even at the level of syntactic
phenomena, there are problems in identifying inputs which will test precisely what one
wants to test, and once semantic, pragmatic or translation phenomena are taken into
consideration, test suite design becomes a very delicate matter indeed. Closely related
to the complexity of construction of test suites is their size and administration.
King/Falkedal (1990) show that covering one phenomena per sentence, testing
interacting phenomena and changing parameters, test suites can quickly become
unmanageably large. Finally, given the complexity of construction and the effort of
administering test suites, the costs for their design and usage are comparatively high.

4.3.2.3 Test Collections

In the classical sense, test collections consist of a set of inputs associated with a
corresponding set of expected outputs and thus comes closest to the above SE
definition of a test case. The major problem in elaborating test collections lies in the
definition of expected sets of outputs, which mainly involve the definition of
correctness. The MUC evaluations in Lehnert/Sundheim (1991) showed that in
information retrieval, the area with the most prominent experience in developing test
collections, the definition of the correctness of outputs for metrics such as 'recall' and
'precision' is straightforward. For translators’ aids’ systems or machine translation,

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 152

however, it is not always possible to define the correctness of outputs in exact terms.
This is due to the fact that there is in most cases no one and only solution to a
translation problem.

The most obvious advantages of test collections lie in the possibility to arrive at very
detailed objective, numeric results of a system's capacity to deal with particular
phenomena. The value of test collections and their re-usability to comparatively
evaluate systems of the same type cannot be denied either.

The complexity of construction of test collections and the corresponding high costs,
however, makes it hard to imagine their being constructed outside the evaluation
guided research paradigm. Even for a minimal coverage of test cases, the size of test
collections can become very large and hard to administer. In terms of re-usability, test
collections are very specific to particular types of systems and thus need adjustment,
when being applied to systems with a slightly different functionality. Nevertheless, are
test collections in principal a very valuable source for further evaluation research.

The following table summarises the critical issues of the three types of test data in
terms of their representativeness, re-usability, complexity of construction, cost and
size.

ISSUES TEST CORPORA TEST SUITES TEST COLLECTIONS
representativeness critical for general

corpora
depends on
classification of
phenomena

depends on
classification of
phenomena

re-usability high medium: mainly of
annotations,
classification of
phenomena

critical: need major
adjustment for different
systems

complexity of
construction

collection of corpora:
medium
(ownership/copyright)
usage of corpora: low

high: one test input per
phenomena; interacting
phenomena; changing
parameter

very high: same
problem as test suites,
plus definition of
expected output

cost low high very high
size needs to be rather

large
large large

Figure 85: Overview of Critical Issues of Types of Test Data

To conclude the discussion of current practice of test data elaboration in the language
engineering context, one may say that current approaches to language engineering test
suite design could benefit from a more thorough consideration of the principles of
equivalence partitioning and boundary value analysis to govern the size of the test
data. Moreover it is envisaged that equivalence classes that are thoroughly defined for
particular types of systems, for instance, spell checkers or translation memory systems,

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 153

could be to a large extent re-usable for different evaluation scenarios involving similar
types of systems.

4.3.3 Parameters Determining the Selection or Elaboration of Test Data

So far different principles for test data elaboration have been discussed and the types
of test data in the language engineering context presented. Yet which are the
parameters that principally determine which type of test data should be used in a
particular context? Balkan et al. (1994-1:pp.26) describe five parameters determining
the conditions of testing that may have a great influence on the selection and/or
elaboration of test data:
• black box vs. glass box situation
• availability and definition of pre-specified requirements
• definition and measurement criteria of an acceptance level
• types of texts involved
• languages and/or language pairs involved.

However, apart from the aspects presented by Balkan et al. there are further
parameters that determine the selection/elaboration of test data. The following table
attempts to present a more exhaustive list of parameters that influence the elaboration
of test data in the language engineering context. Parameters are classified as belonging
to the domain, the system, the evaluation or the administration category.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 154

SYSTEM

DATA
 corpus
 suite

 collection

EVALUATION
type of evaluation
adequacy
progress
diagnostic

quality requirements
requirements definition
acceptance level definition

approach to testing
glass box
black box

test type
scenario
systematic
inspection

type of usage
casual
professional

type of task
inputs
sources of inputs

type of text
domain
function

type of language problem
monolingual
bilingual
multilingual

state of system
prototype
product
type of system
algorithmic
logic
linguistic

DOMAIN

statistic

time constraints
personnel

budget

ADMINISTRATION

Figure 86: Parameters Determining Selection of Test Data

Considering the above parameters before entering a test makes sure that everything has
been thought of properly and no unexpected conditions come up when it is too late to
consider them. In the following, the parameters and their impact on the selection of
test data will be discussed briefly.

4.3.3.1 Parameters of the Domain Category

On the domain side, the first parameter influencing the selection of test data is the type
of usage: is the program used daily in a professional context or only on few occasions?
While for casual usage, random data selection may be sufficient, for professional
usage, the selection of test data must be driven by functional considerations.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 155

Another factor related to the domain category is the type of task on which the test will
be based. Only tasks should be selected for testing that represent a realistic application
of either a casual or a professional type of usage. Tasks may include only one type of
input or may be a complex combination of different types of inputs and outputs from
different sources (human; programs/databases; devices). The elaboration of test data
for complex tasks, in which inputs from various sources are needed, require careful
planning including the preparation and/or customisation of resources.

Another parameter that is closely related to the type of task in the language
engineering context is the type of text dealing with. Text types can be classified
according to their domain and their function, where the domain of a text refers to the
subject area it deals with, e.g. automobile, aircraft, business management etc., and the
function of the text denotes its form and pragmatic function, e.g. letters, manuals, etc.
Balkan et al. (1994-1:31) point out that for the elaboration of test data it is important to
consider that "each text type has its own particular vocabulary and conventions,
ranging from syntactic constructions through to formatting conventions."

As identified by Balkan et al. (1994-1:27) the type of language problem is a parameter
that is of major importance for the elaboration of test data for language engineering
applications. They distinguish between monolingual test suites in which the design of
the test suite in the source language may be influenced by the expected results in the
target language, and multilingual test suites in which the evaluator has to identify and
exemplify correspondences across languages. According to Balkan et al. this may be
achieved by identifying a core set of multilingual phenomena, which remain stable
across languages, or by adapting the test suites to the specificity of each language, and
state equivalencies where they happen to exist. Complex test tasks may require the
language preparation and customisation of different resources that are consulted during
the execution of the task.

4.3.3.2 Parameters of the System Category

For the elaboration of test data it is important to consider, the state of the system under
testing. When dealing with a prototype of an early stage of the software life-cycle, test
data has to be selected according to the restricted functionality of the prototype,
whereas when dealing with an off-the-shelf product, the system can be tested against a
realistic set of phenomena relevant to the specific product.

Another factor of the system category that is of great relevance for the selection of test
data is the type of system, that is, whether dealing with systems based on algorithmic,
logic, linguistic or statistic processes. While for a mere black box testing situation, the

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 156

selection of test data is mainly driven by parameters such as type of
usage/tasks/text/language problem etc., a more informed test approach may also
involve the consideration of the type of system when selecting test data. Functional
knowledge of the type of system that goes beyond the recognition of mere user
requirements, leads to the identification of phenomena that represent problematic cases
for the type of processes involved. Test data that was developed in the awareness of
the type of system and its functional properties is geared to that same type of system
and it is questionable to which degree it is useful for systems of a different type.
Balkan et al. (1994-1:35), for instance, discuss the usability of linguistic test suites for
statistical based NLP systems and conclude that it is not clear whether linguistically
based test suites are of use at all in the statistical context, since statistical systems do
not work on linguistic rules. The development and validation of test data that is based
on the recognition of the type of system certainly is a field in which more focussed
research is compulsory.

4.3.3.3 Parameters of the Evaluation Category

A primary parameter of the evaluation category is the type of evaluation performed.
For adequacy evaluation the selection of test data should most of all be driven by the
requirements of the target group(s) under consideration, that is, parameters of the
domain category have highest priority. In diagnostic evaluation, which aims at
localising deficiencies, the selection of test data should be driven primarily by
parameters of the system and evaluation category, that is, state of system, type of
system, type of test, approach to testing etc.. The same is true for progress evaluation,
in which successive stages of development of a system are compared.

As Balkan et al. (1994-1:26) point out, the approach to testing also greatly determines
the selection of test data. Depending on whether evaluators have an extensive
knowledge of the system internals or only have access to their user interfaces, they
will adopt a different strategy of testing and will focus on different phenomena.
Naturally glass box evaluation focuses on parameters of the system category, while in
black box evaluation, the evaluator normally does not have access to information
about the system structure but rather focuses on parameters of the domain category.

As identified by Balkan et al. the existence of a definition of quality requirements
influences the elaboration of test data. From a pre-specified list of requirements, the
evaluator can deduct which type of usage, tasks, texts and language problems are
important to be covered by test data. The definition of measurement criteria of an
acceptance level, furthermore, deal with the questions: what are the expected results of
evaluation? what is the tolerance threshold in case of inadequate results? Answers to

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 157

these questions do not only help in the process of identification of relevant phenomena
to be tested but also for the interpretation and assessment of results.

Finally the test type influences the choice of test data to a great extent: in a scenario
testing environment, particularly in field tests, the realistic task asks for a selection of
test data that is both typical for the specific environment and representative for the
type of usage. In most cases, test data for scenario tests in the language engineering
area, therefore, are either extracted from existing corpora or at least based on corpora,
integrating additional typical or problematic phenomena. For systematic testing, test
suites and collections can be elaborated that integrate both typical and problematic
phenomena for the process under testing.

4.3.3.4 Parameters of the Administration Category

The discussion of the three types of test data already pointed to there being a great
difference in cost between test corpora, test suites and test collections. Naturally, the
budget of evaluation to some extent governs the selection of data: a low budget may
argue for test corpora or small test suites, a larger budget allows the development of
test collections. In addition the time constraints of evaluation are often responsible for
choosing one particular type of test data. Corpora are more quickly provided than test
suites or even test collections are elaborated. Finally the personnel involved in the
evaluation procedure determines to some extent what type of test data will be used.
While the selection of corpora does not ask for particular expertise, the elaboration of
test suites, and even more so of test collections asks for a certain expertise in the field.

To conclude, the above section on test data elaboration could but outline the general
principles and considerations that are relevant to the elaboration of test data. The
discussion showed that the complex and costly elaboration of test data pointed towards
the tension between the construction of general, re-usable test data and the precept that
each evaluation is specific in the sense that it is carried out for a particular reason, for a
particular system, in a particular environment - a problem that is also well-known with
respect to evaluation methodologies. Whether or not, and to which extent existing data
can be used for a particular environment always has to be decided for each context
separately. A very important issue, therefore, is to make the data available to all
potentially interested people on FTP or WWW sites.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 158

4.4 Experiences and Results of Testing in Evaluation

Each evaluation scenario has its own background which will determine the testing
procedure to a great extent.

characteristics

view on quality

metrics

QUALITY

ENVIRONMENT

test personnel

budget

time

interest

consumer

perspective

MOTIVATION SYSTEM

hardware platform
software modules

stateof system

instruments test types

data

TESTING

evaluation situation

Figure 87: Factors Influencing Evaluation

Among the most general factors that influence the way tests are performed are the
motivation behind evaluation, the system and its parameters, the evaluation
environment, and, finally, the quality requirements that need to be tested.
Galliers/Sparck-Jones (1993:186) consider motivation to cover three factors, that is,
perspective, interest and consumer of the evaluation:
(i) the perspective of evaluation denotes whether one is interested in the tasks which

a system takes over (task-oriented), or the amount of money that can be saved
when implementing the system (financial), or how the system can be included
into an existing working environment (administrative) etc.

(ii) the interest taken in the evaluation denotes the view taken on the evaluation
process, i.e. even for the same type of evaluation, a developer may have a totally
different view on what needs to be considered than the funder of a project, who
will again put different foci than user-organisations etc.

(iii) the consumer of the evaluation report denotes whether managerial, scientific,
practical or implementation related aspects are focused during evaluation and
reporting.

The settings of system parameters such as hardware platform, software modules and
the state of the system, that is, whether the system is a prototype, ß-version or product,
are givens and determine both procedure and results of the testing process. For
instance, if a system prototype is evaluated, metrics measuring efficiency often cannot
be applied, since the system is not fully implemented, while for product evaluation,
efficiency is one of the most important quality characteristics.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 159

The evaluation environment is determined by the test personnel, the size of the budget
and the amount of time invested. Falkedal (1991:20) divides test personnel into two
major groups: (i) experts that function as evaluators during evaluation and (ii) users
that function as subjects of tests. User-oriented testing should be performed by
someone who was not involved in the development of the software. A certain
knowledge of software engineering principles, and of both the practical and the
computational side of the application under testing is, however, very useful, if not
indispensable. Depending on the quality characteristics and the metrics applied, as
well as on the test type and instruments, different types of users - students,
professional users - can or rather need to be used as subjects. According to Falkedal
(1991:pp.21) crucial qualifications required by test persons are (i) objectivity, (ii)
representativity, and for all language engineering applications (iii) language
proficiency. At the same time she points out that striving for objectivity runs the risk
of making evaluations and tests using purportedly unbiased evaluators and test persons
into purely artificial events whose results are likely to be insufficiently informative
about or representative of how a system would be judged by its end-users, once they
had become accustomed to its peculiarities.

The evaluation budget is naturally the most decisive factor, when it comes to selecting
evaluators, subjects, test types and instruments as well as when determining the time
that can be invested into evaluation. It is important to note here that, in case of a
limited evaluation budget, it is advisable to reduce the number of metrics that will be
tested and to select less expensive instruments, rather than to reduce the number and
qualification of test personnel. While a limited number of metrics only reduces the
scope of evaluation, savings in the area of test personnel may question the reliability
and validity of test results.

The selection and determination of quality characteristics and attributes for a particular
evaluation process depend on all of the above mentioned factors, that is, motivation,
system parameters and environment. While, for instance, from a financial perspective,
efficiency is the most important quality characteristic, an administrative perspective
will rather focus on inter-operability and usability. The quality of a translators’ aids’
system can be determined at different levels of detail, depending on the consumer of
the evaluation report and the interest behind evaluation. Black box evaluation,
normally performed in evaluation preceding purchase decision, asks for less
differentiated quality considerations, while glass box evaluation, normally performed
in evaluation supporting development, asks for a differentiated quality report,
determining clearly whether test results are related to the system interface, its system
functionality, or the data offered, for instance by a termbank. The situation in which

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 160

evaluation is performed determines the evaluation procedure, that is, whether
evaluation is performed preceding purchase decisions on behalf of translation industry,
or whether evaluation is performed during translation system development to support
the development process.

Considering the two evaluation situations, that is, evaluation preceding a purchase
decision and evaluation supporting software development, the above factors play an
important role. The following table lists the major factors that influence the evaluation
procedure and their effect on testing:

FACTORS EVALUATION PRECEDING
PURCHASE DECISIONS

EVALUATION SUPPORTING
DEVELOPMENT

perspective high priority to financial
perspective;

task-oriented perspective, that is, how
can system perform given tasks

interest to find out which system under
evaluation suits the given
environment best

to improve the software in order to meet
user requirements

consumer mostly management and/or
users

system engineers;
scientists developing solutions to
engineering problems;
funding organisations

state of system off-the-shelf products from prototypes or individual modules of
prototypes to ß versions of systems

evaluation
environment

low budget
little time

testing at different stages of software
life-cycle

quality focus on value and evaluation
relevant metrics;

focuses on qualitative rather than
quantitative measurement;

Figure 88: Factors that Influence the Testing Process

From the above table it follows that testing supporting development should be broader
in scope and more exploratory in nature than in evaluation preceding purchase
decisions. It should not only assess pre-defined metrics but develop additional ways to
assess the quality of a system during the testing procedure; note observations about the
nature of the system; make proposals for modification, and try to find out where
problems lie. A good example for testing supporting the development process is the
testing of the Translator's Workbench in the ESPRIT projects TWB I (2315) and TWB
II (6005), which was conducted by different user organisations under the supervision
of the author of this thesis. For experiences and results of testing supporting the
development process the reader is referred to Höge/Hohmann/Le-Hong (1995:pp.168-
173). An excerpt of the TWB result report can be found in appendix 1. In the context
of this thesis, testing in evaluation focuses on evaluation preceding purchase decisions,
since it is there, where the new approaches can be applied.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 161

4.4.1 The Testing Context

Considering the factors that were discussed above, the following picture can be drawn
of the testing process which will be described below:

• In the context of this thesis, the perspective was task-oriented and the interest
behind testing was to prove that the framework developed for user-oriented
evaluation actually works. The evaluation report in this thesis addresses first
and foremost a scientific audience, and secondly user-organisations who should
be able to use the evaluation framework.

• The systems tested were Trados TWB for Windows, ß version (system x) and
IBM TM/2 version 1.0 (system y).

• As evaluator, the author of this thesis is knowledgeable in the areas of software
development and requirements engineering and can be considered expert with
experience in testing and as user-representative in the TWB projects. The
subjects used for testing were advanced students of translation who learned to
work with the systems in the context of a computer aided translation course.
The testing budget was low and the time involved in evaluation preparation and
testing along the pre-defined framework developed in this thesis were around
50 days.

• There was a focus on quality characteristics related to usability and efficiency,
but also covering reliability issues. Only value relevant metrics were applied,
evaluation relevant metrics identified after testing.

Evaluation preparation was performed along the lines presented in chapter 3. The task
description in figure 28 formed the basis for the development of metrics for testing.
The tasks under testing were:
• translation memory preparation (t1)
• translation memory and termbank retrieval (t2)
• updating translation memory databases(t3)
• updating termbanks(t4)

In short, for each of the above tasks, the qualitative aspects presented in figures 61-66
were applied as described in chapter 3 leading to a list of 87 metrics and corresponding
scales which can be found in appendix 2. Value functions were developed for each of
the metrics, defining how the value of an attribute increases/decreases with a specific
scale value, leading to v(x) and v(y) for each of the metrics. For each metric belonging
to (t1) - (t4), it was decided which test type would be most appropriate as described in
section 3.2.1.4 (test model). Along the process defined in this section, for each task
under evaluation, the relevant metrics first were applied in feature inspection. For
those metrics for which values could not be obtained through feature inspection, other

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 162

test types were applied. Those metrics for which v(x) and v(y) were not identical after
the tests, were identified as evaluation relevant (rel).

To illustrate this, the following excerpt of appendix 2 will be provided. For each
quality subcharacteristic to be tested within each task a separate table is presented
which covers the above described test data:

Installability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

installation program binary 1 100 1 100 task 68 -
time needed for installation ratio

v(60)=0
30 Min 50 50 Min 16,7 task 69 �

installation without
knowledge of operating
system possible?

binary 1 100 1 100 task 70 -

Figure 89: Excerpt of Result Report (t2) from Appendix 2

As appendix 2 shows, the major test type performed in (t1) was feature inspection with
13 of 18 metrics (No. 1-10, 14-16). The programs tested in (t1) fulfilled the basic
requirement for benchmark testing, that is, being batch programs they work
independent of human interaction. Consequently three metrics (No. 11-13) could be
applied in benchmark testing. Two metrics (No. 17-18) were applied in task-oriented
testing.

Task 2 (t2), that is, translation memory and termbank retrieval, was exhaustively tested
(52 metrics) with all test types. The major test type applied for (t2) was task-oriented
testing (28 metrics), followed by feature inspection (19), interface-oriented testing
(10), scenario testing (7), and, last but not least, benchmark testing (2). To increase
reliability and validity, many metrics were applied in more than one test:

• 4 were tested in both task- and interface-oriented testing.
• 6 of 7 metrics applied in scenario testing were also applied in task-oriented

testing, 1 as well in feature inspection.
• 3 metrics were applied in scenario testing as well as in task- and interface-

oriented testing.

Task 3 (t3), that is, updating translation memory databases, covered 9 metrics, 8 of
which were tested by means of task-oriented testing, 4 by interface-oriented testing, 1
by feature inspection, 1 by scenario testing and none by benchmark testing. Again,
some of the metrics were applied by a combination of task-oriented testing and either
interface-oriented or scenario testing.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 163

Task 4 (t4), that is, updating termbanks, covered 6 metrics, 4 of which were tested in
task-oriented testing, and 2 in interface-oriented testing. 1 metric was tested in both
test types. None was tested by means of feature inspection, benchmark or scenario
tests.

It is very important to note that the primary focus of the tests performed in the context
of this thesis was to assess the applicability of the testing approach for evaluation
preceding purchase decisions rather than to investigate the quality of the systems
under evaluation. For a functional description of different translators’ aids’ systems
see Spies (1995). The following discussion of testing experiences will concentrate on
issues related to the preparation and performance of the tests. For those interested in
how the two systems performed, the results presented in appendix 2 will provide the
details. Among all test types, it is the scenario test that will be presented in most detail,
to point to the problems and difficulties which this kind of testing might incur.

4.4.2 Experiences with Feature Inspection

In context of the tests performed for this thesis, feature inspection played a major role.
No less than 35 of 87 metrics (39.9 %) could be applied solely by going through the
system documentation in feature inspection. In most cases the values obtained could
be measured on a binary scale (23), in several cases (12) also on binary nominal
scales. Whenever the nominal attributes of a binary nominal scale had equal weight,
the majority voting rule was applied, that is:

(100 ÷ number of possible attributes) number of actual attributes

Whenever the nominal options of a binary nominal scale were not equal in weight,
weights had to be determined for the options, by dividing 100 among the options
according to their importance, and summing the score of all options. The following
figure provides an example for both calculations.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 164

metric scale system 1
x

value
v(x)

system 2
y

value
v(y)

test
type

recognition of special text
elements:
proper names
codes
numbers
dates
currencies
tables
figures

binary
nominal

1
1
1
1
1
1
1

7/7 =
100

1
1
1
1
1
1
1

7/7 =
100

insp

selection of source text
segment:
automatic
manual

binary
nominal
80
20

1 x 80
1 x 20

100

1 x 80
0

80 insp

Figure 90: Examples for Calculation of v in Binary Nominal Scales

As the results in appendix 2 show, only 19 of 35 metrics applied during feature
inspection proved to be evaluation relevant. In other words, in 16 cases both
alternatives under evaluation scored the same on a given feature or metric. While in
evaluation supporting development, each metric is relevant to the evaluation
procedure, in evaluation preceding purchase decisions only these 19 evaluation
relevant metrics will be part of the final assessment calculation which will be
presented in chapter 5.

As pointed out before feature inspection can only lead to results with respect to the
question whether or not specific features are present and not how well the features are
implemented. This is subject to systematic and scenario testing.

4.4.3 Experiences with Systematic Testing

In the testing approach advocated in this thesis, systematic testing covers task-
oriented, interface-driven and benchmark testing. Among the three sub-test types, most
metrics were applied during task-oriented testing (42), followed by interface-driven
testing (16) and, last but not least, benchmark testing (5). To validate critical results,
some of the metrics (10) were applied in both task- and interface oriented testing.

Before performing systematic testing, the testbed had to be prepared in terms of test
data. Specifically (t1) and (t2) asked for detailed preparation of test data to guarantee
satisfactory results. Tasks (t3) and (t4) are concerned with updating of existing
databases. There is no big difference as to which type of data to be updated.
Consequently the data for (t3) and (t4) can be quite easily developed on an ad hoc basis
during the tests. The preparation of test data followed the principles discussed in
section 4.3. In the following figure the parameters relevant to data elaboration are
described and their effect on the selection or elaboration of test data is indicated.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 165

PARAMETER DESCRIPTION EFFECT ON ELABORATION OF

TEST DATA
DOMAIN CATEGORY

type of usage professional translation context functional test data selection

type of task (t1) translation memory preparation
(t2) translation memory and termbank
retrieval

-> test data extracted from real text
corpus
->test suites

type of text (t1)
real text corpus for alignment of
different domains and functions
(t2)
real new version of document;
test suite for more exhaustive coverage

(t1)
Setup 1:
Domain: automobile industry
Function: manual
Setup 2:
Domain: politics
function: letter
(t2)
Setup 1:
Domain: automobile industry
Function: manual
Setup 2:
Test suite

type of language
problem

(t1) alignment with different language
directions
(t2) retrieval of similar texts

(t1)
Setup 1
Alignment de-en
Setup 2
Alignment en-de
(t2)
Setup 1 and 2
Retrieval in de-en translation

SYSTEM CATEGORY
state of system product typical test text

test suites
EVALUATION CATEGORY

type of
evaluation

evaluation preceding purchase
decision

Test corpora
Test suites

approach to
testing

black box Usage-oriented selection of test data

availability of
quality
requirements
definition

Metrics developed in evaluation
preparation phase

• definition of 54 metrics;
• acceptance level definition

available

test types 1. task-oriented testing
2. interface-driven testing
3. benchmark testing

1+ 2:
Retrieving aligned text in TM
database, using test text and
terminology;
3.
alignment benchmark
retrieval benchmark

ADMINISTRATION CATEGORY
budget medium text corpus, small test suite
time constraints one week for elaboration of test data Analysis of text corpus and selection

of test text with representative
characteristics, develop test suite that
covers most important phenomena.

personnel translator/computer linguist Black box view, since system
internals are not known.

Figure 91: Parameters and their Effect on Test Data Elaboration

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 166

As the above table shows, test data had to be prepared for tasks (t1) and (t2).
• For (t1), that is, TM preparation two setups were used. Setup 1 included the

alignment of a German car manual with its English translation. This alignment
could later also be used as the basis TM for testing (t2), that is, TM retrieval. Setup
2 covered an English letter from the EU translation department and its German
translation. The two different setups for (t1) were used in order to find out, whether
both systems could handle both situations equally well.

• For (t2) two setups were used. Setup 1 covered a real text: The new version of the
car manual that was aligned in (t1) was translated, making use of the TM aligned in
(t1). For this purpose the results of the alignment in (t1) were imported into the
translation memory database as the basis for retrieval of the new version. Setup 2
covered a test suite which was developed in order to assess a broader scope of
retrieval possibilities (for more details see Experiences with Benchmark Testing).

The car manual texts for (t1) and (t2) were from a text corpus which was provided for
testing by Mercedes-Benz, consisting of 6 repair manuals in an old and new version in
German and English. In order to check the appropriateness of the manuals for (t2), that
is, translation memory retrieval, the German old-new pairs were compared by means
of the WinWord document version comparison function. appendix 3 provides the
results of the text analyses in tabular form. Text pairs 1, 5 and 6 showed a high
occurrence of the above characteristics and would, therefore, have been appropriate as
test data. The parallel text that was used for (t1) and (t2) was text pair 1 , that is, the old
version of AR 27 in German and English for (t1), and the new German version of AR
27 for (t2). The following table is an excerpt of appendix 3 and presents the results of
the text analysis. It shows the phenomena covered by the text, with the differences
between the two versions written in capital letters.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 167

TEXT ANALYSIS TEXT PAIR 1 MB MANUAL
TYPE OF
SIMILARITY

NEW VERSION AR27 OLD VERSION AR27

numbers in identical
segments

1. GETRIEBE 722.6
2. GETRIEBE 722.620/621/622

1. GETRIEBE 722.3/4/5

identical parts of
sentences

1. Ölstand nochmals PRÜFEN

2. Eine zu kleine BZW. zu große
Ölmenge beeinträchtigt die
Funktion des Getriebes
3. Bei kaltem Getriebe muß DIE
ÖLSTANDSANZEIGE zwischen
der "min." und "max." -Markierung,
25° (GETRIEBEÖLTEMPERATUR)
liegen.

4. Bei betriebswarmen Getriebe
muß DIE ÖLSTANDSANZEIGE an
der "max"-Markierung, [80°]
(GETRIEBEÖLTEMPERATUR)
anliegen
5. Getriebeöl (AFT) nach
Betriebsstoff-forschriften-Blatt NR.
236.10

1. Ölstand nochmals
KONTROLLIEREN
2. Eine zu kleine, SO WIE EINE zu
große Ölmenge beeinträchtigt die
Funktion des Getriebes
3. Bei kaltem Getriebe
(GETRIEBEÖLTEMPERATUR CA
30°) muß BEI RICHTIGEM
ÖLSTAND DIE ANZEIGE zwischen
der "min." und "max" -Markierung
LIEGEN (BILD 3).
4. Bei betriebswarmen Getriebe
(GETRIEBEÖLTERMPERATUR
CA 80°) muß BEI RICHTIGEM
ÖLSTAND DIE ANZEIGE an der
"max"-Markierung anliegen (BILD
3).
5. AFT-ÖL nach Betriebsstoff-
Vorschriften Blatt 236.4/6/7

left out/added
segments

1. Das Fahrzeug muß waagrecht
stehen

2. Getriebe auf Dichtheit prüfen

3. Bei Ölverlust Ursache ermittlen

4. Getriebeöl einfüllen

5. Ölmeßstab [(6)] bis zum
Anschlag einstechen UND wieder
herausziehen, Ölstand ablesen
6. Betriebsstoff-Vorschriften

1. Das Fahrzeug muß ZUR
ÖLSTANDSKONTROLLE
waagrecht stehen
2. Getriebe VOR
ÖLSTANDSKONTROLLE auf
Dichtheit prüfen
3. Bei größerem Ölverlust Ursache
ermitteln
4. Getriebeöl BEI LAUFENDEM
MOTOR einfüllen
5. Ölmeßstab (6) bis zum Anschlag
einstechen [,] wieder herausziehen,
Ölstand ablesen
6. AFT-ÖL NACH Betriebsstoff-
Vorschriften BLATT [236.4/6/7]

identical individual
terms

1. Getriebe
2. Handpumpe
3. Trichter

identical segments 1. Sicherheitsvorschriften bei laufendem Motor beachten
2. Ggf. berichtigen
3. Zuviel eingefülltes Getriebeöl unbedingt ablassen oder absaugen,

Figure 92: Text Analysis of Test Data used for (t1) and (t2)

Experiences with Task-oriented Testing

In task-oriented testing, the evaluator performed the tasks (t1) to (t4) with both systems
and, where relevant, applied the metrics presented in appendix 2. The results of the
tests were then noted, and the values for each system v(x) and v(y) calculated.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 168

Task 1, that is, translation memory preparation was realised in form of batch programs
by both systems under evaluation (system x: Trados TAlign; system y: IBM ITM).
Due to only minor interaction while performing the tasks, the only metrics applied in
task-oriented testing for this task were those related to installability (No. 17,18),
measuring whether installation programs were provided and installation was possible
without knowledge of the operating system.

Task 2, 3 and 4, that is, translation memory and termbank retrieval, and updating
translation memory and termbank are highly interactive and therefore particularly
promising for task-oriented testing of the two systems. Task 2 covered the translation
of the new AR27 text with the TM produced of the alignment of the old AR27 text that
was the basis of (t2). During translation, the different metrics were applied, the results
noted in the result reports presented in appendix 2 and the values v(x) and v(y)
calculated for each metric. Again, only metrics with non-identical values were noted as
evaluation relevant. For (t3) it was investigated whether and how TM databases could
be modified by users. The tests showed that only system x allowed the modification of
TM databases after translation. Consequently v(y) was 0 in all related metrics. For (t4)
the modification procedures of the terminology database were investigated. The
metrics which were considered relevant and listed in appendix 2 were applied during
this task and their outcome noted on the result reports. The ad hoc generation of test
data according to the “WHAT HAPPENS IF” principle proved to be non-problematic.

To sum up, most metrics applied during task-oriented testing were measured on binary
scales (26). Only few were measured on ratio (5) and binary nominal (3) scales.
Ordinal scale metrics (8) that were related to user likes and dislikes were also subject
to later scenario testing in order to check their reliability. 31 of 42 metrics applied in
task-oriented testing proved to be evaluation relevant (73,8%). This shows, that
though frequently the documented features of two systems are similar (see results of
feature inspection), the way they are implemented still show differences that may have
a decisive effect on the evaluation outcome.

Experiences with Interface-driven Testing

Interface-driven testing was performed to (i) examine critical issues of the software,
and (ii) to make sure that the coverage of the tests is sufficient. For this purpose the
menu options presented by the two systems were followed one after the other and the
metrics of appendix 2 applied where necessary. The quality characteristics primarily
investigated were security, fault tolerance and stability. Furthermore the usability of
operation control mechanisms was investigated by interface-driven testing in
combination with task-oriented and scenario testing, to provide the possibility to count

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 169

steps or consider the similarity of operation control mechanisms. The fact that 13 of 16
metrics applied during interface-driven testing proved to be evaluation relevant shows
that interface-driven testing is a means to uncover differences in systems which may
not be found by means of other test types but should be considered in evaluation.

Experiences with Benchmark Testing

Among the 87 metrics applied during the tests, only 5 were measured by benchmark
tests. This low figure points to the fact, that, in the context of translators’ aids’
systems, it is difficult to identify functions of the system that are independent of user
input. In the language engineering context, benchmark tests measure mainly response
time or performance of systems in terms of recall and precision.

In Task 1 (t1), being concerned with a batch program for the alignment of parallel
translations, a benchmark test could be performed, applying the metrics
• alignment rate: number of aligned segments / number of segments;
• alignment success rate: number of correctly aligned segments / number of aligned

segments:
• total success rate: number of correctly aligned segments / number of segments.

Comparing alignment benchmark test results is a delicate matter indeed. Even if the
testbed is exactly the same for the different systems under testing, it may favour one
system over the other, since the characteristics of the test data are, probably by chance,
those that are considered by the system. This is due to the fact that in black box
evaluation, details about the nature of the programs are not known. Choosing different
test data, the results may be totally different. Therefore, it is of utmost important to
choose exactly the type of test data that is relevant to the particular customer of the
evaluation procedure and to refer test results directly and only to the specific test bed.
Making use of two different setups as described above, the validity of test results is
checked. The two text that were used for the benchmark test in setup 1 and 2 will be
presented in appendix 3. The following table lists the characteristics of the texts in the
two setups together with the benchmark test results:

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 170

 SETUP 1 SETUP 2
provider of text Mercedes-Benz EU Translation Service SdT
function car manual letters
domain automotive engineering politics
number of segments SL: 39; TL: 39 SL: 33; TL: 37
characteristics of text 1. simple sentences;

2. most sentences separated by
paragraphs;

3. many numbers and acronyms;
4. many singular terms
5. abbreviations (ca.) and dates.

1. difficult formatting due to
footnotes, pre-defined initials
and fixed paragraphs;

2. missing parts in the English
version (no date);

3. abbreviations (Nr.) or dates (20.
Juli);

4. 1:2 and 2:1 translations.
experience The two systems could cope with

the text easily.
System 1 aligned 36 segments, 33
of which correctly, leading to
alignment rate value: 92.30
alignment success value: 91.66
total success value: 84.61.

System 2 aligned 37 segments, 34
of which correctly, leading to
alignment rate value: 94.87
alignment success value: 91.89
total success value: 87.17.

The two systems aligned almost
the same amount of segments,
while the correctness of alignments
greatly differed between the
systems.
System 1 could align 27 segments,
26 of which correctly, leading to
alignment rate value: 81.81
alignment success value: 96.29
total success value: 78.78.

System 2 aligned 24 segments, 15
of which correctly. This leads to
alignment rate value: 72.72
alignment success value: 62.49
total success value: 45.45.
The system was led astray almost
from the very beginning, producing
incorrect alignments up to almost
half of the text, from where on it
aligned correctly.

Figure 93: Experiences with Benchmark Tests for (t1)- TM Preparation

The results of the above two setups support the view that the simpler the text type the
better the alignment result and as such validates the benchmark procedure. Car
manuals is a text type that can easily be handled by both alignment systems alike,
while complex text types such as letters need far more post-editing. The results show
that while system 1 is at least partly capable of solving the problems posed in letters, it
does not make any sense to apply system 2 for more complex text types. The
calculation of v(x) and v(y) involved the weighting of the importance of handling the
two types of text in the domain by dividing 1 up among the two setups. In other words,
the results of setup 1 were multiplied by .80 and the results of setup 2 by .20 because
in the context of an industrial translation department such as the Mercedes-Benz
translation department, the translation of manuals is far more important than that of
letters.

In Task 2 (t2), that is, translation memory and termbank retrieval, two types of
benchmark tests were applied, that is, (i) measuring the quality of the retrieval

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 171

component of the translation memory, most interestingly, the fuzzy match component,
and (ii) measuring time behaviour for translation memory retrieval.

For the first type of benchmark, that is, measuring the quality of the retrieval
component, again two setups were identified to increase the validity of test results. As
described before, for setup 1 the test data was taken from a real text corpus, that is, the
new version of the AR 27 car manual provided by Mercedes-Benz, which will be
included in appendix 3. For setup 2 a test suite was generated that was supposed to
probe the translation memory retrieval system for specific phenomena.

In setup 1, which is concerned with a real text from a real environment, the definition
of value relevant and valid metrics for the translation memory retrieval component
proved to be difficult. In other words, which aspects involved in the retrieval process
allow sensible measurement? It has to be kept in mind that the principal goal of
making use of fuzzy matches is that it has to be less effort to evaluate the suitability of
the proposals for the given context than to translate the segments manually.
Consequently, the first idea for a metric was to assess the effort by counting the
keystrokes necessary to make use of a fuzzy match proposal. It would also be possible
to define acceptance levels and develop value functions for this metric. However, on
closer examination, it proved not to be generally valid, since (i) it depends on a
system's user interface, that is, on its means of operation control; and (ii) it is sensitive
to one's editing habits, that is, whether using shortcuts etc. Consequently, counting
keystrokes would be a combined measure of the suitability of the retrieval component
and the operability of the system interface and not totally independent of user input.

The second possibility identified was to measure recall quantity, that is, how
frequently does the system come up with a fuzzy match proposal for a SL segment.
The quantity of fuzzy match proposals, however, depends on the minimum match
value which is either internally set by the system (IBM TM/2) or can be set by the user
(Trados TWB4W). In other words, if the minimum match value in the Trados system
is set to 30%, more matches with presumably a lower quality will be retrieved than if it
is set to 60%. This fact makes the comparison of results of recall quantity not reliable.

Another idea was to count the ratio between words that can be taken over directly and
the total number of words per segment. Again, it was found that the number of words
is no clear indicator as to how useful a fuzzy match proposal is, because functions
words, for instance, pose no problems for the translator while terms do. The validity of
this measure would, again, be rather low. As pointed out before, the quality of a TM
retrieval component depends on its capability to recognise identical or similar text.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 172

Consequently, the only sensible way to measure the quality of the translation memory
retrieval component in a real setup, finally, proved to be to describe the phenomena
that are present in the test texts and measure the quantity of recall of text segments as
they were relevant when comparing the old and the new versions of the car manual.
The following table represents the phenomena that occurred in the test texts, the
relevant text segments and the results of both systems under testing.

RESULTS RETRIEVAL BENCHMARK RECALL OF REAL PHENOMENA TASK 2 SETUP 1
TYPE OF
PHENOMENA

TEXT SEGMENTS RECALL
SYSTEM 1

RECALL
SYSTEM 2

numbers in identical
segments

1. GETRIEBE 722.6
2. GETRIEBE 722.620/621/622

1
1

0
0

identical parts of
sentences

3. Ölstand nochmals PRÜFEN
4. Eine zu kleine BZW. zu große Ölmenge
beeinträchtigt die Funktion des Getriebes
5. Bei kaltem Getriebe muß DIE
ÖLSTANDSANZEIGE zwischen der "min."
und "max." -Markierung, 25°
(GETRIEBEÖLTEMPERATUR) liegen.
6. Bei betriebswarmen Getriebe muß DIE
ÖLSTANDSANZEIGE an der "max"-
Markierung, [80°]
(GETRIEBEÖLTEMPERATUR) anliegen
7. Getriebeöl (AFT) nach Betriebsstoff-
forschriften-Blatt NR. 236.10

1
0

0

1

1

1
0

0

0

0

left out/added
segments

8. Das Fahrzeug muß waagrecht stehen
9. Getriebe auf Dichtheit prüfen
10. Bei Ölverlust Ursache ermittlen und
beseitigen
11. Getriebeöl einfüllen
12. Ölmeßstab [(6)] bis zum Anschlag
einstechen UND wieder herausziehen,
Ölstand ablesen
13. Betriebsstoff-Vorschriften

1
1
1

1
1

0

0
0
1

0
0

0

identical individual
terms

14. Getriebe
15. Handpumpe
16. Trichter

1
1
1

0
1
0

identical segments 17. Sicherheitsvorschriften bei laufendem
Motor beachten
18. Ggf. berichtigen
19. Zuviel eingefülltes Getriebeöl unbedingt
ablassen oder absaugen,

1

1
1

1

1
1

TOTAL RECALL OF PHENOMENA 16/19 6/19
FUNCTION VALUE FOR RETRIEVAL BENCHMARK SETUP 1 84.21 31.57

Figure 94: Benchmark Test Results (t2) Setup 1

In short, for system 1 the default minimal match value was set to 30%. With this
setting it could retrieve all in all 27 matches. Among the 27 matches 16 corresponded
to the text segments identified in the text analysis. The remaining 11 matches showed
similarity on the term level. For system 2 no minimum match value could be set by the
user. It could retrieve 6 of the 19 text segments, leading to the followinig values:
v(x) = 84.21 v(y) = 31.57

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 173

For setup 2 a test suite was developed in accordance with the procedure of test data
elaboration presented in section 4.3. The following table shows the steps that were
involved in the definition of the test suite based on the analysis of texts from
Mercedes-Benz, which can be found in appendix 3.

STEP TASK DESCRIPTION

1 Problem domain
definition

• the system should provide translations to source language
sentences that are identical or similar to those that were
already translated;

• it should propose the translations in a way that the least
necessary amendments have to be made

2

System functionality
definition

• the system performs segmentation, that is, separates
different translation units

• the system stores translation units together with their
source language equivalent

• the system retrieves identical or similar source language
sentences and presents their translations

3 Error guessing • variation in sentence structure
• only identical parts of sentences

4 Error guessing:
Test cases definition

handling of only identical parts of sentences:
• deletion of sub-clauses (1)
handling of variations in sentence structure:
• split sentence with two segments into two separate

sentences (2)
• unite two separate sentences into one sentence (3)
• change of sequence of main and sub-clauses (4)

5 Input text
examination

• variation in formatting
• variation in brand names
• variation in type numbers
• variation in dates
• variation in acronyms

6 Input categorisation • handling of variable characters
• handling of variable numbers
• handling of formatting

7 Test cases definition handling of variable characters
• change names (5)
• change acronyms (6)
handling of variable numbers:
• change numbers (7)
• date numbers (8)
handling of formatting:
• for formatted text strings: remove formatting (9)
• change formatting (10)
• for non-formatted text strings add formatting (11)

Figure 95: Test Suite Generation for Retrieval Benchmark Setup 2

While in setup 1 the retrieval component could only be tested with respect to the 19
text segments present in the test text, in setup 2 the system could be tested with respect
to the quantity of recall for all of the 11 test cases that were defined above. For this
purpose a sentence that was stored in the TM database was altered according to the
pattern described in the test cases and the success for retrieving the original stored

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 174

sentence was measured in boolean terms, that is, whether or not the original sentence
was retrieved. To improve the reliability of the test, the same test case was, if possible,
applied with 5 segments, leading to a test suite with 46 test items. For the test it was
counted, how frequently the system successfully retrieved the original segment. The
following figure presents the results of the benchmark test.

RESULTS RETRIEVAL BENCHMARK RECALL OF TEST CASES TASK 2 SETUP 2
TEST CASE TEST ITEM RECALL

SYSTEM 1
RECALL
SYSTEM 2

deletion of sub-
clauses

1. Ölstand im automatischen Getriebe
prüfen.
2. Bei größerem Ölverlust Ursache
ermitteln.
3. Sicherungsstift (6b) seitlich in
Pfeilrichtung wegdrücken.
4. Ölmeßstab (6) bis zum Anschlag
einstecken.
5. Sicherungsstift (6b) einsetzen, bis er
einrastet.

1

1

1

1

1

0

0

0

1

0

split sentence with
two segments into
two separate
sentences

6. Ölstand im automatischen Getriebe
prüfen. Ölstand im automatischen Getriebe
richtigstellen.
7. Bei größerem Ölverlust Ursache
ermitteln. Bei größerem Ölverlust Ursache
beseitigen.
8. Sicherungsstift (6b) seitlich in
Pfeilrichtung wegdrücken. Beide Teile
entfernen und Verschlußhebel (6a) öffnen.
9. Ölmeßstab (6) bis zum Anschlag
einstecken. Ölmeßstab (6) herausziehen,
Ölstand ablesen.
10. Verschlußhebel (6a) schließen.
Sicherungsstift (6b) einsetzen, bis er
einrastet.

1

1

1

1

1

1

1

1

1

0

unite two separate
sentences into one
sentence

11. Fahrzeug zur Ölstandskontrolle
waagrecht stellen (1) und Getriebe vor der
Ölstandskontrolle auf Dichtheit prüfen.
12. Motor laufenlassen (3.1) und
Verschlußhebel (6a) öffnen.
13. Ölmeßstab (6) herausziehen und mit
fusselfreiem Tuch abwischen.
14. Bei kaltem Getriebe
(Getriebeöltemperatur ca. 30°C) muß bei
richtigem Ölstand die Anzeige zwischen
der "min." und "max."-Markierung liegen
(Bild 3) und bei betriebswarmen Getriebe
(Getriebeöltemperatur ca 80°C) muß bei
richtigem Ölstand die Anzeige an der
"max."-Markierung anliegen (Bild 3).
15. Ölstand nochmals kontrollieren und ggf.
berichtigen.

1

1

1

1

1

1

0

0

1

0

Figure 96: Benchmark Test Results (t2) Setup 2 – Part 1

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 175

RESULTS RETRIEVAL BENCHMARK RECALL OF TEST CASES TASK 2 SETUP 2
TEST CASE TEST ITEM RECALL

SYSTEM 1
RECALL
SYSTEM 2

change of sequence
of main and sub-
clauses

16. Ölstand im automatischen Getriebe
richtigstellen, ggf. prüfen.
17. Bei größerem Ölverlust Ursache
beseitigen und ermitteln.
18. Beide Teile entfernen und
Verschlußhebel (6a) öffnen und
Sicherungsstift (6b) seitlich in Pfeilrichtung
wegdrücken.
19. Ölmeßstab (6) herausziehen und bis
zum Anschlag einstecken.
20. Sicherungsstift (6b) einsetzen, bis er
einrastet, Verschlußhebel (6a) schließen.

1

1

1

1

1

1

1

1

0

1

change acronyms
(only one available in
test text)

21. ALP-Öl nach Betriebsstoff-Vorschriften
Blatt 236.4/6/7

1 1

change numbers
(n+1)

22. Bild 2 links (bis 09/93)
23. Bild 3 rechts (ab 10/93)
24. Verschlußhebel (7a) öffnen
25. Ölmeßstab (7) bis zum Anschlag
einstecken, wieder herausziehen, Ölstand
ablesen
26. Bei kaltem Getriebe
(Getriebeöltemperatur ca. 31°C) muß bei
richtigem Ölstand die Anzeige zwischen
der "min." und "max."-Markierung liegen
(Bild 4).

1
1
1
1

1

1
1
1
1

1

change date
numbers (n+1)

27. Bild 2 links (bis 10/94)
28. Bild 3 rechts (ab 11/94)
29. bis 10/94 (Bild 1)
30. ab 11/94 (Bild 2)
31. bis 10/94 (Bild 1)

1
1
1
1
1

1
1
1
1
1

for formatted text
strings: remove
formatting

32. GETRIEBE 722.3/4/5
33. Bild 1 links (bis 09/93)
34. Bild 3
35. Prüfen
36. Richtigstellen

1
1
1
1
1

1
1
1
1
1

for formatted text
strings: change
formatting

37. GETRIEBE 722.3/4/5
38. Bild 1 links (bis 09/93)
39. Bild 3
40. Prüfen
41. Richtigstellen

1
1
1
1
1

1
1
1
1
1

for non-formatted text
strings add formatting

42. Ölstand im automatischen Getriebe
prüfen, ggf. richtigstellen.
43. Bei größerem Ölverlust Ursache
ermitteln und beseitigen.
44. Sicherungsstift (6b) seitlich in
Pfeilrichtung wegdrücken, beide Teile
entfernen und Verschlußhebel (6a) öffnen.
45. Ölmeßstab (6) bis zum Anschlag
einstecken wieder herausziehen, Ölstand
ablesen.
46. Verschlußhebel (6a) schließen und
Sicherungsstift (6b) einsetzen, bis er
einrastet.

1

1

1

1

1

1

1

1

1

1

TOTAL RECALL OF TEST CASES 46/46 37/46
FUNCTION VALUE FOR RETRIEVAL BENCHMARK SETUP 2 100 80.43

Figure 97: Benchmark Test Results (t2) Setup 2 – Part 2

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 176

In short, system x managed to retrieve all of the test items, while system 2 managed to
retrieve 37 of 46 test items, resulting in:
v(x) = 100 v(y) = 80.43

Both setups were considered equally important to reveal the quality of the translation
memory component for an industrial translation department such as that of Mercedes-
Benz. Consequently, the calculation of the final value was performed by multiplying
the function values of both setups with .5, leading to the following overall values for
the quality of the translation memory retrieval component:
v(x) = 92.10 v(y) = 55.99.

The second type of benchmark applied for (t2) measured time behaviour, that is, the
seconds needed to retrieve translations from the translation memory. The test was
performed with both setups and the results averaged. System 1 needed on average
three times longer to retrieve translations (3 sec.) than system 2 (1 sec.). This was due
to the time-consuming DDE-communication between WinWord and the TM
application. In order to locate the values on the curve, it was decided that the function
value decreases linearly, with a value of 5 seconds leading to a zero function value,
resulting in:
v(x) = 40 v(y) = 80

4.4.4 Experiences with Scenario Testing

As pointed out before, the primary objective for performing a scenario test in the
context of this thesis was to investigate the adequacy of scenario testing for evaluation
preceding purchase decisions. A central question herewith was whether it is possible at
all to arrive at reliable numerical values for metrics applied during scenario testing,
which can be included into the assessment procedure as proposed in the evaluation
framework. While other test types were presented only on a very basic level, the
scenario test will be described in great detail here to allow the objective judgement of
the complexity of this test type.

The following tables provide an overview of the problems tackled during the different
phases of the scenario test.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 177

PROBLEM TEST PLANNING PHASE
costs ca. 1 PM
software system test with IBM TM/2 and Trados TWB for Windows
type of scenario test field, integrated into Computer Aided Translation course
location University of Helsinki; Kouvola

10 PC LAN/Windows
users 10 Finnish students with English Major or Minor
time course: 15/05/95 - 19/05/95

explorative learning session: 22-23/05/95
pilot testing/observation session: 24/05/95
field test: 26/05/95

evaluators M. Höge
L. Carlson
assistants: 10 students (participants of same CAT course)

PROBLEM TEST PREPARATION PHASE
quality requirements understandability, learnability, operability, suitability, fault

tolerance; interoperability
test task task 1. establishing translation environment;

subtasks:
• starting programs
• opening test documents
• opening translation memories
• opening dictionaries
2. translating given text
subtasks:
• retrieving/storing translations
• inserting terms from dictionaries
• editing terms

test data test corpora: manual of TM2 for Windows
• text for training the TM
• text for translation during test

instruments • questionnaire to elicit user profile
• scenario checklist
• observation
• post-testing interviews

equipment • overhead projector
• beamer

test plan:
test procedure
and
duration

1. introduction
2. questionnaire
3. training course and. explorative

learning session
4. pilot testing/observation session
5. field test
6. post-testing interview

15/05/95
15/05/95
15-19/05/95
22-23/05/95
24/05/95
25/05/95
25/05/95

PROBLEM TESTING PHASE
organisation
and
time-management

tests: 26/05/95 9.45 - 11.15
user break/observer's discussion: 11.15 - 11.45
post-testing interview: 11.45 - 12.30

trouble shooting problems: copying of test texts to local drives
deviations from test plan: TM/2: 6 subjects, TWB: 2

Figure 98: Problems Tackled in Scenario Tests – Part 1

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 178

PROBLEM DATA ANALYSIS PHASE
data viewing analysing scenario checklists w.r.t. aspects related to pre-

defined quality requirements
data collection compare results of different subjects
calculation value types: mostly qualitative
PROBLEM REPORTING PHASE
documentation document test-bed precisely

document all decisions taken during all phases
document all deviations from test plan
provide total of testing data as appendix

evaluation justify all interpretations of results
summarise results

Figure 99: Central Problems of the Reporting Phase

As the above tables show, the scenario test was integrated into a Computer Aided
Translation (CAT) course performed by Prof. Lauri Carlson and the author of this
thesis for students of translation at the University of Helsinki. The systems taught and
tested were Trados TWB for Windows ß (system x) and IBM Translation Manager 2
for Windows (system y). The objective behind testing was to assess the applicability of
scenario tests for the purpose of evaluation preceding purchase decisions. The scenario
test was split up into six major parts:
1. introduction
2. user profile questionnaire
3. training course and explorative learning session
4. pilot testing/observation session
5. field test
6. post-testing interview

In the following the major constraints and findings of the different parts will be
presented, followed by a survey of scenario test results.

4.4.4.1 Introduction into the Problem of Scenario Testing

The CAT course started with a one hour introductory session in which students were
presented with (i) administrative details of the CAT course, and (ii) technical details of
translators’ aids.

Administrative Details of the CAT Course

Students were told that the motivation behind the course was twofold, that is, to teach
them two major CAT systems and to perform tests which were meant to elicit
information on (i) the applicability of the testing framework developed in this thesis,
and (ii) the quality of the two translation tools. For this purpose students were asked to
fill in the user profile form, to take part in a training course of the two systems, to

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 179

perform explorative learning sessions, and to take part in a scenario test either as
subjects or as observers.

Technical Details of Translators’ Aids

Students were given an introduction into the technical details of translators’ aids, since
training theory points out that material should always be presented in a way that the
larger context becomes clear. As Hohmann/Le-Hong (1993:10) point out, logical
connections that are shown to the learner in advance will help him/her to remember the
information presented. Consequently, the following description of translator's aids
systems was given to the students at the beginning of the course: translators' aids
normally consist of three major modules, that is,

(i) an editor in which a given text is translated
(ii) a dictionary/termbank module, from which translated terms are retrieved

together with additional information such as grammar, context, definition
etc., and

(iii) a translation memory, in which previous translations are stored and retrieved
during the translation process.

Both editors and on-line dictionaries were theoretically well-known by the students.
Thus, the major focus of both evaluation and testing was put on the functionality of a
translation memory: In short, a translation memory works on the recognition of stored
(SL/TL) segments that match a given input SL segment. Most translation memories
store the (SL/TL) pairs in databases. The following figure illustrates the functionality
of a translation memory program:

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 180

SL TEXT TL TEXT

(SL|TL)
output

TM
input

segmentation

alignment

input input

TM
segmentation

matching

input:
SL

input:
aligned
(SL|TL)

SL TEXT TL TEXT

output:
stored

(SL|TL)

alignment of existing
parallel text corpus

retrieval of
matches during

translation process

Figure 100: Technical Details of Translation Memories

There are two ways of building up translation memory databases, (i) by alignment
programs, on the basis of existing translations or (ii) interactively, during the
translation process:

(i) Alignment programs: An alignment program needs as input two separate files,

that is, the SL text file and the corresponding TL text file. The program performs
segmentation of both files on the basis of internal segmentation rules, which
range from simple end-character recognition to linguistic procedures such as
parsing. In a second step, the tool tries to match segments of the SL text file with
segments of the TL text file. The quality of the alignment module is decisive for

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 181

the success of the whole procedure. In most cases the alignment process is based
on statistical calculations, that are further supported by textual clues and, in some
cases, formatting information. The result of the alignment phase, that is, a file
with (SL/TL) pairs can finally be imported into the translation memory database.

(ii) Interactively: In most translation environments the translator is provided with a

translation editor into which the SL text needs to be imported, displaying text and
formatting tags of the SL text separately. In some cases, the translation memory
program is appended to standard editing environments such as WinWord, which
allows the original display of the formatted SL text. Most translation memory
systems work on the basis of overwriting the original SL text with either a
retrieved TL text segment or a manually inserted translation.

For the retrieval process, the system, when initiated by the user, performs automatic
segmentation of the SL text, and tries to match the identified segment with those
already stored in the translation memory database. There are two possible matches: (i)
either the system can retrieve exactly the same SL text segment from the database, that
is, finds a 100 % match, or (ii) the system retrieves a SL text segment from the
database that bears a certain similarity with the original SL text segment, that is, offers
a fuzzy match.

The quality of the retrieval module depends on two major factors: (i) the flexibility
offered in defining variables for the retrieval of exact matches and (ii) the internal
retrieval algorithm for fuzzy matches. The procedures for the retrieval of exact
matches range from automatic recognition and substitution of dates and numbers to the
pre-defined substitution of type names, brand names etc. The implementation of the
internal retrieval algorithm for fuzzy matches is based on simple pattern matching
procedures, statistical calculations, supported by linguistic clues and, in some cases,
neuro networks.

Again, there are two possible situations after initiating the retrieval process. Either a
match is presented by the system and the user decides that he/she will make use of at
least part of the presented TL text in the original, or the system does not offer any
match, in which case the user is prompted to fill in the corresponding translation. The
finally acceptable (SL/TL) pair is then stored in the translation memory database and
instantly available for further translation retrieval processes.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 182

4.4.4.2 User Profile Questionnaire Survey

The assessment of the personal background of subjects was performed by the aid of a
brief user profile questionnaire which was divided into three main areas covering
student profile, translator profile, and experience with computers. The questionnaire
can be found in appendix 4. While student and translator profile are only of general
interest in a scenario test in which the translation quality is not considered, computer
literacy, that is, the subjects' experience with computers, is decisive for the
interpretation of test results.

Student Profile

Out of the 20 participants of the CAT course, those 9 students that had English as
Major, and 1 who had English as minor subject were selected as subjects for the test.
On average the subjects performed 3.7 years of English studies, with a variance
between 2 and 6 years. As second or third subject they had Finnish, Swedish, German,
Hungarian, French, Italian, Russian, Psychology, or Pedagogy. The remaining 10
students who functioned as observers during the tests had French, Swedish, Russian,
Japanese, Korean, Spanish, or Maths as their major subject. Minor subjects were
Spanish, German, Finnish Literature, Japanese, Estonian, Philosophy, or Pedagogy.
All of them had at least school knowledge in English.

Translator Profile

The native language of 9 test subjects was Finnish, and of 1 subject Swedish. Of those
who had Finnish as their native language 8 had English and 1 Swedish as second
language. The one with Swedish as native language had Finnish as second language.
Third languages were mainly Swedish, German, Italian, French, and Russian. Most
students translate their first and second language into their native language, 6 of them
additionally translate into the foreign language. The special fields covered natural
sciences, law, technology, commerce, education, psychology, and TV translation.
Among the 10 test subjects only 2 had professional translation experience: 1 student
had 6 years of translation experience in industrial companies, translating technical
texts such as manuals, specifications, process descriptions mostly from English or
German into Finnish or Finnish into English; the other student translated over 1 year
texts related to portrait painting from English into Finnish.

Among the 10 students who functioned as observers only 1 did not have Finnish but
Estonian as native language. Second and third languages were French, Swedish,
Russian, Japanese, Korean, Spanish. All observers primarily translate into their native

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 183

language, some additionally into the second and third languages. The special fields
covered EU law, commerce, literature, history. Again only 2 students had previous
professional experience which, however, ranged only from 3 days to 1 month
translation practice in shipbuilding, architecture, and choir song texts.

Computer Literacy

Questions about the experience with computers were divided into four main areas:
operating systems, word processing, CAT tools, and networking. For the interpretation
of results the first three categories were of major interest. Around 70% of both subjects
and observers proclaimed to have basic knowledge of the operating systems Windows
and DOS, while Macintosh (25%) and UNIX (10%) were rather unknown. On the
word processing side the profile was rather astonishing, since most subjects were only
used to working with WordPerfect (9/10) while only 2 were used to working with
WinWord. Among observers, the figure for WordPerfect was also 9/10, however, even
more were used to working with WinWord (4/10). AmiPro was not used by students at
all and the four other systems students referred to were Business Manager, PageMaker,
TEKO, and a Japanese language kit. Among all students only 1 proclaimed to have
regularly used a CAT tool, i.e. TRANSES 2.0, an electronic dictionary. No one else
even tried out any CAT program.

The questions on networking revealed that both groups - subjects and observers - had
unanimously little knowledge on networking aspects in general (22,5%), i.e. only few
students were used to working with any of the networks available in Kouvola or
Helsinki and only 5/20 had an own email account. For telnet, ftp, gopher and WWW
the figures were even lower (on average less than 15 %).

To sum up, on the student and translation side, the profile of subjects displayed a good
starting point for tests, though it would have been useful for subjects of user tests to
have more professional experience. However, on the computer literacy side, the
profile, which in general displayed low to medium computer literacy, already pointed
to possible problems during both training and tests, since

(i) 6/20 students did not have any previous Windows experience, on which the
handling of both systems is based

(ii) 8/10 subjects did not have any WinWord experience, on which the handling
of the Trados system is based

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 184

4.4.4.3 Training Course

The training course was the most time-intensive part in the overall performance of the
scenario test. The IBM software was taught primarily by Prof. Lauri Carlson, while the
Trados software was taught by the author of this thesis. The original aim of the course
was to train the 20 students in using both systems equally well before 10 of them
perform scenario tests with the two systems. However, there is mostly a clash between
training preparation and actual performance, as there often is a clash between theory
and practice. In the following all considerations related to the preparation of the
training course will be described, followed by the actual experiences made during the
course.

Training Preparation

The following principles have to be considered when preparing training programmes:
• Specificity of training programme: Training methodologies cannot be taken from

one subject and applied to another without considering the specifics of the subject.
Moreover a training methodology has to be adapted to the final goal of training, that
is, what should be the result of the training session? While in a "normal" training
programme, the primary goal should be that users will be able to work with the
system in their daily environment, the major focus of this training programme was
to enable users to perform particular tasks with two systems in order to assess the
quality of the two tools during a subsequent scenario test.

• Avoidance of interference: If similar material is trained in succession, interference
occurs, which according to Birkenbihl (1990:pp.140) makes it harder to remember
the information presented. Since the two systems trained are both geared to support
the translator in his/her work, it is obvious that actions needed to be taken that
decrease the problem of interference. The approach taken here is not to perform one
task with system 1 and then immediately afterwards train the same task with system
2 (highest probability of interference), but rather to split up the group into two, one
starting with TM/2, the other with TWB. After three hours (two sessions) of training
with the first system, the trainee has learnt to perform the central tasks with the first
system and then starts from scratch with the second. This procedure cannot
guarantee that the problem of interference is totally eliminated, yet it leads to a
decrease of the probability of interference.

• Objectivity: The concept of objectivity in training programmes only comes into
play, if the systems trained are tested subsequently. If two systems offer similar
functionality, users tend to judge the first system learnt more positively than the
second, since the second system is not considered on its own right but in
comparison to the first. The solution presented for avoiding the problem of

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 185

interference can at the same time help to increase objectivity during tests. When
interpreting test results, particularly positive or negative responses from subjects
can be traced back to the system which they learnt to use first.

• Adequate level of difficulty: The level of difficulty of the training sessions should
be adjusted to the target group. If the group of learners, however, is not
homogeneous, as could be drawn from the user profile questionnaire, special
attention had to be paid to the problem of not asking too much from inexperienced
users while at the same time keeping the interest of experienced users awake.

• System vs. application orientation: One of the most often cited problems in
software training is the strong system orientation which can be found in training
programmes elaborated and performed by software developers directly. If training is
too strongly focused on the functionality of a specific tool rather than on the actual
tasks performed by the user during the application of the tool in a given
environment, the user might be at a loss when trying to apply the newly learnt
procedures to the own application environment. Application oriented training
programmes, such as the one developed in the context of this scenario test, do not
take a specific function as the starting point of training, but start from a general task,
and describe how a particular system has to be used to perform the given task. Since
the training programme developed here integrates the training of two different
systems, which offer different functions to perform particular tasks, the need for
application orientation is even more obvious.

• Investigation of user's task and function: Application orientation in training
programmes presupposes that the tasks be clearly defined. Therefore, the starting
point for the development of each training methodology should be an investigation
of the user's task and typical function within a company. The tasks selected for the
training environment cover (t1) - (t4). Due to the limited amount of time available
for each system (3 hours of training for each system) there was a clear focus on
operative translation tasks.

• Different channels for presentation: Using different channels for the presentation
of information, details can be remembered more easily. The training programme
covered all three channels - listening, seeing, doing - to the maximum extent,
verbal/on screen presentation of information as well as the actual usage of the
system by trainees.

• Explorative learning: Users should be encouraged to explore the software on the
basis of the knowledge already acquired. Proposals for exploring the system that are
based on the knowledge gained during the performance of the previous tasks were
given by the trainer. In addition to the explorative learning proposals, the
framework also covered two 3 hours explorative learning blocks, in which trainees
were asked to translate a given text by the aid of the two systems.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 186

Actual Experiences of User Training

One of the elementary preconditions for successful training and testing is that both
hard and software environment are well prepared. While the installation of TM/2 was
performed on the LAN several weeks in advance, due to the late availability of the
Trados system, the software could only be installed directly before the CAT course
started. Thus the functioning of TM/2 could be assessed in due time before the course
started, while it was found out only at the beginning of the course that the installation
of the Trados ß-version on the LAN led to problems, mostly related to the fact that the
installation routine was not followed exactly by the technical support personnel who
installed the software, and, moreover, high hardware requirements could not always be
met.1 Also, WinWord was not installed properly on all machines before the course
started, so that the preconditions for Trados to work properly at the first course session
were rather bad.

As a reaction to the installation problems with Trados, the plan of splitting the groups
into two, one starting with TM/2, the other with Trados could not be applied. Instead,
all students first got to see TM/2, which shows that the principle of objectivity clearly
could not be satisfied during the training sessions, since the conditions for TM/2 were
much better than for Trados.

During the training of both TM/2 and Trados, it was found very difficult to find an
adequate level of difficulty, since a number of students even had to be taught how to
make use of the mouse and Windows. Thus for many students the learning capacity
was exhausted after acquiring the necessary Windows skills and learning some of the
systems' functionality. For Trados, the starting off was again much worse than for
TM/2 since (i) when getting to see Trados, students did not have much learning
capacity left, (ii) students learnt about the problems with Trados and thus feared that
the system was not robust enough for explorative learning, (iii) in many cases
insufficient hardware caused unacceptable response times, and, (iv) since only few of
the students had previous knowledge of WinWord, they had to acquire the basic
functions of WinWord before they could even think of using the Trados system. As a
consequence to the above described problems, most students mainly used TM/2 during
the explorative learning sessions. Only on the three machines which were powerful
enough to run Trados successfully, more computer literate students actually performed
explorative learning with Trados.

1 The Trados system requirements as defined in the documentation were: (i) a PC AT with a 80486

DX or higher processor running at 33 MHz or more, with at least 8 MB of RAM. Recommended is
a Pentium processor, 16 MB of RAM, and a 17" monitor; (ii) the following software environment:
DOS 3.3 or higher, Windows 3.1 or Windows for Workgroups 3.11, Word for Windows 6.0

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 187

Due to the various problems encountered during the CAT course, it was decided at this
point of the evaluation procedure that test conditions were not appropriate for the
Trados system and thus mainly TM/2 could be assessed.

4.4.4.4 Pilot Testing/Observation Session

The success of direct observation depends to some extent on the experience of the
observer. Thus a pilot testing/observation session was held which allowed the 10
totally inexperienced students to observe their counterparts and to fill in a scenario
checklist. The students of the class received a 10 Min. introduction into the principles
and goals of Scenario testing in general and of direct observation in particular. The
scenario checklist designed for the test covered the following columns: test text, sub-
tasks, functions, user comments, observation remarks, user errors/problems, help
requests, system failure, time. The design of the checklist was supposed to allow
measurement of the following metrics: frequency of help/documentation use;
understandability of user interface; frequency of user errors; suitability of fuzzy match
proposals.

During the pilot session, students were asked to observe the subjects until they feel fit
in filling in the checklist. However, the maximum time for practising was set to 1 hour.
Among the ten students performing the pilot observation, only two needed the
maximum observation time. Major problems during the pilot observation were:
(i) identifying aspects that need to be noted as remarks
(ii) distinguishing between the concepts of sub-tasks and functions
(iii) watching and noting at the same time
(iv) identifying user errors
While problems (i) to (iii) could be resolved largely before the actual test started,
problem (iv), that is, the identification of user errors remained to be a problem for
most observers even during the scenario test. This was mainly due to the fact that,
though being trained in using the software during the preceding 9 day training course,
most observers did not feel fit enough to judge their companions' handling of the
software.

4.4.4.5 Field Test

The scenario test displayed the typical characteristics of a field test, since it
(i) took place in the PC lab, in which students normally perform their computational

work;

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 188

(ii) made use of the typical field test instruments, that is, direct observation, scenario
checklist, post-testing interview, and

(iii) caused little expenses.

Observations as instruments deliver results related to the interaction between user and
system. The type of results can be quantitative, e.g. the time needed to perform an
action, the frequency of usage of functions, the frequency of failures or problems etc.
or qualitative, e.g. the type of interaction chosen, the comments made by subjects, the
type of problems etc. In a first step the observational data has to be collected from all
subjects and thematically ordered. In a second step, aspects that need clarification have
to be identified and discussed in a post-testing interview. Only after the collection of
results by means of both observation and interviews, the final evaluation can take
place, that is, the results can be related to ISO quality characteristics.

Test Proceedings

The testing environment was the same PC lab in which the CAT course was held.
Among the 8 students available as subjects six chose to test TM/2 while two of the
more computer literate students were prepared to test Trados TWB on the more
powerful machines. As a help, students were allowed to make use of their notes and
user manuals. In short, during a 90 minutes testing session, subjects were asked to
translate as much as they can of a given English text into Finnish, making extensive
use of the tools provided, while being observed by those students with whom they
were associated during the preceding course. The scenario checklist was the same as
the one used in the pilot testing/observation session with the test text displayed in the
first column.

When testing two systems comparatively, it is very difficult to find a test text that is
equally useful for both systems, that is, gives the same chance to both systems. For the
testing of translators’ aids, there are two elementary functional requirements on the
test text: availability of (i) previous translations stored in the TM and (ii) terminology
elaborated for the domain in the source and target languages. In this sense, the
University of Helsinki identified the TM/2 for Windows manual as appropriate, since
the manual of the OS/2 version of the very same system was previously translated at
the University of Helsinki, making use of TM/2. Thus various translations were
already stored in the TM/2 translation memory and corresponding terminology was
elaborated and stored in a TM/2 dictionary. Again the test text was less appropriate for
Trados, since the translations had to be aligned automatically by the Trados alignment
tool TAlign, which leads to a much lower hit rate for translation retrieval than for
manually translated texts, while at the same time also misalignments can occur that

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 189

influence system acceptance. The terminology provided by the University of Helsinki
could be imported into the Trados Multiterm database without much preparation effort.
However, apart from the preparation of both translation memory and terminology
databases, also the format of the text is an important factor for the performance of the
test. Unfortunately the text was only available in the original tagged IBM format,
which caused acceptance problems with the Trados version during both alignment and
retrieval.

The test task was restricted to SL text reception and translation. For the SL text
reception part, subjects were asked to copy the text from a network to their local drive,
starting the programs needed for translation, opening/importing the text into the
systems, and selecting already existing translation memory databases and termbanks.
During the translation process, subjects were asked to make extensive use of the
translations provided in the TM, to look up parts of sentences in the translation
memory databases, to look up and incorporate terms from the dictionary, and, where
possible to edit (add/delete/change) dictionary entries.

Survey of Observation Results

Since it was decided after the training part that, due to various problems with the TWB
training, a comparison between the two systems is not possible, the following
presentation of results will focus on aspects related to the performance of TM/2.
Where appropriate, short remarks will be given about comparable aspects of the
performance of TWB4W. Among the many observations noted on the scenario
checklist those will now be discussed that, after detailed examination of the matter,
proved to be of importance to establishing a clear picture of the performance of the
subjects relevant to the evaluation of the tools.

1. SL Text Reception: Observations showed that though being taught before,
most subjects had problems with copying the test text from the network to their
local drives. Particular problems were caused because, instead of copying the
text, some students opened the file directly on the network drive or only moved
it to the local directory. Thus the file was instantly either not accessible or even
not available to other subjects, wanting to copy the file to the local drive. The
problem could be resolved by the aid of support personell within 15 minutes.
Despite clear descriptions on the notes, four of six TM/2 subjects had problems
with importing the file into the translation environment. For some, the sequence
of subtasks and steps necessary was unclear, others were not sure how to define
the properties of the particular text. After successfully finishing the import
subtask in TM/2, some students on less powerful machines, complained about
the analysing process taking too long. Problems also occurred when, after a user

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 190

error, the size of the editor window was changed and the text went out of the
screen, or the translation memory window disappeared and subjects did not
know how to get back to normal. Opening the SL text file and establishing the
translation environment within WinWord caused no problems for the two
subjects testing Trados TWB.

2. Translation: For TM/2 the interaction during the translation process showed a

clear preference of students for key combinations. The most frequently used
combinations were those for storing the translation, deleting the remaining text
of the segment, moving on to the next translation segment, choosing a match
from those presented in the translation memory window, choosing a term from
the list of terms presented in the dictionary window. The number of different
key combinations used by subjects throughout the test varied from the three
most important ones to seven more sophisticated functions. At most six
different key combinations were used within one translation segment. The great
number of different possibilities for assigning key combinations to functions led
in many cases to user errors, because subjects mixed up which combination was
assigned to which function. In such cases, subjects heavily complained about
the difficulty to undo actions and return to previous states. During the
observation one student complained about the confusing layout of the screen.
The handling of the editor caused various problems, that is, moving words
within the segment, returning to previous segments, unwanted deletion of tags,
using the key combination for the deletion of the remaining text in the segment,
when cursor was not at the end of the segment. In TM/2 100% matches were
always inserted by means of the key combination. However, handling proved to
be too complicated and time-consuming, if only parts of matches were
appropriate for the particular context. Some subjects repeatedly chose to just
read the proposal from the translation memory window and typing the
appropriate part in manually. This was even more true for using the terms
offered in the dictionary window: less than 10 % of all terms offered in the
windows were actually inserted into the text by means of the key combinations.
The strategy of finding the translations for terms that were not automatically
displayed in the dictionary window differed largely between TM/2 and TWB
subjects: while TM/2 subjects never opened the dictionary to look up related
words, and thus either used a paper-dictionary or took over the English term in
the target text, TWB subjects frequently browsed through the termbank or made
use of the concordance facility to look for the unknown term. Despite some
complaint about the correctness of terminology, only one of the subjects edited
an entry of the dictionary once. The quantity of text translated during the 90

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 191

minutes test session varied from 18 to 70 segments. The variance could be
traced back to the time-consuming handling of problems with importing the SL
text (in one case it took 30 Min!), not making use of matches or terminology
offered by the system, problems with understanding the SL text, user errors
when mixing up key combinations. On average TM/2 subjects managed to
translate 32 segments.

4.4.4.6 Post Testing Interview

The major objective of the post-testing interview in the context of this scenario test
was to elicit more detailed information about the reasons for a particular behaviour
during the test, and to clarify issues that could not be clearly defined by observational
data alone. Therefore the form of a structured interview was chosen, in which the
interviewer asks detailed questions which the interviewees one after the other have to
answer. A group discussion seemed adequate, since no critical personal data was going
to be elicited.

From a psychological view it proved to be ideal to start with general questions about
likes and dislikes before eliciting detailed information about interaction and closing
the discussion with subjective evaluation statements from users. Thus the questions
can be split up into three major blocks: (i) general impression of software, (ii) detailed
discussion of user behaviour, (iii) user evaluation statements.

(i) general impression of software
what did you particularly like?
All subjects liked the functionality of a translation memory and electronic dictionaries
in general. Most subjects were quite impressed by the speed of translation retrieval in
TM/2. Though only few made use of the function, all subjects liked the possibility to
define shortcuts for most TM/2 functions. Though not being prompted to comment on
Trados TWB, five of six TM/2 subjects as well as the two TWB subjects pointed out
that they like the Trados look and feel, in particular colours, layout and icons (e.g.
dictionary icon, national colours). One subject did not mind layout as long as
functionality is OK. The Trados subjects were enthusiastic about both functionality
and handling of the concordance facility and all TM/2 subjects would have liked
something similarly effective in TM/2. All subjects noted positively that they realised
a certain increase in speed during interaction with the systems.

what did you particularly dislike?
All subjects felt uncomfortable, thinking of the fact that there is no possibility of
modifying stored translations in the TM/2 translation memory database. Most subjects

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 192

complained about the long process of establishing the translation environment for
external documents. In particular the importing of files into TM/2 was found to be not
straightforward and the analysis of the text took too long on the less powerful
machines. While students that were not used to Windows programmes were mostly
satisfied with layout and functionality of the editor, more computer literate subjects
complained about the confusing layout of the text in the editor and the reduced
functionality. In particular subjects complained about the format only being displayed
in form of tags. Related to the restricted functionality of the editor, subjects
complained about the uncomfortable modification of proposals from the translation
memory or the dictionary and the lack of undo possibilities during the interaction with
the editor.

(ii) detailed discussion of user behaviour
why did you prefer key combinations as primary form of interaction?
Two of six TM/2 subjects, were convinced that key combinations are the best solutions
whatsoever, since, not being experienced with Windows/mouse, it is much quicker
when typing in translations to use the keyboard for interaction than moving the hand to
the mouse for direct manipulation. The remaining four TM/2 subjects pointed out, that
in the TM/2 environment, that looks very similar to normal DOS applications, the user
was not particularly motivated to use the mouse. In general they also found key
combinations quite handy, except for the fact that, using so many combinations for
different functions, the user tends to mix up different combinations, leading to user
errors which are difficult to undo in TM/2. As possible solution they would prefer a
mixture between key combinations, particularly for those functions that are performed
while typing in translations, and additionally buttons or toolbars for a quick mouse
click, instead of having to pull down the menu and selecting an option there.

how did you like the functionality and layout of the editor?
None of the subjects found the TM/2 translation editor particularly user friendly and
easy to handle. Apart from the problems observed and noted during the test, subjects
particularly complained about the fact that having used the overwrite mode for
translation, it is impossible to verify or modify the translation after finishing a
segment, since the original is not available. In this respect all subjects unpromptedly
pointed out that the Trados solution is preferable, since the original SL segment is
always visible.

how did you like the translation memory facility?
On the content side, subjects complained that for some passages only few translation
proposals were available. TWB subjects then often succeeded with their translations,

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 193

making extensive use of the concordance facility, while TM/2 subjects manually
translated the segments. Whenever matches retrieved from the translation memory
could be used without modification (100% matches), subjects found the handling easy.
Yet if only fuzzy matches were available, subjects found it more time-consuming to
perform modifications with the editor than to type in the translation manually. The
quality of fuzzy matches was generally judged acceptable.

how did you like the dictionary facility?
On the content side subjects again complained about the relatively low hit rate. All
TM/2 subjects pointed out that, if possible, they would have used the concordance
facility offered in TWB to look for terms.

why did you insert terminology rarely?
All subjects complained about the problems of automatically inserting Finnish
terminology, since the effort of inflecting automatically inserted words is often higher
than for manually typing in the inflected form.

why did you rarely edit (add/change/delete) terminology?
The reasons given for not having edited terminology were that (i) subjects did not
really feel responsible for the terminology, (ii) subjects feared they could make some
irreparable error to the database, and (iii) subjects found it too complicated to edit
terminology.

(iii) user evaluation statements.
do you feel fit in using the software now?
Five of six subjects of TM/2 and both TWB subjects felt that the training was
sufficient for performing operative translation tasks. One TM/2 subject would prefer to
have more intensive training before using the system on his own.

would you use the software?
Two of six TM/2 subjects expressed wishes to use the software for their private
translation exercises. Another two doubted that they would make use of the software,
since they were not sure that translation quality and quantity can actually be increased
using the software. The remaining two TM/2 subjects found it depending on the type
of text to be translated. For repetitive texts, they would try to use it, while for less
repetitive text types they would clearly not use it. Both TWB subjects said that they
would like to use the software for future translation tasks.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 194

would you buy it?
Given the restricted financial situation of the subjects, nobody would buy any of the
two systems currently. Both TWB subjects expressed hopes that their future employer
would buy the system.

4.4.4.7 Survey of Scenario Test Results

The overall procedure of this scenario test showed that quantitative measurement did
rarely make sense. In the following, different metrics that were intended to be applied
during the scenario tests will be discussed in terms of the problems related to their
measurability in this particular context.

• time needed for training programme: the training programme covered 5 days of

training and 2 days of explorative learning. However, due to the technical problems
with Trados TWB4W, more time was spent with TM/2. Consequently measurement
of hours spent with either system is not valid, since it is not possible to generalise
from the circumstances of the experiment to the circumstances in real life.

• time needed to achieve performance criterion: computer literacy among subjects

varied greatly. The measurement of time in relation to performance depends on
whether or not a subject was used to the direct manipulation techniques offered by
the systems. Consequently the measurement of time needed to achieve a
performance criterion is not reliable, since other subjects with different computer
literacy will need a different amount of time to achieve a performance criterion.

• frequency of help/documentation use and frequency of user errors: in order to arrive

at a value relevant measurement of how frequently subjects were in need of help or
made errors, one has to consider how quickly they performed their test. In other
words, there was a great variance w.r.t. the amount of text that was translated during
the text (between 18 and 70 segments) and consequently also the frequency that
functions were being used by subjects. A calculation based on the average of
segments translated and help needed/errors made considering this variance in
translation speed and also computer literacy is not value relevant in this context.

• fault tolerance with user errors: since observers did not know the systems much

better than the subjects they were observing, it was difficult for observers to judge,
whether a certain behaviour is due to a user error or the system itself. Consequently
hardly any user errors were noted on the observation lists. The measurement of
errors is, therefore, not valid.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 195

• suitability of fuzzy match proposals: though the observation checklist allows the
counting of the number of times in which a fuzzy match proposal was used, the two
systems did not have equal conditions, since the alignment between SL and TL
segments in the TM/2 case was done during translation and in the TWB4Windows
case by an alignment program. Consequently a counting of frequency of usage of
proposals is not valid in this context.

• response time for TM retrieval: the hardware requirements were not equally met

with both systems. Consequently with Trados TWB4W relying on DDE
communication between Windows applications, on a PC which could hardly meet
the system requirements. the response times were much worse than that of TM/2.
The measurement of time for retrieval, therefore, is in this context not valid.

The above discussion showed, that the goal to arrive at quantifiable results for the
above metrics could not be met in this particular scenario test. Nevertheless, a
qualitative evaluation of the data arrived at by means of the profile, training
experience, observation, and interview will be presented in the following tables. Due
to the setup of the scenario test, the following assessment will focus on results related
to the TM/2 software. Only where possible and relevant in relation to the evaluation of
the TM/2 software, results of the restricted test with Trados TWB will be provided.

SUITABILITY
TM/2 1.0 TWB ß

judgement feature judgement feature
- no editing of translation memory

databases
+ editing of translation memory

databases possible
- reduced functionality of editor + full functionality of WinWord
- no additional display of original SL

segment
+ additional display of original

SL segment
 + concordance facility

Figure 101: Qualitative Suitability Evaluation

As the above figure shows, the suitability of TM/2 is judged less positively than of
TWB. Subjects considered a number of functions as necessary that the test version of
TM/2 did not have. However, it has to be kept in mind that (i) the above evaluation is
based solely on the performance of operative translation tasks and thus provides only a
partial view of the overall suitability and (ii) the results are based on the testing of
version 1.0 of TM/2 and TWB ß.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 196

INTEROPERABILITY
TM/2 1.0 TWB ß

judgement feature judgement feature
+ sharing of TM databases in network + sharing of TM databases in

network
+ sharing of termbank in network + sharing of termbank in

network
FAULT TOLERANCE

TM/2 1.0 TWB ß
judgement feature judgement feature

- no undo after user error, e.g. using
incorrect key combinations

UNDERSTANDABILITY
TM/2 1.0 TWB ß

judgement feature judgement feature
- importing procedure unclear
- editing process of terminology unclear

Figure 102: Qualitative Evaluation of Interoperability, Fault Tolerance and Understandability

As to understandability, the concepts of translation environments including translation
memories and terminology management systems were well understood by subjects. A
certain experience with TM/2 will certainly decrease the importing difficulties, since
users will then understand which information is needed in order to process files and
which options the system offers to support the process.

LEARNABILTY
TM/2 1.0 TWB ß

judgement feature judgement feature
+ general: easy to learn for non-Windows

literate users
- general: requires Windows

literate users
- functionality of individual items difficult to

remember because of DOS-like
interface

+ functionality of individual
items easy to remember
because of sophisticated
interface

Figure 103: Qualitative Learnability Evaluation

Though TM/2 is a Windows product, its similarity to DOS programs is high, which
decreases the phobia of less computer literate users. However, the number of non-
Windows literate users is steadily decreasing so that this positive aspect of TM/2 is
gradually turning into a negative feature for future users, who expect a maximum of
flexibility and usability.

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 197

OPERABILITY
TM/2 1.0 TWB ß

judgement feature judgement feature
+ possibility to assign key combinations

to functions
- only small number of pre-

defined key combinations
offered

- no toolbars for quick mouse interaction + toolbars for quick mouse
interaction

- layout of translation environment
confusing (no WYSIWYG in editor)

+ layout of translation
environment clear
(WYSIWYG, colours, icons,
buttons etc.)

- editing of translations in editor
uncomfortable

+ WinWord editing facilities

- uncomfortable modification of fuzzy
matches in translation editor

+ -"-

- long procedure for establishing
translation environment for external
documents

+ having once prepared
WinWord template, opening
of documents easy

Figure 104: Qualitative Operability Evaluation

The above figure shows that all negative features of TM/2 can be traced back to its
usage of a separate translation editor which is not nearly as comfortable in using as
WinWord, the current standard editor.

TIME BEHAVIOUR
TM/2 1.0 TWB ß

judgement feature judgement feature
+ instant response for TM and dictionary

retrieval due to internal processing of
data

- slow response times for TM
retrieval on less powerful
machines due to DDE
communication

- analysis process too long on less
powerful machines

- fuzzy search of terminology
in Multiterm too long on less
powerful machines

Figure 105: Qualitative Time Behaviour Evaluation

The scenario test showed clearly that both systems are geared to a more powerful
hardware environment than was available at the test site. While time behaviour of
TM/2, which does not need any external data communication processes, was still
mostly acceptable, if not even remarkable, it was obvious from the very beginning of
installation that system requirements could not even nearly be met for TWB, which
needs power for the DDE communication and the processing of neural networks.

4.4.4.8 Conclusion to Scenario Testing

The above description of the procedure and results of the scenario test showed that
despite a great deal of effort that was put into the preparation and performance of the
test, the test could, as such, not be marked as successful in quantitative terms. The
variables on the personal background side of subjects were too many and the problems

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 198

with hard- and software preparation too complex to be a sound basis for a reliable test.
Moreover, the test showed that in tests involving users it is very difficult to arrive at
value relevant, valid, and reliable quantifiable data. However, despite many
deficiencies related to the performance of the test, a great amount of rich qualitative
data could be obtained that depict the likes and dislikes of users in a realistic way.

In short, the tasks applied during scenario testing were (t2)-(t4), that is, mainly
translation memory and termbank retrieval and updating termbanks. Among the 87
metrics only 13 metrics were applied in the scenario test. The metrics investigated the
quality characteristics suitability, interoperability, understandability, learnability,
operability, time behaviour, and fault tolerance. All of the metrics applied during
scenario testing were also applied in another test type, mostly task-oriented testing or
inspection. The scenario test, consequently, was a means to validate the results of the
other tests.

4.5 Conclusion to Testing in Evaluation

The data in appendix 2 can be analysed as follows:
• among the 87 metrics defined, 59 (67%) proved to be evaluation relevant and will

be input into the assessment calculation that will be demonstrated in the next
chapter;

• 23 metrics (27%) were applied in more than one test type, leading to an overall
figure of 110 applied metrics;

• the distribution of evaluation relevant metrics per test type is as follows:
TEST TYPE number of

metrics
of which are
evaluation
relevant

not evaluation
relevant

inspection 35 19 (54%) 16
task-oriented testing 42 31 (73%) 11
interface-driven testing 16 13 (81%) 3
benchmark testing 5 5 (100%) 0
scenario testing 13 11 (78%) 2

Figure 106: Distribution of Evaluation Relevant Metrics per Test Type

• the distribution of scales applied during the different test types are as follows:
TEST TYPE binary binary

nominal
ordinal ratio

inspection 23 12 0 0
task-oriented testing 26 3 8 5
interface-driven testing 13 0 2 1
benchmark testing 4 0 0 1
scenario testing 6 0 5 2

Figure 107: Distribution of Scales Applied during the Different Test Types

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 199

• the distribution of scales among metrics applied was:
 binary scale: 72 (64.9%)
 binary nominal scale: 15 (13.5%)
 ordinal scale: 15 (13.5%)
 ratio scale: 9 (8.1%)

From the above figures it is possible to conclude that the evaluation results all in all
can be considered highly objective, since 86.5% were measured on binary, binary
nominal or ratio scales and only 13.5 % were measured on ordinal scales. Furthermore,
27% of all metrics, among them all metrics that were measured on ordinal scales, were
validated by means of different test types.

Feature inspection proved to be an important starting point, since it covered 31.5 % of
all metrics. Also, it proved to deliver totally objective results in form of only binary
and binary nominal scales. At the same time, the results also show that feature
inspection has to be supplemented by other test types, since only 54% of all metrics
applied in feature inspection were evaluation relevant. This implies that it becomes
important to find out how the features that are available are implemented.

The test type delivering the highest quantity of evaluation relevant results proved to be
task-oriented testing. 37% of all metrics were applied in task-oriented testing, of
which 73,8% proved to be evaluation relevant. Consequently the highest number of
results that go into the final assessment calculation go back to task-oriented testing.
The objectivity of results gained by task-oriented testing can also be rated high, since
80,9 % of results go back to binary, binary nominal and ratio scales. All of the ordinal
scale results were validated by other test types.

Of the 16 metrics applied in interface-driven testing only 5, that is, those for
compliance and fault tolerance, were not at the same time applied in some other test
type. It follows that the major function of interface-driven testing in evaluation
preceding purchase decisions is to validate results of other test types, mainly of task-
oriented testing. There lies an important difference between evaluation preceding
purchase decisions and evaluation supporting development where interface-driven
testing is the major means to detect problems and inconsistencies.

Benchmark testing covered only 4.5 % of all metrics applied in the tests. As pointed
out before, the reason for this lies in the problem of identifying units of systems that
are measurable independently from user input. The objectivity of benchmark test
results is rather high, measuring the metrics mostly on ratio or binary scales. All

CHAPTER 4: USER-ORIENTED TESTING FOR EVALUATION 200

metrics applied in benchmark testing proved to be evaluation relevant, which points to
the fact that benchmark testing is very important to the assessment calculation, since it
describes how well central functions of the software were implemented. The results of
benchmark testing may very well turn into knock-out criteria in the assessment phase.

With 11,7 % of all metrics applied, scenario testing ranks rather low in terms of
coverage. All of the metrics applied in the scenario tests were at the same time also
applied in other test types. The fact that 78% of the metrics applied are evaluation
relevant, points to the fact that scenario testing elucidates important aspects related to
workflow, likes and dislikes, that can be used to validate the results of other test types.

To conclude, testing showed that in evaluation preceding purchase decisions, it is
indeed promising to start off with feature inspection and supplement the results with,
above all, task-oriented and benchmark testing that deliver important information on
how well the features are implemented. Interface-driven testing plays a minor role in
evaluation preceding purchase decisions and, therefore, can concentrate on measuring
quality characteristics such as compliance and fault tolerance. The experiences made
with scenario testing pointed to the fact that it is very difficult to arrive at reliable,
valid and value relevant results. However, despite the problems of measurability, the
scenario test should be used as final way to validate the results of other test types.
This validation need not even be quantitative in nature, since qualitative notions as
presented above also serve to validate the numerical results gained through other test
types. Consequently, for evaluation preceding purchase decisions, the scenario test is
considered as invaluable means of validation of results. Its role for evaluation
preceding purchase decisions can, in its own right, be compared to the role of the
sensitivity analysis performed in the decision analysis process. In other words, the
scenario tests can show whether the figures obtained during the various stages of
evaluation really make sense in the practical working environment concerned.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 201

5. Assessment in Software Evaluation

In evaluation supporting the development process, assessment is more qualitative in
nature. This is due to the fact that the interest behind evaluation is to improve the
software rather than to measure its quality in quantitative terms. This is mirrored in the
form of the result reports of the evaluation process performed in the TBW I and II
projects; the author played an important role as evaluator of the two projects. Result
reports covered observations rather than metrics and proposals for modification rather
than value functions. The TWB projects can be used as model for the final assessment
statement in evaluation supporting development. Höge/Hohmann/Le-Hong (1995, pp.
168-173) produced so-called balance reports which briefed the assets and
shortcomings of each system under evaluation in qualitative terms, leading to a general
appreciation of the systems, supplemented with the details of test results. Some results
of TWB I and TWB II are described in appedix 1.

In the context of this thesis, the development of assessment procedures will
concentrate on evaluating purchasing decisions, where assessment relies on the great
number of values for metrics of evaluation and value relevant attributes that are the
outcome of the testing phase. In the introductory chapter it was argued that assessment
in evaluation closes the evaluation cycle by validating test results and relating them
back to the users. Assessment procedures in decision analysis were presented for
multiple attribute measurement (chapter 3.1.1). These procedures have to be applied
and adapted to the problem of software testing and evaluation. In short, assessment in
software evaluation involves the rating and combination of individual test results,
arriving at a numerical representation of the adequacy of different software systems for
a specific domain.

In section 5.1 methods and concepts for assessment will be discussed in the context of
the evaluation of translators’ aids’ systems. In section 5.2 an approach to assessment in
software evaluation will be elaborated that takes into account the problems presented.
In section 5.3 this approach will be applied to assess the adequacy of the two
translators’ aids’ systems under test, integrating the test results presented in appendix
2. We will show that quantitative assessment is possible for the evaluation of
translators’ aids’ systems.

5.1 Quantitative Assessment and Translators’ Aids

The ISO quality tree enumerates good properties of a software system, independent of
the task. A value tree in decision analysis lists preferences of decision makers

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 202

concerning the problem at hand. In the context of this thesis it is important to
investigate, to what extent a quality tree based on ISO 9126 can function as the basis
for multiattribute utility measurement. A central issue, therefore, is to determine
whether the condition of value independence, as required for the additive weighted
model (cf. section 3.1.1.5.2), is satisfied for the ISO quality tree. It is interesting to
note that while the quality models by Boehm et al. (1978) or McCall/Richards/Walters
(1977) display various inter-relationships between quality characteristics, the ISO
quality tree assumes no such relationships. Testing experience in the TWB I and TWB
II projects, however, showed that there are various inter-relationships between
different ISO 9126 quality characteristics:

Characteristic related

characteristic
nature of relationship

interoperability efficiency efficiency increases, if more resources can be assessed
during the translation process (termbank, encyclopaedia,
corpora, MT, etc.);

compliance usability usability increases if the user interface adheres to
standards known to the user;

customisability efficiency efficiency of TMs increases, if product names, versions
of products etc. can be entered as variables (higher
match rates);

fault tolerance usability usability increases, the fewer steps are necessary to
undo whatever fault has occurred;

recoverability functionality functionality increases, if, after a failure, the data is still
available and correct;

 usability usability increases, if the effort of recovering data is low;
operability efficiency efficiency increases, if the effort for operation control is

reduced;

Figure 108: Inter-relationships between Quality Characteristics in Evaluation

The above table shows that the type of relationship between the different quality
characteristics is strictly monotone, that is, an increase in one of the quality
characteristics always means an increase in preference. Consequently, as stated before,
that is, if the condition of monotonicity is satisfied for value dependent attributes, the
additive weighted model can still be applied (cf. section 3.1.1.5.2).

It is possible to consider ISO 9126 a generic value tree for evaluating software systems
and as such satisfies the condition of value independence, while objective tool
properties may map on value in non-independent ways. In other words quality
characteristics are needed to construct independent criteria on the basis of which
assessment can be performed as weighted sum of the values of the criteria. Performing
evaluation of translators’ aids systems along the ISO quality tree as discussed above
helps to develop system properties and guarantees and assessment function for those
properties relevant to the specific evaluation context. Before developing metrics for
the different properties identified by means of the quality tree, the evaluator has to

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 203

make sure that the detailed tree satisfies the conditions stated in decision analysis, that
is, it should be
• complete
• meaningful
• assessable
• non-redundant
• manageable.

Another important aspect related to quality trees that function as value trees in
assessment is that of structuring. While value trees in decision analysis were presented
as closed, n-level deep structures, representing the preferences in a domain, a quality
tree for evaluation does not necessarily have a finite number of levels but is rather an
open-ended feature structure with an arbitrary number of ever-refined features.
Consequently, in software evaluation, the depth of each branch of the tree may be
varying. The following figure illustrates this problem in the case of the quality
characteristics efficiency and usability.

efficiency

usability

response time for translation retrieval

response time for text alignment

RAM necessary for TM retrieval

storage space for TM databases

understandability of system messages

self-descriptiveness of names for buttons/icons

learnability

time behaviour

resource behaviour

understandability

operability

time needed for training programme

frequency of help usage

comfortable handling

effort for modifying TM database

cursor defaulting
button size
user-definable shorcuts
different user profiles

Figure 109: Quality Tree with Variations in Depth

The problem of varying depths in value trees is not satisfactorily discussed in decision
theory. An assessment procedure for the evaluation of translators’ aids should take into
account the possibility of varying depths of branches when calculating the aggregate
utility of an option.

The above quality tree moreover shows that one attribute may have a number of
metrics which are measured on different scales. For instance the attribute comfortable
handling is measured on

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 204

• binary scale: cursor defaulting? Y/N; user-definable shortcuts? Y/N; different user
profiles? Y/N

• ordinal scale: button size: not acceptable -- optimal;
An assessment procedure for the evaluation of translators’ aids has to discuss, how the
ratings on the different scales are to be compared and combined.

In the current evaluation approach it is possible that metrics relevant to one and the
same task may be applied in different types of test (scenario testing, systematic testing,
feature inspection). Consequently, an evaluator may be confronted with different
actual values for the same metric. An assessment procedure should consider the
problems of combining different values for metrics performed during different test
types.

In the software engineering context the so-called actual values (values arrived at by
means of testing) are compared with target values that are defined in the software
specification document and determine how exactly the system should behave. In other
words, in white box testing, test suites are applied for which both test input and the
expected test output (target values) are specified beforehand. In user-oriented
evaluation of translators’ aids’ systems, the definition of target values involves the
development of value functions that represent preferences over results. In other words,
value functions are the central elements of the assessment procedure, since they map
metrics onto quality criteria. They show the extent to which the relative value (utility)
of a system increases with an increasing/decreasing value on the scale, where 0 means
not acceptable and 100 means as well as one could hope to do. The evaluator has to
find out whether more is always better or always worse than less (monotonicity) and
whether the shape of the function is concave, convex or linear. Where monotonicity is
not guaranteed, the evaluator has to determine saturation points, preference thresholds
or peaks and develop value functions accordingly. The actual value then has to be
located on the curve and the relative value determined.

A principal question in the context of developing value functions for evaluating
translators’ aids’ systems is, whether there is but one possibility of assigning relative
values to scale values for specific metrics. In other words, is a preference over test
results necessarily valid for all tasks the system supports or may preferences change
over tasks? Let us consider the following example: In interactive use, that is, during
the translation process, the response time of a termbank has a clear saturation point:
the quicker the response the better, until a certain point from where an increase in
response time does not make any difference any longer, since it is no longer noticeable
to the user of the system. When elaborating terminology lists of all terms in a text (as it

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 205

is used by interpreters, for instance) there is no saturation point, since the quicker each
term retrieval, the quicker the overall response time for the terminology list.

The above example illustrates that in tool evaluation the range where linearity
assumptions are valid, is restricted to specific tasks. Consequently, in the context of
tool evaluation, value functions should be elaborated relative to the task being tested.
An assessment procedure for the evaluation of translators’ aids, consequently, should
cater for the possibility of non-linearity in value functions, considering one and the
same metric applied with different tasks.

Similarly, one may imagine that not only preferences with respect to individual
metrics but also the importance of quality characteristics and metrics changes over
tasks. In other words, while for batch applications, for instance, the quality
characteristic usability is of marginal interest, for interactive applications, it may play
a comparatively important role. An assessment procedure for the evaluation of
translators’ aids, consequently, should allow for the allocation of different weights for
quality characteristics relative to the tasks performed.

Another interesting problem in the context of tool evaluation is that if value functions
are task dependent, what happens to the assessment procedure in case of changing
tasks? The elaboration of value functions is based on task requirements at one given
point in time, that is, they mirror the "as is" situation. There is, however, no guarantee
that the requirements will remain the same at another point in time. Software engineers
frequently point out that the requirements of real systems are rarely static.
Requirements change in response to changes in the environment. The introduction of
software, for instance, leads to a drastic change of work flow, procedures,
responsibilities etc., often resulting in a change of tasks. The problem of how to deal
with changing requirements during the software life-cycle has gradually become a
topic of interest in requirements engineering. There are some comprehensive
approaches of how to deal with change such as by Chung/Nixon/Yu (1995) or
Fickas/Feather (1995); which however, are geared towards sophisticated software
development environments and therefore cannot be directly used for the purpose of
evaluation. The complexity of identifying and monitoring change in the context of
evaluation is immense. As a consequence, so far, it has not been dealt with at all in the
context of evaluation. An Assessment procedure for the evaluation of translators’ aids
should consider the problem of changing tasks and a resulting change of both value
functions and weighting during the assessment procedure.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 206

5.2 Approaches to Assessment for Evaluation of Translators’ Aids

The task plays a central role throughout evaluation. The approach taken during
evaluation preparation, that is, weighting the importance of the different tasks in the
domain, can be used and further developed in assessment by applying the additive
weighted model on the task level. The following discussion will show, that this
approach can cater for the various requirements of an assessment procedure as stated
in the previous section.

When evaluating software systems, the assessment procedure has to be based on the
task model elaborated during evaluation preparation. The procedure includes the
following steps:
1. For each task relevant to the evaluation procedure develop quality tree considering

quality characteristics, subcharacteristics and metrics.
2. Check validity of task quality tree. If necessary change tree accordingly.
3. Perform additive weighted model on the basis of individual tasks.
4. Perform Pricing Out procedure, relating the importance of tasks to the importance

of costs and determine best match for specific evaluation context.

5.2.1 Developing Quality Tree for Evaluation Relevant Tasks

Weighting the importance of tasks during evaluation preparation in chapter 3, directed
the effort that is put into the development of metrics. In other words, for important
tasks more metrics are elaborated than for less important tasks. It has been
demonstrated how to arrive at properties and metrics by applying qualitative aspects
on tasks performed by the translator. In order to perform the additive weighted model
on the task level, for each of the tasks {t1,...tn}, the quality characteristics {q1,...,qn},
subcharacteristics {sub1,...subn}, and corresponding metrics {m1,...mn} have to be
defined and organised in form of a quality tree:

t
1

q
1

q
2

q
n

sub1
sub2

subn

m1
m2

m
n

Figure 110: Quality Tree Relative to Task

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 207

A major issue when developing quality trees for the tasks relevant to evaluation is not
to proliferate the branches of the tree. The "test of importance," advocated by
Keeney/Raiffa for decision analysis, can also be applied in the context of tool
evaluation. This implies that before any metric is developed to measure an attribute of
the tree, the decision maker has to decide whether he feels his choice of a tool could be
different if that attribute were excluded. Moreover, only if an attribute is evaluation
relevant, that is, if systems under evaluation differ, it should be included in the tree,
otherwise the evaluation process becomes unmanageably large.

5.2.2 Checking Validity of Quality Trees for Evaluation Relevant Tasks

Quality trees for individual tasks are based on task models. Validating quality trees for
tasks, therefore, asks for reconsidering task models as they are developed in the
requirements analysis stage. The following figure presents a possible process of
validating task models in evaluation.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 208

still valid? yes

no

define differences
in actions and objects

for each different
action trace back

for each different
object trace back

involved in
definition of metrics

and values?

yes

change weights and
value functions accordingly

validated
task quality tree

name quality
characteristics concerned

define effect of change
on weighting and
value functions

end of validation

no

consider initial
task model

Figure 111: Procedure for Validating Task Quality Trees

Chung/Nixon/Yu (1995:pp.136) identify three major types of changes in requirements,
that is,
(i) addition of a quality requirement
(ii) deletion of a quality requirement
(iii) changing the importance of a quality requirement.

According to Sewell (1990:287) each of these changes may have direct and indirect
effects on the outcome of the assessment phase. The most obvious direct effect of the
addition of a quality requirement is that either additional metrics are necessary to

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 209

check this new requirement or that the value functions for existing metrics have to be
newly defined.

The deletion of a quality requirement may lead to the direct effect that either the tests
and metrics used to check the requirement are no longer of interest for the evaluation
result, or the value functions for existing metrics have to be newly defined. The direct
effect of changing the importance of a quality requirement leads to a different
weighting of the branches of the tree.

Indirect effects of changes in requirements are those that are concerned with
relationships between quality characteristics. The best way to define the indirect
effects of the changes of requirements, therefore, is to determine how the changes of
one quality characteristic effect the related quality characteristics along the
relationships identified and described before. The following table will illustrate this
direct and indirect effects of changing requirements by means of an example:

initial requirement during the translation process, an on-line termbank and an
existing parallel text corpus should be consulted;

new requirement

during the translation process, an on-line termbank, an existing
parallel text corpus, and a CD-ROM machine translation system
should be consulted;

change of objects initially two objects: on-line termbank, parallel text corpus;
new: three objects: on-line termbank, parallel text corpus, CD-
ROM MT system

quality characteristic interoperability
direct effect

metrics for integration of CD-ROM results have to be developed;
target: interface to the above three systems must be provided;

indirect effect metrics for suitability of CD-ROM results have to be developed;
target: higher quantity of translated text;

Figure 112: Examples for Changes in Requirements

5.2.3 Performing Additive Weighted Model on the Basis of Individual Tasks

The task-oriented approach to assessment asks for the application of the additive
weighted model on the basis of individual task quality trees. As pointed out in section
5.1, however, the usage of quality trees for weighting may pose several problems that
are not known in decision analysis. Thus, while many attributes that are three levels
deep in the tree are directly measurable, others may require a further splitting up into
smaller units that can be measured. The approach advocated here is that the additive
weighted model should be applied no deeper than on the third level of the hierarchy,
otherwise the evaluation procedure becomes too complex and difficult to follow for
the decision maker, since to him higher branches of the tree may be more meaningful
than the twigs.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 210

A precondition for performing the additive weighted model on a three level deep task
tree is that there must be values for all attributes on that level with which to perform
further calculations. It follows that lower level attributes may have to be assessed and
combined in a way that they together deliver a value representative for the higher level
attribute.

A solution is that scale values of lower level attributes are mapped onto value
functions, and the function values are then combined into an overall value depending
on the weights of the individual attributes. To recall, when combining and comparing
scale values the following issues have to be considered:
• The combination of values on nominal scales can be performed on the basis of

transforming nominal scales into binary nominal scales, where 1 denotes the
existence of a nominal value and 0 its non-existence. Whenever several nominal
values are sub-ordinated to the same quality characteristic and bear the same weight
the combination of binary nominal values can be performed by adding the numbers
on the scale. Nominal values further have to be checked with respect to their
dependence. If there are nominal values under the same quality characteristic that
are mutually dependent, that is, one cannot do without the other, one zero value in
the set leads to an overall zero. If there is one attribute of overriding importance in a
set of n-values, any combination not including this attribute is also zero. Nominal
values also have to be considered with respect to their importance. The weighting of
individual features may lead to a situation in which enough minor good features can
make up for a missing major good feature.

• For tool evaluation purposes ordinal scale values have to be mapped onto ordinal
value functions and then combined. In the context of ordinal values, Pareto
optimality implies that a solution which satisfies all criteria is best, a solution which
satisfies no criteria is worst. In a strict mathematical sense, the rest cannot be
compared. Lexicographic preference for ordinal scale values means that solutions
better under the first criterion are better than others, solutions which are indifferent
to the first criterion are ordered relative to the second and so on.

• Values on ratio scales can be combined and compared across systems, since
concepts like "x is n-times as much as y" can be applied.

Another issue of interest in connection with lower level attributes is whether a lower
level attribute can represent a threshold condition for the whole assessment, that is,
failing the threshold to this attribute, the system fails the assessment on the whole.
How should such threshold conditions be represented? At the moment, there is no
mathematical representation at hand for this problem. One possibility would be to give
the corresponding attribute, subcharactistic and quality characteristic a comparatively

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 211

high weight, so that in case of not meeting the threshold conditions, the effect on the
aggregate utility would be tremendous. Future research could investigate other
possibilities of representing threshold conditions of lower level attributes.

As further problem specific to user-oriented evaluation, the combination of results of
one and the same metric arrived at by means of different test types has been identified.
One of the major reasons for applying one metric with different test types is to check
the reliability of test results. In other words, if a metric is classified as reliable, the
results of one metric applied with the same task in different test types - for instance,
examining termbank retrieval during translation in both scenario and systematic testing
- have to be similar. If there is a strong discrepancy between the two values, the
reliability of the tests has to be questioned and it has to be found out which of the
results is representative for the situation, or even whether there is a flaw in the metric
as such. If the results show only minor discrepancies, mean scale values can be taken
for further calculations.

Taking into account the issues discussed above, the evaluator will arrive at values for
all attributes three levels deep in the quality task tree. For each of these trees, weights
have to be divided up among the branches and twigs of the tree as demonstrated in
section 3.1.1.5.1. This involves the weighting of the importance of the different quality
characteristics and attributes for the particular task, dividing 1 up among the attributes
of each branch and multiplying these through the tree to arrive at the weights for
individual metrics. In this way, the evaluator arrives at a unique figure of the aggregate
utility of a particular system relative to a specific task.

This task-oriented evaluation approach provides detailed information as to how well
different systems are capable of supporting different tasks. Since each task is
performed by specific system functions, the decision maker can deduce the
appropriateness of the different functions for specific tasks from the aggregate utility
of the tasks.

To arrive at an evaluation score for each system, the aggregate task utilities have to be
related to the pre-defined weights of the different tasks and the results added to form
the utility of the overall system. The following figure illustrates how to arrive at the
overall utility of a given system, based on the weights and utilities of individual tasks.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 212

tasks weights aggregate task
utilities

weight x
aggregate task utilities

t1 .35 45 15.75
t2 .20 60 12.00
t3 .45 60 27.00
total 1.00 54.75

Figure 113: Example for Calculation of Overall Utility Based on Task Utilities

To sum up, the task-oriented assessment approach demonstrated above is a
combination between the quality-oriented approach advocated in software engineering
and a problem-oriented approach advocated in decision analysis. It allows decision
makers to determine the appropriateness of different systems for specific tasks and to
rate the importance of the tasks for their specific environment. Differentiating between
the performance of different tasks and the functions used to perform these tasks, the
final choice of a decision maker may even ask for a combination of different functions
offered by different systems under evaluation, for instance, making use of the
alignment program of system (x) while using TM retrieval of system (y).

5.2.4 Utility and Cost - the Tradeoff Problem in User-oriented Evaluation

So far, the assessment procedure only considered software quality as criteria for
assessment, that is, which of the systems or functions performs best for a particular
task in a particular environment. In reality, decision making, however, also depends on
the costs associated with a particular system. In the following, the methods used in
decision analysis for relating utility to cost will be adapted to the task-oriented
evaluation approach advocated for the evaluation of translators’ aids’ systems. This
involves the following steps:
1. Relate system costs to aggregate utility of system
2. Perform pricing out procedure considering utility of tasks

The first step concerns the development of a value function determining the relative
value of system costs for the specific evaluation environment. System costs in
software evaluation includes
• purchase costs
• training costs
• maintenance
• update costs

The total of system costs associated with the choice of a specific system is then located
on the curve of the value function as demonstrated in 3.1.1. This involves the choice of
the type of curve used for the value function, that is, deciding whether the utility of the

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 213

system decreases proportional to an increase of cost (linear decreasing function), or
whether the utility decreases not proportional to cost, that is, whether there are
thresholds that cannot be passed, or whether the shape of the function is concave or
convex. Locating the different overall costs of the systems on the curve, the evaluator
arrives at a number between 0 and 100 representing the utility of a system with respect
to its cost. For demonstration purposes let us assume the result of locating costs on a
value curve lead to the following figures:
SYS1: 60
SYS2: 70
SYS3: 40
SYS4: 50

In a second step, the cost of the systems is then related to the utility of the tasks as
elaborated during the assessment procedure. This approach differs from the one chosen
in decision analysis, where the utility of costs is related to the utility of the different
attributes in the quality tree and not related to the tasks. With the following sample
table in which the utility of four systems with respect to three tasks is related to the
utility of their costs, the decision maker gets an initial, general impression of the
relationship between tasks and cost.

SYSTEMS utility task 1 utility task 2 utility task 3 utility of costs
SYS 1 45 60 60 60
SYS 2 70 20 50 70
SYS 3 35 60 65 40
SYS 4 55 70 35 50

Figure 114: Example for Relating Task Utilities to Utility of Cost

If the decision maker does not want to perform any further calculations he/she could
deduce from the above table that unless task 2 is of very high importance, the best
match would be system 2, since it scores very high on task 1 and cost, and medium on
task 3. The table also makes clear, what kind of tradeoff the decision maker has to
made when choosing one system among the four. In other words, it becomes obvious
where the decision maker has to give up something in order to follow his/her priorities.

If the decision maker wants to base his/her purchase decision on further calculations,
the pricing out procedure can be applied at this level, in which the weights of the tasks
as defined during the assessment procedure are related to the importance of the cost
factor. For this purpose the cost factor has to be treated as one of the decision units of
the assessment procedure, dividing 1.0 up among both tasks and cost. The following
table shows how the weights were distributed "as old", that is, without considering
costs as one of the decision units, and how the weights are distributed when cost is

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 214

considered one of the decision units, assuming that the "as old" importance
relationship still holds:

UNITS Distribution of weights
"as old"

Distribution of weights in
pricing out procedure

task 1: .35 .24
task 2: .20 .14
task 3: .45 .32
cost: .30
SUM 1.0 1.0

Figure 115: Redistribution of Weights in Pricing Out Procedure

The following table applies the pricing out procedure, leading to a final figure for
different systems under evaluation, where
V (t1-3) is the assessment value of task 1 to 3
W t1-3(V t1-3) is the weighted assessment value of task 1 to 3
V (c) is the utility of cost
W c (V c) is the weighted utility of cost, and
V (X) is the evaluation score of systems x = 1 - 4

SYS V (t1) W t1(V t1) V (t2) W t2(V t2) V (t3) W t3(V t3) V (c) W c (V c) V (X)
1 45 10.8 60 8.4 60 19.2 60 18.0 56.4
2 70 16.8 20 2.8 50 16.0 70 21.0 56.6
3 35 8.4 60 8.4 65 20.8 40 12.0 49.6
4 55 13.2 70 9.8 35 11.2 50 15 49.2

Figure 116: Example for Pricing Out Procedure Applied in User-oriented Evaluation

The above table shows, that the calculations support the above impression that system
2 is the best match for the evaluation problem at hand. It also shows that probably
system 1 needs consideration as well since it performs almost equally well as system
2.

To conclude, the aim of this section was to demonstrate that a numerical representation
of software evaluation results is possible on the basis of a common decision theoretic
utility model. So far, evaluation models for translators’ aids’ systems have rested
mainly on qualitative assessment statements of system quality and adequacy. They did
not allow the comparison of different systems on numerical terms.

The task-oriented assessment approach takes up software quality characteristics and
applies them on the level of individual tasks. Splitting the assessment procedure up
into individual tasks, the condition of value independence is satisfied. Also, within one
and the same task there is no possibility of a non-linearity of value functions as it

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 215

could be, if the assessment procedure was not task-oriented. From a practical
evaluation angle, the task-oriented assessment approach allows the decision maker to
get more problem-oriented evaluation information. In other words, it becomes obvious
how different systems perform with respect to different tasks and shows where
tradeoffs have to be made in order to find the best match for the particular evaluation
environment.

In the next section the task-oriented assessment procedure advocated above will be
applied with the practical test results presented in appendix 2. It will show that the
different procedures and mathematical prerequisites are able to cover this type of
evaluation situation.

5.3 Applying the Quantitative Assessment Procedure in a Practical Context

In evaluation preceding purchase decisions, the quantitative approach to assessment,
developed in this thesis is invaluable since it will inevitably lead to a utility value for
each system under evaluation, allowing their comparison. The following quantitative
assessment example is based on (i) the needs as they would be valid for of a large
translation department such as the translation department of Mercedes-Benz, and (ii)
the task trees and practical test results presented in appendix 2. To recall, the tasks that
were subject to testing were:
t1 translation memory preparation
t2 translation memory and termbank retrieval
t3 updating translation memory databases
t4 updating termbanks

5.3.1 Calculating Aggregate Utilities

The procedure for assessment presented below will, in principle, follow the approach
presented in 5.2. For ease of presentation, the development of task trees and
calculation of task utilities will be presented in the same figure, covering the results of
the following five steps:

1. Since only evaluation relevant metrics will be part of the final assessment
calculation, the first step in this procedure is to analyse the test results presented
in appendix 2 and select those metrics for each task that proved to be evaluation
relevant. Together all evaluation relevant metrics related to different quality
characteristics constitute the quality tree that is relevant to the specific task.

2. In order to define the importance of the individual subcharacteristics and
metrics, weights have to be distributed among the different branches of the tree

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 216

by dividing 1 up among all quality subcharacteristics w(s) and dividing 1 up
among all metrics w(m) belonging to one subcharacteristic.

3. In order to arrive at the final importance of each metric, the weights have to be
multiplied through the tree, arriving at w(i), that is, the weight of the individual
metric.

4. Multiplying the weight of each metric wi with the value of each system for the
particular metric, one arrives at the relative values vi(xi) and vi(yi).

5. Summing up all vi(xi) and vi(yi) separately, one arrives at a utility figure of
system x and y for each task.

The following figure represents the steps 1-5 for (t1):

w(s) sub
characteristic

w(m) metric
No

w(i) v(x) vi(xi) v(y) vi(yi)

.80 suitability .03 m 3 .024 0 00 100 2.4
 .05 m 8 .04 100 4 80 3.2
 .05 m 9 .04 100 4 0 00
 .02 m 11 .016 90.20 1.44 90.43 1.44
 .1 m 12 .08 92.57 7.4 86.00 6.88
 .75 m 13 .6 83.43 50.05 78.82 47.29
.10 compliance .5 m 14 .05 95 4.75 90 4.5
 .5 m15 .05 90 4.5 100 5
.05 customisability 1.0 m 16 .05 100 5 0 0
.05 installability .5 m 17 .025 0 00 100 2.5
 .5 m 18 .025 0 00 100 2.5
1.0 4.0 1.0 81.14 75.71

Figure 117: Results of Applying Additive Weighted Model on Task 1

According to the result report in appendix 2, for (t1), 11 metrics proved to be
evaluation relevant. Though the actual test results were often different, the weighting
process for (t1) led to utility figures for both systems that were not far apart with
v(x) = 81.14 v(y) = 75.71

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 217

w(s) sub
characteristic

w(m) metric
No.

w(i) v(x) vi(xi) v(y) vi(yi)

.60 suitability .02 m 21 .012 100 1.2 80 0.96
 .045 m 24 .027 100 2.7 0 00
 .025 m 25 .015 50 0.75 0 00
 .02 m 26 .012 100 1.2 80 1.2
 .1 m 27 .06 100 6 0 00
 .01 m 29 .006 100 0.6 0 00
 .01 m 30 .006 100 0.6 0 00
 .01 m 31 .006 100 0.6 0 00
 .4 m 32 .24 92.10 22.10 55.99 13.43
 .05 m 33 .03 100 3 0 00
 .2 m 34 .12 90 10.8 70 8.4
 .025 m 35 .015 85.7 1.3 28,6 0.43
 .01 m 36 .006 100 0.6 0 00
 .075 m 37 .045 0 00 100 4.5
.05 compliance .6 m 41 .03 100 3 0 00
 .3 m 42 .015 100 1.5 0 00
 .1 m 43 .005 100 0.5 0 00
.01 security 1 m 44 .01 100 1 0 00
.09 customisability .2 m 45 .018 100 1.8 0 00
 .3 m 46 .027 100 2.7 0 00
 .5 m 48 .045 100 4.5 0 00
..015 fault tolerance .6 m 49 .009 100 0.9 0 00
 .15 m 50 .00225 100 0.225 0 00
 .25 m 51 .00375 100 0.375 0 00
.055 understandability .6 m 52 .033 100 3.3 40 1.32
 .25 m 53 .01375 100 1.375 60 0.825
 .15 m 54 .00825 100 0.825 40 0.33
.1 operability .15 m 56 .015 100 1.5 0 00
 .1 m 60 .01 0 00 100 1.0
 .15 m 61 .015 100 1.5 0 00
 .3 m 63 .03 100 3 60 1.8
 .3 m 64 .03 100 3 40 1.2
.05 time behaviour 1 m 65 .05 40 2 80 4
.015 testability 1 m 67 .015 80 1.2 40 0.6
.015 installability 1 m 69 .015 50 0.75 16,7 0.25
1.0 10.00 1.0 86.4 40.24

Figure 118: Results of Applying Additive Weighted Model on Task 2

The fact that for (t2) 36 metrics proved to be evaluation relevant shows, that (t2) was
of central importance for this evaluation procedure. The utility figures of (t2) show a
great difference between the two systems, with
v(x) = 86.4 v(y) = 40.24
A major factor in this calculation was the relatively high weight that was given to the
benchmark test, measuring the quality of the TM retrieval component (metric 32).

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 218

w(s) sub
characteristic

w(m) metric
No.

w(i) v(x) vi(xi) v(y) vi(yi)

.4 suitability .7 m 71 .28 100 28 0 00
 .3 m 74 .12 100 12 0 00
.1 security 1 m 75 .1 100 10 0 00
.1 fault tolerance 1 m 76 .1 100 10 0 00
.075 understandability 1 m 77 .075 80 6 0 00
.075 learnability 1 m 78 .075 83,3 6.25 0 00
.25 operability .6 m 79 .15 100 15 0 00
 .4 m 80 .1 50 5 0 00
1.0 6 1 92.25 00

Figure 119: Results of Applying Additive Weighted Model Task 3

For (t3) , that is, updating translation memory databases, 8 metrics proved to be
evaluation relevant. As the following table shows, system x (Trados TWB4W)
performed very well for task 3, while system y (IBM TM/2) did, at the time, not
provide any function for modifying the database during or after the translation process:
v(x) = 92.25 v(y) = 0

w(s) sub
characteristic

w(m) metric
No.

w(i) v(x) vi(xi) v(y) vi(yi)

.4 suitability 1 m 82 .4 0 00 100 40

.35 security 1 m 83 .35 100 35 0 00

.2 understandability 1 m 85 .2 80 16 60 12

.05 learnability 1 m 86 .05 73,4 3.67 66,7 3.33
1.0 4.0 1.0 54.67 55.33

Figure 120: Results of Applying Additive Weighted Model Task 4

Only 4 of the metrics applied during the tests proved to be evaluation relevant to (t4) ,
that is, updating termbanks. The performance of both systems with respect to (t4) is
again rather similar:
v(x) = 54.67 v(y) = 55.33

The above four tables depicted the performance of systems x and y with respect to the
four tasks under testing. The task-oriented evaluation and assessment approach asks
for the weighting of the tasks during evaluation preparation as demonstrated in section
3.2.1.1. This task weighting can now be used as the basis for the calculation of the
overall utility of the two systems as a sixth step in the assessment procedure:

tasks w(ti) v(x) w(ti) v(x) v(y) w(ti) v(y)
t1 .3 81.14 24.34 75.71 22.71
t2 .45 86.4 38.88 40.24 18.10
t3 .125 92.25 11.53 00 00
t4 .125 54.67 6.83 55.33 6.92
total 1.00 71.58 47.73

Figure 121: Overall Utility of Both Systems Based on Task Utilities

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 219

The above table shows how the two systems perform in total, not considering the
aspect of cost. With an overall evaluation score of
v(x) = 71.58 v(y) = 47.73
system x (Trados TWB4W) is the clear winner in terms of adequacy for the specific
environment.

5.3.2 Pricing Out Procedure for Systems X and Y

The cost factor is usually omnipresent in the context of evaluation preceding purchase
decisions. Despite the rather clear outcome of the evaluation procedure in qualitative
terms, the pricing out procedure will provide an even clearer picture as to which
system to prefer.

The first step of the pricing out procedure is to develop a value function determining
the relative value of system costs. The costs listed go back to the Trados price list of
06/03/95 and IBM information of the same time. Multiple licence costs will not be
considered here, since that is mostly a matter of negotiation.
System 1: TAlign: 5.600 DM
 TWB4W: 4.800 DM
System 2: TM/2 (including ITM): 2.149 $ (at the time 1,0 $ ≅ 1.72 DM)
 in DM.: 3.700 DM

Let us assume that in the translation environment of the example one person would be
responsible for (t1) , that is the preparation of translation memory databases, while (t2-

4) would be performed by 40 translators. It has to be noted that support and
maintenance could not be considered in this example, since this is a matter of contract
and data was not available for the example. Discounts were available for both systems.
For 40 licences the discount was approximately 50%, leading to the following total
costs for both systems:
System 1: 1 x TAlign: 5.600 DM
 40 x TWB4W: 94.400 DM
 total cost: 100.000 DM
System 2: 40 x TM/2 (including ITM): 74.000 DM

Assuming that the preference of the systems decreases linearly with an increase in cost
and the upper price limit is 150.000 DM, the relative utility of costs is:
Cost utility of System x: v(x)=37.06
Cost utility of System y: v(y)=50.66

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 220

The next step is to relate the task utilities to the utility of cost as demonstrated in the
framework chapter. The following table provides an overview of cost utility and task
utilities prior to weighting.

SYSTEMS utility (t1) utility (t2) utility (t3) utility (t4) utility of costs
SYS x 81.14 86.40 92.25 54.67 37.06
SYS y 75.71 40.24 00 55.33 50.66

Figure 122: Sample for Relating Task Utilities to Utility of Cost

The above table shows what kind of tradeoff had to be made in the example. For a
higher utility of system x for (t1): 5.43, (t2): 46.16 and (t3): 92.25, one had to give up
0.63 points for (t4) and 13.6 points in cost utility. Since the results in the example are
very obvious, the assessment procedure could have stopped at this point in favour of
system x. For the sake of completeness the pricing out procedure was performed and
the importance of the money factor was related to the importance of the different tasks,
delivering final utility values for both systems. For this purpose the cost factor was
treated as one of the decision units of the assessment procedure, dividing 1.0 up
among both tasks and cost. The following table shows how the weights were
distributed "as old", that is, without considering costs as one of the decision units, and
how the weights were distributed when cost was considered one of the decision units,
assuming that the "as old" importance relationship still holds:

UNITS Distribution of weights
"as old"

Distribution of weights in
pricing out procedure

task 1: .30 .25
task 2: .45 .40
task 3: .125 .12
task 4: .125 .12
cost: .11
SUM 1.0 1.0

Figure 123: Redistribution of Weights in Pricing Out Procedure

The following table applies the pricing out procedure, leading to a final figure for the
two systems under evaluation.

 w v(x) w v(x) v(y) w v(y)
task 1: .25 81.14 20.28 75.71 18.92
task 2: .40 86.40 34.56 40.24 16.09
task 3: .12 92.25 11.05 00 00
task 4: .12 54.67 6.56 55.33 6.67
cost: .11 37.06 4.07 50.66 5.57
SUM 1.0 76.52 47.25

Figure 124: Evaluation Scores of System x and y after Pricing Out Procedure

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 221

The assessment procedure applied above showed that system x (Trados TWB4W) is
the clear winner over system y (IBM TM/2) also after the pricing out procedure with
V(x) = 76.52 v(y) = 47.25

Factors responsible for this clear outcome were
• missing functionality of system y for (t3) and retrieval benchmark test (m 32)

functioned as knock-out criteria;
• great difference in quality of TM retrieval component;
• great difference in overall look and feel.

5.3.3 Experiences with the Assessment Approach

The experiences made throughout the assessment procedures were manifold. First of
all, the task approach advocated and applied in this thesis was essential to keep the
weighting procedure manageable. In other words, it would have been impossible to put
the many evaluation relevant attributes into the same value tree. The 36 metrics
relevant to task 2 presented the upper limit of size of a manageable value tree. The
weighting process increases in difficulty with the number of metrics relevant to a task.
Incorrect weighting, however, might disturb the reliability of the whole evaluation
process. Consequently, a check routine was included to make sure that the weighting
process truly reflects the decision maker's preferences:

For each new calculation of w(i), compare w(i) with similar weights of other metrics in
the same and/or other task value trees. If weights do not reflect preferences, w(s) and
w(m) have to be reconsidered, newly calculated and re-checked until weights truly
reflect the decision maker's preferences.

As result of the above described check routine, the weights in the value tree for task 2
were reconsidered six times during the weighting procedure.

Furthermore it was found that the more metrics are subsumed under a quality
subcharacteristics the higher w(s) has to be in order to truly reflect preferences. In
contrast, whenever there is only one or few metrics per quality subcharacteristic, w(s)
needs to be low otherwise w(i) is overrated. The following example demonstrates this:

Task 1: customisability subsumes only 1 metric.
Initial weighting: if w(customisability) =.1 and w(m) = 1 then w (i) = .1. Reconsideration:
w(customisability) = .05 multiplied with w(m) = 1 leads to w(i) = .05, which better
reflected preferences.

CHAPTER 5: ASSESSMENT IN SOFTWARE EVALUATION 222

Also, it was found that metrics that deliver boolean values generally have to be
weighted lower, since the discrepancy between the two possible values of 100 or 00
have an extreme effect on the final utility value.

The evaluation procedure showed that most functions were linear and thus validated
the corresponding view held by decision makers. There were no threshold conditions
that one of the systems did not meet. High weighting of individual metrics, such as for
the TM retrieval benchmark, may function as knock-out criteria. In the specific
assessment procedure, the combination of values proved to be no problem, since all
values were considered independent from others. The combination of results of
different test types proved to be no problem either, since the values were exactly the
same in all test types, which in turn proved the reliability of the tests.

SUMMARY AND CONCLUSION 223

Summary and Conclusion

The motivation behind developing and refining an evaluation framework over more
than a decade is rooted in the lack of methods for evaluation as experienced with the
evaluation of the different TWB modules in the ESPRIT projects
(Kugler/Ahmad/Thurmair, 1995). Since then the objective has been to develop a
framework that could be applied in software development projects, but even more
importantly nowadays, in the system purchasing context. The experiences of many
different existing evaluations performed with translators’ aids and other software
systems found their way into the framework. Two typical evaluation situations were
distinguished, that is, evaluation preceding purchase decisions and evaluation
supporting the development process. Depending on the evaluation situation, the
difference in steps involved in the evaluation procedure was described. The framework
is supposed to help consultants or even user-organisations to facilitate the decision
process, that is, which of the available translation systems should be purchased in their
particular situation? Or, in the context of software development projects, the
framework will lead to an improvement of the systems.

Applying the framework in a practical context showed that it is promising to follow an
interdisciplinary approach to the problem of evaluating translators’ aids’ systems. The
framework integrates findings from translation theory and practice as the baseline
representing the application area, and is based on existing evaluation research in this
field. Dealing with software as the object of evaluation, many ideas from software and
requirements engineering could be usefully applied when defining what users want
and how this can be tested. Last but not least, decision analysis provided the
measurement theoretical basis for the quantitative assessment of individual attributes
and their combination in a procedure that allows the quantitative comparison of the
adequacy of different systems for a specific domain.

In short, evaluation is considered as cycle, starting off with eliciting and describing
features of a domain {D}, concentrating on the tasks performed in the domain; and
machines {M}, covering the functions to perform given tasks. Modelling, as next step
in the preparation of the evaluation process, serves to structure domain and machine
information. The outcome of the modelling phase are metrics and their corresponding
scales, measuring the attributes relevant in the domain, as well as the definition of
value functions for each metric, showing how different scale values determine the
desired quality of the attributes. By means of three test types, that is, feature
inspection, systematic testing and scenario testing, values can be obtained for all

SUMMARY AND CONCLUSION 224

metrics. Assessment provides mechanisms to combine individual test results into an
overall evaluation score, which reflects the preferences of users in the domain.

The thesis was structured in accordance with the evaluation cycle, starting off with
discussing the context of the application, that is, translation theory and practice, as
well as major evaluation initiatives in the first chapter. The translation context showed,
that in a time of growing internationalisation, the problem of documentation and its
translation must not be underestimated. The discussion of the translation process,
specifically the looping model developed by Nord, provided the basis for the
elaboration of tasks and strategies used for problem solving during the translation
process. The professional contexts in which translators nowadays work were described
and practical problems related to the translation process identified. Translation as a
problem solving process was considered from the angle of cognitive psychology,
leading to the description of the type of knowledge structure applied during the
problem solving process. An attempt was made to consider whether epistemic or
heuristic techniques form the basis for various translation strategies used during text
analysis, transfer and synthesis. Taking into account theoretical considerations and
practical problems, candidates for automation were identified, including modules that
(i) identify repetitions and retrieve already translated texts; (ii) offer the retrieval of
encyclopaedic information; (iii) provide access to mono- and bilingual text sources;
(iv) provide terminological information for source and target languages; and (v) assist
in the elaboration of terminological information. It was argued that these features
would help to guarantee the competitiveness of the translation process in the electronic
age and, therefore, their availability and quality in computer aided translation systems
must be evaluated. Apart from translation issues, the first chapter provided some
insight into the problem of evaluation and the world-wide initiatives that have dealt
with this problem at large. It was explained in which respect the framework developed
in this thesis differs from and can add to already existing approaches.

Though translation theory and practice could deliver an understanding of what type of
features would be useful when transferring a document from one language into the
other, it could not provide any mechanism to describe these features in terms of
detailed functional requirements. In chapter 2, requirements elicitation procedures
stemming from requirements engineering were presented. Jackson/Zave's model for
requirements formulation could be applied to the problem of evaluation and formed
the basis for a new model of evaluation, in which the intersection between domain and
machine attributes constitutes the evaluation space. Considering a number of
requirements’ studies performed in the context of translation, different dimensions and
parameters were identified that allow the structured and detailed elicitation of domain

SUMMARY AND CONCLUSION 225

properties relevant in the translation context. For each dimension, the basic elicitation
techniques stemming from knowledge engineering were presented, and an exemplar
task description as outcome of the elicitation process provided.

Evaluation preparation is a complex matter and has so far not been dealt with
satisfactorily. Chapter 3 provides detailed information on how the disciplines of
decision analysis and software engineering deal with the structuring of evaluation
relevant information. The approaches presented by these disciplines were applied to
the problem of evaluation preparation. The structuring techniques used in decision
analysis and software engineering were investigated. It was found that ISO 9126 can
be considered a generic value tree that is needed to construct independent criteria on
the basis of which assessment can be performed as the weighted sum of the values of
the criteria. Consequently, performing evaluation of translators’ aids’ systems along
the ISO quality tree helps to develop system properties and guarantees an assessment
function for those properties relevant to the specific evaluation context. Moreover, the
categorisation and generalisation principles from requirements modelling could be
applied in evaluation to bridge the gap between user requirements and metrics. Scale
construction issues in decision analysis provided the basic measurement theoretic
principles for metrics, which map test results on binary, nominal, ordinal or ratio
scales. Value functions used in decision analysis provided the mathematical
prerequisites needed to relate possible to desired scale values for each metric and thus
showed how acceptance levels for user requirements can be defined. By means of
many examples it was demonstrated which modelling procedures can be applied in the
two evaluation situations in order to bring together the different types of information
that are relevant to elaborate metrics, that is, domain information, system information,
qualitative information and test information.

In chapter 4 testing principles were investigated. Both glass and black box testing
approaches applied in software engineering influenced the development of user-
oriented test types for the evaluation of translators’ aids. A goal-oriented model of test
types was developed that demonstrates how values can be obtained for metrics in user-
oriented testing. Scenario testing, which takes up acceptance testing principles from
software engineering, was defined as a means to assess the appropriateness of a piece
of software for every-day work. Systematic testing was defined to examine the
behaviour of software under specific conditions. It includes approaches from software
engineering that led to the distinction between three types of systematic tests, that is,
task-oriented testing, interface-driven testing, and benchmark testing. As third test
type, feature inspection was presented as a means to check the functionality of a
system, comparing the system features to the specified criteria. Furthermore the

SUMMARY AND CONCLUSION 226

general principles and considerations that are relevant for the elaboration of test data in
the context of the evaluation of translators’ aids were presented. It was shown that
software engineering principles for test data elaboration, specifically identifying
classes of valid and invalid system inputs, as well as specifying boundary cases and
typical problematic test cases, can be applied for user-oriented evaluation. These
principles help to increase the reliability of evaluation results. Characteristics of the
three types of test data prominent in the language engineering area, that is, test
corpora, test suites and test collections, were discussed. In order to prove the
applicability of the test model for user-oriented testing of translators’ aids’ systems,
practical testing was performed with Trados TWB4W and IBM TM/2. The
experiences with testing showed, that in evaluation preceding purchase decisions, it is
promising to start off with feature inspection and supplement the results with, above
all, task-oriented and benchmark testing, while interface-driven testing only plays a
minor role in evaluation preceding purchase decisions. The numerous experiences
made with scenario testing pointed to the fact that it is problematic to arrive at reliable,
valid and value relevant results. It was argued that for evaluation preceding purchase
decisions, the scenario test has to be considered as means of validating results. Its role
for evaluation preceding purchase decisions can, in its own right, be compared to the
role of sensitivity analysis as it is performed in the decision analysis process. In other
words, scenario tests can show whether the figures obtained during the various stages
of evaluation really make sense in the specific practical working environment.

In chapter 5, it was demonstrated that a quantitative representation of software testing
results is possible on the basis of a common decision theoretic utility model. Problems
that have to be specifically considered during the assessment procedure in evaluating
translators’ aids systems were addressed and solutions proposed. A task-oriented
assessment approach was developed that represents a combination between software
quality models known from software engineering and problem-oriented analysis as it
is known from decision theory. This involves the weighting of the different tasks under
evaluation, and the development of separate quality trees for each task. Considering
each task independently during assessment guarantees the independence between
criteria, which is a precondition for applying the additive weighted model from
decision analysis. The applicability of the assessment procedure was demonstrated on
the basis of the results obtained through the tests performed with the two commercially
available translators’ aids’ systems. One of the most important findings of the
assessment example was that the task approach advocated and applied in this thesis
was of fundamental importance, since it keeps quality trees manageable and increases
the transparency of the assessment procedure. It would have been impossible to put the
many evaluation relevant attributes into the same value tree. The more metrics

SUMMARY AND CONCLUSION 227

available the more difficult it proved to be to distribute weights in a way that mirrors
the preferences of the decision maker. Check routines were developed to make sure
that weighting truly reflects the decision maker's preferences. The assessment
procedure allowed the comparison of the evaluation score of the two systems under
evaluation in numerical terms, and thus proved to be invaluable whenever a translator
or an organisation has to decide which of the systems on the market is the best choice
for the specific context.

The success of applying this evaluation framework in future evaluation contexts
largely depends on the following factors:

(i) the comprehensive elicitation of domain truths
(ii) the coverage of metrics representative for the domain
(iii) the reliability and validity of test results
(iv) the responsible weighting process representing the preferences of the client

of the evaluation process

Future evaluation of translators’ aids’ systems will benefit from the parameters for the
elicitation of domain truths in the translation domain. One of the major achievements
of this framework is to describe ways of how to arrive at measurable primitives from
user requirements by means of modelling. Also, the goal-oriented model of test types
provides guidance for future evaluation work. Last but not least, considering that, so
far, evaluation models for translators’ aids’ systems have rested mainly on qualitative
notions, another major achievement is that the present framework allows the
quantitative assessment of evaluation results, also integrating the cost factor into the
assessment procedure.

Future application of the evaluation framework in different situations will inevitably
lead to a refinement of the procedures described in this thesis. While the application
area for the evaluation framework in this thesis was that of translators’ aids’ systems it
is envisaged that the framework can also be applied to the evaluation of other complex
interactive systems.

As the practical testing and assessment procedures showed, evaluation performed
along the framework developed above is possible but time-consuming. It is, at the
moment, geared rather to the large translation industry market or to evaluation in
international projects. In future, special attention must be paid to the question, how the
effort of evaluation can be reduced without disturbing the reliability and validity of
results.

SUMMARY AND CONCLUSION 228

The elaboration of typical user profiles along the featurisation model, depicting the
typical tasks and related metrics could in future largely reduce the evaluation effort.
Furthermore, re-usability could in future also be achieved on the level of metrics, test
data or test programs. Elaboration, collection and presentation of these types of data
for specific application areas in WWW sites would reduce evaluation effort to a large
extent.

On the basis of the detailed description of the elements of the evaluation process and
their relationships advocated in this thesis, the formalisation of the evaluation process
is also conceivable in form of feature structures. Future research in this area may even
lead to the automation of a large extent of the evaluation process.

To conclude, digging into three disciplines at a time is a complex matter and always
runs the risk of yielding reproaches concerning a lack of depth in each discipline. The
strong practical interest which has driven the theoretical development of the
framework, however, should justify an interdisciplinary approach, notwithstanding the
shortcomings such an endeavour might impose.

APPENDICES

APPENDICES

APPENDIX 1: EXCERPT OF RESULT REPORT TWB PROJECT

Appendix 1: Excerpt of Result Report TWB Project

 Appendix 1: TWB RESULT REPORT TEST CYCLE 1
TOOL Keyterm Organisation Debis EVALUATORS MB, SITE, SdT
FUNCTION OBSERVATION TEST

TYPE
PROPOSALS for
MODIFICATION

Priority DEVELOPER
REMARK

Dead-
line

TEAM MEASURED
QUANTITY

LEVEL

Hits It is not clear where the
information displayed
with the term in the
“hits” window comes
from and what it means

Scen The user should be
able to specify the
information to be
displayed in the “hits”
window

3 Keylex will restrict
display to essential
data

1-4 MB
SdT

desirable feature I, F

Hits No need to display
number of hits when
n=1

Sys Shortest rout possible
to target information

2 Will be considered 2-5 MB Desirable feature I, F

Term
window

Simplify data entry for
translators

Sys Small window for
term-to-term entry,
plus possibility to
expand information in
successive windows
(strategy: from
minimum to maximum
information)

1 To be implemented in
Keylex

2-4 MB Desirable feature I, F

Term Moving between
windows is error prone
and may cause data
loss

Sys Investigate ways to
move between entry
windows before
saving

1 Problem known,
stable version will
follow

2-4 MB,
SdT

Comfortable
handling

I

Term When no entry was
found (sending a term
from the WinWord
document),
capitalization of the
German search term is
lost

Sys When the term
appears in the Term
window, capitalization
should be kept,
especially when
creating a new record.

1 Accepted 2-4 MB Failure F

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 231

Appendix 2: Result Report for Evaluation Preceding Purchase Decisions

1. Result Reports Task 1 (t1) : TM Preparation

System 1: Trados, TAlign; System 2: IBM, ITM (initial translation memory)
1.1 Suitability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

alignment program? binary 1 100 1 100 insp 1 -
hardware requirements:

486?
8 MB RAM?

binary
nominal
80
20

1 x 80
1 x 20

100

1 x 80
1 x 20

100 insp 2 -

Windows? binary 0 0 1 100 insp 3 �
text statistics calculating
repetition rates?

binary 0 0 0 0 insp 4 -

punctuation recognition binary 1 100 1 100 insp 5 -
mark-up recognition binary 1 100 1 100 insp 6 -
recognition of special text
elements:
proper names
codes
numbers
dates
currencies
tables
figures

binary
nominal

1
1
1
1
1
1
1

7/7 =
100

1
1
1
1
1
1
1

7/7 =
100

insp 7 -

alignment procedures:

batch
interactive

binary
nominal
80
20

1 x 80
1 x 20

100

1 x 80
0

80 insp 8 �

correction of segmentation
possible?

binary 1 100 0 0 insp 9 �

correction of alignment
possible?

binary 1 100 1 100 insp 10 -

alignment rate:
number of aligned segments
/ number of segments
setup 1
setup 2
total

ratio
(%)

80
20

92.30
81.81

73.84 +
16.36 =
90.20

94.87
72.72

75.89
14.54
90.43

bench 11 �

alignment success rate:
number of correctly aligned /
segments number of aligned
segments
setup 1
setup 2
total

ratio
(%)

80
20

91.66
96.29

73.32
19.25
92.57

91.89
62.49

73.51
12.49
86.00

bench 12 �

total success rate:
number of correctly aligned
segments / number of
segments
setup 1
setup 2
total

ratio
%

80
20

84.61
78.78

67.68
15.75
83.43

87.17
45.45

69.73
9.09
78.82

bench 13 �

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 232

1.2 Compliance
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

format of input text:

RTF
SGML
Interleaf
WordPerfect
AmiPro

binary
nominal
50
20
15
10
5

1 x 50
1 x 20
1 x 15
1 x 10
0

95

1 x 50
1 x 20
1 x 15
0
1 x 5

90 insp 14 �

charactersets:

all European
Greek
Japanese

binary
nominal
70
20
10

1 x 70
1 x 20
0

90

1 x 70
1 x 20
1 x 10

100 insp 15 �

1.3 Customisability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

user-definition of special text
elements:

binary

1 100 0 0 insp 16 �

1.4 Installability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

installation program binary 0 0 1 100 task 17 �
installation without
knowledge of operating
system possible?

binary 0 0 1 100 task 18 �

2. Result Reports Task 2 (t2) : TM and Termbank Retrieval

System 1: Trados TWB4W, ß version; System 2: IBM TM/2 version 1.0
2.1 Suitability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

hardware requirements:
IBM compatible?
486?
8 MB RAM?

binary
nominal

1
1
1

3/3 =
100

1
1
1

3/3 =
100

insp 19 -

operating systems
Windows
OS/2

binary
nominal

1
0

1/2 =
50

0
1

1/2 =
50

insp 20 -

networking

LAN
Novell

binary
nominal
80
20

1 x 80
1 x 20

100

1 x 80
0

80 insp 21 �

importing aligned segments
into database

binary 1 100 1 100 insp 22 -

accessing various
databases during translation

binary 0 0 0 0 insp 23 -

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 233

metric scale system 1
x

value
v(x)

system 2
y

value
v(y)

test
type

No rel

translation retrieval from
WinWord

binary 1 100 0 0 insp 24 �

processing of special text
elements:
tables
figures

binary
nominal

1
0

1/2 =
50

0
0

0/2 =
0

insp 25 �

selection of source text
segment:
automatic
manual

binary
nominal
80
20

1 x 80
1 x 20

100

1 x 80
0

80 insp 26 �

retrieval of parts of
sentences

binary 1 100 0 0 insp 27 �

retrieval of fuzzy matches binary 1 100 1 100 insp 28 -
fuzzy match calculation binary 1 100 0 0 insp 29 �
setting of fuzzy match value binary 1 100 0 0 insp 30 �
display of fuzzy match
percentage

binary 1 100 0 0 insp 31 �

quality of fuzzy retrieval
setup 1
setup 2
total

binary
50
50

84.21
100

42.10
50
92.10

31.57
80.43

15.78
40.21
55.99

bench 32 �

constrained retrieval:
fuzzy match setting
only specific projects
according to creation date

binary
nominal

1
1
1

3/3 =
100

0 0 insp 33 �

automatic exchange of
special text elements:
numbers
names
dates
tags
time

binary
nominal
50
10
20
10
10

1 x 50
1 x 10
1 x 20
0
1 10

90

1 x 50
1 x 10
0
1 x 10
0

70 task 34 �

translation control
information:
creation user
creation date
change user
change date
usage counter
project attributes
source of info

binary
nominal

1
1
1
1
1
1
0

6/7 =
85,7

1
0
0
0
0
0
1

2/7 =
28,6

insp 35 �

translation control
information direct accessible
during translation

binary 1 100 0 0 task
interf

36 �

system provides list of
unfound terms?

binary 0 0 1 100 task
interf

37 �

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 234

2.2 Interoperability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

sharing of TM databases in
network

binary 1 100 1 100 insp
scen

38 -

retrieval of terms from
termbases during translation
memory retrieval

binary 1 100 1 100 insp 39 -

taking over of terminological
info into translation text

binary 1 100 1 100 task 40 -

2.3 Compliance
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

translation retrieval editor:
WinWord

binary 1 100 0 0 insp 41 �

editing and formatting of
translation proposals in text:
WinWord functionality

binary 1 100 0 0 interf 42 �

system messages
standardised?

binary 1
(Windows)

100 0 0 interf 43 �

2.4 Security
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

protection of TM databases
within network

binary 1 100 0 0 insp
interf

44 �

2.5 Customisability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

order of translation
proposals definable

binary 1 100 0 0 task 45 �

user definition of control
information (e.g. project
codes, administration
numbers)

binary 1 100 0 0 task 46 �

retrieval of only exact
matches possible?

binary 1 100 1 100 insp 47 -

user-definable special text
elements?

binary 1 100 0 0 task 48 �

2.6 Fault Tolerance
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

undo after inserting
translations from memory

binary 1 100 0 0 task
interf
scen

49 �

undo after inserting
terminology from termbank

binary 1 100 0 0 task
interf
scen

50 �

undo in translation editor? binary 1 100 0 0 interf 51 �

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 235

2.7 Understandability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

clarity of system layout ordinal 1-5 5 100 2 40 task
interf
(scen)
1

52 �

understandability of
interaction when using
translation proposal

ordinal 1-5 5 100 3 60 task
(scen)

53 �

understandability of
interaction when using
terminology

ordinal 1-5 5 100 2 40 task
(scen)

54 �

2.8 Operability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

highlighted display of source
text segment under
consideration

binary 1 100 1 100 insp
task

55 -

automatic initiation of
translation retrieval after
segmentation

binary 1 100 0 0 task 56 �

input of special characters binary 1 100 1 100 task 57 -
display of special characters
in editor
TM
termbank

binary
nominal

1
1
1

3/3 =
100

1
1
1

3/3 =
100

task 58 -

key combinations instead of
direct manipulation
possible?

binary 1 100 1 100 task
scen

59 -

user-definable key
combinations to functions

binary 0 0 1 100 task
scen

60 �

WYSIWYG in editor binary 1 100 0 0 task
scen

61 �

access to detailed
terminological information
from editor possible

binary 1 100 1 100 task 62 -

taking over of terminology
proposals easy?

ordinal 1-5 5 100 3 60 task 63 �

taking over of translation
proposals easy?

ordinal 1-5 5 100 2 40 task
(scen)

64 �

2.9 Time Behaviour
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

time (sec.) needed to
retrieve translation and
terms from memory

ratio
v(5)=0

3 40 1 80 (scen)
bench

65 �

1 note: the brackets around the scenario test type indicate that only qualitative results could be

obtained, which, however, validate the values obtained by other test types.

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 236

2.10 Testability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

hotline support during
testing available?

binary 1 100 1 100 task
scen

66 -

change setups during
testing straightforward?

ordinal 1-5 4 4/5 =
80

2 2/5 =
40

task
interf

67 �

2.11 Installability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

installation program binary 1 100 1 100 task 68 -
time needed for installation ratio

v(60)=0
30 Min 50 50 Min 16,7 task 69 �

installation without
knowledge of operating
system possible?

binary 1 100 1 100 task 70 -

3. Result Reports Task 3 (t3) : Updating TM Databases

System 1: Trados TWB4W, ß version; System 2: IBM TM/2 version 1.0
3.1 Suitability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

modification of TM database
after translation (correction
etc.)

binary 1 100 0 0 task
interf

71 �

immediate updating
procedure?

binary 1 100 1 100 task 72 -

option to keep back
translation update

binary 0 0 0 0 interf 73 -

storage of translations in
different databases
possible?

binary 1 100 0 0 task 74 �

3.2 Security
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

password check before
modifying TM databases

binary 1 100 0 0 insp 75 �

3.3 Fault Tolerance
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

undo after modifying
translation memory

binary 1 100 0 0 task
scen
interf

76 �

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 237

3.4 Understandability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

understandability of
modification process

ordinal 1-5 4 4/5 =
80

0 0 task

77 �

3.5 Learnability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

time needed to learn
modification procedure

ratio
v(30)=0

5 Min 83,3 0 0 task 78 �

3.6 Operability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

modification process
possible:
while translating
after finishing translation

binary
nominal

1
1

2/2 =
100

0 0 task

79 �

steps needed to modify
translation in TM database

ratio
v(10)=0

5 50 0 0 task
interf

80 �

4. Result Reports Task 4 (t4): Updating Termbanks

System 1: Trados TWB4W, ß version; System 2: IBM TM/2 version 1.0
4.1 Suitability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

modification of terms
displayed for translation
during translation process

binary 1 100 1 100 task
interf

81 -

editing list of unfound
terms?

binary 0 0 1 100 task 82 �

4.2 Security
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

password check before
modifying termbank

binary 1 100 0 0 task 83 �

4.3 Fault Tolerance
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

confirmation after modifying
termbank?

binary 1 100 1 100 interf 84 -

APPENDIX 2: RESULT REPORT FOR EVALUATION PRECEDING PURCHASE DECISIONS 238

4.4 Understandability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

understandability of
modification process

ordinal 1-5 4 4/5 =
80

3 60 task

85 �

4.5 Learnability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

time needed to learn
modification procedure

ratio
v(30)=0

8 Min 73,4 10 66,7 task 86 �

4.6 Operability
metric scale system 1

x
value
v(x)

system 2
y

value
v(y)

test
type

No rel

steps needed to modify
terms while translating

ratio
v(10)=0

5 50 5 50 task

87 -

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 239

Appendix 3: Test Data for Systematic Testing

1. Text Analysis as Preparation of Systematic Test for (t1) and (t2)

TEXT ANALYSIS PAIR 1 MB MANUAL
TYPE OF
SIMILARITY

NEW VERSION AR27 OLD VERSION AR27

numbers in identical
segments

1. GETRIEBE 722.6
2. GETRIEBE 722.620/621/622

1. GETRIEBE 722.3/4/5

identical parts of
sentences

1. Ölstand nochmals PRÜFEN

2. Eine zu kleine BZW. zu große
Ölmenge beeinträchtigt die
Funktion des Getriebes
3. Bei kaltem Getriebe muß DIE
ÖLSTANDSANZEIGE zwischen
der "min." und "max." -Markierung,
25° (GETRIEBEÖLTEMPERATUR)
liegen.

4. Bei betriebswarmen Getriebe
muß DIE ÖLSTANDSANZEIGE an
der "max"-Markierung, [80°]
(GETRIEBEÖLTEMPERATUR)
anliegen
5. Getriebeöl (AFT) nach
Betriebsstoff-forschriften-Blatt NR.
236.10

1. Ölstand nochmals
KONTROLLIEREN
2. Eine zu kleine, SO WIE EINE zu
große Ölmenge beeinträchtigt die
Funktion des Getriebes
3. Bei kaltem Getriebe
(GETRIEBEÖLTEMPERATUR CA
30°) muß BEI RICHTIGEM
ÖLSTAND DIE ANZEIGE zwischen
der "min." und "max" -Markierung
LIEGEN (BILD 3).
4. Bei betriebswarmen Getriebe
(GETRIEBEÖLTERMPERATUR
CA 80°) muß BEI RICHTIGEM
ÖLSTAND DIE ANZEIGE an der
"max"-Markierung anliegen (BILD
3).
5. AFT-ÖL nach Betriebsstoff-
Vorschriften Blatt 236.4/6/7

left out/added
segments

1. Das Fahrzeug muß waagrecht
stehen

2. Getriebe auf Dichtheit prüfen

3. Bei Ölverlust Ursache ermittlen

4. Getriebeöl einfüllen

5. Ölmeßstab [(6)] bis zum
Anschlag einstechen UND wieder
herausziehen, Ölstand ablesen
6. Betriebsstoff-Vorschriften

1. Das Fahrzeug muß ZUR
ÖLSTANDSKONTROLLE
waagrecht stehen
2. Getriebe VOR
ÖLSTANDSKONTROLLE auf
Dichtheit prüfen
3. Bei größerem Ölverlust Ursache
ermittlen
4. Getriebeöl BEI LAUFENDEM
MOTOR einfüllen
5. Ölmeßstab (6) bis zum Anschlag
einstechen [,] wieder herausziehen,
Ölstand ablesen
6. AFT-ÖL NACH Betriebsstoff-
Vorschriften BLATT [236.4/6/7]

identical individual
terms

1. Getriebe
2. Handpumpe
3. Trichter

identical segments 1. Sicherheitsvorschriften bei laufendem Motor beachten
2. Ggf. berichtigen
3. Zuviel eingefülltes Getriebeöl unbedingt ablassen oder absaugen,

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 240

TEXT ANALYSIS PAIR 2: MB MANUAL
TYPE OF
SIMILARITY

NEW VERSION ar2726 OLD VERSION ar2711

numbers dates, construction numbers
identical parts of
sentences

1. DECKEL [(110)] ausklipsen
(PFEILE)

1. ABDECKUNG [(3)] ausklipsen

left out/added
segments

1. Abdeckung [(109)] ausklipsen
(PFEILE)
2. Wählhebelgriff [(108)] ausbauen

1. Abdeckung [(3)] ausklipsen

2. Wählhebelgriff ausbauen

identical individual
terms

1. Getriebe
2. Abdeckung
3. Schraube
4. Gabelkopf
5. Sicherung
6. Schaltwelle
7. Sperrhebel
8. Reparaturmittel
9. Nummer
10. Bezeichnung
11. Bestellnummer

identical segments 1. Mittelschaltung zerlegen und zusammenbauen
2. zerlegen und zusammenbauen

TEXT ANALYSIS PAIR 3 MB MANUAL

TYPE OF
SIMILARITY

NEW VERSION AR2714 OLD VERSION AR2713

numbers dates, construction numbers
identical parts of
sentences

left out/added
segments

identical individual
terms

1. Getriebe
2. Schaltstange
3. Stangenkopf

identical segments 1. Schaltstange einstellen

TEXT ANALYSIS PAIR 4: MB MANUAL

TYPE OF
SIMILARITY

NEW VERSION AR2721 OLD VERSION AR276

numbers dates, construction numbers
different word order 1. Ölkühlerleitungen und Ölkühler

spülen
1. Ölkühler MIT Ölkühlerleitungen
spülen

identical parts of
sentences

left out/added
segments

identical individual
terms

1: Handpumpe

identical segments 1. Danach Ölkühler und Ölkühlerleitungen gründlich mit Druckluft
ausblasen.

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 241

TEXT ANALYSIS PAIR 5 MB MANUAL
TYPE OF
SIMILARITY

NEW VERSION ar273 OLD VERSION ar274

numbers dates, construction numbers
combination of 2 into
1/splitting 1 into 2

1. Auspuffanlage [(94)] hinten mit
einem Keilriemen abhängen

1.1 Auspuffanlage AN DER
HINTEREN AUFHÄNGUNG
AUSHÄNGEN.
1.2 MIT EINEM KEILRIEMEN
ABHÄNGEN

different word order 1. Schaltstange (63) AUSBAUEN,
DAZU Klips-sicherungen
abnehmen

1. Klips-sicherungen[(32)]
abnehmen UND Schaltstange
AUSHÄNGEN

identical parts of
sentences

1. Masseleitung AN Batterie
abschließen
2. EINBAU in umgekehrter
Reihenfolge
3. Ölstand im automatischen
Getriebe prüfen, BZW ÖL
EINFÜLLEN

1. Masseleitung DER Batterie
abschließen
2. EINBAUEN in umgekehrter
Reihenfolge
3. Ölstand im automatischen
Getriebe prüfen, GGF.:
RICHTIGSTELLEN

left out/added
segments

1. Öleinfüllrohr (61) NUR VOM
MOTOR abschrauben
2. Abschirmblech [(62)] ausbauen
UND 13-POLIGE
STECKUPPLUNG (26) TRENNEN
3. Sechskantschrauben [(95)] -
Drehmomentwandler an
Mitnehmerblech
HERAUSSCHRAUBEN; DAZU
ABDECKUNG (81) ausbauen
4. Ölablaßschraube [(9)] am
Drehmomentwandler
HERAUSDREHEN
5. Ölablaßschraube [(4)] an
Ölwanne
6. Auspuffhalter [[64)] ausbauen
7. Drehmomentwandler
herausnehmen

1. Öleinfüllrohr (15) abschrauben
2. Abschirmblech [(5)] ausbauen
3. Sechskantschrauben
Drehmomentwandler an
Mitnehmerblech
4. Ölablaßschraube am
Drehmomentwandler
5. Ölablaßschraube an DER
Ölwanne
6. Auspuffhalter [[10)] UND U-
BÜGEL (11) ausbauen; DAZU
SELBSTSICHERNDE MUTTERN
(7) ABSCHRAUBEN
7. Drehmomentwandler
herausnehmen, EINSETZEN

identical individual
terms

1. Getriebe
2. Aus-, Einbauen
3. Nummer
4. Benennung
5. Haltegriff

identical segments 1. Getriebe mit Drehmomentwandler aus-, einbauen.
2. Ölablaßschraube an der Ölwanne

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 242

TEXT ANALYSIS PAIR 6 MB MANUAL
TYPE OF
SIMILARITY

NEW VERSION AR278 OLD VERSION AR275

numbers dates, construction numbers
only numbers
different

1. Antriebsflansch [(96)] und
Lagerzapfen-Kurbelwelle mit
Molykote fetten.

1. Antriebsflansch [(32)] und
Lagerzapfen-Kurbelwelle mit
Molykote fetten.

combination of 2 into
1/splitting 1 into 2

different word order 1. Drehmomentwandler beim
Einsetzen hin-, und herdrehen,
damit die Verzahnungen
ineinandergreifen.

1. Beim Einsetzen
Drehmomentwandler hin-, und
herdrehen, damit die
Verzahnungen ineinandergreifen

identical parts of
sentences

1. ÖLABLAßSCHRAUBE AM
Drehmomentwandler
2. BEI VERBRANNTEN ODER MIT
ABRIEB DURCHSETZTEN
GETRIEBEÖL, müssen
Ölkühlerleitungen und Ölkühler
gespült werden.
3. SIND IN DER
GETRIEBEÖLWANNE
Metallspäne, muß der
Drehmomentwandler erneuert
werden.

1. PRÜFWERTE
Drehmomentwandler
2. RIECHT DAS GETRIEBEÖL
VERBRANNT ODER IST ES MIT
BELAGABRIEB DURCHSETZT,
müssen
DREHMOMENTWANDLER,
Ölkühlerleitungen und Ölkühler
gespült werden.
3. BEFINDEN SICH IM
GETRIEBEÖL Metallspäne, muß
der Drehmomentwandler erneuert
werden.

left out/added
segments

1. Molykote 1. Molykote -FETT

identical individual
terms

1. Nummer
2. Benennung
3. Getriebe
4. Reparaturmittel
5. Bestell-Nummer
6. Haltegriff

identical sentences 1. Drehmomentwandler herausnehmen, einsetzen
2. Herausnehmen
3. Getriebe senkrecht stellen
4. Drehmomentwandler herausziehen
5. Metallspäne werden durch Spülen nicht restlos beseitigt und können
zu späteren Getriebeschäden führen.
6. Einsetzen

2. Alignment Benchmarks Task 1

Setup 1 - German Source Text

AR27.00-0100A
Ölstand im automatischen Getriebe prüfen, ggf. richtigstellen
1.12.93

GETRIEBE 722.3/4/5
P27.00-0201-01
p2700020101
P27.00-0202-01

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 243

p2700020201
Bild 1 links (bis 09/93)
6 Ölmeßstab
6a Verschlußhebel
Bild 2 rechts (ab 10/93)
6 Ölmeßstab
6a Verschlußhebel
6b Sicherungsstift
P27.00-0204-01
p2700020401
Bild 3

Prüfen
Fahrzeug zur Ölstandskontrolle waagrecht stellen
1
Getriebe vor der Ölstandskontrolle auf Dichtheit prüfen
Bei größerem Ölverlust Ursache ermitteln und beseitigen
Sicherheitsvorschriften bei laufendem Motor beachten!
AH00.00-1000-01Z
2
Motor laufenlassen
3.1
Verschlußhebel (6a) öffnen
 bis 09/93 (Bild 1)
3.2
Sicherungsstift (6b) seitlich in Pfeilrichtung wegdrücken, beide Teile entfernen und
Verschlußhebel (6a) öffnen
 ab 10/93 (Bild 2)
4
Ölmeßstab (6) herausziehen
Mit fusselfreiem Tuch abwischen
5
Ölmeßstab (6) bis zum Anschlag einstecken, wieder herausziehen, Ölstand ablesen
Bei kaltem Getriebe (Getriebeöltemperatur ca. 30°C) muß bei richtigem Ölstand die
Anzeige zwischen der "min." und "max."-Markierung liegen (Bild 3).
Bei betriebswarmen Getriebe (Getriebeöltemperatur ca 80°C) muß bei richtigem
Ölstand die Anzeige an der "max."-Markierung anliegen (Bild 3)

Richtigstellen
7
Getriebeöl bei laufendem Motor einfüllen

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 244

126 589 12 63 00
Zuviel eingefülltes Getriebeöl unbedingt ablassen oder absaugen,
Eine zu kleine, so wie eine zu große Ölmenge beeinträchtigt die Funktion des
Getriebes.
112 589 00 72 00
ATF-Öl nach Betriebsstoff-Vorschriften Blatt 236.4/6/7
8
Ölstand nochmals kontrollieren
Ggf. berichtigen
9.1
Verschlußhebel (6a) schließen
 bis 09/93 (Bild 1)
9.2
Verschlußhebel (6a) schließen und Sicherungsstift (6b) einsetzen, bis er einrastet
 ab 10/93 (Bild 2)
Ölmeßstab (6) so einsetzen, daß der Verschlußbügel (6a) gut zugänglich ist und
nirgends ansteht.
126 589 12 63 00
126589126300
112 589 00 72 00
112589007200
Handpumpe
Trichter

Setup 1 – English Translation

AR27.00-0100A
Checking oil level in automatic transmission and correcting, if necessary
1.12.93
TRANSMISSION 722.3/4/5
P27.00-0201-01
p2700020101
P27.00-0202-01
p2700020201
Left-hand illustration 1 (up to 09/93)
6 Oil dipstick
6a Locking lever
Right-hand illustration 2 (as of 10/93)
6 Oil dipstick
6a Locking lever

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 245

6b Locking pin
P27.00-0204-01
p2700020401
Illustration 3

Checking
Park vehicle on a level surface to check the oil level
1
Check transmission for leaks before checking the oil level.
If oil loss is severe, determine and eliminate cause
Comply with safety regulations for running engine
AH00.00-1000-01Z
2
Allow engine to run
3.1
Open locking lever (6a)
Up to 09/93 (illustration 1)
3.2
Press locking pin (6b) to one side in direction of the arrow, remove both parts and
open locking lever (6a)
As of 10/93 (illustration 2)
4
Pull out oil dipstick (6)
Wipe with fluff-free cloth
5
Insert oil dipstick (6) up to the stop, pull out again and read off oil level
When the transmission is cold (transmission oil temperature approx. 30°C) the display
must be between the "min." and "max." marks for the correct oil level (illustration 3).
When the transmission is at operating temperature (transmission oil temperature
approx. 80°C) the display must be at the "max." mark for the correct oil level
(illustration 3).

Correcting
7
Pour in transmission oil when engine is running
126 589 12 63 00
Excess transmission oil must be drained or extracted
An insufficient or excessive quantity of oil impairs the operation of the transmission.
112 589 00 72 00
Automatic transmission fluid in accordance with Specifications for Service Products,
sheet 236.4/6/7

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 246

8
Check oil level once again
Correct, if necessary
9.1
Close locking lever (6a)
Up to 09/93 (illustration 1)
9.2
Close locking lever (6a) and insert locking pin (6b) until it engages
As of 10/93 (illustration 2)
Insert oil dipstick (6) so that the locking clip (6a) is easily accessible and does not
make contact anywhere.
126 589 12 63 00
126589126300
112 589 00 72 00
112589007200
Hand pump
Funnel

Setup 2 – English Source Text: Note: the layout of the text was taken over from
the original!

2639/93EN
Answer given by Mr Flynn
on behalf of the Commission

1. Yes.

2. The Commission's policy on packaging is reflected in the philosophy and contents of its amended proposal

on packaging and packaging waste1. This proposal is currently under discussion in the Council. This
policy provides for measures for the prevention of the production of packaging waste and for the
promotion of return, reuse and recovery operations.

 The proposal is based on the principle of conditional equivalence between packaging systems (reusable -

one-way) as long as all comply with the established requirements, and under the condition that a return
system has been set up for the effective recovery, and in particular recycling, of one-way packaging, and
as long as life-cycle assessments justify no clear hierarchy. At this stage it is not possible to establish a
general preference based on the ecological qualities of these different packaging systems.

 Accordingly, reuse systems are considered as a valid part of a packaging and packaging waste policy but it

is not possible at this stage to claim a general environmental advantage for reuse over one-way systems
which might be used as a valid argument in the particular case presented in the question.

1 COM(93)418 final.

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 247

 It is up to local authorities to evaluate, in the particular local conditions and in relation to the alternative
solution, the possible effects on the environment, which should be considered as an element in making the
decision.

3. Unemployment has reached unacceptable levels throughout the Community. For this reason, the

Commission adopted in May 1993 a communication on a Community-Wide Framework for
Employment1, setting out a common framework for policy action in favour of employment creation. The
purpose of this initiative is to put in place a strategic process for more concerted and collective action
towards more employment-intensive growth. The aim is to focus on the employment problem, not just on
the unemployment problem. This new focus aims to increase the overall employment intensity of
production of goods and services, as well as to anticipate and accelerate new jobs and activities, address
inequalities and raise the competitiveness of the Community's labour force. These aspects comprise an
integral element of the White Paper on Growth, competitiveness and employment which the Commission
presented to the Brussels European Council in December.

4. In accordance with the principle of subsidiarity, a decision on this point would fall under the responsibility

of the local authorities. If a pilot scheme is adopted, it could apply, like other similar initiatives, for
existing Community funds, in line with the particular rules of procedure for those funds.

 ./.

- 2 -

5. The principle of proximity, as established in the framework directive on waste, applies to the final disposal

of waste and is therefore not relevant in this context.

6. The European Social Fund offers a number of options for ESF action to deal with the difficulties

encountered, depending on the priorities put forward by the Dutch authorities:

 − in the case of redundancies, Objective 3 allows ESF funding of training and retraining schemes in

accordance with the new ESF regulations adopted by the Council on 20 July 1993. Article 1 of
Regulation No 2084/932 refers to "persons exposed to long-term unemployment", i.e. those
without work for more than 12 months or those unemployed for a lesser period but faced with a
real danger of drifting into long-term unemployment. The Dutch Objective 3 plan for the coming
period contains three major priorities of which one is the prevention and combatting of long-term
employment and integration into the labour market of persons threatened with long-term
unemployment. The plan includes training actions in this regard. Negotiations with the Dutch
partners about the adoption of an Objective 3 Community Support Framework on the basis of the
plan they have submitted will take place in the near future;

 - training of workers to help them to adapt to industrial change will also be possible under the new

Objective 4;

 − part of the province of Friesland is eligible under Objective 5b for the coming 1994-1999

programming period. The Dutch government will forward in a very near future its proposals to
the Commission. These proposals are expected to contain a request for ESF-support for
employment growth and stability (in particular through continuing training and through guidance
and counselling for workers of either sex, especially those in small and medium-sized enterprises
and those threatened with unemployment, and for people who have lost their jobs).

More generally, it should be noted that the ERDF section of the Friesland operational programme could, as in the
past, call for a range of measures to create new employment in the region. Specific measures for processing
factories of agricultural products are covered by the horizontal measures under Objective 5a.

1 COM(93)238 final. 2 OJ L 193, 31.07.1993.

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 248

Setup 2 – German Translation: Note: the layout of the text was taken over from
the original!

2639/93DE
Antwort von Herrn Flynn
im Namen der Kommission
(6. Mai 1994)

Achtung: Bei den QE-Dokumenten darauf achten, daß Header (Dokumentnummer) und Footer
bzw. Seitenzahl deaktiviert sind.
. Ja.

. Die Politik der Kommission im Bereich "Verpackungen" kommt zum Ausdruck in der
Philosophie und im Inhalt ihres geänderten Vorschlags für eine Richtlinie über Verpackungen
und Verpackungsabfälle 1. Dieser Vorschlag wird zur Zeit beim Rat geprüft. Vorgesehen sind
Maßnahmen zur Vermeidung von Verpackungsabfällen sowie zur Förderung der Rückgabe,
Wiederverwendung und Verwertung von Abfällen.

Der Vorschlag beruht auf dem Grundsatz der Gleichwertigkeit der Verpackungssysteme
(Wiederverwendung - Einwegsystem), sofern alle Systeme den gestellten Anforderungen
gerecht werden, ein Rückgabesystem geschaffen worden ist, das eine tatsächliche
Verwertung, insbesondere das Recycling, von Einwegverpackungen ermöglicht, und solange
Lebenszyklusuntersuchungen keine klare Rangfolge erkennen lassen. Zur Zeit ist es noch
nicht möglich, generell zu bestimmen, welches Verpackungssystem aufgrund seiner
umweltschonenden Eigenschaften vorzuziehen ist.

Wiederverwendungssysteme bilden daher einen wertvollen Aspekt der Politik im Bereich
"Verpackung und Verpackungsabfälle". Zur Zeit weiß man jedoch noch nicht, ob
wiederverwendbare Verpackungen Einwegsystemen gegenüber generell von Vorteil für die
Umwelt sind; im vorliegenden Fall kann dieses Argument daher nicht geltend gemacht
werden.

Es obliegt den Lokalbehörden, unter Berücksichtigung der örtlichen Verhältnisse und der
Alternativlösung mögliche Auswirkungen auf die Umwelt zu beurteilen, die bei der
Beschlußfassung mitberücksichtigt werden sollten.

. Die Arbeitslosigkeit hat in der gesamten Gemeinschaft ein unannehmbares Maß erreicht.
Aus diesem Grunde nahm die Kommission im Mai 1993 eine Mitteilung über einen
gemeinschaftsweiten Rahmen für die Beschäftigung2 an, die einen gemeinsamen Rahmen für
politische Aktionen zur Förderung der Schaffung von Arbeitsplätzen festsetzt. Bezweckt wird
die Einleitung eines strategischen Prozesses besser aufeinander abgestimmter gemeinsamer

1 KOM(93) 416 endg.

2 KOM(93) 238 endg.

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 249

Maßnahmen zur Förderung eines beschäftigungsintensiven Wachstums. Neben dem Problem
der Arbeitslosigkeit soll ebenfalls das Beschäftigungsproblem angegangen werden. Dank
dieses neuen Ansatzes sollen die Beschäftigungsmöglichkeiten bei der Produktion von Waren
und der Erbringung von Dienstleistungen global verbessert werden, soll vorausschauend die
beschleunigte Schaffung neuer Arbeitsplätze und Arbeitsbereiche bewirkt werden, und sollen
Ungleichheiten angegangen sowie die Wettbewerbsfähigkeit der gemeinschaftlichen
Arbeitskräfte verbessert werden. Diese Aspekte sind Bestandteil des Weißbuches über
Wachstum, Wettbewerbsfähigkeit und Beschäftigung, das die Kommission dem Europäischen
Rat im Dezember vorgelegt hat.

. Aufgrund des Subsidiaritätsprinzips sind die Gebietskörperschaften für eine solche
Entscheidung zuständig. Sollte ein Pilotvorhaben beschlossen werden, so könnten, wie bei
vergleichbaren Vorhaben, Gemeinschaftsmittel gemäß den einschlägigen Verfahren beantragt
werden.

. Das in der Rahmenrichtlinie über Abfälle enthaltene Näheprinzip betrifft die endgültige
Entsorgung und ist daher hier irrelevant.

. Der Europäische Sozialfonds (ESF) bietet je nach Art der von den niederländischen
Behörden festgelegten Prioritäten eine Reihe von Interventionsmöglichkeiten:

- Bei Arbeitslosigkeit ermöglicht Ziel 3 die Bereitstellung von ESF-Mitteln zur
Finanzierung von Ausbildungs- und Umschulungsmaßnahmen gemäß der neuen ESF-
Verordnung, die am 20. Juli 1993 vom Rat erlassen wurde. In Artikel 1 der Verordnung Nr.
2084/931 ist die Rede von "Personen, die der Langzeitarbeitslosigkeit ausgesetzt sind", d.h.
von Personen, die seit über 12 Monaten arbeitslos sind, oder die noch nicht so lange arbeitslos
sind, jedoch Gefahr laufen, langfristig arbeitslos zu bleiben. Der niederländische Plan nach
Ziel 3 für den kommenden Zeitraum umfaßt drei wesentliche Prioritäten, von denen eine die
Vermeidung und Bekämpfung von Langzeitarbeitslosigkeit sowie die berufliche
Eingliederung von Personen betrifft, die Gefahr laufen, langfristig arbeitslos zu bleiben. Der
Plan umfaßt entsprechende Ausbildungsmaßnahmen. Die Verhandlungen mit den
niederländischen Partnern im Hinblick auf die Annahme eines gemeinschaftlichen
Förderkonzeptes nach Ziel 3 auf der Grundlage des von ihnen unterbreiteten Plans werden
demnächst beginnen.

- Die Ausbildung von Arbeitskräften, um ihnen dabei zu helfen, sich auf den
industriellen Wandel einzustellen, wird ebenfalls nach dem neuen Ziel 4 möglich sein.

- Für die Programmplanung 1994-1995 ist ein Teil der Provinz Friesland nach Ziel 5b
förderungswürdig. Die niederländische Regierung wird ihre Vorschläge demnächst bei der
Kommission einreichen. Diese Vorschläge werden voraussichtlich einen Antrag auf ESF-
Förderung von Beschäftigungswachstum und -stabilität enthalten (vor allem durch
Weiterbildung, Orientierung und Beratung der Arbeiskräfte jeglichen Geschlechts,
insbesondere in kleinen und mittleren Unternehmen, der von Arbeitslosigkeit bedrohten
Arbeitskräfte wie auch derjenigen, die ihren Arbeitsplatz verloren haben).

Generell ist zu bemerken, daß der EFRE-Teil des friesischen
operationellen Programms, wie bereits früher auch, eine Reihe
von Maßnahmen zur Schaffung neuer Beschäftigungsmöglichkeiten

1 ABl. Nr. L 193 vom 31.7.1993

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 250

in der Region enthalten. Besondere Maßnahmen für Betriebe, die
landwirtschaftliche Erzeugnisse verarbeiten, sind durch die
horizontalen Maßnahmen nach Ziel 5a abgedeckt.

2. Retrieval Benchmark Benchmarks Task 2

Setup 1 – New Version of Aligned German Car Manual

AR27.00-0101A
Ölstand im automatischen Getriebe prüfen, bzw. Öl einfüllen
24.1.95
GETRIEBE 722.6
P27.50-0274-06
p2750027406
A 25° C (77° F)
B 80° C (180° F)
Das Fahrzeug muß waagrecht stehen

Getriebeöl einfüllen
1
Sicherungsstift (93a) entfernen, dazu die Platte des Sicherungsstiftes mit geeigneten
Werkzeug abbrechen und den in der Verschlußkappe verbleibenden Stift nach unten
herausdrücken
2
Verschlußkappe (93) abnehmen
3
Getriebeöl einfüllen
Getriebeöl (ATF) nach Betriebsstoffvorschriften-Blatt Nr. 236.10
126 589 12 63 00
Bei Neubefüllung erst ca. 4l Getriebeöl einfüllen
BF27.00-1001-01C
Sicherheitsvorschriften bei laufendem Motor beachten
AH00.00-1000-01Z
4
Motor starten und in Wählhebelstellung "P" bei Leerlaufdrehzahl laufen lassen
Bei Neubefüllung Rest der vorgeschriebenen Ölmenge nachfüllen
5
Fahrstufen bei stehendem Fahrzeug und Leerlaufdrehzahl des Motors mehrmahls
durchschalten
Dabei Betriebsbremse betätigen

Ölstand prüfen, ggf. richtigstellen

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 251

Mit dem HHT kann die aktuelle Getriebeöltemperatur in den Wählhebelstellungen R,
D, 4, 3, 2 und 1 ausgelesen werden
Dabei Betriebsbremse betätigen
6
Ölmeßstab bis zum Anschlag einstecken und wieder herausziehen, Ölstand ablesen
Bei kaltem Getriebe muß die Ölstandsanzeige zwischen der "min." und "max."-
Markierung , 25° C (Getriebeöltemperatur) liegen.
Bei betriebswarmen Getriebe muß die Ölstandsanzeige an der "max."-Markierung,
80°C (Getriebeöltemperatur) anliegen.
140 589 15 21 00
Zuviel eingefülltes Getriebeöl unbedingt ablassen oder absaugen. Eine zu kleine, bzw.
zu große Ölmenge beeinträchtigt die Funktion des Getriebes.
210 589 00 71 00
7
Ölstand nochmals prüfen
Ggf. berichtigen
8
Verschlußkappe (93) auf Öleinfüllrohr aufsetzen und Sicherungsstift (93a) eindrücken,
bis er einrastet
9
Getriebe auf Dichtheit prüfen
Bei Ölverlust Ursache ermitteln und beseitigen.

Füllmengen Automatisches Getriebe
Nummer
Benennung
Getriebe 722.620/621/622
BF27.00-1001-01C
Füllmenge
bei Neubefüllung
Liter
9,3
bei Ölwechsel
Liter
-
Betriebsstoff-Vorschriften
Blatt
236.10
210 589 00 71 00
210589007100

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 252

126 589 12 63 00
126589126300
140 589 15 21 00
140589152100
Handpumpe
Meßstab
Trichter

Setup 2 – Test Suite

Handling of only identical parts of sentences
Test Case 1: deletion of sub-clauses
1. Ölstand im automatischen Getriebe prüfen.
2. Bei größerem Ölverlust Ursache ermitteln.
3. Sicherungsstift (6b) seitlich in Pfeilrichtung wegdrücken.
4. Ölmeßstab (6) bis zum Anschlag einstecken.
5. Sicherungsstift (6b) einsetzen, bis er einrastet.

Handling of variations in sentence structure
Test Case 2: split sentence with two segments into two separate sentences
1. Ölstand im automatischen Getriebe prüfen. Ölstand im automatischen Getriebe

richtigstellen.
2. Bei größerem Ölverlust Ursache ermitteln. Bei größerem Ölverlust Ursache

beseitigen.
3. Sicherungsstift (6b) seitlich in Pfeilrichtung wegdrücken. Beide Teile entfernen und

Verschlußhebel (6a) öffnen.
4. Ölmeßstab (6) bis zum Anschlag einstecken. Ölmeßstab (6) herausziehen, Ölstand

ablesen.
5. Verschlußhebel (6a) schließen. Sicherungsstift (6b) einsetzen, bis er einrastet.

Test Case 3: unite two separate sentences into one sentence
1. Fahrzeug zur Ölstandskontrolle waagrecht stellen (1) und Getriebe vor der

Ölstandskontrolle auf Dichtheit prüfen.
2. Motor laufenlassen (3.1) und Verschlußhebel (6a) öffnen.
3. Ölmeßstab (6) herausziehen und mit fusselfreiem Tuch abwischen.
4. Bei kaltem Getriebe (Getriebeöltemperatur ca. 30°C) muß bei richtigem Ölstand die

Anzeige zwischen der "min." und "max."-Markierung liegen (Bild 3) und bei
betriebswarmen Getriebe (Getriebeöltemperatur ca 80°C) muß bei richtigem
Ölstand die Anzeige an der "max."-Markierung anliegen (Bild 3).

5. Ölstand nochmals kontrollieren und ggf. berichtigen.

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 253

Test Case 4: change of sequence of main and sub-clauses
1. Ölstand im automatischen Getriebe richtigstellen, ggf. prüfen.
2. Bei größerem Ölverlust Ursache beseitigen und ermitteln.
3. Beide Teile entfernen und Verschlußhebel (6a) öffnen und Sicherungsstift (6b)

seitlich in Pfeilrichtung wegdrücken.
4. Ölmeßstab (6) herausziehen und bis zum Anschlag einstecken.
5. Sicherungsstift (6b) einsetzen, bis er einrastet, Verschlußhebel (6a) schließen.

Handling of variable characters
Test Case 5: change names (no names in test text to be changed)

Test Case 6: change acronyms (only one available in test text)
1. ALP-Öl nach Betriebsstoff-Vorschriften Blatt 236.4/6/7

Handling of variable numbers
Test Case 7: change numbers (n+1)
1. Bild 2 links (bis 09/93)
2. Bild 3 rechts (ab 10/93)
3. Verschlußhebel (7a) öffnen
4. Ölmeßstab (7) bis zum Anschlag einstecken, wieder herausziehen, Ölstand ablesen
5. Bei kaltem Getriebe (Getriebeöltemperatur ca. 31°C) muß bei richtigem Ölstand die

Anzeige zwischen der "min." und "max."-Markierung liegen (Bild 4).

Test Case 8: change date numbers (n+1)
1. Bild 2 links (bis 10/94)
2. Bild 3 rechts (ab 11/94)
3. bis 10/94 (Bild 1)
4. ab 11/94 (Bild 2)
5. bis 10/94 (Bild 1)

APPENDIX 3: TEST DATA FOR SYSTEMATIC TESTING 254

Handling of formatting
Test Case 9: for formatted text strings: remove formatting
1. GETRIEBE 722.3/4/5
2. Bild 1 links (bis 09/93)
3. Bild 3
4. Prüfen
5. Richtigstellen

Test Case 10: for formatted text strings: change formatting
1. GETRIEBE 722.3/4/5

2. Bild 1 links (bis 09/93)
3. Bild 3
4. Prüfen
5. Richtigstellen

Test Case 11: for non-formatted text strings add formatting
1. Ölstand im automatischen Getriebe prüfen, ggf. richtigstellen.
2. Bei größerem Ölverlust Ursache ermitteln und beseitigen.
3. Sicherungsstift (6b) seitlich in Pfeilrichtung wegdrücken, beide Teile entfernen

und Verschlußhebel (6a) öffnen.
4. Ölmeßstab (6) bis zum Anschlag einstecken wieder herausziehen, Ölstand ablesen.
5. Verschlußhebel (6a) schließen und Sicherungsstift (6b) einsetzen, bis er einrastet.

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 255

Appendix 4: Test Data for Scenario Testing

CAT Course

Computer Aided Translation (CAT) Course

University of Helsinki

Department of Translation Studies

May 15-26, 1995

Lauri Carlson/Monika Höge

User Profile Form

Name:

Social Security Number:

Student profile:

Subjects Years studied Degree

Major subjects:

Minor subjects:

First

Second

Third

Translator profile:

Languages Years studied

First (native)

Second

Third

Translation language pairs in order of preference

First

Second

Third

Special fields

First

Second

Third

Work experience as translator (duration, employer, language paris, special fields)

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 256

Experience with computers

Operating sytems

 Basics of DOS (handling files and directories,starting and stopping programs ...)

 Basics of Windows (handling mouse, icons, windows, menus, buttons)

 Basics of Unix

 Macintosh

Word processing

Program

 WordPerfect

 MS Word

 AmiPro

 Other (specify)

CAT Tools

Product Type Product name Used regularly Tried out

Electronic word lists

Electronic dictionaries

(e.g. CD-ROM)

Term banks

Translation memories

CAT programs

Other (specify)

Networking

User id in Helsinki University

Where User id

 Local net (Kouvola)

 PC net (Helsinki)

 Unix (Helsinki)

 Basics of email

 Baics of telnet

 Basics of ftp

 Baics of gopher (Heli)

 Basics of www

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 257

Training Text: part of manual of TM/2 for Windows

To create a new terms list, select: Create list of new terms creating a list of new terms

Select this option to create a list of new terms.

The system provides the folder name as the default name for the list to be generated. You can specify

any other name. For this type of list, you can also select Include context information. If a new term is

found, the system can save the original segment (containing the term) as context information. This

option is useful if you intend to copy the new terms to a dictionary that can contain context

information.

Minimum number of occurrences:

Specify how often a term must occur in the document so that it is included in the list. To create the list

of all terms of a document that are also in selected dictionaries, select: Create list of found terms

creating a list of found terms. Select this option to create a list of found terms. The system provides the

folder name as the default name for the list to be generated. You can specify any other name. For this

type of list, you can also select: Include context information. If a term is found in one of the selected

dictionaries, the system can save the original segment (containing the term)as context information.

This option is useful if you intend to copy the new terms to a dictionary that can contain context

information.

Add found terms to dictionary: To copy the found terms to a dictionary, select a dictionary from this

list box or type the name of an existing dictionary.

For both new terms and found terms lists, you must specify: Dictionaries to be used for analysis.

Select the dictionaries to be used for generating terminology lists from the list in the order in which

you select them, and the dictionaries are searched in this order. You can select up to 10 dictionaries.

If needed, you can limit the generation of terminology lists by the following options:

Use exclusion lists: If you have terms you want to exclude from the lists to be generated, these terms

must be put into an exclusion list. For each language for which you installed the language support,

tm4w already provides an exclusion list. It contains so-called noise terms. Select the exclusion lists to

be used from the list box. Use exclusion dictionaries. If you have a dictionary containing well-defined

terms that you want to exclude from the terminology lists to be generated, select it from the list box.

Click on Set to return to the Analyze Documents window.

To begin analysis, click on Analyze.

The document is segmented.

Depending on the options you selected, new terms lists and found terms lists are created, and can be

modified and used for dictionary updates.

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 258

Text used in Scenario Test

{h2 id=dicnew}Creating a new dictionary in [tm4w]

/*--

{i2 refid=new}a new dictionary

{i2 refid=dic}setting up a new one

/* {psc proc=host}

{p}

[tm4w] offers you several ways of setting up a new dictionary.

{ul}

{li}If you do not have any existing terminology

in machine-readable form,

you must create a completely new dictionary.

You do this by determining the dictionary properties.

In particular,

you must define a dictionary structure.

You can use a default structure offered by [tm4w],

or you can use the structure of an existing dictionary

in [tm4w] and change it.

A newly created dictionary is empty at first but you

can add entries

from a new terms list built during document analysis

or at any stage during the translation process.

In this way you can create dictionaries

that contain only terms oriented towards

specific translation tasks.

{li}

During analysis, [tm4w] can generate a found terms list

that contains all terms of the document that exist

in the referenced dictionaries.

[tm4w] can also copy the entry data of these

terms into a separate dictionary.

{li}

If you have your own terminology in a format of your own,

you must generate an external SGML-based dictionary

and you must import it into [tm4w].

In this case, a new dictionary is created with your terminology

and the entry structure as defined in the SGML file is taken.

{eul}

{p}

If you create a new dictionary via the {hp2}New Dictionary{ehp2}

window in [tm4w]

and you do not use the modelling option,

the following entry fields are offered as default fields[colon]

{p}

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 259

{table width=column cols='3* *' scale='.8'

 concat=yes split=yes hp='0 0 0'}

{thd}{c}Entry field {c}Level

{ethd}

{i2 refid=dic}default entry fields

{row}{c}Headword *) {c}entry

{row}{c}Part of Speech {c}homonym

{row}{c}Abbrev./Fullform *) {c}sense

{row}{c}Definition {c}sense

{row}{c}Synonym *) {c}sense

{row}{c}Other Related Terms *) {c}sense

{row}{c}Context {c}sense

{row}{c}Translation {c}target

{row}{c}Company/Subject Code {c}target

{etable}

{p

The entry fields marked with :xph}*){exph}

can be used as predefined search criteria

in the {hp2}Look up a Term{ehp2} window

(see {hdref refid=dicsrch}).

{p}

If you are working with a more comprehensive structure

and require more entry fields,

select {hp2}-Master-{ehp2} on the

{hp2}Use Existing Dictionary as Model{ehp2} window,

which offers an extensive dictionary structure.

You can rename or delete any fields

from this set of entry fields

and you can also add new user-defined fields to it.

/* {p}

/* In filters for lookup and printing you can use

/* all defined entry fields.

/cp

{p}

[tm4w] adds and updates time stamp information automatically,

provided the following date fields are selected

in the {hp2}New dictionary{ehp2} window

from the {hp1}-Master-{ehp1} model dictionary.

/*

{table width=column cols='* * 2*' scale='.8'

 concat=yes split=yes hp='0 0 0'}

{thd}

{c}Entry field

{c}Level

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 260

{c}Contents

{ethd}

{row}

{c}Creation Date

{c}entry

{c}The date when a headword was added to a dictionary

{row}

{c}Last Update

{c}sense

{c}The date when information at the sense level

of an entry was added or modified

{row}

{c}Creation Date

{c}target

{c}The date when a translation for a headword was added

{row}

{c}Last Update

{c}target

{c}The date when a translation entry field was last updated

{etable}

/* {p}

/* When you create a new dictionary,

/* you can protect it with a password against unauthorized changes.

{p}

{grid refid=gr01}

/*-- Prerequisites --

{gridseg}

{gridarea}

{p}{hp3}Prerequisites{ehp3}

{gridarea}

{p}None.

/*-- Calling sequence

{gridseg}

{gridarea}

{p}{hp3}Calling sequence{ehp3}

{gridarea shade=xlight}

{p}Select[colon]

{ol compact}

{li}The {hp2}Dictionary List{ehp2} window

{li}{hp2}New[ellip]{ehp2} from the {hp2}File{ehp2} menu

{eol}

{gridseg}

{gridarea}

{gridarea}

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 261

{p}The {hp2}New Dictionary{ehp2} window is displayed

(see {figref refid=dicnew1 page=no}).

/*-- Window ---------

{fig id=dicnew1 width=column place=inline}

{i2 refid=win}New Dictionary

{figcap}New Dictionary window

{artwork name=eqfb7s4b width=75mm}

/* {screen}

/* New Dictionary

/* [separ]

/* [vellip]

/* [vellip]

/* {escreen}

{efig}

/*-- Options/parameters

{gridseg}

{gridarea}

{p}{hp3}Options and parameters{ehp3}

{gridarea}

/*

{parml}

{pt}Name

{pd}Enter a name of your choice for the new dictionary.

This name can be up to 8 alphanumeric characters long.

/*

{pt}Description

{pd}Type a description for the new dictionary.

The description can be up to 40 alphanumeric characters long.

/*

{pt}Location of dictionary

{pd}Specify where to place the new dictionary.

{p}

Select the drive on which you want the new dictionary to reside.

A dictionary grows with time, so select a drive with

enough space.

/*

{pt}Source Language

{pd}Select a source language from the list of installed languages

displayed in the list box.

/*

{pt}Use existing dictionary as model

{pd}If you do not want to determine

the dictionary entry structure yourself,

you can use the structure of an existing dictionary as a model by

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 262

clicking on {hp2}Yes[ellip]{ehp2}.

This takes you to the

{hp2}Use Existing Dictionary as Model{ehp2} window

where you can select a dictionary as model.

Click on {hp2}Select{ehp2} or {hp2}Cancel{ehp2} to return

to the {hp2}New Dictionary{ehp2} window.

For more information on this option see {hdref refid=dicnew4}.

{pt}Change entry fields

{pd}If you want to change the dictionary entry structure

(add, delete, or rename entry fields),

click on {hp2}Yes[ellip]{ehp2}

APPENDIX 4: TEST DATA FOR SCENARIO TESTING 263

Evaluation Description Sheet Scenario Test

EVALUATION DESCRIPTION Scenario Test

organisation Uni Helsinki date 26/05 1995 test ID 1.1

MOTIVATION

perspective task-oriented

interest scientific and practical comparison of TM/2 with Trados TWB

consumer academia and users

SYSTEMS

name TWB4W version ß

name TM for Windows version 1.0

hardware platform LAN with 10 PCs 386, 8 RAM

software modules translation memories, termbanks, editor

ENVIRONMENT

test personnel

evaluators

M. Höge, L. Carlson

observers: 10 Finnish Students

subjects 10 Finnish Students of Translation with English as Major or Minor

budget 1 PM

time 04 - 06 1995

QUALITY

characteristics suitability, fault tolerance, understandability, learnability, operability,

time behaviour,

view on quality black box

type of metrics qualitative

TYPE OF EVALUATION comparative adequacy evaluation

TESTING

test type: scenario testing

instruments

user profile questionnaire, scenario checklist, observation, post-

testing interview

description scenario test integrated into training environment

data test corpora TM/ manual

REFERENCES 264

References

Ackerman, A. F.; Fowler, P.J.; Ebenau, R.G.: "Software Inspection and the Industrial

Production of Software" in: Hausen, H.L. (ed.): Software Validation. Proc.
Symp. Software Validation. North-Holland, 1984, pp. 13 - 40.

Ahmad, K.; Holmes-Higgin, P.; Rogers, M.; Höge, M.; Le-Hong, K.; Huwig, C.; Kese,

R.; Mayer, R.: "User-driven Software Development: Translator's Workbench -
an exemplar case study" in: Smith, MJ. and Salvendy, G. (eds.): Advances in
Human Factors/Ergonomics, 19A. Human-Computer Interaction: Applications
and Case Studies. Proceedings of the fifth International Conference on
Human-Computer Interaction, (HCI International '93), Orlando, Florida,
August 8 - 13, 1993, Volume 1, pp. 319 - 324.

ALPAC: Languages and Machines: Computers in Translation and Linguistics. Report

of the Automatic Language Processing Advisory Committee, Division of
Behavioural Sciences, National Academy of Sciences, National Research
Council Publication 1416, Washington, D.C., 1966.

ARPA: Proceedings of the Machine Translation Evaluation Workshop. Vienna, 1994.

Athappily, K.; Galbreath, R. S.: "Practical Methodology Simplifies DSS Software

Evaluation Process" in: Data Management 24 (1986) 2, pp. 10-17.

Baird, J.C.; Noma, E.: Fundamentals of Scaling and Psychophysics. New York, 1978.

Balkan, L.; Meijer, S.; Arnold, D.; Dauphin, E.; Estival, D.; Falkedahl, K.; Lehmann,

S.; Netter, K.; Regnier-Prost, S.: Issues in Test Suite Design. Report (D-
WP2.1) to LRE 62-089 Test Suites for Natural Language Processing
(TSNLP), University of Essex, 1994 - 1.

Balkan, L.; Meijer, S.; Arnold, D.; Dauphin, E.; Estival, D.; Falkedahl, K.; Lehmann,

S.; Regnier-Prost, S.: Test Suite Design Guidelines and Methodology. Report
(D-WP2.1) to LRE 62-089 Test Suites for Natural Language Processing
(TSNLP), University of Essex, 1994 - 2.

Balkan, L. Meijer, S.; Arnold, D.; Dauphin, E.; Estival, D.; Falkedahl, K.; Lehmann,

S.; Netter, K.; Oepen, S.; Regnier-Prost, S.: Test Suite Design Annotation

REFERENCES 265

Scheme. Report (D-WP2.1) to LRE 62-089 Test Suites for Natural Language
Processing (TSNLP), University of Essex, 1994 - 3.

Balzer, R.: Final Report on GIST. USC/ISI, Marina del Rey, Technical Report, 1981.

Basili, V.; Rombach, H.D.: "The TAME Project: Towards Improvement-Oriented

Software Environments" in: IEEE Transactions on Software Engineering, Vol.
14, No. 6, June 1988, pp. 758 - 773.

Bechtel, W. (ed.): Integrating Scientific Disciplines. Science and Philosophy Series,

Pittsburg, 1986.

Bechtel, W.: "The Nature of Scientific Integration" in: Bechtel, W. (ed.): Integrating

Scientific Disciplines. Science and Philosophy Series, Pittsburg, 1986, p. 3 -
52.

Bell, T.E.; Bixler, D.C.; Dyer, M.E.: An Extendable Approach to Computer Aided

Software Requirements Engineering" in: IEEE Transactions on Software
Engineering, 1977, SE-3 (1), pp. 49 - 60.

Bell, J.; Hardimann, R.J.: "The Third Role - the Naturalistic Knowledge Engineer" in:

Diaper, D. (ed.) Knowledge Elicitation: Principles, Techniques, Applications,
1989, pp. 49 - 85.

Berger, J.O.: Statistical Decision Theory. Foundations, Concepts, and Methods. New

York, 1980.

Berkel, B. van; Smedt, K. de: "Triphone Analysis: A Combined Method for the

Correction of Orthographical and Typographical Errors" in: Proceedings of the
Second Conference on Applied Natural Language Processing, Austin, 9-12
February 1988 pp. 77-83.

Beylard-Ozeroff, A.; Králová J.; Moser-Mercher B. (eds.): Translator Strategies and

Creativity. Selected Papers from the 9th International Conference on
Translation and Interpreting. Prague, September 1995. In honor of Jirí Levý
and Anton Popovic. Amsterdam 1998.

REFERENCES 266

Bickerton, M.J.; Siddiqi, J.: "The Classification of Requirements Engineering
Methods" in: IEEE Conference on Requirements Engineering, Colorado
Springs, 1993, pp. 182 - 186.

Birkenbihl, M.: Train the Trainer: Arbeitsbuch für Ausbilder und Dozenten mit 21

Rollenspielen und Fallstudien. Landberg/Lech, 1990.

Boehm, B.W.; Brown, J.R.; Lipow, M.: "Quantitative Evaluation of Software Quality"

in: Proceedings of the 2nd International Conference on Software Engineering,
1976, pp. 592 - 605.

Boehm, B.W.; Brown, J.R.; Kaspar, H.; Lipow, M.; MacLeod, G.J.; Merrit, M.J.:

Characteristics of Software Quality. TRW Series of Software Technology,
Vol. 1, Amsterdam - New York - Oxford, 1978.

Boisen, S.; Bates, M.: "A Practical Methodology for the Evaluation of Spoken

Language Systems." In: Proceedings of the Third Conference on Applied
Natural Language Processing, Trento,1992, pp. 162-169.

Borgida, A.; Greenspan, S.; Mylopoulos, J.: "Knowldge Representation as a Basis for

Requriements Specification" in: IEEE Computer 18 (4), pp. 82 - 91.

Bouyssou, D. (ed.): Preference Modelling. Bussum, 1998.

Breuker, J.A.; Weilinga, B.J.; van Someren, M.W.: The KADS System Functional

Description. Esprit Project 1098, Deliverable T1.1, University of Amsterdam,
1986.

Brinkhoff, N.: "Towards Standards in Language Engineering: EAGLES" in: XIII

Magazine, May 1993 Issue No.10, pp. 25 - 27.

Bubenko, J.A. jr: "Challenges in Requirements Engineering" in: Second IEEE

International Symposium on Requirements Engineering, Los Alamitos,
California, 1995, pp. 160 - 162.

Bukowski, J.V.: "Evaluating Software Test Results: A New Approach" in:

Proceedings Annual Reliability and Maintainability Symposium (1987),
Philadelphia, USA, 27 -29. Jan. 1987, pp. 369-375.

REFERENCES 267

Byrnes, J.P.: The Nature and Development of Decision Making. Mahwah, NJ, 1998.

Carroll, J.M.; Grudin, J.; McGrew, J.; Scapin, D.: "Task Analysis: the Oft Missing

Step in the Development of Computer-Human Interfaces; Its Desirable Nature,
Value, and Role" in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 1051
- 1054

CETIL Systran Evaluation and Comparison. Summary Report of Rewisers' Comments

on Machine Produced Translations. Working Document for the CETIL
meeting 26 and 27 March 1979, CETIL/139/79, Luxembourg, 1979.

Chéhab, P.: "Vernetztes Denken - Praxis in der SWISSAIR Dargestellt am Beispiel

der Überprüfund unserer Dienstleistung" in: Probst, G. J. B.; Gomez, P. (eds.)
Vernetztes Denken. Ganzheitliches Führen in der Praxis. 19912, pp. 181 - 193.

Chen, P.: "The Entity-Relationship Model - Toward a Unified View of Data" in: ACM

Transactions on Database Systems 1 (1) March 1976, pp. 9 - 36.

Cheung, R.C.: "A User-Oriented Software Reliability Model" in: IEEE Transactions

on Software Engineering,1980, pp. 118-125.

Chinchor, N.: "MUC-3 Evaluzations Metircs." In: Proceedings of the Third Message

Understanding Conference (MUC-3), San Mateo, 1991, pp. 17-24.

Chomsky, N.: Aspects of the Theory of Syntax. Cambridge Mass., 1965.

Christ, M.L.; Itzfeld, W.D.; Schmidt, M.; Timm, M.; Watts, R.: Software Quality

Measurement and Evaluation. Final Report Volume II Project MQ: Measuring
Quality of Software Products and Software Production Aids. GMD, Sankt
Augustin, FRG and NCC, Manchesterr, UK, 1984.

Chung, L.; Nixon, B.A.; Yu, E.: "Using Non-Functional Requirements to

Systematically Support Change" in: Second IEEE International Symposium on
Requirements Engineering, Los Alamitos, California, 1995, pp. 132 - 139.

Coad, P.; Yourdon, E.: Object-Oriented Analysis. Englewood Cliffs, 19912.

REFERENCES 268

Colgan, L.; Brouwer-Janse, M.: "An Analysis of the Circuit Design Process for a
Complex Engineering Application" in: Diaper, D.; Gilmore, D.; Cockton, G.;
Shackel, B. (eds.): Human Computer Interaction - INTERACT '90, Elsevier,
IFIP, 1990, pp. 253 - 258.

Cook, V.H.; Hartrum, T.H.; Howatt, J.W.; Woffinden, D.S: "A Framework for

Evaluating Software Development Methods" in: Proceedings of the IEEE
1988, National Aerospace and Electronics Conference: NAECON 1988, 23-27
May 1988, Dayton, OH, USA, 2 (1988), pp. 667-669.

Cook, V. (ed.).: Experimental Approaches to Second Language Learning. Oxford,

1986.

Cordingley, E.: "Knowledge Elicitation: Techniques for Knowledge Based Systems"

in: Diaper, D. (ed.) Knowledge Elicitation: Principles, Techniques,
Applications, 1989, pp. 89 - 172.

Crellin, J; Horn, T.; Preece, J.: "Evaluating Evaluation: A Case Study of the Use of

Novel and Conventional Evaluation Techniques in a Small Company" in:
Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.): Human Computer
Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 329 - 335.

Dechert, H.W.; Sandrock, U.: "Thinking-aloud Protocols: the Decomposition of

Language Processing." in: Cook, V. (ed.).: Experimental Approaches to
Second Language Learning. Oxford, 1986.

Deming, W.E.: "The Logic of Evaluation" in: Struening, E.L.; Guttentag, M. (eds.):

Handbook of Evaluation Research. Vol. 1. Beverly Hills, London, 1975, p. 53
- 68.

Deutsch, M.S.: Software Verification and Validation. Englewood Cliffs, NJ 07632,

1982.

DGQ; NTG (eds.): Software Qualitätsicherung. Aufgaben, Möglichkeiten, Lösungen.

Berlin/Offenback, 1986.

Diaper, D. (ed.): Knowledge Elicitation: Principles, Techniques, and Applications.

Chichester, UK, 1989-1.

REFERENCES 269

Diaper, D.: Task Analysis for Human Computer Interaction. Chapter 4. Ellis Horwood,
1989-2, p. 108 - 159.

Diaper, D.: Task Analysis for Human Computer Interaction. Chapter 7. Ellis Horwood,

1989-3, p. 210 - 251.

Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.): Human Computer Interaction

- INTERACT '90, Elsevier, IFIP, 1990.

Diaper, D.: "Analysing Focused Interview Data with Task Analysis for Knowledge

Descriptions," in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 277 -
282.

Diller, H.-J.; Kornelius, J.: Linguistische Probleme der Übersetzung. Tübingen, 1978.

DIN 66234 Teil 8 in: DIN (1988): Bildschirmarbeitsplätze, Berlin.

Dörner, D.: Problemlösen als Informationsverarbeitung. Stuttgart, Berlin, Köln,

Mainz, 1979/2.

Dollhoff, T.L.: "Evaluating Manufacturing Software" in: Production Engineering 32,

(1985), Cleveland, pp. 68-72.

Douglas, S.: Requirements Analysis for Linguistic Engineering Evaluation. Edinburgh,

1995.

Downs, T.: "An Approach to the Modelling of Software Testing with some

Applications" in: IEEE Transactions on Software Engineering,1985, pp. 375-
386.

Dworatschek, S., Höcker, H.: "Möglichkeiten einer Bewertung software-

technologischer Methoden" in: Angewandte Informatik 27 (1985) 5, pp. 183-
190.

Dzida, W.; Freitag, R.; Hoffmann, C.; Vlader, W.: "Bridging the Gap between Task

Design and Interface Design." in: Diaper, D.; Gilmore, D.; Cockton, G.;
Shackel, B. (eds.): Human Computer Interaction - INTERACT '90, Elsevier,
IFIP, 1990, pp. 239 - 245.

REFERENCES 270

EAGLES MT Evaluation Working Group. EAGLES Evaluation of Natural Language

Processing Systems. Final Report. EAGLES Document EAG-EWG-PR.2,
ISBN 87-90708-00-8. Center for Sprogteknologi, Copenhagen, 1996.

Easterbrook, S.: "Domain Modelling with Hierarchies of Alternative Viewpoints" in:

IEEE Conference on Requirements Engineering, Colorado Springs, 1993, pp.
65 - 72.

Easterbrook, S.; Nuseibeh, B.: Managing Inconsistencies in an Evolving Specification"

in: Second IEEE International Symposium on Requirements Engineering, Los
Alamitos, California, 1995, pp. 48 - 55.

Edwards, W.; Guttentag. M.; Snapper, K.: "A Decision-Theoretic Approach to

Evaluation Research" in: Struening, E.L.; Guttentag, M. (eds.): Handbook of
Evaluation Research. Vol. 1. Beverly Hills, London, 1975, p. 139 - 181.

Edwards, W.; Newman, J.R.: "Multiattribute Evaluation" in: Sullivan, J.L.; Niemi,

R.G.(eds.): Sage University Series on Quantitative Applications in the Social
Sciences. Beverly Hills and London, 1982, p. 5 - 96.

El Emam, K.; Madhavji, N.H.: "A Field Study of Requirements Engineering Practices

in Information Systems Development" in: Second IEEE International
Symposium on Requirements Engineering, Los Alamitos, California, 1995,
pp. 68 - 80.

Ericsson, K.A.; Simon, H.A.: Protocol Analysis: Verbal Report as Data. London,

1985.

Fagan, M.E.: "Design and Code Inspection to Reduce Errors in Program

Development" in: IBM System Journal, Vol 15, No.3, 1976.

Falkedal, K.: Evaluation Methods for Machine Translation Systems: An Historical

Overview and a Critical Account. Report to Suisstera, ISSCO, Geneva, 1991.

Färch, C.; Kasper, G.: Introspection in Second Language Research. Clevedon, 1987.

REFERENCES 271

Fickas, S.; Feather M.S.: "Requirements Monitoring in Dynamic Environments" in:
Second IEEE International Symposium on Requirements Engineering, Los
Alamitos, California, 1995, pp. 140 - 147.

Flickinger, D.; Nerbonne, J.; Sag, I.; Wascow, T.: Toward Evaluation of NLP

Systems. Hewlett Packard Laboratories, Palo Alto, CA, 1987.

Fluck, H.R.: Fachsprachen. Tübingen, 1985/3.

Freigang, K-H.: "Überlegungen zu einer theoretisch-linguistisch fundierten

Methodologie der Übersetzungswissenschaft (1978)" in: Wilss, W. (ed.):
Übersetzungswissenschaft. Darmstadt, 1981, pp. 150 - 168.

Freigang, K-H.; Reinke, U (eds.): Saarbrücker Studien zu Sprachverarbeitung und

Übersetzen, Fachrichtung 8.6, angewandte Sprachwissenschaft sowie
Übersetzen und Dolmetschen. Universität des Saarlandes1995.

French, S.: Decision Theory. An Introduction to the Mathematics of Rationality.

London, 1986.

French, S.: Readings in Decision Analysis. London, 1989.

Fulford, H.; Höge, M.: Preliminary Study of User Requirements - Methods of

Investigation. Internal Report of the ESPRIT II Project 2315 Translator's
Workbench (TWB). Stuttgart and Guildford, 1989, unpublished.

Fulford, H.; Höge, M.; Ahmad, K.: User Requirements Study. Final Report of the

ESPRIT II Project 2315 Translator's Workbench (TWB). Stuttgart and
Guildford, 1990, unpublished.

Gaines, Brian R.: "A Methodological Framework for the Design and Evaluation of

Software in Systems Involving Complex Human-Computer Interaction" in:
Berichte des German Chapter of the ACM 29 (1987) Stuttgart, pp. 44-73.

Galliers, J.R.; Sparck Jones, K.: Evaluating Natural Language Processing Systems.

Technical Report No. 291, University of Cambridge Computer Laboratory,
1993.

REFERENCES 272

Gerloff, P.: "Identifying the Unit of Analysis in Translation: Some Uses of Think-
aloud Protocols of Translation." in: Färch, C.; Kasper, G.: Introspection in
Second Language Research. Clevedon, 1987.

Glickman, S.; Becker, M.: "A Methodology for Evaluating Software Tools" in:

Conference on Software Tools (1985), New York, USA, April 15-17 1985, pp.
190-196.

Goguen, J.A.; Linde, C.: "Techniques for Requirements Elicitation" in: IEEE

Conference on Requirements Engineering, Colorado Springs, 1993, pp. 152 -
164.

Golub, A. L.: Decision Analysis: an Integrated Approach. New York, 1997.

Gomez, P.; Probst, G.J.B.: "Vernetztes Denken für die Strategische Führung eines

Zeitschriftenverlags" in: Probst, G. J. B.; Gomez, P. (eds.) Vernetztes Denken.
Ganzheitliches Führen in der Praxis. 19912, pp. 23 - 39.

Gough, P.A.; Fodemski, F.T.; Higgins, S.A.; Ray, S.J.: "Scenarios, an Industrial Case
Study and Hypermedia Enhancements" in: Second IEEE International
Symposium on Requirements Engineering, Los Alamitos, California, 1995,
pp. 10 - 17.

Gotel, O.; Finkelstein, A.: "Contribution Structures" in: Second IEEE International

Symposium on Requirements Engineering, Los Alamitos, California, 1995,
pp. 100 - 107.

Gourlay, J.S.: "Introduction to the Formal Treatment of Testing" in: Hausen, H.L.

(ed.): Software Validation. Proc. Symp. Software Validation. North-Holland,
1984, pp. 67-73.

Greenspan, S.: "The Next 25 Years: New Customers, New Environments, New

Requirements" in: Second IEEE International Symposium on Requirements
Engineering, Los Alamitos, California, 1995, pp. 36 - 37.

Gurel, L.: "The Human Side of Evaluating Human Services Programs: Problems and

Prospects" in: Guttentag. M.; Struening, E. L. (eds.): Handbook of Evaluation
Research. Vol. 2. Beverly Hills, London, 1975, p. 11 - 28.

REFERENCES 273

Guttentag. M.; Struening, E. L. (eds.): Handbook of Evaluation Research. Vol. 2.
Beverly Hills, London, 1975.

Harker, S.D.P.; Olphert, C.W.; Eason, K.D.: "The Development of Tools to Assist in

Organisational Requirements Definition for Information Technology
Systems," in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.): Human
Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 295 - 300.

Harker, S.D.R.; Eason, K.D.; Dobson, J.E.: "The Change and Evolution of

Requirements as a Challenge to the Practice of Software Engineering" in:
IEEE Conference on Requirements Engineering, Colorado Springs, 1993, pp.
266 - 272.

Hausen, H.L. (ed.): Software Validation. Proc. Symp. Software Validation. North-

Holland, 1984.

Hausen, H.L.: "Comments on Practical Constraints of Software Validation

Techniques" in: Hausen, H.L. (ed.): Software Validation. Proc. Symp.
Software Validation. North-Holland, 1984, pp. 323 - 333

Hausen, H.L.; Müllerburg, M.: "Kombination von Verfahren für die Software-

Prüfung" in: Internationaler Kongress für Datenverarbeitung und
Informationstechnologie (IKD), 1982, pp. 111-125.

Hausen, H.L.; Müllerburg, M.; Schmidt, M.: "Über das Prüfen, Messen und Bewerten

von Software. Methoden und Techniken der analytischen Software-
Qualitätssicherung" in: Informatik Spektrum 10 (1987) 3, pp. 123-144.

Hayward, S.; Breuker, J.A.; Weilinga, B.J.: The KADS methodology: Analysis and

design for knowledge bassed systems. ESPRIT P 1098, Deliverable Y1, STC
Technology Ltd., 1987.

Heid, U.: Evaluation der französisch-deutschen SYSTRAN-übersetzung,

Vorhabesskizze, IMS, Stuttgart, 1988.

Hewitt, J.; Hobson, J.; Sapsford-Francis, J.: "An Application of Task Analysis to the

Development of a Generic Office Reference Model" in: Diaper, D.; Gilmore,
D.; Cockton, G.; Shackel, B. (eds.): Human Computer Interaction -
INTERACT '90, Elsevier, IFIP, 1990, pp. 265 - 269.

REFERENCES 274

Höge, M.: Theory and Practice of Special Language Translation with a Focus on

Terminology Support as the Principal Function of Computer Aided
Translation Systems. M.A. Thesis, University of Stuttgart, 1989, unpublished.

Höge, M.; Wiedenmann, O.; Kroupa, E.: Evaluation of the TWB - Theoretical

Framework and Practical Application. Report of the ESPRIT II Project 2315
Translator's Workbench (TWB), Mercedes-Benz AG Stuttgart, 1991,
unpublished.

Höge, M.; Kroupa, E.: "Towards the Design of a Translator's Workstation -

Organisational Background and User Implications" in: H.-J. Bullinger (ed.),
Human Aspects in Computing: Design and Use of Interactive Systems and
Information Management, 18B. Proceedings of the Fourth International
Conference of Human-Computer Interaction, Stuttgart, Germany. Elsevier,
(1991) pp. 1036 - 1040.

Höge, M.; Hohmann, A.; Mayer, R.: Evaluation of TWB - Operationalization and Test

Results. Final Report of the ESPRIT II Project 2315 Translator's Workbench
(TWB), Mercedes-Benz AG Stuttgart, 1992, unpublished.

Höge, M.; Hohmann, A.; van der Horst, K.; Evans, S.; Caeyers, H.: User Participation

in the TWB II Project - the First Test Cycle. Report of the ESPRIT II Project
6005 Translator's Workbench II (TWB II), Mercedes-Benz AG Stuttgart,
Paris, Luxembourg, 1993, unpublished.

Höge, M.; Hohmann, A.; Le-Hong, K.: "User-Centered Software Development and

Evaluation" in: Poster Sessions. Abridged Proceedings of the fifth
International Conference on Human-Computer Interaction, (HCI International
'93), Orlando, Florida, August 8 - 13, 1993, p166.

Höge, M.; Hohmann, A.; Le-Hong, K.: "Key Players." in: Kugler, M.; Ahmad, K.;

Thurmair, G.: (eds.): Translator's Workbench. Tools and Terminology for
Translation and Text Processing. Research Reports ESPRIT Project 2315
TWB Volume 1, Brussels-Luxembourg, 1995, pp. 4-5.

Höge, M.; Ahmad, K.; Davies, A.; Fulford, H.; Holmes-Higgin, P.; Rogers, M.: "User

Participation in Software Development." in: Kugler, M.; Ahmad, K.;
Thurmair, G. (eds.): Translator's Workbench. Tools and Terminology for

REFERENCES 275

Translation and Text Processing. Research Reports ESPRIT Project 2315
TWB Volume 1, Brussels-Luxembourg, 1995, pp. 8 - 15.

Höge, M.; Hohmann, A.; Le-Hong, K.: "Software Testing and User Reaction", in

Kugler, M.; Ahmad, K.; Thurmair, G. (eds.): Translator's Workbench. Tools
and Terminology for Translation and Text Processing. Research Reports
ESPRIT Project 2315 TWB Volume 1, Brussels-Luxembourg, 1995, pp. 168 -
173.

Höge, M.:"A Framework for the Qualitative and Quantitative Evaluation of

Translator's Aids Systems", in: Jacquemin, C.; Mariani, J.; Paroubek, P.
(eds.): Proceedings of the LREC2000 satellite workshop, Using Evaluation
whitin HLT Programs: Results and Trends, Athens, Greece, May 30th 2000,
pp. 21-27.

Hogarth, R.M.: Judgement and Choice: The Psychology of Decision. Suffolk, 19853.

Hohnhold, I.: "Übersetzungsorientierte Terminologiearbeit" in: Lebende Sprachen 28

(1) pp. 2 - 8; (3) pp. 102 - 104; (4) pp. 145 - 148, 1983

Hohnhold, I.: Übersetzungsorientierte Terminologiearbeit. Eine Grundlegung für

Praktiker. Stuttgart, 1990.

Hohmann, A.; Le-Hong, K.: Software Training for TWB - Theoretical Aspects in the

Development of a Training Methodology. Report of the ESPRIT II Project
6005 Translator's Workbench II (TWB II). Stuttgart, 1993, unpublished.

Hohmann, A.; Le-Hong, K.: Software Training for TWB - Development of a Training

Methodology and First Practical Results. Report of the ESPRIT II Project
6005 Translator's Workbench II (TWB II). Stuttgart, 1994, unpublished.

Hohmann, A.; Le-Hong, K.; van der Horst, K.: User Participation in the TWB II

Project - the Second Test Cycle. Report of the ESPRIT II Project 6005
Translator's Workbench II (TWB II). Stuttgart, Luxembourg, 1994,
unpublished.

Hölscher, A.; Möhle, D.: "Cognitive Plans in Translation." in: Färch, C.; Kasper, G.:

Introspection in Second Language Research. Clevedon, 1987.

REFERENCES 276

Hommel, G.; Krönig, D. (eds.): Requirements Engineering. Informatik-Fachberichte
74, Berlin-Heidelberg-New York, 1983.

Hönig, H.G.; Kußmaul, P.: Strategie der Übersetzung. Ein Lehr und Arbeitsbuch.

Tübingen, 1982.

Hönig, H.G.: "Holmes' "Mapping Theory" and the Landscape of Mental Translation

Processes" in: Van Leuven-Zwart, K.M.; Naaijkens, T. (eds.): Translation
Studies: The State of the Art. Proceedings of the First James S Holmes
Symposium on Translation Studies. Amsterdam, Atlanta, 1991, pp. 77 - 89.

Howden. W.E.: "Empirical Studies of Software Validation" in: Miller, E. and Howden,

W.E.: Software Testing and Validation Techniques, IEEE, 1978.

Howden, W.E.: "Functional Program Testing" in: IEEE Transactions on Software

Engineering SE-6, 1980, pp. 162 - 169.

Hughes, J.; O'Brien, J.; Rodden, T.; Rouncefield, M.; Sommerville, I.: Presenting

Ethnography in the Requirements Process" in: Second IEEE International
Symposium on Requirements Engineering, Los Alamitos, California, 1995,
pp. 27 - 34.

IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 729-

1983, New York, 1983.

IEEE Guide to Software Requirements Specifications. Std. 830-1984, New York,

1984.

IEEE Guide for Software Verification and Validation Plans. Std 1059-1993, New

York, 1993.

IEEE International Symposium on Requirements Engineering, Los Alamitos,

California, 1993.

Ip, W.K.; Damodaran, L.; Olphert, C.W.; Maguire, M.C.: "The Use of Task Allocation

Charts in System Design: a Critical Appraisal," in: Diaper, D.; Gilmore, D.;
Cockton, G.; Shackel, B. (eds.): Human Computer Interaction - INTERACT
'90, Elsevier, IFIP, 1990, pp. 289 - 294.

REFERENCES 277

Isabelle, P.; Bourbeau, L.:"TAUM-AVIATION: its Technical Features and Some
Experiemental Results" in: Slocum, J. (ed.): Machine Translation Systems.
Cambridge, 1988, pp. 237 - 264.

ISO 8402 (Standard): Quality - Vocabulary. International Organisation for

Standardization, 1986.

ISO 9000 (Standard): Quality Management and Quality Assurance Standards -

Guidelines for Selection and Use. International Organisation for
Standardization, 1987.

ISO 9000-3 (Standard): Quality Management and Quality Assurance Standards - Part

3: Guidelines for the Application of ISO 9001 to the Development, Supply and
Maintenance of Software. International Organisation for Standardization,
1991.

ISO 9001 (Standard): Quality Systems - Model for Quality Assurance in

Design/Development, Production, Installation and Servicing. International
Organisation for Standardization, 1988.

ISO 9004 (Standard): Quality Management and Quality System Elements - Guidelines.

International Organisation for Standardization, 1987.

ISO/IEC 9126 (Standard). Information Technology - Software Product Evaluation,

Quality Characteristics and Guidelines for their Use. International
Organisation for Standardization, 1991.

Jackson, M.: "Problems and Requirements" in: Second IEEE International Symposium

on Requirements Engineering, Los Alamitos, California, 1995, pp. 2 - 8.

Jackson, M. Zave, P.: "Domain Descriptions" in: IEEE Conference on Requirements

Engineering, Colorado Springs, 1993, pp. 56 - 64.

Jacobson, I.: Object-Oriented Software Engineering. A Use Case Driven Approach.

Reading, Mass, 1992.

Jacquemin, C.; Mariani, J.; Paroubek, P. (eds.): Proceedings of the LREC2000 satellite

workshop, Using Evaluation whitin HLT Programs: Results and Trends,
Athens, Greece, May 30th 2000

REFERENCES 278

JEIDA: A Japanese View of Machine Translation in the Light of the Considerations

and Recommendations Reported by ALPAC, USA. Japan Electronic Industry
Development Association, Tokyo, 1989.

Johnson, H.; Johnson, P.: "Designers-identified Requirements for Tools to Support

Task Analyses" in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 259 -
264.

Kade, O.: "Kommunikationswissenschaftliche Probleme der Translation" in: Wilss, W.

(ed.): Übersetzungswissenschaft. Darmstadt (1968), 1981, pp. 199 -218.

Kapp, V. (ed.): Übersetzer und Dolmetscher. Theoretische Grundlagen, Ausbildung

Berufspraxis. Heidelberg, 1974, pp. 174 - 185.

Kampf, M.: "Die Veränderungen der Konsumgewohnheiten und ihre Auswirkungen

auf die Nahrungsmittelindustrie" in: Probst, G. J. B.; Gomez, P. (eds.)
Vernetztes Denken. Ganzheitliches Führen in der Praxis. 19912, pp. 163 - 180.

Karat, C.M.: "Cost-Benefit Analysis of Iterative Usability Testing" in Diaper, D.;

Gilmore, D.; Cockton, G.; Shackel, B. (eds.): Human Computer Interaction -
INTERACT '90, Elsevier, IFIP, 1990, pp. 351 - 356.

Keeney, R.L.: Siting Energy Facilities. New York, 1980.

Keeney, R.; Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value

Tradeoffs. Cambridge, 19933

Kempen, Gerard; Vosse, Theo: "A Language-Sensitive Text Editor for Dutch" in: P.

Holt; N. Williams(eds.): Proceedings of the Computers & Writing III
Conference, Edinburgh, April, 1990.

King, M. (ed.): Machine Translation Today. Edinburgh Information Technology Series

2. Edinburgh, 1987.

King, M.; Falkedal, K.: "Using Test Suites in the Evaluation of Machine Translation

Systems" in : Proceedings of the 13th International Conference on
Computational Linguistics (COLING), Hesinki, 1990.

REFERENCES 279

Kiraly, D.C.: Toward a Systematic Approach to Translation Skills Instruction. PhD

Diss. Urbana, Illinois, 1990.

Kitchenham, B.:"Towards a Constructive Quality Model. Part I: Software Quality

Modelling, Measurement and Prediction." in Software Engineering Journal,
July, 1987, pp. 105 - 113.

Kohrt, M.; Küper, Ch.: Probleme der Übersetzungswissenschaft. Berlin, 1991.

Koller, W.: "Anmerkungen zu Definitionen des Übersetzungs"vorgangs" und zur

Übersetzungskritik (1974)" in: Wilss, W. (ed.): Übersetzungswissenschaft.
Darmstadt, 1981, pp. 263 - 274.

Komissarov, V.N.: "Linguistische Modelle (1972)" in: Wilss, W. (ed.):

Übersetzungswissenschaft. Darmstadt, 1981, pp. 171 - 185.

Krebs, H.: "Anforderungsspezifikation als Grundlage für Softwareanalyse und -test"

in: Meckelburg, H-J; Jansen, H. (eds.): Entwicklung und Prüfung
sicherheitsbezogener Systeme: Software- und Systemaspekte.
Berlin/Offenbach, 1990, pp. 45 - 59.

Krings, H.P.: Was in den Köpfen von Übersetzern vorgeht. Eine empirische

Untersuchung der Struktur des Übersetzungsprozesses anhand
fortgeschrittenen Französischlernern. Tübingen, 1986.

Kugler, M.; Höge, M.; Heyer, G.; Kese, R.; Kleist-Retzow, B.; Winkelmann, G.: "The

Translator's Workbench - an Environment for Multi-Lingual Text Processing
and Translation" in: ESPRIT '91 Proceedings of the Annual ESPRIT
Conference Brussels. Commission of the European Communities Directorate-
General Telecommunications, Information Industries and Innovation (ed.),
1991.

Kugler, M.; Ahmad, K.; Thurmair, G.: (eds.): Translator's Workbench. Tools and

Terminology for Translation and Text Processing. Research Reports ESPRIT
Project 2315 TWB Volume 1, Brussels-Luxembourg, 1995.

Kußmaul, P.: "Creativity in the Translation Process: Empirical Approaches" in: Van

Leuven-Zwart, K.M.; Naaijkens, T. (eds.): Translation Studies: The State of

REFERENCES 280

the Art. Proceedings of the First James S Holmes Symposium on Translation
Studies. Amsterdam, Atlanta, 1991, p.91 - 101.

Kuwana, E.; Herbsleb, J.D.: "Representing Knowledge in Requirements Engineering:

An Empirical Study of what Software Engineers Need to Know" in: IEEE
Conference on Requirements Engineering, Colorado Springs, 1993, pp. 273 -
276.

Lamsweerde, A. van; Darimont, R.; Massonet, P.: "Goal-Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt" in:
Second IEEE International Symposium on Requirements Engineering, Los
Alamitos, California, 1995, pp. 194 - 203.

Larson, M.L. (ed.): Translation: Theory and Practice, Tension and Interdependence.

Amsterdam, 1991.

Le-Hong, K.; Höge, M.; Hohmann, A.: "User's Point of View of the Translator's

Workbench" in: Translating and the Computer 14. Quality Standards and the
Implementation of Technology in Translation. ASLIB, 10-11 November 1992,
London, pp. 25 - 31.

Lehnert, W.; Sundheim, B.: "A Performance Evaluation of Text-Analysis

Technologies" in: AI Magazine Vol. 13, No. 3, 1991, pp. 81 - 94.

Lehrberger, J.: Bourbeau, L.: Linguistic Characteristics of MT Systems and General

Methdology of Evaluation. Amsterdam, 1988.

Leimer, H.W.: "Vernetztes Denken im Schweizerischen Bankverein" in: Probst, G. J.

B.; Gomez, P. (eds.) Vernetztes Denken. Ganzheitliches Führen in der Praxis.
19912, pp. 41 - 65.

Leite, J.C.S.P.; de Pádua Albuquerque Oliveira, A.: "A Client Oriented Requirements

Baseline" in: Second IEEE International Symposium on Requirements
Engineering, Los Alamitos, California, 1995, pp. 108 - 115.

Levin, H.M.: "Cost-Effectiveness Analysis in Evaluation Research" in: Guttentag. M.;

Struening, E. L. (eds.): Handbook of Evaluation Research. Vol. 2. Beverly
Hills, London, 1975, p. 89 - 122.

REFERENCES 281

Lewis, J.R.; Henry. S.C.; Mack, R.L.: "Integrated Office Software Benchmarks: A
Case Study" in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 337 -
343.

Lörscher, W.: Translation Performance, Translation Process and Translation

Strategies. A Psycholinguistic Investigation. Tübingen, 1991.

LRE/EAGLES - Abstracts from the Technical Annex, Brussels, 1993.

Lubars, M.; Potts, C.; Richter, C.: "A Review of the state of the Practice in

Requirements Modelling" in: IEEE Conference on Requirements Engineering,
Colorado Springs, 1993, pp. 2 - 14.

Macfarlane, I.A.; Reilly, I.: "Requirements Traceability in an Integrated Development

Environment" in: Second IEEE International Symposium on Requirements
Engineering, Los Alamitos, California, 1995, pp. 116 - 123.

Mayer, R.: Ein Rechnerunterstütztes System für die technische Dokumentation und

Übersetzung. Berlin, Heidelberg, 1993.

MCCall, J.A.; Richards, P.K.; Walters, G.F.: "Concepts and Definitions of Software

Quality Factors" in: Software Quality Vol. 1 Springfield, 1977.

Meckelburg, H-J; Jansen, H. (eds.): Entwicklung und Prüfung sicherheitsbezogener

Systeme: Software- und Systemaspekte. Berlin/Offenbach, 1990.

Meister, P.: Vernetztes Denken bei der Markteinführung neuer Produkte Dargestellt

am Beispiel der Hilti AG" in: Probst, G. J. B.; Gomez, P. (eds.) Vernetztes
Denken. Ganzheitliches Führen in der Praxis. 19912, pp. 145 - 161.

Melby, A.; Warner, T.: The Possibility of Language. A Discussion of the Nature of

Language, with Implications for Human and Machine Translation.
Amsterdam, 1995.

Meyer, R.: Entscheidungstheorie: ein Lehr und Arbeitsbuch. Wiesbaden, 1999.

REFERENCES 282

Miller, E.F.: "Quality Managment Technology: Practical Applications" in: Hausen,
H.L. (ed.): Software Validation. Proc. Symp. Software Validation. North-
Holland, 1984, pp. 255 - 266.

Miller, E; Howden, W.E (eds.): Intorial: Software Testing and Validation Techniques.

IEEE, 1981.

Minaev, Yu. N.; Reshetnyak, Yu. V.: "Constructing an Evaluation Scale in Software

Evaluation" in: Measurement Techniques, 30 (1987), 8, pp. 728-730.

MLAP '93 Call for Proposals. Commission of the European Communities, DG XIII,

Luxembourg, 1993.

MLAP '94 Call for Proposals. Commission of the European Communities, DG XIII,

EC OJC of 15 March, Luxembourg, 1993.

Moll, T.; Ulich, E.: "Einige methodische Fragen in der Ananlyse von Mensch-

Computer Interaktion" in: Zeitschrift für Arbeitswissenschaft, 42 (1988) 2, pp.
70-76.

Murine, G.E.; Carpenter, C.L.: "Applying Software Quality Metrics" in: Proceedings

from the ASQC Quality Congress, Transactions. Boston, 1983.

Murine, G.E.: "Using Software Quality Metrics as a Tool for Independent Verification

and Validation" in: Fifth Annual Int. Phoenix Conference on Computers and
Communication '86, Conference Proceedings, Scottsdale, USA, March 26-28,
1986 (1986), pp. 433-437.

Musa, J.D:; Iannino, A.; Okumoto, K.: Software Reliability. Measurement, Prediction,

Application. New York, 1987.

Myers, G.J.: The Art of Software Testing. New York, 1979.

Nnagji, B.O.: "Evaluation Methodology for Performance and System Ecomonics for

Robotic Devices" in: Computers and Industrial Engineering 14, (1988) 1, pp.
27-39.

Neal, A.S.; Simons, R.M.: "Playback: A Method for Evaluating the Usability of

Software and its Documentation" in: Proceedings of the Anniversary Meeting

REFERENCES 283

1985, User Friendly Computing, Zürich, ch, September 23-27, 1985, 2 (1985),
pp. 1051-1075.

Neubert, A.: "Pragmatische Aspekte der Übersetzung." in: Grundfragen der

Übersetzungswissenschaft, Beihefte zur Zeitschrift Fremdsprachen II, Leipzig,
1968, pp. 21 - 33.

Nida, E.A.: "Science of Translation" in: Language 45, 1969, 483 - 498.

Nida, E.A.; Taber, Ch. R.: The Theory and Practice of Translation. Leiden, 1969,

reprinted 1982.

Nord, Ch.: Text Analysis in Translation. Theory, Methodology, and Didactic

Application of a Model for Translation-Oriented Text Analysis. Amsterdam,
Atlanta, 1991.

Nunnally, J.C.: "The Study of Change in Evaluation Research: Principles Concerning

Measurement, Experimental Design, and Analysis" in: Struening, E.L.;
Guttentag, M. (eds.): Handbook of Evaluation Research. Vol. 1. Beverly Hills,
London, 1975, p. 101 - 137.

Nunnally, J.C.; Durham, R.L.: "Validity, Reliability, and Special Problems of

Measurement in Evaluation Research" in: Struening, E.L.; Guttentag, M.
(eds.): Handbook of Evaluation Research. Vol. 1. Beverly Hills, London,
1975, p. 289 - 352.

Nunnally, J.C.; Wilson, W.: "Method and Theory for Developing Measures in

Evaluation Research" in: Struening, E.L.; Guttentag, M. (eds.): Handbook of
Evaluation Research. Vol. 1. Beverly Hills, London, 1975, p. 227 - 288.

Oppermann, R. ; Murcher, B.; Pateau, M.; Pieper, M.; Simm, H.; Stellmacher, J.:

Evaluation von Dialogsystemen. Der software-ergonomische Leitfaden
EVADIS. Berlin, 1988.

Osterweil, L.: "Integrating the Testing, Analysis and Debugging of Programs" in:

Hausen, H.L. (ed.): Software Validation. Proc. Symp. Software Validation.
North-Holland, 1984, pp. 73 - 93.

REFERENCES 284

Partsch, H.: Requirements Engineering. Handbuch der Informatik Bd. 5.5.
München/Wien/Oldenbourg, 1991.

Piaget, J.: La psychologie de l'intelligence. Paris, 1947.

Pofahl, E.: "Werkzeuge für die Prüfung einer Software" in: Meckelburg, H-J; Jansen,

H. (eds.): Entwicklung und Prüfung sicherheitsbezogener Systeme: Software-
und Systemaspekte. Berlin/Offenbach, 1990, pp. 107 - 138.

Potts, C.: "Invented Requirements and Imagined Customers: Requirements

Engineering for Off-the-Shelf Software" in: Second IEEE International
Symposium on Requirements Engineering, Los Alamitos, California, 1995,
pp. 128 - 130.

Pöyhönen, M; Hämäläinen, R.P.: On the Convergence of Multiattributre Weighting

Methods. Helsinki University of Technology Systems Analysis Laboratory.
Research Reports, A66, April 1997.

Probst, G. J. B.; Gomez, P. (eds.) Vernetztes Denken. Ganzheitliches Führen in der

Praxis. 19912.

Probst, G. J. B.; Gomez, P.: "Die Methodik des vernetzten Denkens zur Lösung

komplexer Probleme" in: Probst, G. J. B.; Gomez, P. (eds.) Vernetztes
Denken. Ganzheitliches Führen in der Praxis. 19912, pp. 5 -20.

Rapoport, A. (ed.): Desicion Theory and Decision Behaviour. Basingstoke, 1998

Regnell, B.; Kimbler, K.; Wesslén, A.: "Improving the Use Case Driven Approach to

Requirements Engineering" in: Second IEEE International Symposium on
Requirements Engineering, Los Alamitos, California, 1995, pp. 40 - 47.

Reinke, U.: "Zur Leistungsfähigkeit integrierter Übersetzungsswysteme" In: Lebende

Sprachen 3/94. Bonn, 1994.

Reiß, K.: "Übersetzungstheorien und ihre Relevanz für die Praxis" in: Lebende

Sprachen 31 (1), 1986, pp. 1 - 5.

Reiß, K; Vermeer, H.J.: Grundlegung einer allgemeinen Translationstheorie.

Tübingen, 1991.

REFERENCES 285

Rosenthal, M.: "Careful Software Evaluation Increases End User Acceptance" in: Data

Management 23 (1985) 9, pp. 33-32.

Rothenberg, J.: "Cost-Benefit Analysis: A Methodological Exposition" in: Guttentag.

M.; Struening, E. L. (eds.): Handbook of Evaluation Research. Vol. 2. Beverly
Hills, London, 1975, p. 55 - 88.

Rushinek, A.; Rushinek, S.: "Accounting and Auditing Software Evaluation with

Knowledge Based Expert Systems: An Empirical Multivariate Model" in:
Fourth Annual International Conference on Computers and Communications
'85, Conference Proceedings, Scottsdale, USA, March, 20-22, 1985, (1985),
pp. 250-254.

Ryan, K.: "The Role of Natural Language in Requirements Engineering" in: IEEE

Conference on Requirements Engineering, Colorado Springs, 1993, pp. 240 -
242.

Ryan, K.: "Let's Have More Experimentation in Requirements Engineering" in:

Second IEEE International Symposium on Requirements Engineering, Los
Alamitos, California, 1995, pp. 66.

Sager, J.C.: Language Engineering and Translation: Consequences of Automation.

Amsterdam, 1994.

Sager, J.C.: A Practical Course in Terminology Processing. Amsterdam, 1990.

Schick, F.: Making Choices: A Recasting of Decision Theory. Cambridge, 1997.

Schmidt, M.: "Metriken und ihre Diskussion im Zusammenhang mit Software

Qualität" in: GI Softwaretechniken-Trends Heft 3.3 (1983) pp. 20-27.

Schmied, W-S.; Winkler, H.: Software-Qualität. Ausgewählte Methoden und

Werkzeuge der Softwareprüfung. Siemens-Schriftenreihe data praxis,
München, 1989.

Schüller, T.: Integrierte Übersetzungssysteme. Saarbrücker Studien zu

Sprachverarbeitung und Übersetzen, Freigang/Reinke (eds.), Band 1,
Saarbrücken, 1995.

REFERENCES 286

Second IEEE International Symposium on Requirements Engineering, Los Alamitos,

California, 1995.

Sewell, D.R.: "A Plan & Goal based Method for Computer-Human System Design" in:

Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.): Human Computer
Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 283 - 288.

Sharratt, B.: "Memory-Cognition-Action Tables: a Pragmatic Approach to Analytical

Modelling" in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990.

Slocum, J. et al.: An Evaluation of METAL: the LRC Machine Translation System. In:

Proceedings of the Second Conference of the European Chapter of the
Association for Computational Linguistics, Geneva, 1985, pp, 62-69.

Slocum, J. (ed.): Machine Translation Systems. Studies in Natural Language

Processing II Series, Cambridge, 1988.

Sneed, H.: "Software-Testen - State of the Art" in: Software Entwicklungs-Systeme

und Werkzeuge, 2 Kolloquium, Esslingen, 8-10. September 1987, (1987), pp.
10.3-1-10.3-6.

Somers, H. (ed.): Terminology, LSP and Translation. Studies in Language

Engineering. InHonor of Juan C. Sager. Amsterdam, 1996.

Sommerville, I.: Software Engineering. Reading, Mass. 19965.

Spies, C.: Vergleichende Untersuchung von Integrierten Übersetzungssystemen mit

Translation-Memory-Komponente. Saarbrücker Studien zu
Sprachverarbeitung und Übersetzen, Freigang/Reinke (eds.), Band 3,
Saarbrücken, 1995.

Stein, D.: Theoretische Grundlagen der Übersetzungswissenschaft. Tübingen, 1980.

Sternberg, R.J.: "Toward a Triarchic Theory of Human Intelligence" in: The

Behavioural and Brain Sciences 7, pp. 269 - 315.

REFERENCES 287

Struening, E.L.; Guttentag, M. (eds.): Handbook of Evaluation Research. Vol. 1.
Beverly Hills, London, 1975.

Struening, E.L.; Guttentag, M.: "The Handbook: Its Prupose and Organisation" in:

Struening, E.L.; Guttentag, M. (eds.): Handbook of Evaluation Research. Vol.
1. Beverly Hills, London, 1975, p. 3 - 9.

Sullivan, J.L.; Niemi, R.G.(eds.): Sage University Series on Quantitative Applications

in the Social Sciences. Beverly Hills and London, 1982.

Sundermeier, B.; Versteeg. P.: "Software-Prüfanleitung für Projektleiter. Wie man bei

Minimierung der Projektkosten qualitativ hochwertige Software produziert"
in: Meckelburg, H-J; Jansen, H. (eds.): Entwicklung und Prüfung
sicherheitsbezogener Systeme: Software- und Systemaspekte.
Berlin/Offenbach, 1990, pp. 91 - 105.

Teichroew, D.; Hershey, E.A.: "PSL/PSA: A Computer Aided Technique for

Structured Documentation and Analysis of Information Processing Systems"
in: IEEE Transactions on Software Engineering vol. SE-3 (1), 1977, pp. 41 -
48.

Telematics Programme - Mid Term Review. Comission of the European Communities,

July, 1993

Thaller, G.E.: Qualitätsoptimierung der Software-Entwicklung. Das Capability

Maturity Model (CMM). Braunschweig/Wiesbaden, 1993.

Thaller, G.E.: Verifikation und Validation. Software Tests für Studenten und

Praktiker. Wiesbaden, 1994.

Thiel, G.: "Ansätze zu einer Methodologie der übersetzungsrelevanten Textanalyse"

in: Kapp, V. (ed.): Übersetzer und Dolmetscher. Theoretische Grundlagen,
Ausbildung Berufspraxis. Heidelberg, 1974, pp. 174 - 185.

Thompson, H.: The Strategic Role of Evaluation in Natural Language Processing and

Speech Technology, Record of the ESPRIT/DANDI/ELSNET/ HCRC
Workshop, Edinburgh, 1992. Human Communication Research Centre,
University of Edinburgh, 1992.

REFERENCES 288

Toury, G.: Descriptive Translation Studies - and beyond. Amsterdam, 1995.

Twain, D.: "Developing and Implementing a Research Strategy" in: Struening, E.L.;

Guttentag, M. (eds.): Handbook of Evaluation Research. Vol. 1. Beverly Hills,
London, 1975, p. 27 - 52.

Van Leuven-Zwart, K.M.; Naaijkens, T. (eds.): Translation Studies: The State of the

Art. Proceedings of the First James S Holmes Symposium on Translation
Studies. Amsterdam, Atlanta, 1991.

Vainio-Larsson, A.; Orring, R.: "Evaluating the Usability of User Interfaces: Research

in Practice" in: Diaper, D.; Gilmore, D.; Cockton, G.; Shackel, B. (eds.):
Human Computer Interaction - INTERACT '90, Elsevier, IFIP, 1990, pp. 323 -
328.

Vasconcellos, M. (ed.) Technology as Translation Strategy. Amsterdam, 1988.

Vernay, H.: "Elemente einer Übersetzungswissenschaft (1974)" in: Wilss, W. (ed.):

Übersetzungswissenschaft. Darmstadt, 1981, pp. 236 - 249.

Vetter, M.: Strategie der Anwendungssoftware Entwicklung. Methoden, Techniken,

Tools einer ganzheitlichen, objektorientierten Vorgehensweise. Stuttgart
19933.

Vick, C.R.; Ramamoorthy, C.V (eds.): Handbook of Software Engineering. New York,

1984.

Vogelin, C.F.: "Multiple Stage Translation" in: International Journal of American

Linguistics 20, pp. 271 - 280, 1954.

Weiss, C.H.: "Evaluation Reserach in the Political Context" in: Struening, E.L.;

Guttentag, M. (eds.): Handbook of Evaluation Research. Vol. 1. Beverly Hills,
London, 1975, p. 13 - 26.

Weiss, C.H.: "Interviewing in Evaluation Research" in: Struening, E.L.; Guttentag, M.

(eds.): Handbook of Evaluation Research. Vol. 1. Beverly Hills, London,
1975, p. 355 - 395.

REFERENCES 289

WHA: Word House Associates: Trados Translator's Workbench II versus IBM
Tranlsation Manager/2. Baambrugge 1993.

Wilson, M.: "Task Models for Knowledge Elicitation" in: Diaper, D. (ed.) Knowledge

Elicitation: Principles, Techniques, Applications, 1989, pp. 195 - 219.

Wilss, W.: Übersetzungswissenschaft. Probleme und Methoden. Stuttgart, 1977.

Wilss, W. (ed.): Übersetzungswissenschaft. Darmstadt, 1981.

Wilss, W.: The Science of Translation. Problems and Methods. Tübingen, 1982.

Wilss, W.: Kognition und Übersetzen. Zu Theorie und Praxis der menschlichen und

der maschinellen Übersetzung. Tübingen, 1988.

Wilss, W.: Übersetzungsfertigkeit: Annäherung an einen komplexen

übersetzungspraktischen Begriff. Tübingen, 1992.

Wilss, W.: Knowledge amd Skills in Translator Behaviour. Amsterdam 1996.

Winterfeldt, D. von; Edwards, W.: Decision Analysis and Behavioral Research.

Cambridge, 1986.

Woods, W.A.: "Progress in NLU - An Application to Lunar Geology"; in: AFIPS

Conference Proceedings 42, 1973, pp. 441 - 450.

Wright, S.E.; Wright, L.D. Jr.: Scientific and Technical Translation, Amsterdam, 1993.

XIII Magazine, May 1993 Issue No.10, Brussels, 1993.

Yeh; R.T.: "Requirements Analysis - a Management Perspective" in: Proceedings of

the COMPSAC '82, Chicago, 1982, pp. 410 - 416.

Yourdon, E.: Modern Structured Analysis. Englewood Cliffs, 1989.

Zave, P.: "Classification of Research Efforts in Requirements Engineering" in: Second

IEEE International Symposium on Requirements Engineering, Los Alamitos,
California, 1995, pp. 214 - 216.

REFERENCES 290

Zimmermann, T.P.: "Vernetztes Denken in einer Werbeagentur" in: Probst, G. J. B.;
Gomez, P. (eds.) Vernetztes Denken. Ganzheitliches Führen in der Praxis.
19912, pp. 81 - 106.

	ABSTRACT
	Preface
	Table of Contents
	List of Figures
	List of Abbreviations
	Introduction and Approach
	1.Translation and Evaluation – the Context
	2.What Translators Want -Featuring Users and Systems
	3.Structuring and Preparing for Evaluation
	4.User-oriented Testing for Evaluation
	5.Assessment in Software Evaluation
	Summary and Conclusion
	APPENDICES
	References

