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Abstract

This thesis addresses the problem of word sense disambiguation within the

context of Swahili-English machine translation. In this setup, the goal of disam-

biguation is to choose the correct translation of an ambiguous Swahili noun in con-

text. A corpus based approach to disambiguation is taken, where machine learning

techniques are applied to a corpus of Swahili, to acquire disambiguation informa-

tion automatically. In particular, the Self-Organizing Map algorithm is used to ob-

tain a semantic categorization of Swahili nouns from data. The resulting classes

form the basis of a class-based solution, where disambiguation is recast as a classi-

fication problem. The thesis exploits these semantic classes to automatically obtain

annotated training data, addressing a key problem facing supervised word sense

disambiguation. The semantic and linguistic characteristics of these classes are

modelled as Bayesian belief networks, using the Bayesian Modelling Toolbox. Dis-

ambiguation is achieved via probabilistic inferencing. The thesis develops a disam-

biguation solution which does not make extensive resource requirements, but rather

capitalizes on freely-available lexical and computational resources for English as a

source of additional disambiguation information. A semantic tagger for Swahili is

created by altering the configuration of the Bayesian classifiers. The disambigua-

tion solution is tested on a subset of unambiguous nouns and a manually created

gold standard of sixteen ambiguous nouns, using standard performance evaluation

metrics.
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Chapter 1
Introduction

The information age has been characterized by the development and convergence of

computing, telecommunications and multilingual information systems. This has resulted

in the availability of enormous volumes of information in electronic media, but whose nat-

ural language form, unlike the data presentation formats typical of computer systems in

the past, is more suited for human users than computer systems. This has prompted the

development of technologies that would solve this problem and support faster and more ef-

ficient access to this information. Natural Language Processing (NLP) provides tools and

techniques that facilitate the implementation of natural language-based interfaces to com-

puter systems, enabling communication in natural languages between man and machine.

These techniques also enable people to organize, extract and use the knowledge contained

in these huge collections of natural language electronic data. Examples of Language Tech-

nology (LT) applications include Machine Translation (MT), Information Extraction (IE),

Information Retrieval (IR), document classification and summarization, speech recognition

and synthesis, to name a few.

However, a pervasive problem afflicting most LT applications is that of ambiguity.

Many words have more than one meaning, depending on the context of use. The process

by which the most appropriate meaning of an occurrence of an ambiguous word is deter-

mined is known as Word Sense Disambiguation (WSD), and remains an open problem in

NLP. For humans, resolving ambiguity is a routine task that hardly requires conscious ef-

fort. In addition to having a deep understanding of language and its use, humans possess a

broad and conscious understanding of the real world, and this equips them with the knowl-

edge that is relevant to make sense disambiguation decisions effortlessly, in most cases.

However, creating extensive knowledge-bases which can be used by computers to ‘under-

stand’ the world and reason about word meanings accordingly, is still an unaccomplished

goal of Artificial Intelligence (AI). Consequently, approaches to automatic WSD mainly

focus on knowledge-lean methods.

1
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With the availability of huge computer-readable text corpora and the corresponding

development of statistical techniques for data mining, corpus-based methods have taken

centre stage in the development of WSD solutions. These methods have been employed

in the learning of probabilistic models for WSD from large collections of natural language

texts. Probabilistic models for sense classification consist of feature variables, the class

variable and a probability distribution that models the interactions amongst all the variables.

The context of an ambiguous word is defined very simply and usually consists of linguistic

information that can be easily extracted from the neighbourhood of the ambiguous word.

This information is captured in the model via the feature variables. The class variable on

the other hand represents the various senses of a word or the semantic tags associated with

it. The probability distribution is learned (estimated) from sense-tagged data, and is used

to predict the most probable class (sense) for a given input.

This dissertation presents a novel, hybrid approach to learning probabilistic classi-

fiers for WSD by combining an unsupervised learning technique, the Self Organizing Map

(SOM) algorithm with Bayesian Learning (BL), a supervised learning technique. The SOM

is used as an exploratory tool to automatically obtain a semantic landscape of Swahili1.

This reveals the type of semantic classes (categories) that are deducible directly from data,

and which would be used as a basis for a class-based disambiguation approach. The map

also provides information regarding the most important linguistic cues necessary for se-

mantic discrimination. The information obtained from the unsupervised learning step is

incorporated into the design of Bayesian classifiers, where a classifier is constructed for

each of the higher-level semantic categories. Disambiguation then reduces to a classifica-

tion problem where semantic class membership is determined for a particular occurrence

of the ambiguous word. The intended meaning is selected by choosing the English reading

with a semantic class equivalence as the ambiguous word. WordNet tags are used to deter-

mine the semantic properties of the English words. This approach allows for WSD within

a bilingual framework, without the need for parallel corpora, as is required by most other

existing approaches.

1 I refer to the Swahili language without its language-specific prefix ki-, following the widely accepted
practice in Bantu linguistics.
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The requirement of huge semantically-tagged training data has been described as a

serious bottleneck facing the use of supervised learning methods for WSD. The method-

ology used in this dissertation alleviates the need for manually sense-tagged data by ex-

ploiting semantic similarity via distributional clustering to obtain annotated data from raw

corpora. This is an important contribution especially for those languages that are deficient

in computer-readable linguistic resources such as parallel corpora or semantic hierarchies

such as the English WordNet. The method shows how resource-deficient languages can

capitalize on resources available for other languages to facilitate development of their own

resources and implement LT applications.

In total, Swahili Two-Level Parser (SWATWOL), a morphological parser for Swahili

is used to pre-process and analyse Swahili texts obtained from the Helsinki corpus of

Swahili. The resulting analyses are used in the creation of training data, based on carefully

selected contextual features. The SOM algorithm is used to derive a semantic landscape

of Swahili by clustering a set of unambiguous nouns occurring in the corpus. The result-

ing map is used to discover important semantic classes for Swahili and their corresponding

discrimination cues. These are incorporated into the design of Bayesian word sense disam-

biguators. The Bayesian Modelling Toolbox (BMT) is used to learn the Bayesian classifiers

from training data. The sense definitions for ambiguous words are obtained from the TUKI2

Swahili-English dictionary, while WordNet, a computational lexicon for English provides

the semantic link between ambiguous Swahili words and their English translations. The

classifiers are tested on disambiguation and tagging tasks using different test sets compris-

ing both ambiguous and unambiguous nouns. Standard evaluation measures are used for

performance assessment.

2 Taasisi ya Uchunguzi ya Kiswahili - Institute of Kiswahili Research, University of Dar es Salaam, Tanza-
nia
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1.1 Motivation and Research Objectives

The work undertaken in this study is done within the context of the Swahili Project which

is headed by Professor Arvi Hurskainen of the University of Helsinki. Work on the de-

velopment of computational tools for Swahili analysis started in 1985 with the design of

a rudimentary morphological parsing program which has now evolved into a comprehen-

sive language management system for Swahili. Development of a Swahili-English-Swahili

MT system is one of the aims of the project, and this requires development of computa-

tional tools for comprehensive linguistic analysis of Swahili, from lexical and morphologi-

cal analysis to syntax and semantic analysis. Work on the first phases of linguistic analysis

has been successfully completed with the development of a morphological analyser and

disambiguator. At the beginning of this study, the focus of research and development work

was on syntax and semantic analysis, as the remaining linguistic analysis stages. The un-

dertaken work focusses on semantic analysis and disambiguation for the MT system. In

this context therefore, the main objectives of this study are to:

1. Perform a systematic analysis on the nature and extent of semantic ambiguity in

Swahili with respect to English.

2. Develop a method for automatic WSD, also known as Target Word Selection (TWS)

in the context of MT.

1.2 Swahili

Swahili is widely spoken in East Africa, where it serves as a lingua franca. It has approxi-

mately 80 million speakers spread across several countries such as Tanzania and Kenya,

where it has an official status, Uganda where it is a national language, and in regions

that border these countries in Malawi, Mozambique, the Democratic Republic of Congo,

Rwanda, Ethiopia and Somalia.
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Swahili is used in all spheres of daily life. In public life, it is used in political dis-

course, civil service, courts and the Tanzanian parliament. It is an important commercial

language where it is widely used in marketing, business transactions and banking. It has a

long tradition in music and the creative arts, resulting in a rich heritage in this area. The

Swahili language has achieved the status of a language of scientific writing for its own aca-

demic community, as witnessed by the growing body of specialized publications in areas

such as linguistics, literature and the social sciences. On the educational front, Swahili is

taught at the primary and secondary school level and is also the medium of instruction in

Tanzanian primary schools (Mulokozi 2002). It is also taught at the university level within

Eastern Africa, and in several universities in other parts of Africa and across the globe. The

growth and use of Swahili has been accelerated by its use in the media - numerous news-

papers, radio and television broadcasts are produced in the language. The importance of

Swahili as an African language designated for international communication on the African

continent and beyond is evidenced by the numerous Swahili international broadcasts avail-

able such as the British Broadcasting Corporation, Voice of America, Deutsche Welle and

Radio Japan, numerous on-line newspapers and most importantly, by its formal accredita-

tion as a working language in Pan-African institutional settings such as the African Union.

Swahili is a Bantu language belonging to the Niger-Congo family. It is a highly in-

flecting language where both prefixed and suffixed morphemes play an important grammat-

ical role. The functions of prefixes are particularly important in both nominal and verbal

morphology. In the case of nouns, as is typical with Bantu languages, each noun belongs

to a noun class which is signaled by a pair of prefixes attached to the nominal stem, de-

noting singular and plural forms. Verbs have an agglutinating structure where a system of

affixes is used to mark various grammatical relations, such as subject, object, tense, as-

pect, and mood. There is a system of concordial agreement in which nouns must agree

with the main verb of the sentence in class and number. Adjectives, possessive pronouns

and demonstratives also agree in class and number with the noun they modify. Swahili has

a fairly fixed word order (SVO) at the sentence level, where the subject precedes the verb

and the object, while within constituent phrases, modifiers succeed the head. Therefore
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adjectives, pronouns, determiners etc., follow the nouns they modify while adverbs come

after the verb. For Swahili therefore, the complex morphological structure is a rich source

of important syntactic and functional information, while grammatical relations can be dif-

ferentiated through word ordering and indexing, providing useful cues for determining the

semantic properties of words. The solution developed in this study exploits this linguistic

information as detailed in chapter 3.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows:

Chapter 2 gives a basic introduction to WSD, which is the central concept in this

study. In addition, a review of the main approaches to WSD that have been undertaken

since the early 1950’s to date, is presented. A brief discussion on systems that use cross-

linguistic sense definitions as well as class-based WSD approaches is included, as these are

comparable to this study. Also included is a brief discussion on the main Machine Learning

(ML) methods for WSD.

In Chapter 3, the methodology employed in the development of the WSD solution

is presented. The discussion covers a brief review of the resources, both linguistic and

computational, that are required for solution development. The chapter is organized around

three main themes:

i) A semantic exploratory phase using the SOM algorithm that reveals the important

semantic distinctions (classes) for Swahili WSD that are directly inducible using overtly-

marked linguistic features derived from textual data.

ii) An analysis of lexical ambiguity inherent between Swahili and English to identify

the distinctions important for WSD, based on the classes identified in i).

iii) Design and training of Bayesian classifiers for WSD based on information obtained

in i) and ii).
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The performance of the WSD classifiers is evaluated in Chapter 4. Here, the perfor-

mance metrics used in the evaluation are described, and the results presented. The learned

classifiers are evaluated on disambiguation and tagging tasks using varying test sets to mea-

sure their performance. An analysis of the obtained results as well as the factors affecting

disambiguation performance is presented.

Chapter 5 concludes the study by discussing the significance of the obtained results

and recapitulates on the contributions and achievements made in the study. A discussion

on the limitations of the work plus proposals for further work are presented.





Chapter 2
Related Work

The purpose of this chapter is to provide a brief review of the field of WSD. This is

achieved by describing the major approaches to WSD that have been employed during the

evolution of WSD research, from its inception in the 1950’s to the current SENSEVAL3 era

(Kilgarriff 1998). A review of systems that define the WSD problem cross-lingually as well

as those that employ a class-based strategy for WSD is also given, as these are particularly

related to the approach employed in this dissertation. Where applicable, a brief discussion

of ML techniques for WSD is included.

A comprehensive coverage of existing approaches is deemed important as it facili-

tates an understanding of the central problems in WSD research, and also provides a basis

for comparing the solutions to these core problems, as implemented in this study. There-

fore, in describing the main WSD approaches, particular attention is paid to the type of

disambiguation information used, the required resources, system coverage and scalabil-

ity, and to the granularity and representation of word senses, employed by each of these

approaches.

The first section of this chapter, 2.1, gives a general introduction4 to the WSD prob-

lem. Section 2.2 presents a timeline in WSD research, discussing the individual approaches

whilst noting the factors that contributed to the progression from one WSD era to the next.

Sections 2.3 and 2.4 review selected cross-lingual and class-based systems respectively.

3 SENSEVAL is a series of workshops and competitions whose aim is to provide an evaluation framework
for WSD systems. The strengths and weaknesses of various systems are evaluated on comparable tasks with
respect to different words and varieties of languages.
4 This section gives a very basic introduction to WSD with the sole objective of making this work accessible
to a wider readership, in particular to researchers and linguists working with African languages, since the
general field of LT and NLP in African languages is still largely in its infancy.

9
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2.1 Word Sense Disambiguation

One of the first problems encountered by any NLP system is that of ambiguity. Ambi-

guity expresses itself at different levels. It could be at the part-of speech level where a

lexical item can take one of several grammatical roles in a sentence. For example, the

Swahili word ‘kaa’ can be used as a verb to mean dwell or sit or as a noun to mean a crab,

charcoal or ember. Another type of ambiguity common to NLP is that of prepositional at-

tachment, where a prepositional phrase can attach to one of several constituents, yielding

different parses for a sentence, and consequently, several possible meanings. For example,

the Swahili sentence “mgonjwa alikunywa uji na maziwa” can mean “the patient drank

porridge and milk” or “the patient drank porridge with milk”, due to the ambiguity of the

preposition ‘na’ and, by, with, also etc..

Highly accurate part-of-speech taggers and syntactic parsers have been developed

for most languages, successfully addressing these type of ambiguities. The most pervasive

ambiguity facing NLP today remains that of lexical ambiguity, where a word can have two

or more associated meanings, depending on the context of use. The Swahili word ‘kaa’

is a good example of this, where the verb reading is ambiguous between dwell, sit and

stay, while the noun reading is ambiguous between charcoal, crab and ember. To resolve

this type of ambiguity, knowledge of the different meanings that can be associated with

an ambiguous word as well as the typical contexts in which they occur is vital. WSD is

the process by which contextual information is employed to resolve lexical ambiguity and

determine the intended meaning (sense) of an ambiguous word.

The history of WSD research is as old as that of MT. As early as 1960, Bar-Hillel, a

prominent figure in early work in MT noted both the importance of WSD to MT, as well

as its difficulty. His sceptic view on the ability of a machine to perform disambiguation of

word senses was clearly evident when he famously proclaimed that “sense ambiguity could

not be resolved by electronic computer either current or imaginable”. He used the following

example 2.1, containing the polysemous word pen, as evidence, arguing that even if pen

were given only two senses, “writing implement” and “enclosure”, the computer would
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have no way of deciding between them (Bar-Hillel 1960) in (Ide & Véronis 1998).

Little John was looking for his toy box. (2.1)

Finally he found it.

The box was in the pen.

John was very happy.

One of the main reasons why WSD is so difficult is that meaning is generally vague

in nature, and this makes it very difficult to define what the senses of a word actually are

(Kilgarriff 1997). What constitutes a sense in natural language is the subject of serious

debate, both in the fields of lexical semantics as well as computational linguistics. Many

researchers have tried to ascertain the meanings of words by observing several examples

of the contexts in which a word occurs, based on the hypothesis that a particular sense will

typically occur in certain well-defined contexts. The problem with this approach is that a

word can be used in very many different contexts, with some contexts representing only

slightly varying meanings of the word, such that it becomes hard to characterise which are

unique senses and which are not. This was clearly observed by Kelly and Stone (1975)

when they stated that “the set of contexts in which a word appears with varying shades

of meaning is not simply large, but indefinitely large...”. For purposes of WSD, most re-

searchers resort to using pre-defined sets of meanings as listed in standard dictionaries,

rather than delving into analysing theories of defining meaning and senses. Most work on

disambiguation has focussed on monolingual definitions of meaning following the work

of lexical semanticists such as Cruse (1986), Levin (1993) and Pustejovsky (1995), who

seek to quantify meaning dimensions within a single language. An alternative approach

has been to use cross-linguistic correspondences for characterizing word meanings in lan-

guage, where quantification of a word into senses depends on whether each sense can be

uniquely translated in another language or set of languages. Examples of work follow-

ing this line of cross-linguistic meaning quantification include Resnik & Yarowsky (1999),

Ide (2000) and Gonzalo et al. (2002). The work presented in this dissertation focuses on
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WSD within a MT context. As such, senses of words are expressed cross-lingually and the

definition of these senses is obtained from the TUKI Swahili-English dictionary.

The other main reason that makes WSD such a difficult problem has to do with the

different types of knowledge or information sources required for disambiguation. On closer

analysis of the example given by Bar-Hillel in example 2.1, it is clear to see that this is a

situation where selectional restrictions fail to disambiguate the word pen, since both senses

indicate physical objects in which things may be placed, as indicated by the preposition in

which applies to both of them. In this case, disambiguation is only possible if real world-

knowledge regarding the relative sizes and uses of pen in the different senses is available.

Also required are inferencing mechanisms that would make use of this knowledge and in-

fer the intended sense of pen in the given example. Humans, in addition to making use of

world knowledge for disambiguation, also use discourse or pragmatic information, where

knowing the speaker’s or writer’s intentions can help one to resolve ambiguity. Unfor-

tunately, formalizing all this information and rendering it in a form that is readily-usable

by a computer has still not been accomplished. It is this ultimate dependence on world

knowledge that has led WSD to be classified as an AI-complete5 problem.

However, despite the seemingly insurmountable challenges facing WSD, success has

been reported by various researchers, employing a broad range of disambiguation meth-

ods. There are those who concentrate on building knowledge-bases to capture real world

knowledge and provide inferencing mechanisms that enable the computer to reason about

the world, and thereby perform sense disambiguation. The major drawback associated with

these approaches is the expense associated with manually creating knowledge bases. Con-

sequently, the knowledge bases are small and the resulting disambiguation systems can

only handle a handful of words from a simplified domain. On the other end of the spectrum

are those researchers who choose to describe natural language using statistical methods,

rather than try to explain it, as their knowledge-based counterparts do. Recent work in

WSD has focussed on statistical methods and this has been influenced largely by the avail-

ability of huge electronic corpora as well as corresponding development of statistical tech-

5 An AI-complete problem is one whose solution requires a solution to the general AI problems of reasoning
about world knowledge.
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niques for textual data mining. These techniques have been applied successfully to other

tasks in NLP such as part-of-speech tagging and syntactic parsing, leading researchers to

believe that they could also be successfully applied to the task of WSD. While statistical

techniques have received criticism due to their lack of deep linguistic processing or under-

standing of natural language, they still offer various advantages that outweigh those offered

by their more traditional knowledge-based counterparts. In addition to formally character-

izing the uncertainty associated with word meanings, these methods also provide automatic

or semi-automatic means of linguistic knowledge acquisition via data mining, and as a re-

sult, benefit from the concrete insights gained from a data-driven exploration of natural

language (Lagus & Airola 2001, Bruce 1995).

Despite its associated difficulty, WSD is central to the success of most other LT appli-

cations. It has been identified as an important intermediate task that could significantly im-

prove results of applications such as MT, IR, document classification, speech recognition,

part-of-speech tagging, morphological and syntactic parsing. For MT, WSD is important

when it comes to selecting the appropriate target language word for an ambiguous source

language word. For example, to translate the Swahili noun ‘kaa’ into one of its English

equivalents: crab, charcoal or ember, a disambiguation algorithm that uses contextual ev-

idence derived from the Swahili sentence would be necessary to determine which of these

three senses is intended, and consequently make a translation decision. For IR, sense dis-

ambiguation would prevent the retrieval of irrelevant documents that contain query words

of a different sense, while use of semantic tags could help in solving the prepositional

phrase attachment problem.

2.2 Approaches to Word Sense Disambiguation

Most disambiguation approaches tend to focus on the identification of word-specific con-

textual indicators that can be used to distinguish between a word’s senses. Efforts to acquire

these clues or indicators have been characterized by their need for intensive human involve-

ment for each word, which creates the associated problem of limited vocabulary coverage.
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This is termed as the knowledge acquisition bottleneck in WSD literature. WSD systems

can thus be classified based on how they attempt to deal with the knowledge acquisition

bottleneck, by considering how they acquire disambiguation information. Using this cri-

terion, a WSD system can be classified as knowledge-based, corpus-based or hybrid, and

each of these approaches is briefly discussed in the following sub-sections. See Ide &

Véronis (1998) for a detailed review.

2.2.1 Knowledge-based Approaches

Knowledge-based approaches encompass systems that rely on information from an explicit

lexicon such as Machine Readable Dictionaries (MRD), thesauri, computational lexicons

such as WordNet or (hand-crafted) knowledge bases.

Early Machine Translation Approaches

Much of the early work in WSD was carried out within the context of MT in the

1950’s. The earliest approach was by Weaver (1949), where he argued the need for WSD in

MT, as described in his memorandum. He introduced the notion of using a context window

of size N from the neighbourhood of the ambiguous word, for WSD. He also realized

and noted the important relationship between domain specificity and reduced word sense

ambiguity, where the possible senses of a polysemous word are bound by the domain of

use. Kaplan (1955) carried out experiments to determine the minimal size of N that is

sufficient for WSD. He concluded that N = 2 was sufficient for WSD in most cases and

that there was no significant improvement in WSD accuracy, when a bigger value of N or

the entire sentence was used to provide contextual information. Masterman (1957) used

ROGET’s thesaurus to determine Latin-English translations based on the most frequently

referred to thesaurus categories in a Latin sentence. His work laid the foundation for the

use of statistical techniques for NLP.

As shown here, much of the foundation of WSD was laid in this period, but due to

the lack of resources, both linguistic and computational, most of the ideas were not seri-

ously tested. In subsequent years, most of these ideas have been tested and confirmed by
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various researchers. For example, Gale et al. (1992c) and Yarowsky’s (1995) ‘one sense

per discourse’ echo Weaver’s work on domain specificity of word senses, while several

experiments on context window size confirm Kaplan’s conclusions even for different lan-

guages e.g. Koutsoudas & Korfhage (1956) on Russian, and Choueka & Lusignan (1985)

on French.

AI-Based Approaches

In the 1960’s and 1970’s, there was a lot of growth in AI research, and consequently,

most of the methods that tackled WSD during this period used AI approaches. These sys-

tems relied on a wealth of both language and world knowledge, to determine the meaning

of a word in context. Majority of these systems were grounded in language understand-

ing theories and attempted to model deep knowledge of linguistic theory, especially in the

area of syntax and semantics. Consequently, these systems tried to produce a semantic rep-

resentation for an entire sentence in an attempt to capture its meaning, and from which

word ambiguity problems would be solved. However, due to the pervasive nature of both

structural and lexical ambiguity in natural language, a sentence can have several possible

interpretations. In order to determine the correct interpretation, these systems adopted a

strategy of combining syntactic, semantic and world knowledge and enforcement of con-

straint satisfaction, to produce syntactic and semantic representation of an entire sentence.

The scheme adopted for world knowledge representation as well as the process used

to integrate syntactic, semantic and world knowledge, serve as the main distinguishing fac-

tors amongst these systems. Quillian (1961) used semantic networks6 to represent world

knowledge while Cottrell (1985), Waltz & Pollack (1985) and Eizirik et al. (1993) included

syntactic information into the network as well. Other systems such as Hayes (1977) and

Hirst (1987) used Frames7, while Wilks’s (1975) and Boguraev’s (1979) case-based sys-

tems employed preference semantics to specify selectional restrictions for combinations of

6 The nodes of the network are semantic representations of words or concepts, while the arcs represent
relationships between concepts. Identification of word-sense associations is done through a process referred
to as spreading activation.
7 A frame represents a word as an entity and explicitly specifies its roles and relations to all the other words
in the sentence.
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lexical items in a sentence. These restrictions were used to determine which senses should

be preferred over others, for a given context.

By the late 1980’s, AI-based methods began to lose their appeal, largely due to the

intensive manual labour that was required to create the knowledge bases. As a result, only

relatively small knowledge-bases were created. This had the adverse effect of limiting

most research work to ‘toy’ systems that had restrictions on the number of words, senses

and syntactic constructs that could undergo analysis and disambiguation. Also, their insis-

tence on deep syntactic and semantic analysis at the sentence level compounded the WSD

problem, especially with hindsight of how difficult it is even today to obtain deep syntactic

analysis of a sentence, let alone semantic analysis.

Dictionary-based Approaches

In the 1980’s, there was a surge in computing machinery and a corresponding in-

crease in the availability of electronic linguistic resources, popularly known as MRDs, as

most publishers started to produce electronic versions of their products. This precipitated

the shift from AI-based systems to the emergence of dictionary-based approaches. MRDs

presented a viable solution to the knowledge acquisition bottleneck facing AI-based ap-

proaches since they provided comprehensive lexical coverage of natural language. This

meant that systems no longer suffered vocabulary limitations, spurring interest in language

processing of unrestricted text.

One of the first attempts to utilize these resources for WSD was Lesk (1986). His

work was based on the observation that the coherence of a sentence is dependent on the

cohesion of the words in it, meaning that the choice of one sense in a text is a function of

the senses of the words close to it. He devised an algorithm that chooses the correct sense

of a word by calculating the word overlap between the context sentence and the dictionary

definition of the word in question. Lesk’s work influenced most of the subsequent work

in knowledge-based WSD such as McDonald et al. (1990), Véronis & Ide (1990), Wilks

et al. (1990), Guthrie et al. (1991) and Cowie et al. (1992). Other machine readable re-

sources that have been used in knowledge-based WSD include thesauri such as ROGET’s



2.2 Approaches to Word Sense Disambiguation 17

thesaurus that has been used severally by different researchers including Masterman (1957)

and Yarowsky (1992), and lexicons such as CyC, ACQUILEX, COMLEX, CORELEX and

WordNet Fellbaum (1998) in (Resnik 1999).

A major hindrance to dictionary-based techniques such as those based on Lesk’s

idea is their crucial dependence on similarity in wording between a text and the MRD.

Dictionary definitions are usually too short to generate an overlap from which an ade-

quate set of indicators can be obtained. Also, despite their well-structured information

and increased vocabulary coverage, pre-coded knowledge sources suffer from limitations

in domain-specific coverage and in coping with the introduction of new words.

2.2.2 Corpus-based Approaches

Corpus-based methods provide an alternative strategy for overcoming the lexical acquisi-

tion bottleneck, by obtaining information necessary for WSD directly from textual data.

WSD is performed using information obtained by training statistical language models on

a corpus. As noted in the preceding section, a major limitation of knowledge-based WSD

systems is their reliance on pre-coded knowledge sources, which affects their inability to

handle large vocabulary in a wide variety of contexts due to the associated expense of man-

ual acquisition of lexical and disambiguation information. In an effort to overcome this

problem, fuelled by the increased availability of natural language data in electronic form,

WSD researchers have recently turned to corpora to help extend the coverage of existing

systems as well as bootstrap or train new systems. These approaches have also benefitted

from corresponding research in ML and statistical techniques, and especially, in their ap-

plication to corpora, making it possible to obtain disambiguation information from textual

data automatically. In addition, the success with which statistical techniques have been ap-

plied to other NLP tasks such as speech recognition, parsing and part-of-speech tagging

has raised optimism that they can also be used for WSD work. In keeping with the lat-

est trends in WSD research, this study adopts a corpus-based approach which offers the

most promising solution to the knowledge acquisition bottleneck, by exploiting statistical

learning techniques applied to corpora.
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The earliest large-scale corpus-based approach to word meaning disambiguation was

by Kelly & Stone (1975), who were working with a corpus of over 500,000 words. They

sought to establish a set of word meanings perceived as useful for content analysis work.

They manually developed an ordered set of disambiguation rules for each sense that was

to be defined. These rules utilized a wide range of contextual features drawn from a ±4
word window and included target word morphology as well as the identity, syntactic and

semantic category of contextual words. Most subsequent work has focussed on the use

of ML algorithms for the automatic acquisition and subsequent use of such contextual

information for disambiguation.

Learning algorithms are categorized as statistical8 or symbolic, where unlike statisti-

cal techniques, symbolic methods do not use probabilities explicitly. Examples of statisti-

cal learning techniques include Hidden Markov Models, log-linear models and BL, while

symbolic methods include a wide array of algorithms such as decision trees, decision lists,

transformation-based error-driven learning, instance-based learning, inductive logic pro-

gramming, neural networks, genetic algorithms, clustering and support vector machines.

Màrquez (2000) gives a detailed review of these methods and their application to various

NLP tasks, including WSD. In ML, a distinction is usually made between supervised and

unsupervised learning, see Mitchell (1997). In supervised learning, a set of a priori poten-

tial classes (senses in the case of WSD) are established before the learning process, while

unsupervised learning means that the set of senses for a word are inferred a posteriori from

text. However, as has been noted by Rigau et al. (1997), in the field of statistical NLP, un-

supervised learning has also been used to mean an algorithm which does not require anno-

tated training data, while those systems which require annotated training data are classified

as supervised learning algorithms. Many corpus-based systems have been developed, and

these encode disambiguation information using a broad range of contextual features such

as collocations, co-occurrence information, syntax, case roles constraints etc. in different

combinations. Using Rigau’s definition for supervised vs. unsupervised systems, and con-

sidering the type of resources used to provide disambiguation information, Brown et al.

8 Also referred to as probabilistic or stochastic
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(1991b) and Ng & Lee (1996) are examples of supervised systems while Yarowsky (1992),

Dagan & Itai (1994), Yarowsky (1995) and Pedersen & Bruce (1997) represent unsuper-

vised WSD systems. Generally, better results in disambiguation have been achieved using

supervised approaches (Màrquez 2000). BL, a supervised probabilistic method is selected

for this study, and a detailed description of its theoretical foundations is given in section

3.5.2.

Despite the obvious benefits that corpus-based systems provide, they are also faced

with certain setbacks and challenges. Although supervised systems have been purported

to facilitate large-scale WSD, the requirement for annotated corpora has been a major set-

back to these systems, and as a result, most studies of this type have been limited to small

sets of ambiguous words, usually less than twenty. To date, most annotated corpora have

been prepared manually and this has limited the availability of such corpora. Research in

the area of automatic annotation of texts or development of systems that exploit other re-

sources with the aim of bypassing the requirement of annotated corpora, continues to gain

considerable interest. This study is faced with this problem since there are no annotated

corpora for Swahili, and proffers a solution which exploits distributional semantic prop-

erties of nouns using an unsupervised learning technique as described in detail in chapter

3, to automatically acquire annotated training data. The other challenging problem facing

corpus-based approaches is that of data sparseness, which is characterized by disparity in

the frequencies of word senses, where some senses do not occur at all in a given corpus, or

occur very infrequently to be statistically significant. This poses problems for the ML al-

gorithm since it will not learn how to accurately distinguish and disambiguate some senses.

Again, this study takes a class-based approach to WSD as a solution to the data sparseness

problem (see section 2.4). This shifts the sense disambiguation task from the word level, to

a broader class level. In so doing, the data sparseness problem is addressed since training

data is now not collected for a single word, but from several words that belong to a given

class. This increases the probability of observing several occurrences in the available cor-

pus, that are representative in meaning, to all the different senses for a given ambiguous
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word. By coping relatively well with data sparsity (see section 3.5.2), BL complements the

class-based approach well, in dealing with this problem.

As noted earlier, the successful application of statistical techniques to other NLP

tasks raised optimism that these techniques could be applied to WSD. However, it is worth

noting that the WSD problem is inherently much more difficult than say speech recog-

nition or part-of-speech tagging. This is mainly due to the difficult problem of defining

just what constitutes a sense of a word, and consequently determining how many senses a

word has. For example, speech recognizers for English are trained to recognize approxi-

mately 625 triphone contexts, and as reported by Rabiner & Juang (1993), this task can be

achieved with greater than 95% accuracy. Likewise, Brill et al. (1990), report 97% accu-

racy for a part-of-speech tagger trained on a corpus of 1.5 million words and a set of 64 part

of speech tags. In contrast, a sense tagger based on a simple English learner’s dictionary

with about 55,000 words would have a tag set of 74,000 senses (Wilks et al. 1990). Sim-

ilarly, a Swahili sense disambiguator for the approximately 3,000 ambiguous words listed

in the TUKI dictionary would have to contend with approximately 10,000 senses. This

means that the disambiguator would have to learn thousands of disambiguation rules to ad-

equately disambiguate all the ambiguous words. This requires a considerably much larger

corpus than would be required for say, a part-of-speech tagger or speech recognizer. It also

implies that it would be beneficial to use abstract and generalized relations in construct-

ing disambiguation rules, in order to make the WSD problem feasible, given the existing

limitations associated to annotated corpora availability and sense distribution.

2.2.3 Hybrid Approaches

These approaches can neither be properly classified as knowledge or corpus-based, since

they obtain disambiguation information from both corpora and explicit knowledge-bases.

Luk’s (1995) system is an example of a hybrid approach that combines information in

MRD definitions with statistical information obtained from raw corpora. He uses textual

definitions of senses from the LDOCE9 to identify relations between senses. To determine

9 Longman Dictionary Of Contemporary English
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which of these relations are most useful for WSD, he uses a corpus to compute Mutual

Information (MI) scores between these related senses.

Bootstrapping approaches where initial (seed) data comes from an explicit knowl-

edge source which is then augmented with information derived from corpora, are another

example of hybrid systems. Yarowsky’s (1995) unsupervised system is a good example of

a bootstrapping approach. He defines a small number of seed definitions for each of the

senses of a word (the seeds can also be derived from dictionary definitions or lexicons such

as WordNet synsets). He then uses the seed definitions to classify the ‘obvious’ cases in a

corpus. Decision lists are used to learn generalizations based on the corpus instances that

have already been classified. This process is repeated iteratively to the corpus, classifying

more instances. Learning proceeds in this way until all corpus instances of the ambiguous

word have been classified.

Hybrid systems aim to harness the strengths of the individual approaches while at

the same time, overcoming specific limitations associated with a particular approach, to

improve WSD accuracy. They operate on a ‘knowledge-driven, corpus-supported’ theme,

utilizing as much information as possible from different sources. For example, Luk suc-

cessfully exploits a lexical resource to reduce the amount of training data required for WSD,

while Yarowsky’s seeds provide initial knowledge, critical to the statistical learning phase.

2.3 Cross-lingual Word Sense Disambiguation

In this section, a review is given of approaches that have defined the WSD problem within

a cross-lingual framework. In these systems, sense distinctions of an ambiguous word in

one language are determined from its translation into another language or set of languages.

This approach lends itself naturally to specific NLP applications such as MT and Cross-

lingual Information Retrieval (CLIR) which, necessarily, involve two or more languages

and hence demand a cross-lingual setting. More recently however, in an attempt to provide

an alternative solution to the elusive philosophical and linguistic question as to what con-

stitutes a word sense, some researchers have proposed that cross-lingual sense comparison
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can be useful for sense disambiguation. This has served as a basis for some recent work in

WSD such as Resnik & Yarowsky (1997), Ide (2000) and Diab & Resnik (2002) to name a

few.

One of the earliest cross-lingual WSD studies is by Brown et al. (1991a). In this

study, their aim is to investigate whether the addition of a WSD module to their statistical

MT system (Brown et al. 1990), would have any impact on the MT results. Their system

uses the English-French language pair and requires a word-aligned parallel corpus as well

as part-of-speech taggers for both languages. Two-way ambiguity per word, for both lan-

guages is also assumed. The disambiguation process starts by extracting a set of the most

frequent words for both languages. Each of these words is then described using a number of

contextual features which capture information relating to the tense, part-of-speech, identity

and position of contextual words, with respect to the ambiguous word. Different features

are used for the two languages such as tense-of-current-word, word-to-left, word-to-right,

two-words-to-left, first-noun-to-left etc. The Flip-flop algorithm (Nadas 1983) is used in

conjunction with the splitting theorem (Breiman et al. 1984) based on MI10, to make binary

decisions between the different contextual features and the translations of the word in ques-

tion. The translation of an English word is determined as that with the maximal MI with the

French word. This method is evaluated in-vivo on 100 randomly-chosen English-French

sentence pairs with the authors reporting an MT improvement of 8 percentage points, from

37% to 45%.

Another bilingual WSD approach is presented by Gale et al. (1992c). They also

propose a solution to the knowledge-acquisition bottleneck by exploiting parallel corpora

to obtain both training and testing materials. They do this by using translations as labels

to annotate a set of polysemous words in a source language of a parallel corpus. This way,

annotated corpora is created automatically. Their system uses the English-French language

pair and is based on the Canadian Hansards. This system requires a parallel corpus that has

been aligned at both the sentence and word level, from which training material is created.

The disambiguation algorithm is supervised and consists of a training and a testing phase.

10 A statistical measure of significance.
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During the training phase, the sense of an occurrence of a polysemous word for a given

context is identified. This is achieved by determining its translation, via its alignment to a

target language word.

score(c) =
Y

token_in_c

Pr(token | sense1)
Pr(token | sense2)

(2.2)

Equation (2.2) is used to obtain the context score of an occurrence of an ambiguous

word. This equation is a variation on IR techniques where documents have been replaced

with contexts. The context score is obtained by calculating the probability of a token ap-

pearing within a window of 50 tokens on either side of the ambiguous word. During the

testing phase, the test instances of a polysemous word are identified and scored using equa-

tion (2.2). The correct sense is then selected on the basis of context score proximity by

comparing the test scores with the training scores. This model ignores word order and

collocational information when considering contextual information. Also, a smoothing ap-

proach that uses weighting is adopted to avoid the problems associated with sparse local

token probabilities. The method is evaluated on six polysemous nouns, each having two

distinct senses. These nouns, which have been chosen because they translate into distinct

French words, are duty, drug, land, language, position and sentence. The accuracy score is

used to measure the algorithm’s performance and the authors report 90% overall accuracy

for the six words.

Dagan & Itai (1994) present a new approach to WSD in one language by using sta-

tistical data from a monolingual corpus in another language. Their method focusses on the

problem of TWS in MT. The resources required by this method include a target language

monolingual corpus, a bilingual lexicon and parsers for both languages. It is evaluated on

two language pairs, German-English and Hebrew-English, and imposes no restrictions on

the number of senses per word. The disambiguation process begins by parsing the source

language into syntactic tuples. They use a form of dependency parsing using SLOT gram-

mars (McCord 1990) that identify syntactic relations such as verb-subject, word-adjunct

etc. The next step involves identifying ambiguous words in the source language. In the

context of this method, a source word is deemed ambiguous if there exist multiple transla-
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tions for it in a bilingual lexicon and if it fits the frame of the specific source word instance

in the source corpus. This definition allows for the pruning of alternative source senses on

syntactic grounds. This results in a reduction of the ambiguities that the system has to deal

with. The source syntactic tuples are then mapped to those of the target language. This

is done by using the bilingual lexicon to translate the words in the source tuples. During

translation, hand-coded rules are employed to handle cases where there are cross-lingual

syntactic divergences. The final step is that of choosing the most appropriate translation tu-

ple from the target language corpus, using a combination of filters. These filters are based

on the occurrence frequency of the said tuple in the target language, a probabilistic model

that determines the most probable target language tuple and a constraint propagation al-

gorithm that handles ambiguities arising from multiple syntactic tuples in a sentence. The

system is evaluated on randomly-selected examples comprising 103 ambiguous Hebrew

words and 54 ambiguous German words. The authors report 68% applicability for Hebrew

and 50% for German, where applicability is a coverage measure that determines how many

cases are attempted out of all possible cases. Precision, which is a metric of how many

found items in those retrieved are correct, is also used for performance evaluation, with

Hebrew recording 91% and German 78%. This is against a Most Frequent Sense (MFS)

baseline precision of 63% for Hebrew and 56% German, at the same applicability level.

The lower performance on the German words is attributed to the change in corpus genre

from the source test set to target language corpus genre.

Kikui’s (1999) unsupervised approach is one of the more recent works in cross-

lingual WSD, and he focuses on TWS for an English-Japanese MT system. Resource

requirements include a bilingual dictionary and bilingual comparable corpora. For this

study, Kikui uses 1994 newspaper articles of the New York Times and the Japanese Shin-

bon newspaper. The system does not place any restrictions on the degree of polysemy

for ambiguous words. The disambiguation algorithm incorporates two unsupervised mod-

ules: The first algorithm is the distributional sense clustering algorithm which is based on

Schütze’s (1998) distributional clustering, and is used to obtain sense clusters for both cor-

pora. It is first applied to the most frequent terms in the source language corpus, thereby
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creating source language sense clusters. A source term list is then created using IR tech-

niques to prune out infrequent words. Next, the bilingual dictionary is used to translate

the term list, creating translation candidates. The distributional sense clustering algorithm

is then applied to the target language, yielding target language sense clusters. The final

step in TWS is achieved by applying the cosine similarity measure to the target language

sense clusters and translation candidates, with those having the highest similarity values

being selected as the correct translations. This method is evaluated on 120 test instances

and achieves 79.1% accuracy against a manually-created gold standard.

Given the TWS task of the Swahili WSD system, senses of ambiguous words are

taken to be their translations into English, like in the described systems. However, un-

like the surveyed systems which rely on numerous resources such as bilingual comparable

and/or aligned corpora, part-of-speech taggers and syntax parsers for both languages, this

study seeks to develop a WSD solution that does not make extensive resource demands

for both languages. Instead it relies only on monolingual corpora and parsers, exploiting

existing computational and linguistic resources such as WordNet to provide the necessary

semantic bridge between the two languages. This is seen as a vital step that extends NLP

to (computational) resource deficient languages such as Swahili.

2.4 Class-based Word Sense Disambiguation

Corpus-based approaches rely on statistical data to estimate language models for different

NLP tasks. Due to data sparseness in natural language, a major problem facing statistical

NLP techniques is that of estimating the probabilities of events (e.g. co-occurrence re-

lations, senses etc.) that were not observed in the training corpus. Class-based methods,

which allow for the estimation of generalized class parameters as opposed to parameters for

individual words, have been adopted as one approach to solving the sparse data problem.

Yarowsky (1992) presents an approach to WSD that uses classes of words to derive

models that can be used to disambiguate individual words in context. He uses Grolier’s

encyclopedia to learn statistical models of the major ROGET’s thesaurus categories which
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serve as approximations of conceptual classes. These categories correspond to sense dis-

tinctions and sense disambiguation thus involves selecting the most likely category for a

word in context. The procedure for learning the category models starts with the collection

of representative contexts for each of the 1042 ROGET’s categories, from a±50 word win-

dow. The next step involves identifying salient words from the collective contexts that are

highly indicative of a particular category.

Pr(w|RCat)
Pr(w)

(2.3)

Using equation (2.3), an estimate much like the MI metric is computed. This is an estimate

of the probability of a word w, appearing in the context of a ROGET category (RCat),

divided by its overall probability in the training corpus. The log of the salience is used as

the individual word’s weight in the statistical model of that category. The disambiguation

step uses the resulting weights to predict the appropriate category for a polysemous word

appearing in a new context. The algorithm achieved an overall accuracy of 92% when

tested on 12 polysemous words averaging three sense distinctions.

Resnik (1999) presents an algorithm that disambiguates noun groupings, as opposed

to individual words, with respect to WordNet senses. He assumes the existence of noun

groupings that have been obtained via some black-box procedure, and whose relatedness

has been established. In his experiments, he uses groupings derived from distributional

clustering experiments (Brown et al. 1992, Schütze 1993) and thesaurus classes such as

ROGETs and Grefenstette’s (1994) Machine-generated thesaurus. He then devises an algo-

rithm to determine which WordNet sense (class) subsumes all the members of the group.

With this, the group is disambiguated with respect to WordNet’s IS-A11 hierarchy. He com-

putes semantic similarity for all the group members using equation (2.4), to determine the

concept (WordNet sense) that is the most informative subsumer (closest common ances-

tor) for all the group nouns. The semantic similarity of two words W1and W2 is calculated

as:

sim(W1,W2) = max
c∈subsumers(w1,w2)

[− log Pr(c)] (2.4)

11 A hierarchy of subtype/supertype relationships.
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where subsumers(W1,W2) is the set of WordNet synsets that subsume (i.e. are an-

cestors of) both W1 and W2, in any sense of either word. His algorithm is based on the

observation that when two or more polysemous words are similar, their most informative

subsumer provides information about which sense of each word is the most relevant. The

algorithm was tested on 125 test cases and achieved an accuracy of 60% against a random-

selection baseline of 34% and an upper bound of 67% set by two human judges, on average.

This study adopts a class-based approach much along Yarowsky’s model, but exploits

distributional clustering of Swahili nouns to automatically determine the semantic classes

that form the basis of the WSD system, rather than relying on external definitions for such

classes such as ROGET’s thesaurus, which are unavailable for Swahili and most other less-

studied languages. Furthermore, such a data-driven approach is preferable since the WSD

solution is consequently based on semantic classes whose distinguishing properties have

been ascertained to be available from textual data, and whose coverage is thus expected to

be very high, approaching 100%.

2.5 Summary

A basic introduction to the field of WSD and statistical NLP has been presented in this

chapter. A survey of the major approaches to WSD has been presented, emphasizing the

key WSD research problems that should be addressed by any type of solution. The knowl-

edge acquisition bottleneck has been singled out as a major challenge for WSD, and whose

solution influences directly or indirectly, the training methodology adopted, the informa-

tion and resources required for disambiguation as well as the coverage and scalability of the

developed system. This study pursues a corpus-based methodology where ML techniques

applied to a monolingual corpus of Swahili are employed in the training of the WSD sys-

tem. The study adopts a class-based approach and uses the SOM algorithm to automatically

determine what these classes should be. The classifiers for WSD are modelled as Bayesian

networks which complement the class-based approach to get the most out of the available
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training data. The methodology followed to realise the WSD solution is presented in detail

in chapter 3.



Chapter 3
Word Sense Disambiguation using Bayesian

Networks

3.1 Introduction

In this chapter, a hybrid WSD method for Swahili nouns is presented. It relies on ML

techniques that acquire knowledge for disambiguation i.e. learn how to disambiguate, by

combining information from a variety of sources - a corpus of Swahili, a Swahili-English

dictionary and publicly available linguistic resources for English, namely WordNet, a com-

putational lexicon for English and Levin’s (1993) classification of English verbs.

A precise description of the problem under study and the methodology employed to

solve it is presented in this chapter. In section 3.1.1, the problem definition is presented.

This includes a discussion on the specifics of the WSD task under consideration such as

the choice of sense tags, sense granularity, test and training data preparation and evaluation

of system performance. A general overview of the WSD solution is also presented in this

section. In section 3.2 a detailed description of the resource requirements, both linguistic

and computational, is given. A detailed step by step description of the individual phases

of the system is presented in subsequent sections 3.3 - 3.5. The discussion provides a

brief review of the relevant theoretical background, implementation specifics as well as

intermediate results where applicable. System evaluation is presented in chapter 4.

3.1.1 Problem Definition

The WSD problem is that of associating an occurrence of an ambiguous word with one of

its senses. In order to do this, first, an inventory of the senses associated with each word

to be disambiguated must be available; second, a mechanism to associate word senses in

29
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context to individual senses must be developed, and thirdly, an evaluation procedure to

measure how well this disambiguation mechanism performs must be adopted.

Important issues concerning the senses include determining the source of the senses

such as dictionaries or usage contexts derived from corpora etc., and the level of sense

granularity to be tackled. Another important decision that has to be made is the meaning

representation scheme that will be used since this influences the design of the disambigua-

tion algorithm. Designing the actual disambiguation mechanism involves the construction

of disambiguation rules and their subsequent application to a real disambiguation problem,

achieving WSD. The key issues to be considered here are the source of the disambiguation

information, the construction of rules using this information and the criteria for selecting

the correct sense of an ambiguous word in context, using these rules. Evaluation involves

determining appropriate evaluation metrics, choosing test words and acquisition of test

data, as well as obtaining a gold standard for evaluation.

Given that WSD is usually undertaken as an intermediate step for other NLP tasks, the

application area for which the WSD solution is developed bears important consequences on

various aspects of the WSD problem specification. In this dissertation, the problem of WSD

is undertaken within the context of Swahili-English MT, and thus the WSD problem here

is essentially TWS - choosing the most appropriate English translation for an ambiguous

Swahili noun, in a given context. Given this background, the senses of a word are taken to

be its English translations and the TUKI Swahili-English bilingual dictionary is used as the

sense inventory. The granularity of the sense distinctions to be considered is determined

empirically via a data exploratory phase which identifies the type of semantic distinctions

that can be made, given the available linguistic information.

TWS requires that there exist a mechanism that associates the meaning representa-

tions for individual senses of a word to the equivalent target language translation. WordNet

noun classes have been chosen for this purpose since all English nouns are already asso-

ciated with a semantic (WordNet) tag, and the problem that remains is that of associating

the context of an ambiguous Swahili noun with one of these tags. WSD is then achieved

by selecting the English translation whose semantic tag matches the WordNet tag selected
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for the given context. The disambiguation problem thus entails determining the semantic

properties (WordNet tag) of an ambiguous Swahili noun in context.

To achieve disambiguation, the study employs corpus-based techniques, where a su-

pervised ML algorithm, namely, BL is used to learn disambiguation rules automatically

from a training corpus of Swahili where each example has been annotated using WordNet

tags. The disambiguation rules are represented in the form of probabilistic classifiers which

when given an occurrence of an ambiguous word as input, produce its semantic classifica-

tion (WordNet tag). This tag is then used to select the appropriate English translation, via

WordNet tag equivalence matching.

Evaluation of the WSD algorithm is done using standard performance evaluation met-

rics such as precision, recall, F1 measure and accuracy. More on the specifics of evaluation

are presented in chapter 4. In total, the methodology to be presented will be justified both

in terms of its theoretical foundations and by the performance of classifiers developed per

its specification.

WSD solution Overview

To ensure that the WSD solution suffices for its purpose, i.e. TWS for a Swahili-

English MT system, it is instructive to determine the exact nature and extent of the ambi-

guity inherent between these two languages. This analysis provides a guideline to the se-

mantic distinctions that the WSD system would have to be able to make in order to achieve

high coverage and good performance.

Acquiring the knowledge required to do WSD has been highlighted as a serious chal-

lenge in the construction of WSD systems. As presented in chapter 2, various approaches

have been adopted with an attempt to overcome this knowledge acquisition bottleneck.

Corpus-based approaches that obtain disambiguation information automatically from tex-

tual data are the most promising in this respect. The WSD solution presented here is data-

driven where determination and acquisition of useful information for WSD is done auto-

matically. The emphasis here is on data-driven and automatic as this ensures that only that

knowledge which is explicit in the language, and which is directly usable by a computer
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system is used to make disambiguation decisions. This not only guarantees reliability and

consistency in performance, but also renders the solution language-independent, meaning

that it can be replicated for any language pair.

The main phases of solution development are:

1. Obtaining a semantic landscape of Swahili Nouns: The SOM algorithm is applied

to data vectors derived from a corpus of Swahili, to obtain an initial grouping of

nouns into clusters based on semantic similarity. This is an exploratory phase that is

done to determine the semantic distinctions that can be made using linguistic features

derived from text, and also obtain a mapping of WordNet noun classes to Swahili

semantic classes. To do this, Model Based Clustering (MBC) is applied to the SOM

codebook vectors as explained in section 3.3.2, with the aim of later refining the

cluster boundaries for further analysis. For each cluster, its members and associated

WordNet tags are analysed and together with the corresponding component maps,

a set of semantic classes, each labelled with a unique name, is obtained from the

clusters. These classes represent the ambiguities that the system can handle, while the

class labels are used in the automatic annotating of training data, obtained from class

members.

2. Ambiguity analysis of Swahili: In this step, a thorough analysis into the nature and

extent of ambiguity in Swahili with respect to English is done. This is achieved using

the Swahili-English bilingual dictionary, WordNet noun classes and the semantic

classes obtained for Swahili nouns in step 1).

3. Learning Bayesian Classifiers for WSD: The semantic classes obtained in step 1)

are used in the implementation of a class-based WSD solution for the ambiguities

identified in 2), where the disambiguation task is essentially reduced to a classification

problem. Choosing the most appropriate sense for a given occurrence of an ambiguous

word is done by determining membership in one of the semantic classes, and selecting

the English reading that exhibits/possesses the corresponding semantic feature(s). The

probabilistic classifiers for each of the semantic classes are modelled as Bayesian
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Belief Networks (BBN), with the latter being learned from the training data generated

in step 1).

3.2 Resources

3.2.1 WordNet

WordNet (Fellbaum 1998) is a semantic lexicon for the English language developed and

maintained at the cognitive science laboratory of Princeton University, New Jersey. Its

design was inspired by current psycholinguistic theories of human lexical memory, and

was developed under the direction of psychology professor George Miller.

WordNet divides the English lexicon into five categories: nouns, verbs, adjectives,

adverbs and function words. The words are further organized into sets of synonyms referred

to as synsets, each representing one underlying lexical concept e.g. {toddler, yearling,

tot, bambino} represents a young child. Since WordNet organizes lexical information in

terms of word meanings rather than word forms, semantic relations such as hypernymy,

antonymy, hyponymy etc., are used to link the various synsets. WordNet further partitions

words (based on their word category) into distinct hierarchies using a set of semantic primes

or generic concepts. These hierarchies correspond to relatively distinct semantic fields

but are not mutually exclusive. Nouns belong to one of 26 semantic types e.g. person,

animal, event etc., while verbs are categorised into 15 different verb types e.g. motion,

communication, consumption etc. As an example, figure 3.1 shows hyponymic relations

among seven semantic components, denoting tangible (concrete) entities:
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{thing,entity} 

{living thing, organism}

{non-living thing, object}

{plant, flora} 
{animal, fauna} 
{person, human being} 

{natural object} 
{artifact} 
{substance} 
{food} 

Figure 3.1: WordNet hyponymy relations for concrete entities

WordNet contains about 140,000 words organized into over 110,000 synsets, creating

a comprehensive dictionary-thesaurus combination. WordNet’s support for automatic text

analysis and AI applications, coupled with its free online accessibility has contributed to its

widespread usage as evidenced by the numerous NLP applications that use it as a semantic

resource12.

The WordNet database is critical to the WSD solution presented in this dissertation.

WordNet tags are used to provide the semantic linkage between the WSD classifier’s de-

cision and the English translations of the ambiguous word, enabling TWS. WordNet verb

tags are also used as predicate-argument contextual features as described in section 3.3.1.

3.2.2 Levin Verb Classes

Levin (1993) has organized 4183 verbs into 191 classes13 according to a verb’s behav-

iour with respect to certain syntactic alternations in the expression of arguments that affect

meaning. The motivating principle is that verbal meaning determines syntactic realiza-

tions. Syntax therefore, serves as an important constraint on the possible meanings for

12 A comprehensive WordNet bibliography is located at http://engr.smu.edu/~rada/wnb/
13 The electronic version of Levin’s verb classes is publicly available at
http://www-personal.umich.edu/~jlawler/levin.html
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a given verb by corroborating certain classes and disqualifying others. Figure 3.2 shows

four classes for contact verbs, illustrating the distinctions that the various classes make. As

shown, these verbs are categorized based on the type of alternations that they participate in.

Alternations for verbs of contact: 
  
conative: 
     Jean moved the table. 
     *Jean moved at the table. 
body-part possessor ascension: 
     Janet broke Bill’s finger. 
     *Janet broke Bill on the finger. 
middle construction: 
     Bread cuts easily. 
     *Cats touch easily. 
 
             Verb Classes 
Alternation Touch Hit Cut Break 
conative N Y Y N 
body-part possessor ascension Y Y Y N 
middle N N Y Y 
 
    Examples of verbs for each class 
     
    Touch: kiss, sting, tickle 
    Hit:  bash, hammer, tap 
    Cut:  chip, hack, scratch 
    Break: crack, split, tear 

Figure 3.2: Examples of Levin’s verb classes

Like WordNet, these verb classes have been used as predicate-argument contextual

features that capture the grammatical relation between a verb and its dependents.

3.2.3 SOM Toolbox

The SOM Toolbox (Vesanto et al. 2000) is a public14 domain function library for MATLAB

5 that implements the SOM algorithm. It has been developed at the Neural Networks Re-

search Centre, Helsinki University of Technology. MATLAB by Mathworks Inc., provides

an excellent environment for scientific computation and analysis. It employs a high-level

14 SOM Toolbox Software and Documentation is available at http://www.cis.hut.fi/projects/somtoolbox/
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programming language which makes it suitable for fast prototyping and customization, and

has a strong support for graphics and visualization. The SOM Toolbox takes advantage of

these strengths to provide an efficient, customizable and user-friendly implementation of

the SOM algorithm. The toolbox can be used to preprocess data, initialize and train SOMs

using a range of different topologies and visualizations. This enables a researcher to per-

form varied analyses of the properties of the SOMs and the data. A discussion of the SOM

algorithm and its application to data categorization is presented in section 3.3.2.

3.2.4 Bayesian Modelling Toolbox

The BMT15 is a data analysis tool for dependence and classification modelling developed

by the Complex Systems Computation Group (CoSCo) at the Helsinki Institute for Infor-

mation Technology. The tools enable analysis of data for multivariate probabilistic depen-

dencies which are represented using Bayesian networks. The theoretical foundations of

Bayesian modelling are discussed in detail in section 3.5. The specific theoretical design

principles adopted in implementing the BMT are also included in the discussion. The tool-

box has been used successfully for various applications such as Ruohotie et al. (2001). In

this study, the toolbox is used to induce probabilistic classifiers for WSD from data and

facilitate testing of the same via probabilistic inference.

3.2.5 SALAMA (Swahili Language Manager)

SALAMA is a suite of computational tools developed by Hurskainen at the University

of Helsinki, for processing Swahili texts (Hurskainen 1999). Tools for linguistic analysis

include a lemmatiser, morphological analyser & disambiguator and a syntactic mapper

that performs surface syntax analysis, while end-user utilities include a spell-checker and

hyphenator for Swahili.

Of particular importance to this study are the linguistic analysis tools and specifically

the morphological analyser & disambiguator, SWATWOL and the shallow parser Swahili

15 An online version of these tools, the B-Course service, is located at http://b-course.hiit.fi or http://b-
course.cs.helsinki.fi and is freely available for educational and research purposes.
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Constraint Grammar Parser (SWACGP). SWATWOL16 has been so named as it is based on

Koskenniemi’s (1983) Two-level model for morphological analysis and generation. This

Two-level model consists of a lexicon and rules (language-specific components) combined

with a runtime engine applicable to all languages which make it language-independent.

Hurskainen (1992) has developed the Swahili-specific components for SWATWOL which

consist of the annotation scheme, lexicon and rules. The annotation scheme defines an

extensive set of tags17 used to code various linguistic properties of word forms such as

morphology (part of speech, derivational and inflectional features), syntax, etymology,

some semantic features and domain tags e.g. health care. The lexicon specifies the mor-

phemes and words of the language that can be processed by SWATWOL. It was compiled

from various word-lists, dictionaries and material obtained from the Swahili corpus and

currently recognizes at least 45,000 words. The two-level rules specify the relation be-

tween the lexical and textual (surface) representations of words. They constrain the sur-

face realization of lexical strings by specifying particular lexical/surface correspondences

and the environment in which these correspondences are allowed, required or prohibited.

SWACGP (Hurskainen 1996, Hurskainen 2004b) is a constraint-grammar parser which dis-

ambiguates ambiguous readings produced by SWATWOL. It also performs surface syn-

tax tagging of word forms. It is based on the language-independent constraint grammar

parser (Karlsson 1990, Karlsson et al. 1995, Tapanainen 1996) and a Swahili rule file that

presently contains at least 1,200 rules prepared by Hurskainen. SWACGP achieves a good

performance with a morphological ambiguity18 residue of 8% for fiction/prose texts and 5%

for newspaper texts (Hurskainen 1996:572). On average approximately 94% of ambiguous

readings are successfully disambiguated. This figure improves even further to 97% when

SWA-GUESS, a heuristic disambiguator is applied to the remaining ambiguities.

16 In the body of the text, SWATWOL is used to refer to both the morphological parser and the shallow
syntax parser SWACGP.
17 The full tag set is located at http://www.aakkl.helsinki.fi/cameel/corpus/swatags.pdf
18 The ambiguities handled at this level are morphological rather than semantic and include part of speech
ambiguities e.g. noun vs adverb, adjective vs adverb, noun vs conjunction etc, genitive markers e.g. ya vs wa
and possessive pronouns.
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The first step in text analysis using SALAMA is that of pre-processing where the text

is rendered ready for further linguistic analysis. This involves operations such as marking

of sentence boundaries, separation of punctuation and diacritics from words, identifying

multi-word terms and reduction of upper case to lower case whilst marking initial capitals.

The pre-processed text is then analysed using SWATWOL and SWACGP, producing output

which lists for each word form in the original text, a set of tags that describe its morpho-

logical and syntactic form. Also included is a list of English glosses for each word. For

example, figure 3.3 shows SWATWOL’s output for the sentence given in example 3.5.

Askari hao wamesema kuwa walipofika kwenye tukio, (3.5)

waliwazuia wafanyakazi na wapangaji wote wa jengo hilo kuingia

Those police have said that when they arrived at the scene,

they prevented all the employees and tenants of that building from entering

"<*askari>" "askari" N CAP 9/10-0-SG { soldier , guard } HUM  
"<hao>" "hao" PRON DEM :hV ASS-OBJ 1/2-PL { these }  
"<wamesema>" "sema" V 1/2-PL3-SP VFIN PERF:me { say , speak , scold , speak 
against , advise , counsel , backbite , badmouth } SV SVO  
"<kuwa>" "kuwa" CONJ **CLB { that }  
"<walipofika>" "fika" V 1/2-PL3-SP VFIN PAST 16-SG-REL { arrive } SV  
"<kwenye>" "kwenye" PREP { in , at , about }  
"<tukio>" "tukio" N 5a/6-SG DER:verb (tukia) DER:io { event , happening , 
occurrence }  
"<,>" "," COMMA  
"<waliwazuia>" "zuia" V 1/2-PL3-SP VFIN PAST 1/2-PL3-OBJ OBJ { stop , restrain 
, prevent , obstruct , support } SVO  
"<wafanyakazi>" "mfanyakazi" N 1/2-PL DER:zi { worker , employee }  
"<na>" "na" CC { and }  
"<wapangaji>" "mpangaji" N 1/2-PL { arranger , filer } DER:ji  
"<wote>" "wote" PRON :ote 1/2-PL { all }  
"<wa>" "wa" GEN-CON 1/2-PL  
"<jengo>" "jengo" N 5a/6-SG DER:verb (jenga) DER:o { building , construction }  
"<hilo>" "hilo" PRON DEM :hV ASS-OBJ 5/6-SG { this }  
"<kuingia>" "ingia" V INF { enter , get in , go into , incur , pierce , matriculate , join 
a group/association/party } SV  
"<.$>" 

Figure 3.3: Morphological analysis and disambiguation output
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The output from this morphological analysis and disambiguation stage forms the ba-

sis for different applications such as spell-checkers and hyphenators as well as Sewangi’s

(2001) domain-based terminology extraction from Swahili texts. The contextual informa-

tion used for semantic disambiguation in this study has also been derived from this output.

3.2.6 Helsinki Corpus of Swahili (HCS)

The HCS19 is an annotated corpus of standard Swahili texts that has been compiled at

the Institute for Asian and African studies, University of Helsinki. The annotation has

been done using SALAMA and contains the information described in section 3.2.5. The

corpus is made up of a mixed genre of texts including religious texts (Bible, Qur´an),

newspaper texts (both electronic and print), parliamentary proceedings from Tanzania and

books containing prose text, fiction, educational and scientific materials. Currently the total

size of the corpus is 12.5 million words though material is constantly being added to it.

The data used both for training and testing the WSD solution has been obtained from

randomly selected texts from this corpus.

3.2.7 TUKI Swahili-English Dictionary

The TUKI Swahili-English dictionary is a standard dictionary of modern Swahili compiled

at the Institute of Kiswahili Research at the University of Dar es Salaam, Tanzania. It claims

to have more than 30,000 head words, but Hurskainen’s (2004a) computational testing of

Swahili dictionaries using SWATWOL reduces this number to 14, 533. The dictionary is

available in electronic format as a simple text file, and had to be edited to produce listings

of words by part of speech as well as lists of ambiguous and unambiguous words.

19 Access is restricted to authorized users. Requests for authorization can be made at
www.csc.fi/kielipankki/aineistot/hcs/index.phtml.en
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3.3 Obtaining a Semantic Landscape of Swahili Nouns

For MT, the task of WSD is synonymous with TWS, where it suffices to distinguish amongst

the different competing word senses of the source language word, such that the correspond-

ing target language word can be selected as the right translation equivalent. Distinguishing

senses from one another is a different task from that of defining their exact meanings. For

the former, emphasis is on developing a criterion that is used to separate the different senses

from each other, without caring to define what each sense ‘means’. For example, for the

ambiguous noun ‘kaa’ with two possible translations charcoal and crab, a WSD algorithm

can use the semantic property ANIMATE as a semantic distinction to determine if a partic-

ular occurrence of ‘kaa’ refers to the animate reading crab or the inanimate one charcoal,

without having to further define the meanings of charcoal or crab.

Therefore, to construct a WSD system that suffices for this sense discrimination task

within a Swahili-English MT application, it is instructive to first and foremost determine

the nature of semantic (lexical) ambiguity that is prevalent between the two languages, and

by extension, the semantic distinctions that a WSD system for Swahili nouns should be ca-

pable of making. To accomplish this, a system of meaning representation is required to

express the meaning of different word senses. This provides a framework for determin-

ing what types of ambiguities exist in the language pair under study. A system of semantic

categorization is adopted where senses are associated with semantic categories (classes).

Members of a given category share common semantic properties or attributes that distin-

guish them from those of a different category. The categories reflect the conceptual organi-

zation of the domain in which the WSD system must operate and should therefore represent

the semantic properties that are necessary and sufficient for sense discrimination, given the

identified ambiguity types.

The choice of which categories to include in a meaning representation scheme is a

complicated one, but as Lenci (2001) notes, the specific application typically biases this

choice to include those categories that allow for the organisation of the domain knowledge

in a manner that is most needed for the given purpose. In this study, WordNet’s 26 noun
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Noun Translation WordNet Tag
Kichaa Lunatic Person

Lunacy State
Bunch (of fruits) Group

Bakora Walking stick Artifact
Stroke Act
Apprenticeship fees Possession

Mkoa Province, Region Location
Metal bar Artifact

Table 3.1: WordNet tagging of Swahili noun senses

classes (class hypernyms) are used to represent the meanings of individual senses (transla-

tions) of the ambiguous words, as shown in table 3.1.

As mentioned in section 3.2.1, WordNet was initially intended for psycholinguistic

purposes, and even though it has been successfully used as a semantic dictionary in many

NLP applications, the meaning distinctions it makes are often very subtle and fine-grained.

This results in a large number of word senses which more often than not, are not very useful

for many NLP tasks. Also, some of its noun class definitions reflect this psycholinguistic

bias and may not be entirely compatible with a meaning representation scheme that relies

only on linguistic attributes or behavior to determine semantic classes and their members,

such as that adopted in this study.

For example, WordNet makes a distinction between natural objects (object) such as

rivers, mountains, hills etc. and man-made objects (artifact) such as pool, houses, tables,

cars etc. However, on examining the linguistic behavior of say a pool and a river, it is

evident that they occur in similar linguistic contexts and function as locations i.e. places

that people (animates) can be in/on, can go to, can swim in etc., and should necessarily be

classified as locations. Another example are the communication and cognition tags that

represent nouns denoting communicative and cognitive processes and contents respectively.

Following this definition, concrete nouns such as book or magazine are classified together

with abstract nouns such as request, song or command, since they all have something to do

with communication.
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For this reason, it was found necessary to define new categories by retagging or re-

organizing WordNet classes to reflect the linguistic behavior of different semantic word

types. In addition, an important consideration when choosing these new categories is that

they should be distinguishable from each other using linguistic evidence derived from tex-

tual corpora. This requirement is critical since the WSD solution presented here relies on

semantic class membership determination using only contextual linguistic evidence to de-

cide what the ‘meaning’ of the ambiguous word in context is, and consequently select the

appropriate translation. The disambiguation task has been structured as a classification

problem where different senses of a word are associated with different semantic classes,

and disambiguation therefore involves determining class membership.

To determine the semantic classes that are inducible using linguistic evidence derived

from HCS and how WordNet’s noun classes correspond to them, a semantic exploratory

phase was carried out. The SOM was used to obtain a semantic clustering of unambigu-

ous Swahili nouns. From these clusters, a minimal set of semantic classes sufficient for

the WSD task and whose distinguishing properties can be automatically determined from

Swahili textual data, were selected.

To use the SOM for this purpose, a set of linguistic features deemed important for

semantic discrimination has to be selected and used to obtain training data for the SOM

algorithm. Section 3.3.1 discusses the Swahili language with emphasis on its linguistic

structure and selection of important contextual features. An overview of the SOM algo-

rithm and its application in the determination of semantic categories is then presented in

section 3.3.2.

3.3.1 Context Features

One of the most important tasks in ML is that of feature selection. This is the stage where

the intrinsic domain knowledge is brought to the fore and incorporated into the system.

In this study, knowledge of the linguistic structure, functions and interaction of various

Swahili language elements is a pre-requisite to designing the WSD system. As explained

in section 3.3, the success of the WSD system depends on identifying a compact set of
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semantic classes whose distinguishing features or properties are reflected in the linguis-

tic behaviour of words, and are thus obtainable from overtly-marked features in text. To

achieve this goal, a set of contextual features with high predictive capability for different

semantic classes has to be identified, ensuring that each feature can be easily extracted

from the morphological tagset of the SWATWOL analyser. The features selected for the

study are based on the linguistic properties highlighted in section 1.2. They are discussed

below and have been organised according to the different knowledge types they represent

(McRoy 1992, Agirre & Martinez 2001).

1. Morphological Features

a) Noun prefix: There is a lot of discussion in the literature as to whether Swahili

noun classes encode any semantic classification or not, with opinions ranging from

yes to no but with the majority lying somewhere in between as Contini-Morava’s

(1997) discussion on the different positions on this issue shows. Some of the

classes exhibit semantic consistency such as noun class 1/2 (denoting class 1 for

singular and 2 for plural) which contains nouns that denote human beings, save for

a few exceptions such as ‘mdudu’ insect and ‘mnyama’ animal, while others such

as class 9/10 are a mixed bag of different semantic types such as humans, animals,

artifacts etc. Nonetheless, the noun prefix is an important feature in the language

which may have some semantic implications. Table 3.2 shows the different noun

classes and their corresponding prefixes20.

b) Subject prefix: The subject prefix of a verb agrees with the subject noun and

provides information about the subject, without even having to know what the

actual subject noun is. This feature provides very important semantic information

since there is an animate subject prefix a- associated with all21 animate nouns,

regardless of the noun class. In example 3.6, the noun prefix for the subject noun

‘mtoto’ is m- (class 1) while that of example 3.7 ‘madereva’ is ma- (class 6).

However, they both take animate subject prefixes in the verb, a- (animate singular)

20 0 (zero) indicates a missing/absent noun class prefix.
21 Diminutives and augmentatives are an exception to this as they take the ki-/vi prefixes.
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Class Singular Plural
1/2 m-toto child wa-toto children
3/4 m-ti tree mi-ti trees
5/6 ji-cho eye ma-cho eyes
5a/6 0 -somo study ma-somo studies
6 ma-ji water ma-ji water
7/8 ki-tabu book vi-tabu books
9/6 0 -dereva driver ma-dereva drivers
9/10 0 -taa lamp m-bwa dog 0 -taa lamps m-bwa dogs
11 u-huru freedom u-huru freedom
11/6 u-gonjwa disease ma-gonjwa diseases
11/10 u-kuta wall 0 -kuta walls
15 (nominal infinitive kusoma reading
16-18 (locatives) ha-pa, hu-ku, hu-mu here (within)

Table 3.2: Swahili noun classes

and wa- (animate plural), making this feature a highly predictive indicator for

animacy.

m-toto
SG-child

a-na-enda
3SG-PRES-go

shule
school

(3.6)

“The child is going to school”

ma-dereva
PL-driver

wa-na-enda
3PL-PRES-go

kazi
work

(3.7)

“The drivers are going to work”

c) Reflexive marker: The verbal infix -ji- expresses reflexivity, a property

associated with animate (typically human) subjects or institutional nouns that can

take on human properties e.g. ‘bunge’ parliament, ‘chama’ meeting etc. (example

3.8). From the reflexive infix, selectional preference information regarding the

type of verbs that require animate subjects and that can take human objects is

obtained. Thus, the verb can be subsequently used as an indicator of animate or

institutional nouns.

Juma
Juma

a-li-ji-kata
3SG-PAST-REFL-cut

na
with

kisu
knife

(3.8)

“Juma cut himself with a knife”

bunge
SG-parliament

i-li-ji-patia
3SG-PAST-REFL-award

nyongeza
increment

kubwa
huge

ya
of

mshahara
salary

“Parliament awarded itself a huge salary increment”
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d) Locational suffix: Swahili rarely employs affixal case with the exception of

the suffix -ni which forms a locational oblique when attached to a noun as example

3.9 shows:

Wa-fungwa
PL-convict

wa-na-enda
3PL-PRES-go

mahakama-ni
court-LOC

(3.9)

“The convicts are going to court”

e) Count/Mass distinction: This provides a good indicator for most abstract

nouns e.g. ‘uhuru’ freedom, and mass nouns such as ‘maji’ water, ‘dhahabu’ gold

etc. This information is obtained from the noun class prefix or agreement concords

in verbs, adjectives, pronouns etc. In the first example 3.10, the noun class prefix

wa- indicates plural, while in example 3.11, the noun class prefix indicates singular

but the agreement concord in the pronoun shows that the noun is in plural form.

Using the agreement concords for this purpose is especially useful in the case of

nouns whose class prefix is always plural or singular, but that can take both forms.

Wa-toto
PL-child

wa-na-lala
3PL-PRES-sleep

(3.10)

“The children are sleeping”

Wa-li-uza
3PL-PAST-sell

0-gari
SG-car

z-ao
PL-POSSPRON

(3.11)

“They sold their cars”

f) Derivational affixes: A strong indicator for abstract nouns is their verb part or

their attributive/adjective part. Many abstract nouns are derived from verbs and

adjectives and thus derivational affixes offer vital clues. The nouns in example

3.12 are derived from adjectives ‘huru’ free and ‘zuri’ good to yield attributive

nouns, while those in example 3.13 are derived from verbs ‘tembea’ walk and
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‘kutana’ meet yielding an action/activity and event noun, respectively.

U-huru
DER-free

U-zuri
DER-good

(3.12)

freedom goodness

Ma-tembe-zi
PL-walk-DER

M-kutan-o
DER-meet-DER

(3.13)

visits/travels meeting

2. Part of speech22

a) Preposition: Different types of prepositions typically co-occur with different

types of nouns providing another important linguistic clue on semantic types of

nouns. For example prepositions such as ‘tangu’ from, ‘hadi’ till, ‘kabla-ya’

before, ‘baada-ya’ after, ‘mpaka’ till/until etc., take nouns denoting time (3.14),

while ‘ndani-ya’ in/inside, ‘karibu-na’ near, ‘kando-ya’ beside/along, ‘katikati-ya’

among/middle of etc., occur with location types, though with some exceptions

(3.15).

Maria
Maria

a-ta-kaa
3SG-FUT-stay

hoteli-ni
hotel-LOC

tangu
from

leo
today

hadi
till

kesho
tomorrow

(3.14)

“Maria will stay in the hotel from today till tomorrow”

Paka
SG-cat

a-me-lala
3SG-PRES-sleep

chini
under

ya
of

kiti
chair

(3.15)

“The cat is sleeping under the chair”

b) Numerals: These normally occur together with quantities or units of measure

as example 3.16 shows. They also provide supplemental information useful

for making the count/mass distinction, in the absence of concordial prefixes, as

22 Here, focus is only on those parts-of-speech that may indicate the semantic type of nouns, rather than the
enumeration of all parts of speech.
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example 3.17 illustrates.

Juma
Juma

a-li-nunua
3SG-PAST-buy

lita
litre

mbili
NUM-two

za
of

maziwa
milk

(3.16)

“Juma bought two litres of milk”

Fundi
SG-tailor

a-li-shona
3SG-PAST-sew

nguo
SG-dress

tatu
NUM-three

jana
yesterday

(3.17)

“The tailor sewed three dresses yesterday”

3. Predicate-Argument selectional preferences: Grammatical relations provide a link

between syntax and semantics. The verb and its direct dependents are central to the

meaning of a sentence. By exploiting the grammatical relations between the verb

and dependent nouns, i.e. subject and object, it is possible to gather semantic type

information for the dependent nouns, taking into consideration the semantics of the

verb. Nouns that are subjects or objects of the same verb (type) usually have some

semantic similarities which may be generalized into a semantic type. In this study,

given that the focus for WSD is on nouns, semantic properties (types) for Swahili

verbs have been acquired via translation into English from two sources namely,

WordNet and Levin’s (1993) verb classes. In this way, the semantic type of the

verb ‘imba’ is determined to be communication by obtaining the tag associated

with its English translation sing, from WordNet, and is a sing-verb using Levin’s

classes. From example 3.18 below, it is possible to infer that the noun ‘msichana’

belongs to a semantic class of nouns that can communicate, since it is the subject

of the communication verb ‘imba’. Likewise, the object ‘wimbo’, the product of a

communication process is an abstract noun as are all speech products.

Msichana
SG-girl

a-li-imba
3SG-PAST-sing

wimbo
PL-song

m-zuri
SG-ADJ-good

(3.18)

“The girl sang a good song”

In many cases, the surface subject and direct object of a verb correspond to the first and

second argument of the verb’s semantic predicate. If they do not, e.g. in a passive sentence

or due to the numerous verbal extensions applicable to the verb, the deep grammatical
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Feature Values #
Noun prefix 1− 11(1/2, 3/4, 5a/6, 5/6, 6, 7/8, 9/10, 9/6, 11/10, 11/6, 11) 1
Subject prefix 1− 6 (1/2, 3/4, 5/6, 7/8, 9/10, 11) 1
Location 0 (Loc suffix absent), 1 (Loc suffix present) 1
Reflexive 0 (Refl infix absent), 1 (Refl infix present) 1
Preposition 0 (absent PP), 1 (time PP), 2 (Loc PP), 3 (other PP) 1
Number 0 (Num absent), 1 (Num present) 1
Count/mass 1 (SG or PL only), 2 (both SG and PL) 1
Derived 0 (not derived), 1 (derived) 1
Pita 0 (Verb pita absent), 1 (Verb pita present) 1
WordNet classes 0 (Verb class absent), 1 (SUBJ verb class), 2 (OBJ verb class) 15
Levin classes 0 (Verb class absent), 1 (SUBJ verb class), 2 (OBJ verb class) 183

Table 3.3: Context features

relations determine the argument positions. By exploiting the SVO word order of Swahili,

the arguments of the verbal predicate were obtained23 from the analysis of individual words

for those cases where the relevant syntactic tags were not generated directly by SWACGP.

Table 3.3 gives a summary of the features used in the study and their range of values.

3.3.2 Using the Self-Organizing Map to determine Semantic classes for
WSD

The SOM is an unsupervised neural network method which maps complex and high-

dimensional data onto a regular low-dimensional (two-dimensional) grid in an ordered

fashion such that similar data inputs are, in general, located near each other (Kohonen

1995, Honkela 1997). This low-dimensional grid can then be effectively utilized to visual-

ize and explore properties of the data.

23 A Perl module was written that determines the subject and object of a verb using very simple syntax
rules devised for this study. The verbal constructs covered include passive, stative, applicative, causative
and their various combinations. This was deemed necessary since the Swahili verb rarely occurs in its most
simple form, and ignoring the complex (those with verbal extensions + passive) form would have significantly
reduced the cases from which this feature vector could be populated.
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Figure 3.4: A hexagonal SOM grid

A SOM consists of neurons organized on a regular grid as shown in figure 3.4. Each

neuron is a d-dimensional weight vector (codebook vector), where d is equal to the dimen-

sion of the input vectors. Each neuron serves as a model or prototype of a class of sim-

ilar inputs. The neurons are connected to adjacent neurons by a neighbourhood function

which determines the topology of the map i.e. the lattice structure (hexagonal or rectan-

gular) and global map shape (sheet, toroid or cylinder). A unique property of the SOM

is that it simultaneously forms a grouping (clustering) of the input data and performs a

non-linear projection of the data set. This makes it an excellent tool for data mining due to

the good visualization of any emergent categories obtained from the data. The SOM has

been successfully used in a wide range of applications and domains. Examples include im-

age processing, speech recognition, process control, economical analysis and industrial and

medical diagnostics, amongst others. The SOM has also been used extensively in various

NLP applications such as WEBSOM (Honkela et al. 1997).

For this study, the SOM is used solely as an exploratory tool to derive a semantic

landscape of Swahili nouns, without focussing on its statistical or mathematical founda-

tions. In this regard, the reader is referred to SOM literature such as Kohonen (1995) and

Honkela (1997) for a comprehensive coverage of the SOM algorithm.

Creating the SOM

The 500 most frequent unambiguous nouns in the corpus were selected for this study.

The criteria applied in selection was i) the noun must be listed in the TUKI dictionary, to

ensure that its WordNet tag can be obtained via its translation, and ii) the selected nouns
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must represent all of WordNet’s 26 noun classes, so as to establish their correspondence

to the noun clusters obtained by clustering the SOM. For each noun, all its occurrences

were extracted from the corpus and analysed using SWATWOL which performs the initial

pre-processing of the raw texts, morphological analysis as well as morphological disam-

biguation. Any remaining morphological ambiguities were left unresolved with the first

given analysis assumed to be the correct one. To describe a noun, the contextual features

given in table 3.3 were collected from a 5-word context window, two words on either side

of the noun. Occurrences of nouns in idiomatic expressions as tagged by SWATWOL were

ignored, and feature extraction was done within sentence boundaries i.e. features are col-

lected only from the sentence in which the noun occurs. The resulting training data matrix,

D, is formally described as follows:

Let N be the set of nouns, ni ∈ N, i = 1 . . . 500;

Let F be the set of context features, fj ∈ F, j = 1 . . . 207;

If D = {di,j} represents the data vectors, then the value di,j represents the frequency

of feature fj within the context of noun ni and is a measure of how typical the j th feature is

within the context of the particular noun, ni. All the data vectors have been normalized by

the total occurrences for each word.

Obtaining semantic classes by clustering the SOM

The SOM toolbox was used to organize the data vectors D and visualize the word

categories. The organisation of the data is depicted in the distance matrix shown in figure

3.5. High values on the distance matrix (black color) denote large distances between neigh-

bouring units, and represent cluster boundaries while the light areas on the map correspond

to clusters. The largest cluster appears in the middle section of the lattice. Other smaller

clusters are scattered around it and others are found on the right side of the lattice.
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WordNet Label WordNet Label
Time a Location n
Substance b Group o
State c Food p
Shape d Feeling q
Relation e Event r
Quantity f Communication s
Process g Cognition t
Possession h Body u
Plant i Attribute v
Phenomenon j Artifact w
Person k Animal x
Object l Act y
Motive m Tops z

Table 3.4: WordNet labels

Figure 3.5: Distance matrix

For each noun, the best-matching map unit (bmu) was obtained by locating the model

vector that most closely resembles that of the data. The word label (or its corresponding

WordNet tag) was then written onto the map unit corresponding to the bmu, as shown in

figures 3.6 and 3.7. For the latter, WordNet classes have been labelled alphabetically for

visibility reasons, and table 3.4 shows each tag with its label (A-Z).
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Figure 3.6: Map labelled with WordNet tags

To get a definite clustering of the data, MBC was used to cluster the SOM code-

book vectors24 (Banfield & Raftery 1993, Fraley & Raftery 2002). As one aim of using the

SOM algorithm was to determine the correspondence between WordNet noun classes and

induced categories, a clustering technique that automatically determines the optimal (best)

number of clusters for the given data was preferred over one where this number is required

as an argument, such as the k-means clustering algorithm. This way, the ‘true’ number of

clusters inducible using Swahili features would be determined from the data itself rather

than have this number chosen subjectively. The MBC algorithm requires as one of its ar-

guments, the maximum number of clusters it should find. This was specified as 26 since

24 Rather than cluster the data directly, the SOM has been used as an intermediate phase to reduce the com-
putational complexity of clustering. Vesanto & Alhoniemi (2000) validate using such a two-level approach
by showing that the two methods achieve comparable clustering results.
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by assuming a one-to-one correspondence between WordNet and the learned categories,

the data would organise into 26 clusters. If less than 26 clusters were obtained, then it

would be possible to determine which WordNet classes have been split up and which ones

combined to form new classes on the basis of Swahili linguistic evidence. This is done by

analysing the properties of the new clusters. The clustering results are shown in figure 3.7.

By comparing figures 3.6 and 3.7, and taking into account the component maps25 (figure

3.8), individual units in the clusters were analysed in depth to identify their member nouns

and semantic properties in order to determine which semantic classes can be deduced di-

rectly from the data. Table 3.5 shows example words derived from map units from selected

clusters as indicated in figure 3.7. Abstract nouns appear largely on the left half of the lat-

tice (clusters A, B, F) while concrete nouns are found mainly on the right half and bottom

parts of the lattice (humans (C), food/substances (D), artifacts/dress (E) and locations (G).

Some WordNet classes were consequently reclassified as shown in table 3.6.

25 Visualizations of the component planes show what values the prototype vectors of the map units have for
different vector components (features).
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Figure 3.7: Map clustered into 15 classes using model-based clustering. Swahili words are
used to label map units which correspond to their BMU.

The final set of semantic classes obtained via SOM clustering is shown in table 3.7.

These classes form the basis of the WSD system as they are mutually exclusive and distin-

guishable using linguistic evidence derived from Swahili data as spelt out in section 3.3.

Data Acquisition and Annotation

Annotated training data for each of the identified semantic classes has to be obtained.

The data is used to learn Bayesian classifiers for WSD using the BMT in a supervised

learning setting. Each training example must therefore be tagged with the label of its cor-

responding class. During cluster analysis, member nouns for each cluster were identified,
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Figure 3.8: Bar chart visualization of the prototype vectors for individual map units.

Cluster Swahili words and their translations
A uhai, utajiri, upendo, ujuzi, upana, uchaguzi, uandishi, wokovu

life, wealth, love, expertise, width, selection, authorship, salvation
B wakati, busara, juhudi, wajibu, bidii

time, good judgement, effort, responsibility, effort
C msaidizi, mwenyekiti, katibu, mkazi

assistant, chairperson, secretary, inhabitant
D haragwe, pombe, halua, divai

bean, beer, sweetmeat, wine
E furushi, jua, bohari, vazi, nguo, fulana, kizaazaa, kibindo

bundle of clothes, sun, warehouse, clothing, cloth, undershirt, chaos, loin cloth pocket
F dakika, siku, gramu, hamsini, nane, namba

minute, day, gram, fifty, eight, number
G kisiwa, wilaya, jiji, kijiji, kitongoji, ofisi

island, district, city, village, small village (hamlet), office

Table 3.5: Examples of words taken from different clusters
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WordNet Tag Re-classified Tag Example Words
Object Location Mountain, River, Lake
Possession Location Land
Possession Artifact Painting
Possession Substance Gold, Silver
Artifact Location House, Pool, Shop
Communication Artifact Book, Magazine, Newspaper
Communication Abstract Song, Insult, Prayer
Cognition, Event, Feeling, Motive, Process Abstract Sight, Marriage, Fear
Relation, Shape, State, Act, Attribute Abstract Peace, Beauty, Dance

Table 3.6: Re-classified WordNet tags

Class WordNet correspondence
Human Person, Tops
Animal Animal
Location Location, Object, Artifact, Possession
Time Time
Unit Quantity
Substance Substance
Body Body
Food Food
Plant Plant
Abstract State, Shape, Relation, Process, Phenomenon, Motive,

Feeling, Event, Communication, Cognition, Attribute, Act
Artifact Possession, Communication, Artifact
Money Possession
Dress Artifact
Vehicle Artifact
Container Artifact

Table 3.7: Semantic classes derived from Swahili data



3.3 Obtaining a Semantic Landscape of Swahili Nouns 57

Class Nouns Occurrences
Abstract 93 70553
Animal 37 1963
Artifact 49 10238
Container 12 605
Dress 13 1622
Food 42 3718
Human 32 45993
Institution 32 31587
Location 46 23758
Money 20 6173
Plant 34 334
Substance 38 3923
Time 30 25349
Unit 29 1580
Vehicle 12 2906

Table 3.8: Automatic annotation of data: Unambiguous nouns and their corpus occur-
rences

and these are used to supply the training examples. All occurrences for each member noun

of a given class were extracted from the corpus, processed individually using SALAMA,

relevant features extracted and coded26 in a format suitable for BMT. The class label was

added to each example. All the labelled examples for all nouns of a given class were com-

bined into one training file for that class i.e. 15 different training files, one for each of the

15 classes are created. Table 3.8 shows, for each class, the number of unambiguous nouns

occurring in the corpus as well as their combined corpus occurrences, from which labelled

data is obtained. Due to the time expense of obtaining a gold standard for testing, test data

for each class was obtained by deleting the class label for 10% of the training data and re-

serving these examples as test data. Nonetheless, a small gold standard was prepared for

key ambiguity types by hand-tagging 2, 528 occurrences of sixteen ambiguous words and

using these to test the performance of the WSD algorithm on actual ambiguous words.

26 The training data for the SOM training consisted of a normalized vector for each training word. For the
Bayesian learning, each training example represents an individual occurence of a training word in the corpus.
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3.4 Analysis of Lexical Translational Ambiguity in Swahili
Nouns

With a compact set of semantic categories for meaning representation identified, the am-

biguity types prevalent in the language pair are determined. This is done by analysing the

ambiguous nouns to reveal the semantic types associated with each of their readings. The

ambiguous nouns are then sorted into ambiguity groups, where an ambiguity group com-

prises nouns that share the same type of ambiguity and therefore rely on similar semantic

distinction criteria for disambiguation. These groups form the basis for an ‘ambiguity-

type driven’ approach to WSD where Bayesian classifiers are constructed for each of the

groups as discussed in section 3.5. The following subsections discuss the ambiguity analy-

sis process in further detail.

3.4.1 Ambiguity Prevalence

Many words are semantically ambiguous, referring to more than one concept. In addition,

words can be ambiguous in different ways. Some words are ambiguous between highly

related senses whose semantic relationship is systematic. For example, the stroke meaning

of the word ‘bakora’ is derived from the second meaning cane or walking stick and refers

to the action of using a cane. On the other hand, the two meanings of a word like ‘mkesha’,

eve/vigil and sparrow are semantically unrelated, and seem to share the same written form

purely by chance. The linguistic literature makes a distinction between these two types of

ambiguity, with the former referred to as polysemy and the latter homonymy (Lyons 1977,

Cruse 1986). Most standard dictionaries reflect this distinction between word meanings and

word senses, where word meanings correspond to different lexical entries, and related word

senses are contained within a single entry. TUKI’s Swahili-English bilingual dictionary

adheres to this format where ambiguous words are listed as separate entries if considered

homonyms or as single entries with numbered senses, in the case of polysemes.

In this study, a noun is determined to be ambiguous if marked either as a homonym or

polyseme in the TUKI dictionary, using the above format. Ambiguous nouns make up 21%
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Part of Speech Ambiguity % of Homonyms % of Polysemes
Nouns 21% 40% 60%
Verbs 31% 19% 81%
Adjectives 14% 4% 96%
Adverbs 10% 10% 90%

Table 3.9: Translational ambiguity prevalence in Swahili

n-way ambiguity % (nouns)
2-way 72
3-way 20
4-way 6
≥5-way 2

Table 3.10: Noun ambiguity

of all listed nouns, as shown in table 3.9, with 60% of these being polysemous. While this

distinction is not critical for WSD as it is for applications such as IE or IR, it nonetheless

provides important information regarding sense granularity. Whether the individual senses

of an ambiguous word are coarse or fine-grained determines the level of difficulty of the

disambiguation task and this directly or indirectly influences various aspects of algorithm

design such as the types of relevant disambiguation information to use, whether to adopt

a general disambiguation algorithm for certain words or to build individual word-specific

disambiguators or even how to evaluate WSD performance (Resnik & Yarowsky 1999).

3.4.2 Ambiguity Types

Ambiguity types important for WSD were identified by processing all ambiguous nouns

listed as such in the TUKI dictionary as follows:

1. Select all nouns that are two-way27 ambiguous. These form the majority as shown in

table 3.10.

27 Two-way ambiguity is taken as the base case, and all other n-way ambiguities are combinations of the
ambiguity types obtained from analyzing two-way ambiguity.
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Tag I Tag II Word Reading I Reading II
Human Artifact Gumegume Worthless person Flint gun

Kiongozi Leader, guide Manual, handbook
Mlezi Guardian, custodian Cot

Location Pepo Demon, spirit Paradise
Bucha Butcher Butchery

Animal Kirukanjia Prostitute Nightjar
Sungusungu Homeguard, vigilante Black ant
Mkunga Midwife Eel

Food Jini Genie, wicked person Gin
Nyanya Grandmother Tomato

Plant Mtini Clown, buffoon Fig tree
Time Juma Name of person Week
Abstract Kichaa Lunatic Lunacy

Mwanga Wizard Light
Nyange Fool, moron Noise

Table 3.11: Ambiguity Group: Human

2. For each noun, obtain the WordNet tag28 corresponding to each of its English

translations (meanings /senses). The WordNet tags are used to represent the initial

meanings of the English readings. The second stage involves retagging the nouns

using the new class labels where applicable.

3. Split the nouns into two groups depending on whether their English translations

have different tags or not. Example words are shown in tables 3.11-3.17 and 3.18

respectively. The rows in the first two columns of each individual table represent the

types of ambiguities that the Bayesian classifiers have to learn to disambiguate. This

division (of nouns into two groups) clearly illustrates what can be accomplished by

the means available from raw textual data, with respect to WSD. In this case, the WSD

solution covers only those cases where the English translations have different tags.

Construction of Bayesian classifiers based on these classes is discussed in detail in

section 3.5.

28 Where the English reading is ambiguous, the MFS (listed first in the noun’s entry) is chosen as the
correct translation of the Swahili word. There are however, cases where it goes wrong.
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Tag I Tag II Word Reading I Reading II
Animal Vehicle Ndege Bird Aeroplane

Artifact Simu Sardine, sprat Telephone
Body Koo Hen, breeding animal Throat, gullet
Food Tembe Hen Tablet

Kima Black monkey Minced meat
Abstract Swala Gazelle Prayer

Goma Hard-skinned fish Stick dance
Kima Black monkey Price, value, rate

Money Mbango Warthog Money
Dress Buibui Spider Purdah, veil
Time Mkesha Sparrow Eve, vigil
Container Chungu Black ants Pot
Location Korongo Stork, crane Gulley, ravine

Barabara Crowned hornbill Highway, road, street
Paa Gazelle Roof

Table 3.12: Ambiguity Group: Animal

Tag I Tag II Word Reading I Reading II
Location Artifact Mkoa Province, region Metal bar

Komeo Creek, inlet Bolt, latch
Mto River Pillow

Food Kiwanda Factory Omelette
Tembe House Tablet

Time Mwezi Moon Month
Magharibi West Sunset

Body Ziwa Lake Breast
Plant Kambi Camp Cambium

Ua Yard Flower
Vehicle Dau Pool Dhow, sailboat
Money Pango Cave Rent
Abstract Njia Road Method, means

Kitende Residence, abode Elephantiasis

Table 3.13: Ambiguity Group: Location
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Tag I Tag II Word Reading I Reading II
Abstract Plant Chacha Ballroom dance Grass

Dege Convulsions, stomach pain Fern
Mti Scrofula, gangrene Tree

Artifact Usukani Leadership Rudder, steering wheel
Breki Break, recess Brake
Useja Celibacy, bachelorhood Collar
Kifungo Detention Button
Mwiko Taboo, totem Wooden spoon

Time Magharibi (sunset) Prayer Sunset
Alasiri (afternoon) Prayer Afternoon
Alfajiri (morning) Prayer Morning

Food Zambarau Purple Damson plum
Bia Cooperation, agreement Beer

Substance Madadi Assistance, support Opium
Ambo Disease Gum, glue

Dress Doria Security patrol Organdie, muslin
Dibaji Preface, preamble Woollen/silk material

Container Tusi Insult, abusive remark Coffin, bier
Body Sini Complexion, shape Gum (of teeth)
Vehicle Jipu Boil, abscess Jeep

Table 3.14: Ambiguity Group: Abstract

Tag I Tag II Word Reading I Reading II
Artifact Body Chupa Bottle Amniotic membrane

Kiko Tobacco pipe, briar Elbow
Sini Porcelain, chinaware Gum (of teeth)

Food Sindano Needle Long thin rice
Kiwanda Weaving slivers Omelette
Pau Rafter Bread

Container Kadi Card Caddy
Waya Wire Baking dish

Unit Chembe Spear head Iota, morsel
Substance Saruji Saddle Cement, concrete
Time Saa Clock, watch Hour
Money Bakora Walking stick, malacca cane Apprenticeship fees

Table 3.15: Ambiguity Group: Artifact

Tag I Tag II Word Reading I Reading II
Institution Money Dola State, government Dollar, buck

Substance Ukoo Clan, kinship, family Filth, dirt
Body Bodi Board Body

Table 3.16: Ambiguity Group: Institution
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Tag I Tag II Word Reading I Reading II
Time Plant Chaka Hot season Thicket
Substance Plant Tete Slag, dross Reed
Body Unit Futi Knee Foot
Dress Money Kilemba Turban Dowry/gratuity/bribe

Table 3.17: Ambiguity Group: Time, Plant, Substance, Body, Unit, Dress, Money

Tag I Tag II Word Reading I Reading II
Human Human Wakili Advocate, counsel Commissioner

Mshenga Agent, go-between Intermediary
Animal Animal Nyoka Snake Worm

Mamba Crocodile, alligator Black mamba
Location Location Kasri Mansion Palace

Jangwa Desert Wilderness
Abstract Abstract Kofi Dance Slap

Radhi Contentment, satisfaction Apology, pardon
Time Time Mchana Daytime Afternoon

Juzi Day (before yesterday) Day (few days ago)
Artifact Artifact Fimbo Stick, mace Walking stick

Upanga Sword Long wooden knife
Food Food Mkate Bread Tobacco cake
Body Body Ondo Knee Leg, foot
Substance Substance Kifusi Rubble Debris
Container Container Jeneza Bier Coffin
Dress Dress Kanzu Cassock Gown

Table 3.18: Nouns with similar noun tag for both readings



64 3 Word Sense Disambiguation using Bayesian Networks

As shown in table 3.18, most cases where the English translations have a similar tag

reflect very highly related meanings, with some readings being specializations of the other

reading. For example, WordNet defines a palace as a type of mansion while rubble and

debris are near synonyms. Most of these cases represent very fine-grained sense distinc-

tions that cannot be handled by the broad semantic classes identified for Swahili, and have

therefore not been addressed by the WSD solution.

3.5 Bayesian Classifiers for WSD

In section 3.3.2, semantic classes representing the most important semantic distinctions for

WSD within a Swahili-English MT context were identified. In this setup, WSD has been

recast as a classification problem and disambiguation consequently involves determining

semantic class membership between two or more competing classes, where each class rep-

resents a different sense of the ambiguous word. The English reading associated with the

winning class, as determined via WordNet association, is then chosen as the disambiguated

sense of the ambiguous Swahili noun, thereby achieving WSD (TWS).

Michie et al. (1994) define the task of classification as any context in which a deci-

sion or prediction is made based on currently known information, using some classification

procedure. The construction of the classification procedure is one of the most common

learning tasks which has been variously addressed using statistical, ML and neural network

approaches. In this study, ML has been used to induce the WSD classification procedure.

ML has been defined by numerous authors: Weiss & Kulikowski (1991) refer to a learning

system simply as a computer program that makes decisions based on the accumulated ex-

perience contained in successfully solved cases, while Mitchell (1997) gives a more formal

definition: “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks T , as measured by

P , improves with experience E”. The common thread in these two definitions is that the

computer system learns how to make decisions on a new instance of a certain task based on
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accumulated experience derived from solved cases. The system uses a given performance

evaluation measure to improve its performance, with increased experience.

The fundamental goal therefore of empirical learning is to extract a decision rule i.e.

learn a target function, from sample data, that will be applicable to new instances of data. To

do this, a suitable representation of the target function has to be selected, and usually this is

a general model such as a neural net, a discriminant function, a decision tree, a probabilistic

model etc. An algorithm that is applicable to the chosen representation model is then used

to learn the target function from the data samples. Learning in this sense entails selecting

the model parameters and adapting them accordingly to obtain a generalized function that

not only fits the sample data well, but also makes correct predictions on new samples (Weiss

& Kulikowski 1991). Figure 3.9 clearly summarizes the process of learning a classification

procedure (classifier) and using it to predict the class of a new instance.

 Examples of task 
(features + class) 

ML Algorithm 

Classifier 
(program) 

description of context correct word sense 

class novel example 
(features) 

learn one such classifier for each 
semantic class 

Figure 3.9: Learning a classification system
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In this study, probabilistic models have been chosen to represent the target function

(knowledge to be learned). A brief introduction on the basics of probabilistic models is

presented in section 3.5.1, followed by a discussion on how to use such models as classifiers

to perform WSD.

3.5.1 Probabilistic Models

Statistics provides a way to make inferences about a population from just a sample of that

population, rather than having to study the entire population. This is achieved by acquiring

a random sample of the population and identifying observable attributes or features of

interest in this population. Random variables are used to represent these features. Next, the

event space is identified. The event space is the total collection of all the events associated

with this sample, where an event refers to any possible outcome of an experiment, or state

of a process at a given observation time. A particular instantiation of values for the set of

random variables therefore describes a particular event in the sample space. The numerical

characteristics of the population under study can then be known via statistical inference,

from the parameters that describe each event in the event space.

The dependencies existing among the random variables together with the estimated

parameter values associated with each distinct event in the event space are represented in

a probabilistic model. The probability distribution over this joint event space is called the

joint probability distribution and specifies the probability of occurrence for any distinct

event. For example, if X is an arbitrary set of random variables x1 · · ·xn, and each variable

xi can assume any value in the set V (xi), the event space of the set of variables X is

defined as the cross-product V (x1) × V (x2) · · · × V (xn). The probability that a specific

event i.e. variable bindings for the tuple < x1 · · ·xn > will occur, can then be determined

from the joint probability distribution. A probabilistic model thus consists of a parametric

form (that describes the dependencies among the features) and parameter estimates (that

tell how likely each possible event is to occur) and such a model can be used as a classifier

to identify the most probable sense of an ambiguous word given the context in which it

appears.
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In the context of this study, the task is to learn a probabilistic model for WSD. The

training data defines the sample space. The events are Swahili sentences that contain un-

ambiguous words that are representative of the semantic classes whose properties are to be

learned. The contextual features shown in table 3.3 are the random variables that describe

the events (sentences). The parameters of the model describe how likely it is to observe a

particular feature vector i.e. instantiation of the feature variables, for any given sentence.

The learning problem thus involves determining the parametric form of the probabilistic

model and obtaining estimates for the parameters from the training data. This yields a fully

defined joint probability distribution. This is discussed in section 3.5.2.

3.5.2 Bayesian Learning

The goal of ML in general is to determine the best (most probable) hypothesis (target

function), referred to as the Maximum a Posteriori (MAP) hypothesis hMAP , out of a set

of possible hypotheses H, while minimizing the overall error rate. hMAP is selected as

the hypothesis h ∈ H, that has the highest posterior probability, denoted as P (h | D), as

determined from some observed data (evidence) D, and any prior information about the

probabilities of the hypotheses in H (Mitchell 1997). Hypothesis hi is selected as the most

probable hypothesis given the data, based on equation 3.19.

P (hi | D) > P (hj | D) for all i 6= j (3.19)

Computing the posterior probability of a hypothesis requires an enormous sample

space from which fully-specified probability data for all the statistical dependencies among

the feature variables can be determined. Since these probabilities are derived from limited

training data that is not sufficiently exhaustive in terms of feature combinations, computa-

tion of the posterior probabilities of different hypotheses is a challenge. This problem is

alleviated by Bayes theorem (equation 3.20) which relates the posterior probability of a hy-

pothesis to the conditional probability of observed data for a specific hypothesis, denoted

P (D | h), and to the prior probability of the hypothesis, P (h).
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P (h | D) = P (D | h)× P (h)

P (D)
(3.20)

Using Bayes theorem, the MAP hypothesis is selected as the one with the highest

posterior probability as shown in equation 3.21

hMAP ≡ argmax
h∈H

P (h | D)

= argmax
h∈H

P (D | h)× P (h)

P (D)

= argmax
h∈H

P (D | h)× P (h) (3.21)

In the final step, the constant term P (D) is dropped from the equation as argmax h

does not depend on it.

Therefore, determining the best hypothesis for the data, which is subsequently used

as the WSD classifier, requires the estimation of P (D | h) and the prior probabilities P (h)

for all the hypotheses in H. Estimating P (D | h) is a non-trivial learning task and vari-

ous methods and techniques exist for obtaining this estimate from the training data. Each

of these methods makes different assumptions about the characteristics of the hypotheses

and this dramatically reduces the amount of information necessary to specify the full joint

probability distribution. This in turn simplifies the acquisition of these conditional prob-

abilities. In this study, two Bayesian methods namely, the Naïve Bayes (NB) classifier

and BBNs are used to learn probabilistic classifiers for Swahili WSD. They differ in the

independence assumptions that they make as discussed in the following sections. The com-

parative performance of classifiers based on these two variations is presented in chapter 4.

Naïve Bayes

The NB learner assumes that all the contextual features are independent given the

class variable, and as such the parametric form is always the same as depicted in figure

3.10. The learning task therefore involves obtaining the parameter estimates from the data,

with no explicit search for the best hypothesis (Mitchell 1997).
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C

a2a1 an 

Figure 3.10: Naïve Bayes model showing absolute independence of feature variables
a1 · · · an given the class variable C.

The goal of the classifier is to assign the most probable class cMAP out of a set of

predefined classes C = {c1,c2, · · · , ck}, given a test instance (evidence) e according to

equation 3.22.

cMAP = argmax
ci∈C

P (ci | e) (3.22)

Since e is described by the feature vector {a1, a2, · · · , an}, equation 3.22 can be

rewritten as

cMAP = argmax
ci∈C

P (ci | a1, a2, · · · , an) (3.23)

using Bayes theorem, equation 3.23 is rewritten as

cMAP = argmax
ci∈C

P (a1, a2, · · · , an | ci)P (ci)
P (a1, a2, · · · , an)

(3.24a)

= argmax
ci∈C

P (a1, a2, · · · , an | ci)P (ci) (3.24b)

The NB learning task thus requires the estimation of P (a1, a2, · · · , an | ci), the con-

ditional probabilities, and the priors for each of the classes in C, P (ci). In the absence

of any additional knowledge, P (ci) can be computed as the proportion of each class in

the training data. However, this will only be a valid estimate if the training data was ob-
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tained via truly random sampling. Estimating the different P (a1, a2, · · · , an | ci) requires

enormous amounts of training data to ensure that each combination of the attribute values

occurs a statistically sufficient number of times in order to obtain reliable estimates, a re-

quirement which is practically not feasible for most applications. However, with the NB

assumption that the attributes a1, · · · , an are conditionally independent given the class vari-

able, this conditional probability P (a1, a2, · · · , an | ci), is simply computed as the product

of the probabilities for individual attributes given the class. These probabilities are much

easier to estimate as shown in equation 3.25:

P (a1, a2, · · · , an | ci) =
nY

j=1

P (aj | ci) (3.25)

substituting this term (equation 3.25) into 3.24b, then the NB classifier determines

the most probable class given the test instance as that which maximizes equation 3.26.

cMAP = argmax
ci∈C

nY
j=1

P (aj | ci)P (ci) (3.26)

Despite this simplification in its application of Bayes rule, the NB classifier has been

used extensively in language learning applications with numerous researchers reporting

that it performs just as well as other learning algorithms such as decision trees and artificial

neural networks and even outperforms them in some cases (Michie et al. 1994).

Bayesian Belief Networks

The absolute conditional independence assumption made by the NB classifier rarely

holds in practice, much less for natural language data where there are inherent dependen-

cies among language units. This may sometimes result in degraded performance for some

applications where this assumption clearly does not hold, such as in this study where nu-

merous dependencies exist amongst the feature variables selected. For example, there is

a strong correlation between noun and subject prefixes in Swahili: given noun prefix 1/2,

the subject prefix is always 1/2. Another example is noun prefix 3/4 and its associated

subject prefix 3/4. The subject prefix and the subject-verb features are also dependent on

each other. For example the subject prefix 1/2 necessarily co-occurs with verbs that typi-
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cally require animate subjects. Other examples include subject prefix vs. reflexive mark-

ers, preceding preposition vs. locational suffix, noun/subject prefix vs. count/mass feature

etc. Rather than assume absolute independence for all the feature variables as NB does,

BBNs29 allow stating of conditional independence assumptions for subsets of variables, an

approach that is not as constraining as the simple NB, and thus better suited to modelling

real applications.

A BBN is a data structure that represents the dependencies among sets of variables

along with the corresponding conditional probabilities, resulting in a concise specification

of the full joint probability distribution governing the variables. It is represented as a di-

rected graph that consists of nodes and directed arcs (links). The random variables make

up the network nodes while the directed arcs between nodes depict dependencies. The arcs

represent the assertion that the variable is conditionally independent of its non-descendants

in the network, given its immediate predecessors in the network. If there is a directed arc

from node X to Y , X is said to be a parent of Y and this means that X has a direct influ-

ence on Y . For each node X in the network, there is an associated Conditional Probability

Table (CPT) that describes the probability distribution of that variable given its parents.

The parameters of a Bayesian network model M thus consist of probabilities of the form

P (Xi = xk |
Q

i = πj) where
Q

denotes the parents of variable Xi and π denotes their

value configuration.

The BBNs therefore provide a compact and complete specification of the domain

where the probability of any event P (x1, · · · , xn), can be calculated from the network as

a product of the relevant elements of the CPTs. By exploiting conditional independence,

BBNs simplify the specification of the joint probability distribution by requiring specifica-

tion of only the individual CPTs for each variable which results in a great reduction in the

number of probabilities that have to be estimated. Therefore to use BBNs for probabilis-

tic inference, the network topology (nodes and arcs) and the CPTs for each variable have

to be specified. For simple domains i.e. those with few variables and whose exact depen-

dencies are known, this can be done by a domain expert. For more complex domains with

29 Also referred to as belief networks, probabilistic networks or causal networks.
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several variables whose interdependencies may not be clearly known, ML algorithms can

be employed not only to estimate the conditional probabilities, but also learn the network

topology, as briefly described in the following section. The induced probabilistic model

corresponds to the best hypothesis for the data, which is then used as a classifier for WSD.

As Heckerman (1996) notes, by encoding the dependencies among all the variables,

BBNs are able to cope well with incomplete data, a feature that is very useful when the

feature variables are highly anti-correlated. In such cases, when one of the inputs is not ob-

served in the data, most models will produce an inaccurate prediction because they do not

encode the correlation between the input variables, unlike the BBNs which do. In addition,

by facilitating combination of domain knowledge with data, BBNs offer a natural way to

make the best of any prior knowledge to complement the data. This is very important es-

pecially when training data is scarce or expensive to acquire, as is the case with obtaining

annotated training data for WSD. Given this ability to cope well with problems of incom-

plete and sparse data, and considering too the general success of BL at the WSD task as

reported by several researchers (Mooney 1996, Ng 1997, Leacock et al. 1998), the WSD

classifiers have been modelled as BBNs in this study.

Learning BBNs from Data

Using Bayesian networks for prediction requires computing the average posterior

probability for the data D, given all the possible network structures for the domain (X), if

using the full Bayesian approach. To compute this average, the full posterior distribution

for all the possible models (network structures) (M), would have to be determined using

equation 3.27. This presents a computation bottleneck due to the huge number of possible

models which is more than exponential in n where n is the number of network nodes

(domain variables) Heckerman (1996). For example, Myllymäki et al. (2002) state that the

hugely underestimated number of possible Bayesian network structures for 20 variables is

1.6 ∗ 1057!

P (M | D) = P (D |M)P (M)
P (D)

(3.27)
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Two statistical approaches are usually employed to address this problem - selective

model averaging which involves choosing a small set of ‘good’ models from among all pos-

sible models and assuming that they represent the domain exhaustively, and model selec-

tion, which chooses only one ‘good’ model and assumes that it is the best or correct model

for the domain, ignoring all other possible models. Different criteria are used to determine

what constitutes a ‘good’ model, and these are extensively discussed in the literature on

learning with Bayesian networks (Dawid 1984, Howard & Matheson 1984, Spiegelhalter

et al. 1993). Despite this oversimplification of the full Bayesian approach, various re-

searchers have shown experimentally that both model selection and model averaging often

achieve accurate predictions (Cooper & Herskovits 1992, Aliferis & Cooper 1994, Heck-

erman, Mamdani & Wellman 1995, Madigan et al. 1996).

With the model selection criterion selected, the next task is that of using it to select

a good model from all the possible models. Standard Bayesian selection takes the best

model M 0, to be the one that is most probable for the data i.e. the model which yields

the maximum posterior probability for the data, as shown in equation 3.28. Note that the

constant term P (D) in equation 3.27 has been ignored here since the argmax does not

depend on it.

Ḿ = argmax
M

P (M | D) = argmax
M

P (D |M)P (M) (3.28)

Finding the most probable model has been described as a NP-hard problem by Myl-

lymäki et al. (2002) citing Chickering et al. (1994) and consequently, heuristic search al-

gorithms are used in practice to find the most probable model for the data. Most search

methods for Bayesian networks start with an initial network e.g. the empty network or

a random graph, and make successive arc changes to this network retaining only those

changes that yield a maximum positive increase in the probability of the model. Common

search algorithms include greedy search, greedy search with restarts, best-first search and

Monte-Carlo methods30.

30 For a more detailed discussion on the specifics of learning Bayesian networks from data, see Buntine
(1991), Bernando & Smith (1994), Heckerman, Geiger & Chickering (1995), Jensen (1996), Heckerman
(1996) and Pearl (2000).
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The Bayesian Modelling Tools used for this study employ a combination of stochastic

and greedy search heuristics to select the best model for the data, using the model selection

criterion shown in equation 3.29.

P (D |M) =
nY
i=1

qiY
j=1

Γ(N´ij)

Γ(N´ij +Nij)

riY
k=1

Γ(N´ijk +Nijk)

Γ(N´ijk)
(3.29)

where Γ denotes the gamma function, n is the number of variables in M , qi is the

number of value configurations for the parents of variable Xi, ri is the number of values of

Xi, Nijk, i = 1 . . . n, j = 1 . . . qi, k = 1 . . . ri is the number of rows in D where variable Xi

has value xk and the parents
Q

i of Xi have a value configuration πj and Nij =
Pri

k=1Nijk.

The constants N´ijk are the hyperparameters determining the prior distribution P (M). A

uniform prior distribution P (M) over the models is assumed. Kontkanen et al. (2000) and

Myllymäki et al. (2002) discuss the theoretical foundations and implementation specifics

of the Bayesian Modelling Tools.

3.6 Supervised Learning of Bayesian Classifiers for WSD from
annotated data

In the classification paradigm of supervised ML, a classification procedure is induced

from a set of data for which the true classes are known, for a set of pre-defined classes

{1, · · · , K}. For WSD, learning such a classification procedure requires the availability of

sense-tagged data, where each training example xi is described by a feature vector and a

corresponding class label. The feature vector comprises of attribute-value pairs, where the

attributes are those contextual clues important for classification. The supervised learning

task, as discussed in the preceding section, thus involves capturing important dependen-

cies in the training data and representing these in a parametric model, from where the joint

probability distribution can be defined. Once all the required model parameters have been

estimated, the learned model can then be used as a classifier for WSD i.e. given a particu-

lar instantiation of the feature variables for a test sentence, the classifier predicts the value

of the classification variable. It is the expectation that the learned classifier should perform
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Set Description #
A All Features 207
B Morphological, POS, Co-occurrence, WordNet-based Selectional Preferences 24
C WordNet-based Selectional Preferences 15
D Levin-based Selectional Preferences 183
E Morphological, POS, Co-occurrence, Levin-based Selectional Preferences 192
F Morphological, POS, Co-occurrence 9

Table 3.19: Context feature sets

well in classifying test examples, and its prediction accuracy is used to measure how well

it has been able to generalize from the training data to unseen data. The set of classifiers

to be learned, together with their corresponding training data sets were defined in section

3.3.2. The Bayesian Modelling Tools are used to learn the Bayesian classifiers.

3.6.1 Training Parameters and Conditions

As Agirre & Martinez (2001) state, certain types of information are more effective than

others in disambiguating certain types of ambiguities. In cognisance of this fact, different

combinations of context features31 have been used in training the classifiers, with the aim

of establishing what sort of information is best suited to disambiguate the different types of

ambiguities, as shown in table 3.19.

The study also seeks to investigate the effect of different context sizes on disambigua-

tion accuracy for Swahili, and to find out if the standard two-word window applicable for

other languages and especially English (Kaplan 1955), holds for Swahili. In this regard,

different training data sets where the contextual information is obtained from a 2-, 10- and

>10-word window32 are prepared for each classifier.

The other research objective is to establish if performance would be improved sig-

nificantly if a dependency-type grammar that grouped constituents into phrases e.g. Noun

phrase were to be used, instead of the current constraint grammar parser that does not do

31 The Noun prefix is excluded from the morphological features for WSD since it remains unchanged for all
senses of an ambiguous word.
32 The sentence-boundary restriction is applied for all cases, especially for the >10-window where it is more
relevant.
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Context Window size Without NP Chunking With NP Chunking
+/- 2 Data Set A Data Set D

+/- 10 Data Set B Data Set E
> 10 Data Set C Data Set F

Table 3.20: Experiment data sets

so. A simple noun phrase chunker that groups noun modifiers together with the head noun

into one phrase, was developed and applied to the SWATWOL output. The effect of this

chunking is to increase the salient context for a noun. Different training data sets were

then obtained for each of the classifiers using the newly tagged data. This research ques-

tion arose from the observation that most nouns are succeeded by modifiers which provide

only limited contextual information e.g. concordial prefixes, and for a small context win-

dow size e.g. 2, no selectional preference or co-occurrence information can be obtained.

The example sentence 3.30 clearly illustrates this problem where the verb, which is the

only source of predicate-argument information, is located some distance away from the

head noun. The modifier for the head noun ‘Kikosi’ comprises of seven words that precede

the verb ‘kilichosajiliwa’. This is mainly due to the genitive construct that is employed

extensively in Swahili expressing possessives, features (adjectives) etc.

Kikosi
7/8-brigade

cha
7/8-GenCon

sasa
now

cha
7/8-GenCon

simba
Simba

chenye
7/8-Poss-PRON

chipukizi
youngster

(3.30)

wengi
PL-Adj

ki-li-cho-sajili-wa
7/8-Past-RelPRON-register-Passive

na
by

Mwamwaja
Mwamwaja

.....

“The current Simba brigade with many youngsters that was registered by Mwamwaja ...”

Therefore, for each of the 6 feature sets identified above, training data for each clas-

sifier was obtained from six different data sets as shown in table 3.20.

In addition to the above, a special data set was created that included only those feature

variables that were determined to be important for semantic clustering using the SOM. This

requirement affected only the Levin-based features where 131 features out of the total 183

features were selected. This was done with the aim of testing the effectiveness of using the

SOM algorithm as a feature pre-selector for a supervised learning algorithm.
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3.6.2 Training Bayesian Classifiers for Disambiguation

A BBN was constructed for each of the identified semantic classes. Each BBN, therefore,

is a representation of what is typical of a particular class, and the resulting network struc-

ture provides an excellent opportunity to learn more about a particular semantic category,

with respect to the contextual features used. It is worth noting however, that these networks

are not unique for the given variables and their dependencies, and a network with a differ-

ent topology could as well express more or less the same joint probability distribution. This

is so since when the specified search time elapses, there may be hundreds of other equally

probable networks given the data. This affects causal analysis where causal dependencies

could provide an insight to the domain and the relationship between the domain variables.

In this study, comparing network structures for different semantic classes could offer in-

sight into the types of information that are useful in their discrimination. However, the

BMT authors caution on the need for cautious interpretation of causal links. They attribute

this to latent variables33 which often induce sets of dependency statements, that cannot be

described accurately by any Bayesian network, severely restricting the ability to automati-

cally infer something about causalities, based only on statistical dependencies (Myllymäki

et al. 2002). The BMT nonetheless provides tools to support naïve causal modelling assum-

ing that there are no latent variables, and restricted latent variable causal modelling where

latent variables are allowed, but with restricted dependency relationships. Causal analysis

was out of the scope of this project, and was not done.

Examples of the network structures learned for the HUMAN classifier are shown in

figures 3.11 - 3.14.

33 A latent variable is one that for some reason has not been included in the data, and which has causal
influence on the variables of the model
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Figure 3.11: Human BBN (+/- 2; -NP Chunking)
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Figure 3.12: Human BBN (+/- 10; -NP Chunking)
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Figure 3.13: Human BBN (+/- >10; -NP Chunking)

The three sizes used for the context window have resulted in three different net-

works as shown in figures 3.11, 3.12 and 3.13, confirming that context window size is an

important factor for disambiguation, as would be expected. The exact effect this has on

disambiguation accuracy is discussed in the evaluation section in chapter 4.
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Figure 3.14: Human BBN (+/- 10; +NP Chunking)

Likewise, the difference in the structures shown in figures 3.12 and 3.14 is due to

the different data sets used to obtain the training data. They have both been trained using

feature set F, same context window size (10), the only difference being that for the latter,

NP phrase chunking was performed. Results achieved when NP chunking has been done

are compared to the default case (when no phrase chunking has been done) in chapter 4.

3.7 Summary

The methodology employed in developing the WSD solution has been presented in this

chapter. As mentioned in chapter 2, a class-based approach has been adopted to address

the data sparseness problem afflicting WSD research, and which is even more severe for

less-studied languages that have limited linguistic resources. The semantic classes at the
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core of the solution are determined empirically via unsupervised clustering using the SOM

algorithm. The main motivation for this is to ‘let the data speak’, ensuring that only those

classes, whose distinguishing semantic properties can be determined from Swahili textual

data, are included in the solution. This is in contrast to approaches that rely on an external

definition of classes say, a thesaurus or dictionary codes, which even though may result

in a more refined set of classes capable of handling fine-grained senses, may suffer from

lack of sufficient disambiguation information capable of supporting disambiguation of the

ensuing fine meaning distinctions. A total of fifteen classes was identified for this study.

With the classes in place, the next task is to analyze the lexical (translational) ambiguity

inherent between Swahili and English, with respect to the derived classes. This step reveals

the ambiguities that the WSD system should learn to disambiguate. The study focusses on

two-way ambiguous nouns which comprise 72% of all ambiguous Swahili nouns, though

the disambiguation methodology can handle n-way ambiguity, where n is the total number

of semantic classes. The study exploits distributional clustering to automatically obtain

labelled training data, from which 10% is reserved as test data. ML, and in particular BL,

has been employed to learn probabilistic models that encode the linguistic nature of each

of the classes, with respect to the contextual features chosen for this study. BBNs have

been used to model the classes due to their ability to encode dependencies in the context

features, a common characteristic of linguistic features. In addition, they cope well with

missing and scarce data, a feature that complements the class-based approach to dealing

with data sparseness. To address the central questions in WSD research regarding optimal

context size and feature combination, as well as questions specific to Swahili NLP, the

BBNs are trained on different data sets that test the performance of the WSD solution

under varying conditions. The performance of the WSD system is presented in chapter 4.



Chapter 4
Evaluation

In this chapter, the evaluation of the Bayesian classifiers learned in chapter 3 is pre-

sented. The discussion proceeds with a summary of the resources required for testing and a

definition of the evaluation metrics used in the study, as presented in sections 4.1 and 4.2 re-

spectively. In section 4.3, the disambiguation results are presented. The results are reported

for two sets of experiments:- set A, which is based on unambiguous nouns, serves as an ap-

proximation of the expected performance of the classifiers, while set B comprises a small

set of hand-tagged ambiguous nouns that represent the main types of ambiguities identi-

fied in section 3.4.2. The latter is done with the aim of demonstrating the performance

of the classifiers on an actual or real disambiguation task. A discussion on the obtained

results is presented in section 4.4. The results are ordered to show the disambiguation per-

formance for different classifiers in relation to the context window size, feature sets and

noun phrase chunking, in tandem with the training parameters and conditions described in

section 3.6.1. Section 4.4 discusses the achieved performance, paying particular attention

to pertinent issues that arise in the ML paradigm adopted in this study, and their impact on

the disambiguation performance. The testing configuration of the BBNs is altered to fa-

cilitate semantic tagging of unambiguous nouns, and the results obtained for this task are

presented in the section 4.5.

4.1 Evaluation Resources

In the ideal setup, formal evaluation of a WSD system would require a sizeable hand-

annotated test corpus containing several ambiguous words that would provide a gold stan-

dard for evaluation. In addition, performance figures for other systems on the same task

and evaluated against the same gold standard would be required in order to benchmark the

performance of the developed system. However, in reality, this ideal is rarely met and less

so for the specific task of this study - Swahili WSD.

83
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Rather than embark on the costly exercise of obtaining an extensive gold standard that

covers all the different ambiguity types identified in section 3.4.2, the developed system is

evaluated on the related task of semantic class categorization for unambiguous nouns. In

addition to alleviating the need for a sizeable, elaborate gold standard, this approach allows

extensive testing of the system on different ambiguity types using many different nouns and

in varying test conditions, than would be possible if relying only on a small hand-tagged

test corpus. Nonetheless, a small gold standard for a handful of ambiguous nouns is created

for the purpose of validating the performance figures obtained using unambiguous nouns,

as well as bringing to the fore important issues pertaining to the training of probabilistic

classifiers for WSD. The criteria for choosing these words, as well as the relevant statistics

on the resulting test corpus, are presented in section 4.3.2

In the absence of comparative performance figures for other systems on Swahili noun

WSD, a glass box evaluation approach is adopted where different system aspects and com-

ponents and their significance on the obtained performance are discussed. Where relevant,

these are contrasted to those of comparable systems based either on similarity of task, statis-

tical NLP approach or disambiguation information acquisition and resource requirements.

4.2 Evaluation Metrics

Common metrics in WSD evaluation have been used to quantify the performance of the

developed system. These are:

Precision (P) =
TP

TP + FP

Recall (R) =
TP

TP + FN

F1 Measure =
2× P ×R

P +R

Accuracy (Acc) =
TP + TN

Pt +Nt

where TP , TN , FP and FN refer to true positives, true negatives, false positives

and false negatives respectively (as classified by the system) and Pt and Nt refer to the total
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number of positive and negative examples in the test set respectively. In a binary class-

based classification context, the terms positive and negative as used in these definitions are

associated with membership to one of the two semantic classes involved in the classification

(senses). For example, where disambiguation involves the classes HUMAN and ANIMAL,

Pt and Nt refer to the total number of test occurrences belonging to class HUMAN and

ANIMAL respectively, while TP (TN) refers to the HUMAN (ANIMAL) test occurrences

correctly classified as such by the system. Likewise, FP (FN) refers to those ANIMAL

(HUMAN) test occurrences that have been misclassified by the system as belonging to

class HUMAN (ANIMAL).

Due to the performance trade-off between precision and recall, the F1 measure, com-

puted as a harmonic mean between these two values, yields a single number by which per-

formance can be measured. This provides a convenient way to compare the performance

of two or more classifiers on the same problem, ranking them in order of quality of predic-

tion. In this study, the F1 measure is used, with equal weight assigned to both precision and

recall.

Accuracy is a commonly used and straightforward metric which simply reports the

percentage of correct classifications. The accuracy value enables comparison of a classi-

fier’s performance against a given base line such as the majority classifier which acts as the

lower bound for the performance of probabilistic classifiers. The majority classifier sim-

ply selects the MFS as the correct sense for an ambiguous word. In this study, the BBN

classifiers have also been rated against the simpler NB classifiers.

Manning & Schütze (1999) note that the F1 measure and accuracy are different ob-

jective functions with accuracy being sensitive only to classification errors, while the F1
measure, by definition, is more sensitive to type I and II errors (FN and FP ). Conse-

quently, the F1 measure prefers results with more true positives.
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4.3 Results

Performance of the WSD classifiers is presented in this section where the evaluation is

based on the metrics presented in the previous section. As explained in chapter 3, Bayesian

classifiers were induced from training data for each of the fifteen semantic classes listed

in table 3.7. Each BBN is thus a representation of the typical linguistic form of a given

semantic category, as defined by the context features used in its formulation. To disam-

biguate any of the ambiguity types listed in section 3.4.2, the pair of classifiers for each of

the involved classes is used to predict the probability that the given test vector belongs to

one of the two classes. The winning classifier, and hence the most probable sense given the

current context, is chosen as that which awards a higher probability i.e. if H and A repre-

sent the BBN classifiers for class HUMAN and ANIMAL respectively, then the test data

vector, di, is classified as belonging to class (sense) HUMAN if P (di|H) > P (di|A).
The performance of the 15 learned BBNs in disambiguating the major ambiguity

types important for Swahili-English MT was estimated by testing the classifiers on the

similar task of semantic category classification for test vectors obtained from unambigu-

ous nouns and whose true classes are therefore known. The overall results for test set A,

obtained by averaging the performance achieved over all the different ambiguity types, are

presented in section 4.3.1. In this section, evaluation conditions relating to optimal context

window size, overall best feature set and the effects of surface chunking of noun phrases

are addressed. The overall results are an averaged account of the general performance

of the WSD solution. Test set B results obtained by testing the system on a small set of

hand-coded ambiguous words are presented in section 4.3.2.

4.3.1 Set A: Unambiguous Nouns - Overall Performance

Using the F1 measure, the performance results displayed in figures 4.15 and 4.16 show

that regardless of the feature set or context window size, the BBN classifiers, both BBN-ac

and BBN-sc34, consistently outperform the NB classifiers, with an average improvement

34 For BBN-ac (all components) all the 207 feature components were included in the BBN topology, while
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of 7.1 percentage points and 8.3 percentage points respectively. It is worth noting that

the WordNet-based features (W) yielded the smallest improvement (2 percentage points),

while the largest gain (12 percentage points) was obtained using Levin-based features (L).

This confirms what is intuitively expected since the fine granularity of Levin’s verb classes

(183 classes) results in highly correlated (dependent) features. In contrast, WordNet has

only 15 verb classes, and since these are very coarse grained, there is not as much correla-

tion between the different classes compared to Levin’s classes. For example, while Word-

Net has one class for consumption verbs, Levin has 7 classes for the same (eat, chew,

gobble, devour, dine, gorge and feed). For those cases where Swahili does not match

such fine granularity, the same Swahili verb occurs in several classes. For example, while

chew, gobble, devour and gorge have different Swahili translations, eat, dine and feed

are all translated as ‘la’, making these classes highly correlated. The NB’s independence

assumption is thus severely violated for this feature set compared to the WordNet-based

one. In contrast, the BBN takes into account these dependency relations, making it a better

model for the feature set and thus yielding a much better improvement over the NB results

for feature set L compared to W.

As presented in section 3.6.2, the number of Levin-based features was reduced from

183 to 131 by using the SOM as a feature selector. The results achieved by the BBNs

trained using the SOM-selected components for this feature set are an improvement over

those where all the 183 features were included, registering an increase of 7 points for the

F1 measure.

for BBN-sc (SOM components), only 155 components that were important for semantic clustering using the
SOM algorithm were included.
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Figure 4.15: Performance based on different feature sets (WordNet, Levin, Morph. + POS)
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Figure 4.17: Accuracy of BBN classifiers compared to baseline classifiers: effect of differ-
ent feature sets
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Figure 4.18: Accuracy of BBN classifiers compared to baseline classifiers: effect of varying
Context window size/NP-chunking

Despite the high average for the MFS (81%), both the BBNs and NB classifiers man-

age to improve on the accuracy of the majority classifier (MFS) for all feature sets, with an
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average of 5 points and 1.2 points respectively (fig. 4.17). Also, as with the F1 measure,

the BBNs achieve a higher accuracy of 4 points over the NB classifiers, as does BBN-sc

over BBN-ac (2 pts) for the Levin-based feature set.

Figures 4.15 - 4.18 summarize the performance of the developed WSD solution un-

der various test conditions relating to feature set, context window size and NP-chunking,

based on BBN-sc. Considering individual feature sets, morphology + PoS features (M)

yield the best results as shown in figures 4.15 and 4.17, compared to verbal-based feature

sets (W and L). Feature set M registers the highest F1 measure of 63.1 and 86.8% accuracy,

compared to 60.6 and 50.9 (F1 measure) and accuracies of 84.4% and 82.1%, for L and W

respectively. The highest overall F1 measure of 69 is obtained by a combination of all

three feature sets (W+L+M), while the highest overall accuracy score (87.7%) is achieved

by feature set L+M, that combines Levin-based features with the Morphology + PoS fea-

tures. This difference in the best performing feature set can be attributed to the objective

differences between accuracy and F1 measure as explained in section 4.2. Of the three, fea-

ture set W achieves the lowest performance for both measures, an indication that it is the

weakest set in terms of discriminatory power (affecting classification/discrimination be-

tween classes) and in representing the typical semantic and linguistic element of a given

class (affecting positive identification of a class). The F1 measure, which seeks to max-

imize positive identification (TP and TN), favours feature set W+L+M which exploits

the complementary and redundant information contained in the three feature sets. Con-

sequently, the best score is achieved using this set. In contrast, accuracy, which seeks to

minimize classification errors, would necessarily benefit from a feature set with more dis-

criminatory power, and thus feature combination L+M which excludes W obtains the best

accuracy result.

With regard to the optimal context window size for WSD based on local context

features, figures 4.16 and 4.18 show that a small window of two words on either side of the

ambiguous word is sufficient for extracting useful disambiguation information, with higher

(though only slightly) overall F1 measures and accuracy figures obtained for window size 2

compared to size 10 or greater. This is an important empirical validation of Kaplan’s (1955)
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Context Window Size Without NP-chunking With NP-chunking
2 57% 71%

10 94% 99%
>10 99.01% 99.98%

Table 4.21: Percentage of training contexts containing a verb within the specified window

observation that two is an optimal context window size for sense resolution, as explained

in section 2.2.1, for the case of Swahili data.

NP chunking was done with the aim of yielding a compact context that contains more

sources of potentially useful disambiguation information than would have been available

otherwise. This is especially important when considering feature sets that exploit grammat-

ical relations such as the selectional preferences based on WordNet and Levin verb classes

that have been used in this study, with the aim of linking the target noun to the head verb

in the sentence, and deriving semantic information from the ensuing grammatical relation-

ship.

As shown in table 4.21, for all context window sizes, NP-chunking increases the

probability of including a verb within the target noun’s context. This results in an increase

in the context’s saliency with respect to selectional preference information. NP-chunking

is especially relevant for the smallest window size (2). As would be expected, for both sets

of experiments based on verbal features (L and W), the results obtained using the chunked

contexts are slightly better than those where NP-chunking was not done. These results are

shown in figures 4.19 and 4.20 respectively. However, as figure 4.21 illustrates, chunking

does not improve performance for morphology + PoS features, as the majority of these

are already available from context 0 (the target noun itself) and 1 (target noun’s immediate

modifiers), in the case of Swahili35, and as such no major benefit is gained from chunking.

An interesting observation is that NP-chunking actually depreciates the performance for

this feature set. This phenomenon is explained in detail and illustrated with an example in

section 4.4.

35 Out of the 8 feature types in set M, 3 are obtained from the target noun itself (locational suffix, plural/singular
prefix, derivational suffixes), while 4 can be obtained from position +/- 1 (subject prefix, number, preposi-
tion), while only 1 is collected from the head verb (reflexive marker).
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From the results displayed in figures 4.15-4.21, the optimal experimental conditions

with respect to feature set, context window size and NP-chunking that yield the best overall

WSD performance are shown to be morphological + PoS information extracted from a

small context window of +/- 2, and without the need for NP-chunking. Validation of these

hypotheses based on disambiguation of a small set of ambiguous nouns is presented in

section 4.3.2.
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Figure 4.19: Effect of NP-chunking on performance: Levin-based features
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4.3.2 Set B: Ambiguous Nouns

In this section, the performance of the BBN classifiers is tested on ambiguous nouns. The

test set was carefully chosen ensuring that: a) some of the most common ambiguities rele-

vant for Swahili-English MT identified in section 3.4.2 are represented; b) the senses of the

selected nouns cover the main types of semantic ambiguity, i.e. homographs, metonyms

and metaphors and c) examples for both senses of each word can be obtained from the

Swahili corpus. A total of 16 ambiguous nouns, involving 11 semantic classes, were se-

lected following these criteria, and are shown in table 4.22.

Testing the WSD system on actual ambiguous nouns not only demonstrates the per-

formance of the learned classifiers on a real disambiguation task, but more importantly,

highlights important issues that should be considered when porting WSD systems. Of crit-

ical importance is the role of bias, i.e. the distribution of the number of examples per sense

in the training and test data, on the performance of probabilistic classifiers. Agirre & Mar-

tinez (2000) have reported that results degrade significantly when the training and testing

samples have different distributions for the senses. For test set B, the bias factor is important

since the sense distributions in the training data are linked to their corresponding semantic

class sizes, which have been estimated from the number of occurrences in the Swahili cor-

pus, of member (unambiguous) nouns. Clearly, this is a very rough estimate and would, for

the most part, not be consistent with the actual distribution of senses of individual ambigu-

ous nouns. The differences in the sense distributions between the automatically-acquired

training corpus and the actual distribution as determined from the hand-tagged test corpus

for each of the 16 nouns are shown in table 4.22. As shown, a few of the words have a

comparable distribution, e.g. ‘mkunga’ and ‘tembe’, while the rest differ significantly, with

words such as ‘nyanya’ and ‘sindano’ having completely opposing training and test sense

distributions.

In light of these differences in sense distribution, different bias settings36 were used

during disambiguation of the test set, with a view to determine how disambiguation accu-

racy is affected under each of these settings. The settings are: a) automatic sense distrib-

36 The bias settings are applied to the training data.
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Auto Bias Test Bias
Noun Classes (senses) C1 C2 C1 C2
juma HUMAN-TIME 59.6 40.4 80.3 19.7
mkunga HUMAN-ANIMAL 95.6 4.4 97.1 2.9
kiongozi HUMAN-ARTIFACT 79.7 20.3 97.8 2.2
kirukanjia HUMAN-ANIMAL 95.6 4.4 33.3 66.7
nyanya HUMAN-FOOD 90.1 9.9 6.3 93.7
korongo ANIMAL-LOCATION 7.0 93.0 68.4 31.6
ndege ANIMAL-VEHICLE 35.1 64.9 72.6 27.4
buibui ANIMAL-DRESS 52.0 48.0 43.3 56.7
tembe LOCATION-FOOD 84.7 15.3 83.3 16.7
ua LOCATION-PLANT 98.9 1.1 63.8 36.2
mwezi LOCATION-TIME 47.3 52.7 19.2 70.8
pango LOCATION-MONEY 77.9 22.1 70.3 29.7
sindano ABSTRACT-ARTIFACT 87.3 12.7 28.2 71.8
saa ARTIFACT-TIME 27.3 72.7 5.6 94.4
bakora ABSTRACT-ARTIFACT 87.3 12.7 40.5 59.5
usukani ABSTRACT-TIME 87.3 12.7 47.1 52.9

Table 4.22: Test Nouns: sense distribution in automatically-acquired training corpus vs.
hand-tagged test set

ution, determined as the class size of the corresponding semantic classes for each word’s

senses; b) no bias, where an equal amount of examples was used for each semantic class

and c) test set bias, which was determined from the small hand-tagged test corpus, and

which represents the true37 sense bias for each word. For setting a) no retraining of BBNs

was done and the same BBNs used for set A nouns were used to disambiguate the test

set. For bias setting b) and c), new classifiers were trained with data that reflects the re-

quired bias settings, and then used for test set disambiguation. The results are shown in

table 4.2338.

By looking at the results based on the automatically-acquired sense distribution (columns

3 and 4), the important role of bias is clearly evident, with results higher than the MFS39

37 In this case, the true bias is taken as that determined from the hand-tagged examples for each word,
retrieved from the Swahili corpus.
38 The accuracy results shown in columns 4, 6 and 8 represent the best possible result for each word, re-
gardless of the feature set, while the feature set column (col. 9), gives the feature set that consistently yields
the best result for a given word, under varying bias settings. The accuracy columns therefore indicate the
best performance for a word, while the feature set column shows the best average performance for a word,
indicated by the corresponding feature set.
39 Values are shown in bold face where the accuracy obtained is higher or equal to the MFS baseline.
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Auto None Test
Noun Type MFS ACC. MFS ACC. MFS ACC. Feature Set
juma Homo 59.6 84.0 50 71.9 80.3 83.8 W+L+M
mkunga Homo 95.6 97.1 50 94.1 97.1 97.1 M
kiongozi Meta 79.7 97.8 50 97.8 97.8 97.8 M,L+M
kirukanjia Meto 95.6 33.3 50 66.7 66.7 66.7 W,L,M,L+M
nyanya Homo 90.1 12.5 50 93.8 93.7 93.8 M
korongo Homo 93.0 57.9 50 84.2 68.4 84.2 M
ndege Meta 64.9 81.2 50 80.1 72.6 82.3 M
buibui Homo 52.0 66.7 50 70.0 56.7 66.7 L+M
tembe Homo 84.7 100 50 100 83.3 83.3 L+M
ua Homo 98.9 63.8 50 63.8 63.8 74.5 L+M
mwezi Meta 52.7 85.9 50 88.5 70.8 82.1 L
pango Homo 77.9 78.2 50 75.2 70.3 79.2 L+M
sindano Meta 87.3 28.2 50 71.8 71.8 76.9 L
saa Meto 72.7 91.6 50 86.9 94.4 94.4 L
bakora Meto 87.3 40.5 50 54.1 59.5 59.5 W
usukani Meta 87.3 70.6 50 64.7 52.9 64.7 M
AVERAGE 80.0 68.1 50.0 79.0 75.0 80.4

Table 4.23: Disambiguation accuracy obtained using varying sense biases

baseline being obtained for all nouns where the sense distribution is consistent in both the

training and test data. In contrast, for those nouns with an opposing bias, performance bet-

ter than MFS is only achieved for two of them, ‘ndege’ and ‘buibui’. When no bias is used

in training, the MFS baseline is exceeded for all words. The same is true when the test set

bias is used in training. However, as the average accuracy for all the words shows, using

no bias achieves performance that is comparable to that achieved using the test set bias.

From the results, the semantic ambiguity type exhibited by a noun’s senses does not

seem to be an important factor in the disambiguation accuracy, with good performance

achieved for homographs, metonyms and metaphors. Due to the class-based approach

adopted in the study, disambiguation performance is determined more by the specific se-

mantic classes that represent the noun’s senses, and the feature set used, with different fea-

ture sets being better discriminators between different pairs of classes, irrespective of the

semantic ambiguity type. For example, feature set M seems to be more applicable when

one of the involved classes is animate e.g. ‘mkunga’, ‘nyanya’, ‘korongo’ and ‘ndege’. This

is due to the semantic importance of the animate prefix which is uniquely associated with

humans and animals. Selectional preference information is vital for the other cases where
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such a dominant distinguishing feature is absent (‘saa’, ‘sindano’ and ‘mwezi’). Just as was

the case for test set A, for all words, feature set M achieves the best average disambiguation

accuracy (72.8%), followed by L (69.5%) and lastly by W (68%).

4.4 Analysis

The disambiguation results achieved using the BBN classifiers have been presented in the

preceding sections. In this section, a discussion of these results with respect to the training

conditions presented in section 3.6.1 is presented. A careful analysis of the achieved results

is given, with examples drawn from the disambiguation of ambiguous nouns to highlight

the main causes of erroneous classification.

Feature Occurrence Two types of contextual information were used in the experi-

ments - morphology + PoS information and grammatical relations (selectional prefer-

ences). For the latter, two sources of verbal semantic information were used - WordNet

and Levin. The results presented in section 4.3.1 show that Morphology + PoS features

achieved the best overall performance compared to verbal-based features. In addition to

the important semantic information relayed by Swahili’s morphology (see section 3.3.1),

the fact that most of this information is contained within the target noun and its immedi-

ate modifiers (context position +/-1) makes this feature set very dominant in the training

data, as this information is always available, unlike the verbal-based features where the

verb may not always be found within the context window. Given the probabilistic na-

ture of the ML paradigm in use, the frequency of occurrence for any given feature in

the training set has important consequences for all the subsequent probabilities that will

be awarded to it. Hence, morphological features on their own achieve almost the same

performance as that achieved when combined with either or both of the other feature

sets (W and L). In addition, feature set M comprises mostly of closed class items which

have fixed meanings and not being too numerous, generally makes them good, reliable

features. The coverage of the edited40 bilingual dictionary was not complete and as a

40 Swahili verbs in the bi-lingual dictionary were manually edited to enable a higher number of hits when
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result, the number of training contexts for which WordNet and Levin tags could be ob-

tained for occurring verbs, was 88% and 74% respectively, contributing to the poorer

performance achieved using feature sets W and L. In addition, the performance of these

feature sets is adversely affected by the assumption that the first sense listed for poly-

semous verbs is always the correct translation of the Swahili verb in question. Though

no thorough statistics have been made regarding this assumption, there are occasions

when it does not hold. A consequence of this violation is that a Swahili noun is as-

sociated with wrong verbal semantics and this contributes to its misclassification. For

example, the verb ‘ajiri’ is unambiguous meaning employ (hire,engage,retain). How-

ever, this verb is ambiguous in English with the first listed sense in WordNet being use

or utilize (consumption), and the second hire or engage (social). In this case, rather

than associate the subject or object of the verb ‘ajiri’ with the preference semantics of

a social verb, these are associated erroneously with a consumption verb, where for in-

stance a HUMAN noun is taken to be a legal object of a consumption verb rather than

a social verb.

Feature Set The results also show that the Levin-based feature set achieves a better

overall performance than that based on WordNet. The finer granularity of Levin’s classes

allows for a much finer distinction between semantically-close classes than is achievable

using WordNet’s general classes. Consequently, some of Levin’s verb classes can only

be associated with a particular semantic class and therefore serve as unique identifiers

for that class. For example, WordNet’s communication verb class is realised using sev-

eral ‘specialised’ Levin classes (message_transfer, speakmanner, talk, chitchat, say,

communication_instrument, complain, advise and animal_sounds). Clearly, Levin’s

animal_sounds class is sufficient to distinguish between classes HUMAN and ANI-

MAL, something that WordNet’s communication cannot achieve. Other examples of

specialised Levin classes include vehicle and drive verbs which are important discrimi-

querying WordNet and Levin’s classes. For example, the dictionary entry for the Swahili verb egama is ‘be
in a leaning, resting or reclining position’, and had to be edited to ‘lean, rest or recline’ in order to obtain the
corresponding WordNet tag successfully.



4.4 Analysis 99

nators for class VEHICLE, unlike WordNet’s more general motion class which does not

discriminate animate versus inanimate types of motion. For this reason, Levin-based se-

lectional preferences are more effective at disambiguation compared to WordNet-based

ones, despite the fewer number of training contexts where the corresponding Levin tag

was successfully obtained.

NP-chunking As shown in section 4.3.1, NP-chunking was beneficial in obtaining

selectional preference information from contextual verbs, but resulted in deteriorated

performance for the morphological + PoS feature set. The problem stems from the

unordered context where, due to a lack of syntax parsing or phrase chunking for all

sentence constituents, the verb within an ambiguous noun’s context does not always

have a grammatical relationship with it i.e. the noun may not always be the subject

or object of the verb. As a result, morphological information contained in the verb,

specifically the subject prefix, may not be consistent with the semantics of the noun

sense in question, and this results in erroneous classification. For example, sentence 4.31

contains the target word ‘juma’ which is ambiguous between a proper noun (HUMAN)

and week (TIME).

naye alipofufuka
and when he resurrected

alfajiri siku ya kwanza ya
in the morning of the first day of

juma
week/name

,
,

alimtokea kwanza
he appeared first to

(4.31)

mariamu magdalena
mary magdalene

ambaye kwamba alimtoa pepo saba
from whom he cast out seven demons

The analysis obtained from SWATWOL (considering a +/-2 word context) is shown in

figure 4.2241. From this context, crucial morphological information contained after the

noun is obtained from the subject prefix of the verb ‘alimtokea’. However, from the

original sentence the subject of this verb is the sentence-initial pronoun ‘naye’. Since

1/2-SG3-SP is an animate (human) prefix, this occurrence of ‘juma’, which in this sen-

tence refers to the TIME sense (week), is erroneously classified as HUMAN. Given

the disambiguation improvement NP-chunking makes for verbal-based features and the

deterioration suffered using morphology + PoS features due to lack of comprehensive

41 Currently, SWATWOL tags all occurrences of the word ‘juma’ with the TIME sense (week), and thus
disambiguation for this word is necessary to determine those instances where it is used in the HUMAN sense.
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chunking, it can be concluded that complete phrase-chunking or dependency syntax

parsing for Swahili is a worthwhile endeavour needed to improve various NLP applica-

tions, such as the WSD task undertaken in this study.

 "<kwanza>" "kwanza" NUM NUM-INFL ORD { first }  
 
"<ya>" "ya" GEN-CON 9/10-SG  
 
"<juma>" "juma" N 5a/6-SG { week } AR  
 
"<,>" "," COMMA  
 
"<alimtokea>" "tokea" V 1/2-SG3-SP VFIN PAST 1/2-SG3-OBJ OBJ { put out , 
remove , publish , produce , generate , offer to someone , subtract , reduce } SVO 
EXT: STAT APPL :EXT 
 

Figure 4.22: SWATWOL analysis for disambiguation context - ‘juma’

SWATWOL analyses The disambiguation contexts are analysed using SWATWOL

and consequently the quality of the analyses impacts on the classifiers’ performance. In

general, SWATWOL achieves very high accuracy in morphological and part of speech

tagging. There were a few cases, however, where morphological disambiguation fails

yielding a wrong analysis, which in turn results in sense misclassification. For example,

sentence 4.32 contains the target word ‘jini’ with translation equivalents genie (HU-

MAN) or gin (FOOD). Figure 4.23 shows the corresponding SWATWOL analysis when

considering a +/- 2 context window. The word ‘wala’ is ambiguous with respect to part

of speech. While in this sentence it refers to the conjunction nor, SWATWOL analysis

gives a verbal interpretation yielding the verb ‘la’(eat). Since ‘jini’ is ambiguous be-

tween classes HUMAN and FOOD, it is misclassified as gin in this instance as it occurs
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as the direct object of an eat or consumption verb.

ulikuwa
it-was

utoto
childishness

na
and

utoto
childishness

hauna
has-not

hatari
danger

ya
of

uke
feminity

wala
nor

uume
masculinity

(4.32)

,
,

shetani
devil

wala
nor

jini
genie

,
,

machaka
thickets

wala
nor

misitu
forests

"<shetani>" "shetani" N 9/6-0-SG { satan , devil , demon , wicked person } AR HUM  

"<wala>" "la" V 1/2-SG2-SP VFIN PR:a { eat } SV SVO MONOSLB  

"<jini>" "jini" N 9/6-0-SG { genie , sprit , demon , Belial , wicked person } AR HUM  

"<,>" "," COMMA  

"<machaka>" "chaka" N 5a/6-PL { clump of trees , thicket }  

Figure 4.23: SWATWOL analysis of disambiguation context - ‘jini’

Contextual Information According to Weiss & Kulikowski (1991), classification per-

formance is more dependent on the training data and feature set than on the individual

ML algorithm. The choice of the feature set is of critical importance to the predictive

ability of the learned classifier. In this study, dependency (relational) features compris-

ing of overtly-marked morphological and part of speech features were used in conjunc-

tion with selectional preferences derived from simple grammatical relations between

the target noun and contextual verbs. These features represent only local context, while

global or domain context has been left untapped. One reason for this is that the WSD

method developed is targeted at general WSD where a wider coverage of words using

the same basic classifiers is achieved, in contrast to word-specific WSD where classifiers

are constructed for each individual target word. For the latter, identification and inclu-

sion of global context in the form of collocations and word co-occurrences is straight-

forward. This type of disambiguation information has been shown to be very useful

for WSD, since words tend to have only one sense for a given discourse or colloca-

tion (Gale et al. 1992b), (Yarowsky 1993). In contrast, due to the need to use only that

disambiguation information which is applicable to a range of different words, the class-
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based approach adopted in this study suffers from information loss especially of topical

information and collocations, which are specific to individual words. For example, for

the ambiguous word ‘nyanya’, co-occurrence information is usually sufficient for dis-

ambiguation, with the HUMAN reading applicable in example 4.33a, and the FOOD

reading in example 4.33b, regardless of the other information carried in the relational

features.

Babu
grandfather

na
and

nyanya
grandmother

(4.33a)

Vitunguu
onions

na
and

nyanya
tomatoes

(4.33b)

The case for using collocations and other forms of global context to supplement local

context is evident in cases where the local features are not observed in a given context.

In such cases, a system that considers a wider (topical) context will have some other in-

formation that could be useful to guide disambiguation, rather than just defaulting to the

MFS, as is the case in this study. Another alternative solution in such cases would be to

include a rule-based disambiguation system to provide complementary disambiguation

information (Hurskainen 2004b).

Real World Knowledge However, even if all the information useful for disambigua-

tion that exists in textual data was extracted and incorporated into the training of an

automatic classifier, there are numerous cases where disambiguation fails, due to the ab-

sence of critical extra-linguistic or real world knowledge. Numerous psycholinguistic

studies have shown that human beings rely on world knowledge and inference, in addi-

tion to local context, domain knowledge and frequency data (Liddy 1998), when disam-

biguating word senses. Incorporating world knowledge into disambiguation systems has

proved challenging, and even though some effort towards using ontologies and semantic

webs to supply this information has been undertaken (Ciaramita et al. 2003), providing

machines with this knowledge and equipping them with mechanisms that allow them to

reason and infer meaning from it, has proved to be a difficult task. Therefore, examples

such as those shown in 4.34 and 4.35 are still beyond the disambiguation scope of au-

tomatic classifiers that rely only on textual knowledge for disambiguation. In example
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4.34, choosing the right translation of ‘pau’ (rafters), requires a deep understanding of

the meaning of the different words as well as their compositional meaning. If a person is

not familiar with this idiomatic expression, the type of world knowledge required to cor-

rectly choose the right reading includes: knowing that rafters are elements of a house’s

roof; roofs are located at the top of a house structure; humans sleep in houses (usually)

and that when someone sleeps on their back, they are facing upwards to the roof. Like-

wise, for example 4.35, the senses of ‘sindano’ have a metonymic relationship where

the ambiguity is between the instrument (needle) and the act of using the instrument (in-

jection). In this case, recognizing that oral medications refer to an act of administering

medication rather than an instrument, and knowing too, the other ways in which med-

ication can be administered, and that injection is one such way, enables the selection of

the injection reading42.

alilala chali
he-slept-on-his-back

akihesabu
counting

pau
rafters/bread/clubs

na huku akifikiria
while pondering

la kufanya
what to do

(4.34)

dawa za kunywa
oral medications

zinafanya kazi
work

vizuri zaidi
much better

kupita
than

sindano
needle/injection

(4.35)

Role of Bias For some of the results shown in table 4.23, (‘mkunga’, ‘kiongozi’, ‘kirukan-

jia’) the best accuracy score obtained by the system is equal to the MFS baseline, and

for those words where the result was better (and the sense bias was also correct), the

MFS heuristic is implicitly considered during disambiguation. This first sense heuris-

tic, where the correct sense is determined simply as that which is most frequent, is very

important for supervised systems, with McCarthy, Koeling, Weeds & Carroll (2004) re-

porting that it frequently outperforms WSD systems even when they take the surround-

ing context into account, such as in the English all-words task in SENSEVAL2. This

is due to the highly-skewed sense distribution common in natural language where one

sense is much more frequent than the rest. In addition, Gale et al.’s (1992b) “one sense

per discourse” observation means that only one sense of a word occurs for a given do-

main or discourse. Having informative priors about sense distribution is thus important

for supervised systems in order to achieve performance better or at least equal to the

42 The SWATWOL tag set has recently (at the time of writing this dissertation) been augmented to cover the
following domains: Health, Physics, Chemistry and Language (linguistics).
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MFS baseline. However, as Bruce (1995) states, parameters that affect disambiguation

results are the test corpus, the target words and their degree of ambiguity, with Gale et al.

(1992a) and Leacock et al. (1993) emphasizing that the outcome of a disambiguation ex-

periment is more dependent on the target word rather than the disambiguation system

itself. In light of these observations, there is a need for dynamic bias/prior determina-

tion for a word’s senses that is specific for the domain and text type under test. This is

particularly important in the absence of sense-tagged data which could be used as an ap-

proximation of the sense’s true bias. It would also support the porting of WSD systems

to different domains and corpora. As a solution to this problem, McCarthy, Koeling &

Weeds (2004) have devised a system that ranks WordNet noun senses automatically by

using thesauri created automatically from a raw corpus, coupled with WordNet-based

similarity measures. With this system, they are able to determine the predominant sense

for a given domain and text type as required. This provides reliable prior estimates

which are useful for supervised WSD systems. However, as the results demonstrate, in

the absence of a priori sense distribution, assuming no bias for any of the senses is a

viable alternative, since the results obtained for both cases are comparable.

BBNs Most previous research using probabilistic models focuses on the simpler NB

classifier. In this study, the merits of using a more powerful probabilistic model, namely

the BBN is demonstrated. The BBNs, due to their intricate dependency modeling are

better suited to natural language data which is characterised by high correlation in

features, and this is supported by the better prediction results achieved using BBNs

over NB classifiers. Also, unlike other WSD studies where BBNs have been used to

model relationships between words to form a sort of semantic web or hierarchy (Wiebe

et al. 1998, Ramakrishnan et al. 2004), the BBNs have been used in a more ‘classical’

setting where they express the dependencies and relationships inherent in commonly

used feature sets. In addition, the prior knowledge supplied to the networks in terms of

bias settings naturally allows them to default to the MFS, in the absence of additional in-

formation. This guarantees the best possible performance (baseline) even with minimal

training data available.
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4.5 Semantic Tagger for Swahili

For the WSD task, resolving 2-way ambiguity required computing the probability that the

given test vector belongs to one of the two classes (representing each of the target noun’s

senses), and choosing the class that awards a higher probability as the right class, and

hence the correct sense. By changing the classification configuration of the BBNs, the

15 classifiers can be used to achieve semantic tagging. In this case, rather than choose

between two competing classes, all the classes are considered, and the one that gives the

highest probability out of the 15, is chosen as the winning class. The test vector is then

tagged with the corresponding class label. Formally, the semantic tagging task is described

as follows:

ctag = argmax
ci∈C

Pr (dt | ci) , i = 1 . . . 15

where C is the set of all 15 semantic classes, dt is the test vector representing the target

noun to be tagged, in context, and ctag represents the winning class with whose label the

target noun is tagged.

To test the proposed semantic tagging approach, 12 classes were chosen on the basis

of availability of comparable training data sizes so as to have near-uniform priors and avoid

biasing the result in favour of any class, and at the same time, allow the use of all avail-

able training data occurrences, during training. These classes are: HUMAN, LOCATION,

TIME, INSTITUTION, ARTIFACT, FOOD, MONEY, SUBSTANCE, DRESS, VEHICLE,

ANIMAL and UNIT. The training and test data that was used for test A (section 4.3.1) was

reused for the tagging experiments, with the only difference being the change in the testing

configuration as explained in the preceding paragraph. The results43 obtained are presented

in section 4.5.1.

43 The results shown are based only on context window size +/- 2, without NP-chunking, as this was shown
to achieve the best disambiguation results.
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4.5.1 Results
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Figure 4.24: Accuracy results for semantic tagging

As shown in figure 4.24, two sets of experiments were done - one where the noun prefix

(NP) feature was included (for feature set M) and the other where it was excluded. Since all

senses of an ambiguous word have the same noun prefix, this feature was excluded in the

WSD task as it was uninformative with respect to the sense. For tagging, this information

may be important, and was included. However, the two sets of experiments were carried out

with a view to assessing whether the Swahili noun prefix carries any semantic information

that would be important for semantic classification, an issue that has generated much debate

in Swahili linguistics as mentioned in section 3.3.1.

The results show that including the noun prefix feature yields an average increase

in the accuracy of the tagger of 6.8 percentage points. While it would be impossible to

make a conclusive statement regarding the role of the noun prefix with regard to semantic

classification on the basis of this figure alone, it does provide empirical evidence which

suggests that Swahili noun classes do contain a certain level of semantic coherence. This

is especially so for class 1/2 which is largely HUMAN in composition, class 7/8 which is

mainly comprised of ARTIFACTs and class 11 where most ABSTRACT nouns are found.
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Like in all previous experiments, feature set M achieves the highest accuracy (64.9%),

followed by L (45.3%) and lastly by W (39.0%). The highest overall accuracy, at 66.9% is

achieved by a combination of all feature sets (W+L+M). The tagging accuracy is however

much lower than that achieved for WSD for the same evaluation conditions, with the latter

registering accuracies of 87.5% for M, 84.3% for L and finally 81.8% for W. The drop in

performance is attributed to the increase in number of competing classifiers (classes) from

2 for WSD to 12 for tagging, without additional disambiguation information. With the tag-

ging’s 12-way ambiguity, the features’ discriminatory power is considerably reduced, with

some feature sets e.g. W not having sufficient discriminatory information to tell a majority

of the classes apart. However, all feature sets significantly outperform the MFS baseline of

14%.

Despite the lower accuracy figures achieved for semantic tagging, this experiment

has shown that it is possible to alter the test configuration of the BBN classifiers result-

ing in a semantic tagger. With improvement in the feature set to include global context as

explained in section 4.4, the semantic tagging process can be used to provide default se-

mantic tags for a Swahili lexicon. These could later be verified by hand. In addition, for

new (unknown) words, the semantic tagger provides a better than chance heuristic in de-

ciding the semantic properties for such words, and this could prove useful for other levels

of linguistic processing such as morphological disambiguation and syntax parsing.

4.6 Summary

The evaluation of the Bayesian classifiers using standard WSD performance metrics has

been presented in this chapter. The performance of the Bayesian classifiers surpasses that

of the simple majority classifier, on all the standard performance metrics. The results ob-

tained are thus satisfactory and promising, providing empirical justification of the WSD

methodology employed in the study. The BBNs outperform the simple NB classifiers and

this is attributed to their more sophisticated encoding of feature dependencies, unlike the

independence assumption made by the latter. This characteristic is especially important
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for natural language data, where features are highly correlated. The main research ques-

tions raised in section 3.6.1 have been addressed, with the conclusion that morphological

and part-of-speech features collected from a small window of ±2 is sufficient for Swahili

WSD. However, with a dependency-type grammar for Swahili, it would be possible to gain

valuable disambiguation information from verb-based feature sets. With regard to these

verb-based feature sets, the study made a comparative analysis of the performance of clas-

sifiers trained using verbal semantic information obtained separately from WordNet and

Levin’s classes. It was shown that the latter provides more succinct disambiguation in-

formation for nouns and could be used either as an alternative to, or in conjunction with

WordNet. The study also highlighted the need to edit the existing Swahili-English MRD

in order to make it more usable for computational purposes. By altering the configura-

tion of the BBN classifiers to include all of them in the classification of a test vector, a

semantic tagger is obtained. The results obtained by this tagger are highly significant since

despite the increase in sense granularity (from 2 to 12) and without a matching increasing

in disambiguation information, the tagger’s performance greatly exceeds the MFS baseline.



Chapter 5
Conclusion

The overall theme in this study is to advance the state of the art in LT for less-studied

languages. This has been achieved by considering the problem of WSD, which is essential

for language understanding applications, and which is considered to be one of the most

challenging of all NLP research areas due to its reliance on a varied range of linguistic,

statistical and real world knowledge.

The problem of WSD is addressed in the context of Swahili-English MT where it is

viewed as that of choosing the right English translation for an ambiguous Swahili noun.

The SOM algorithm is used in an exploratory phase to cluster occurrences of unambiguous

nouns to obtain a semantic landscape of Swahili nouns. By using WordNet’s noun classes

as a semantic class building block, the automatically obtained semantic landscape is refined

to yield fifteen major semantic classes, which are distinguishable on the basis of overtly-

marked linguistic features for Swahili, and which form the building blocks for the WSD

solution.

In total, the chosen methodology has been justified in terms of its theoretical founda-

tions as well as the results obtained when the developed system is used to tag both ambigu-

ous and unambiguous Swahili nouns with their appropriate semantic tags (senses) based

on a given context. Given the simplicity of the feature set in use, the use of automatically-

acquired training data and the reliance only on morphological analysis with minimal (sur-

face) syntactic information, the results achieved are considered satisfactory and promising,

since they surpass the simple majority classifier for both WSD and tagging. The results are

especially promising for tagging, where accuracy increases from 14% to 66%, registering

close to a five-fold increase over the majority classifier. This is especially significant given

that tagging is the overall NLP goal of WSD.

109
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5.1 Research contributions

The main contributions of this dissertation to LT research in general, and Swahili NLP in

particular are:

• Creation of a word category map for Swahili nouns using the SOM algorithm. This

map represents a semantic landscape for Swahili nouns that shows their distributional

properties and semantic similarities given a set of text-based linguistic features. For

each of the obtained categories, an analysis of the cluster properties shows what

features are important for given categories. This information is very useful as it forms

the foundation for subsequent semantic analysis for Swahili nouns. In this regard, the

SOM has been used as a feature selector to determine the most powerful features for

sense disambiguation.

• Automatic acquisition of annotated training data for WSD based on the obtained se-

mantic category map. By identifying unambiguous member nouns for each of the

semantic categories, occurrences of these nouns were extracted from the Swahili cor-

pus and labelled with their class tag. This produced sufficient labelled data required

for training the BBNs for WSD. In addition, the hand-tagged test corpus provides a

gold standard for Swahili WSD that can be availed to the research community. This

is an important contribution especially to the linguistic resources for Swahili, and

will positively impact Swahili NLP capability.

• Comprehensive in-vivo testing for SWATWOL where the quality of its output is

judged by the achieved WSD results. The achieved results vindicate the high accu-

racy reported for the morphological tagger and disambiguator. Some of the erroneous

WSD results caused by wrong SWATWOL analyses provide useful feedback that can

be used to further fine-tune SWATWOL’s analysis and disambiguation engine. The

improvement of WSD results with NP-chunking for those feature sets based on gram-

matical relations, offers empirical justification for the need to develop a dependency

parser for Swahili.
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• Development of a semantic tagger for Swahili nouns based on the SOM-induced

semantic landscape. This tagger can be used to augment a Swahili lexicon with broad

semantic tags that would support other levels of linguistic processing.

• Development of an unsupervised WSD system using BBNs. Due to its class-based

approach, the system is able to disambiguate any noun whose senses are represented

by different semantic classes, without having to build new word-specific discrimina-

tors for each additional noun, achieving general or broad-coverage WSD. Within a

MT context, the WSD system can be incorporated as a TWS module.

• Design of a cross-lingual WSD methodology that does not make heavy demands on

source language resource requirements, but instead exploits lexical resources avail-

able for other languages, specifically English (WordNet and Levin’s verb classes),

to provide vital semantic information for the source language. To this end, a com-

putational semantic lexicon for Swahili verbs organised according to Levin’s verb

classes has been produced, and can be used to provide basic semantic categorization

of Swahili verbs. In addition, the WSD system uses minimal computational resources

i.e. morphological analyzer and disambiguator, without the need for full-fledged syn-

tax parsing or bilingual corpora for TWS. This is a significant contribution especially

for less-studied languages that have minimal computational and lexical resources,

which is the case for most African languages. It demonstrates how to speed up LT

research for these languages, by re-using existing resources for other languages, and

concentrating only on critical source language analysis e.g. production of MRDs and

alignment of these to existing computational lexicons such as WordNet, morpholog-

ical analysis and corpora compilation.
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5.2 Limitations

The main limitation of the developed solution is that the system relies heavily on the clus-

ters or semantic categories obtained using the SOM algorithm, and this in turn determines

the types of ambiguities the system can handle. In this case, the simplistic feature set al-

lowed for the discovery of broad categories which represent coarse-grained ambiguities.

Consequently, disambiguation is only possible if a word’s senses belong to different cat-

egories. Disambiguation cannot be done for those words whose senses are of the same

semantic type (see table 3.18). However, as determined in the analysis of inherent am-

biguity types relevant for Swahili-English MT, most ambiguities are coarse-grained and

the system may thus cover a significant proportion of ambiguous nouns for MT purposes.

Nonetheless, highly polysemous nouns do occur within the language pair and would need

to be disambiguated too.

5.3 Future work

The following areas present interesting research directions that if undertaken, would further

improve the developed WSD solution:

• In the current configuration, the BBNs are trained in an unsupervised setting i.e. each

classifier is trained only with positive examples for its class. Such a configuration is

not optimized for classification since negative examples, which enhance a classifier’s

discriminatory power, are missing from the training data. The motivation for the

current configuration was to gain an insight into the typical element of an individual

class and to see what sorts of information are relevant in its definition independent of

the other classes. This information is important when performing causal analysis

to reveal what sorts of features are key in the definition of a particular class. It

provides linguistic insight into the relationship between various linguistic features

and semantics. In the proposed configuration, a single BBN, where the classification

variable is contained within the network, would be trained using all the training data
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for all classes. This would result in greater emphasis on the differences between the

classes, and perhaps improve the classification performance of the system.

• The developed system uses only local context as a source of disambiguation informa-

tion. Extending this to include global context - domain knowledge, topic and word

associations (collocations and co-occurrences) is expected to improve results consid-

erably. Related to this proposal, is the adoption of a two-tier approach to WSD where

a word-specific classifier that takes advantage of context information that is specific

and highly discriminative for a particular word is first employed in the disambigua-

tion of the word. If the confidence threshold for this classifier is met, then its decision

is taken to be the right one. However, if this is not the case, the system then falls

back to the general class-based classifiers. In this way, the disambiguation algorithm

attempts disambiguation by combining both types of disambiguation information -

local and global. Further work could also entail using a variety of different feature

sets to obtain the initial word category maps, as this may yield different classes which

in turn has important consequences for the sense granularity and ambiguity coverage

of the implemented WSD solution.

• In the absence of dependency parsing, simplistic modules were written to facilitate

the acquisition of selectional preference information, by determining the direct ob-

jects and subjects of contextual verbs. The accuracy of this process is critical to the

disambiguation performance of the WordNet and Levin-based feature sets. With a de-

pendency parser for Swahili available, many errors in misclassification due to wrong

processing of grammatical relations by the developed modules would be eliminated,

and the true performance of these feature sets could be better determined. In addi-

tion, proper and complete editing of the existing Swahili-English dictionary and its

alignment to WordNet and Levin’s classes could have positive effects on the disam-

biguation performance, by ensuring that selectional preferences for more contexts are

available for training, than is the case currently where this information is unavailable

for approximately 12% and 26% of the verbs for WordNet and Levin respectively.
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• Development of a named-entity recognition subsystem that would not only help in

the disambiguation of proper vs. common nouns e.g. ‘juma’, but would also provide

useful features for the disambiguation of other classes. Identifying place names, food

& beverage names, person names, disease names etc., would provide very reliable

disambiguation cues for LOCATION, FOOD, PERSON and ABSTRACT classes,

where such proper names occur within the context of an ambiguous noun. For ex-

ample, in the fragment ‘mto wa Tana’(river/pillow of Tana), recognizing that ‘Tana’

is the name of a river enables selection of the LOCATION sense (river) over the

ARTIFACT sense (pillow).

• Given that the general methodology is applicable to any part of speech, the WSD

system can be readily extended to cover other word categories, especially verbs. This

would entail following the same procedure that was outlined for noun WSD. How-

ever, rather than use WordNet to supply nominal semantics, the developed semantic

tagger could be used to provide this information. WordNet could then be used to

supplement the tagger’s information. However, due to the finer granularity of verb

senses, careful selection of features would be required for the SOM clustering step, in

order to obtain more and well-separated clusters, that would be sufficient to support

resolution of the higher degree of ambiguity. In addition, since the methodology has

been designed to be data-driven and thus language independent, it can be adapted to

other less-covered languages, depending on their existing resources. At a minimum,

a bilingual dictionary is required, and an additional requirement is that the second

(target) language be necessarily one that has adequate resources, such as corpora and

computational lexicons44. For those languages that have a reasonably sized monolin-

gual corpus, the method can be applied directly as it was for Swahili. However, for

those without such a corpus, the WSD method can be modified to take advantage of

the target language corpus as a source of disambiguation information. This would

entail matching the translated context of the ambiguous source language word to a

44 The EuroWordNet project has the potential to increase the number and diversity of the linguistic and com-
putational resources available to facilitate NLP of less-studied languages. [http://www.illc.uva.nl/EuroWordNet/]



5.3 Future work 115

target language corpus to identify the most probable target language sense, achieving

disambiguation.
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