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ABSTRACT 
Laitinen, N.O., 2003.  
Opening New Perspectives for Visual Characterisation of Pharmaceutical Solids. 
Dissertationes Biocentri Viikki Universitatis Helsingiensis 16/2003, pp. 59.  

ISBN 952-10-1037-1, ISBN 952-10-1038-X (pdf), ISSN 1239-9469 

 
The physical characterisation of pharmaceutical solids is fundamental in the drug development 

process. At present, the utilisation of descriptive image information in pharmaceutical technology 

is very limited.  Subsequently, the development of this discipline creates a challenge within the 

characterisation of pharmaceutical solids. Research contributions aiming to improve the 

efficiency of pharmaceutical manufacturing processes are needed. The attempts in developing 

image-based particle characterisation tools for pharmaceutical powders should strive for reliable, 

fast, and easily usable methods. New ideas in the field of visual characterisation can broaden the 

scope of analytical techniques in pharmaceutical technology. 

 

The aim of this study was to find new ways of using image information in pharmaceutical 

powder technology and characterisation of pharmaceutical solids. The goal was to extract 

relevant information from powder surfaces with the aim to broaden the use of image information 

compared to the commonly used image analysis (IA) approaches in pharmaceutics, which only 

measure properties of individual particles. Moreover, the aim was to link the information from 

powder surface images with functional physical properties of pharmaceutical solids and to 

enhance the use of surface imaging as a tool within pharmaceutical process analytical 

technologies. 

 

The characterisation of particulate populations through surface images was successful, with 

respect to classification of powder images, measurement of the particle size of granular materials 

and the prediction of tabletting behaviour of granules. A new parameter for describing the 

particle size of granular material, the grey scale difference matrix (GSDM), was developed and 

used effectively in particle size measurement. The idea of using a content-based image retrieval 

(CBIR) technique for pharmaceutical powder images was also introduced and a basis was laid for 

the future use of CBIR in powder characterisation. In addition, the presented visual 

characterisation approach was effectively used as a process analytical tool. The utilisation of 

surface image information to assure acceptable end product quality at the completion of a 

granulation process was also possible.  
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1. INTRODUCTION 
 

 “A picture tells more than a thousand words”. Visual information and seeing is 

considered to be an indicator of truth and it is thus connected to reason. On the other 

hand seeing is linked with emotions and is therefore associated with a certain amount of 

subjectivity. If visual or image information is used in science, exact descriptors for this 

information are needed. The utilisation of descriptive image information in 

pharmaceutical technology is rather limited.  Subsequently, the development of this 

discipline is a challenge within physical characterisation of pharmaceutical solids. 
 

The physical characterisation of pharmaceutical solids is fundamental in the drug 

development process. Complete physical characterisation of solid materials is possible 

with high-resolution analytical techniques on the molecular, particulate and bulk levels 

(Brittain et al., 1991, Pifferi, 1999, Stephenson et al., 2001). Byrn et al. (1995) introduced 

decision trees for the controlling of different crystal forms to develop information on 

pharmaceutical solids for both scientific and regulatory purposes. Their aim was to 

anticipate towards direct approach in the characterisation of pharmaceutical solids and 

eventually to faster approval of regulatory documents containing information on 

pharmaceutical solids. The use of solid-state spectroscopy techniques used in the physical 

characterisation of the active pharmaceutical ingredient (API), excipients, physical 

mixtures, and the final dosage form has been recently reviewed (Bugay, 2001). 

Stephenson et al. (2001) have addressed the quantitative issues and methods in solid-state 

characterisation. The usual molecular-level properties are addressed using infrared 

spectroscopy and nuclear magnetic resonance spectrometry. Important particulate-level 

properties are particle morphology and particle size distribution, not to mention 

properties that are revealed using powder X-ray diffraction and thermal methods of 

analysis. Important bulk-level properties are e.g. surface area, porosity and pore size 

distribution and powder flow characteristics (Brittain et al., 1991).  

 

The characterisation of powders and granular materials is of great interest within 

pharmaceutical sciences. There has been awareness for characterisation of particulate 

materials in the pharmaceutical sciences for a long time (Rees, 1977). As approximately 

80 % of all drug products are solids i.e. tablets or capsules, the understanding of the 

physical characteristics of powders and granules is essential (Muzzio et al., 2001). For the 
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pharmaceutical industry, a comprehensive knowledge of these materials has a major 

economic impact. The physical characteristics of solid particulates have to be considered 

and studied throughout the development process of a product, from the preformulation 

stage to large-scale manufacturing. In development and manufacturing many powder 

handling steps are involved, including crystallisation, blending, granulation and 

compaction. Thus, different kind of interactions between particles and between particles 

and process equipment occur. All these interactions together with specific behaviour of 

bulk materials in certain unit operations may give rise to many problems. 

 

Development of process analytical technologies aims at improving the efficiency of drug 

manufacturing processes. At present, the Food and Drug Administration (FDA) is 

establishing guidelines for process analytical technologies (PAT) to facilitate the 

introduction of new technologies for the pharmaceutical industry. The development aims 

at systems for analysis and control of manufacturing processes based on timely 

measurements of critical quality parameters and performance attributes of raw and in-

process materials.  The initiative will focus on technologies that will assure acceptable 

end product quality at the completion of the process.   

 

Research contributions aiming to improve the efficiency of pharmaceutical 

manufacturing processes are needed. The attempts in developing image-based particle 

characterisation tools for pharmaceutical powders should strive for reliable, fast, and 

easily usable methods. New ideas in the field of visual characterisation will broaden the 

scope of analytical techniques in pharmaceutical technology. These new tools should be 

exploited comprehensively in terms of potential use in the full development cycle of 

pharmaceutical solids. 
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2. REVIEW OF THE LITERATURE 
 

2.1 Pharmaceutical powders and granules 
 
The fields of pharmaceutical product development and manufacturing, which mostly deal 

with particle technology, should focus more on physical characterisation of 

pharmaceutical solids, especially powders and granules (Muzzio et al., 2002). The present 

literature review concentrates on physical characteristics of particulate and bulk level 

properties of pharmaceutical powders and granules. In the next sections particle size and 

shape properties are discussed together with a brief insight into common particle size 

analysis methods.  Also the fundamental phenomena of segregation, flowability, 

adhesion, cohesion and triboelectricity are covered. A special emphasis is put on imaging 

techniques and common data projection techniques are also described. 

 

2.1.1 Classification of powders 
 

Most often the term powder technology will cover both powders and granules.  APIs or drug 

substances and excipients as such are often regarded as powders.  Granules are usually 

considered to be a product of a size enlargement process i.e. granulation. According to 

British Standard 2955 (1991) a powder consists of dry, discrete particles with a maximum 

dimension of 1000 µm. A classification of pharmaceutical particles based on their size is 

given by Barber (1993): coarse powders >1000 µm, conventional powders 50-1000µm, 

fine particles 1-50 µm, very fine (submicron) particles 0.1-1 µm and ultrafine particles < 

0.1 µm. 

 
2.1.2 The complexity of powder systems 

 

A powder is a complex system with solid–solid and solid-air interactions, since a gaseous 

phase exists between the solid particles. Powders are unlike other physical states of 

matter. Powders are related to solids since they can resist deformation. Powders also 

posses the ability to flow like liquids do and they can be compressed like gases 

(Swarbrick and Boylan, 1988, Geldhart, 1990).  Particle size, shape and adsorption of the 

gaseous phase on the surface influence the properties of a powder or granular material 

(Geldhart, 1990).  Consequently, the bulk behaviour or the behaviour of the collective 
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properties of the material is influenced by these factors. The bulk material will usually go 

through several powder handling situations and processes. This requires fundamental 

understanding of the nature of the particles, their size, shape, surface morphology, 

packing conditions and interparticulate forces. The handling of a bulk mass is influenced 

by any factor which has an effect on interactions between particles. Early reviews on 

particle-particle interactions of powders can be found (Hiestand, 1966).  Still today, 

research in powder technology concentrates on relationships between particle properties 

and bulk behaviour of industrial powders (Hoffman et al., 1996).  

 
2.1.3 Particle size  
 

The bulk properties of a material depend to a great extent on its particle size distribution 

(Barber, 1993).  The size, as a scalar measure, describes the dimensions of a particle in a 

population.  The size of spherical and other regular particles is easy to define, but it is 

impossible to use linear measures for determining sizes of irregularly shaped particles. 

Derived diameters, so called equivalent diameters, are determined by measuring a size-

dependent property of the particle, which is then related to a single linear dimension. 

Particle sizes of irregular particles are usually presented as equivalent spherical diameters. 

Typical equivalent size parameters are listed in the literature (Allen, 1990, Barber, 1993, 

Washington, 1992). Normally the equivalence is established on particle mass, volume, 

projected 2-dimensional area or sedimentation rate diameters. Examples of the most 

typical spherical equivalence diameters (d) are expressed with the equations 1-3. 

 

3

6
              : vv dVddiameterVolume π=      (Eq. 1) 

 
2     : ss dSddiameterareaSurface π=      (Eq. 2) 

 

2

4
  : aa dAddiameterarea Projected π=      (Eq. 3) 

 

The particle size measurement results are most often presented with a particle size 

distribution (PSD). Depending on the measurement technique employed, e.g. number, 
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volume and mass distributions are used. Mathematical transformations between the 

different kinds of distributions can always be made. 

 

The PSD and surface area of an API are properties of great importance with regard to 

the bioavailability and the processing of drug products.  The regulatory authorities have 

made international guidelines for acceptance criteria for particle size distributions of new 

drug substances (ICH Q6A, 1999). Within the specific guideline, specifications should be 

included if the particle size has an impact on the quality of the drug substance or the final 

product.  The particle size has to be evaluated with respect to whether it has a significant 

effect on dissolution rates, bioavailability, stability, prosessability, drug product content 

uniformity and appearance. These aspects and the influence of particle size on 

physicochemical properties of pharmaceutical powders have been extensively studied 

(Atkinson et al., 1962, Lees, 1963, Kaneniwa et al., 1967, Ikekawa and Kaneniwa, 1968, 

Hunter and Ganderton, 1972, Walton and Pilpel, 1972, Jounela et al., 1975, York, 1978, 

Hintz and Johnson, 1989, Ibrahim et al., 1988, Yalkowsky and Bolton, 1990, Johnson 

and Swindell, 1996, Bønløkke et al., 2001, Scholz et al., 2002).   

 
2.1.4 Particle shape 

 

It is very difficult to define shapes of irregular particles. The usual means to describe 

shapes include terms such as acicular, angular, fibrous and flaky (BS 2955). These 

common descriptions do not quantitatively illustrate a shape. Numerous researchers have 

worked with defining shape parameters, such as, roundness, sphericity, circularity, 

flakiness, etc.  (Cox, 1927, Wadell, 1932, Heywood, 1937, 1954 ).  Also approaches based 

on Fourier descriptors and fractal geometry has been used in representation of particle 

shape and morphology (Meloy, 1977a, 1977b, Kaye, 1981, Luekens, 1982, Rösler, 1987, 

Carstensen and Franchini, 1993). The methods of shape characterisation have been 

reviewed by Kaye (1997), Allen (1990) and Barber (1993). Within pharmaceutical 

technology shape factors have also been used and studied in analysis of powders, 

granules and pellets (Ridgway and Rupp,  1969, Staniforth, 1987, Hellén, 1993, Podczeck 

and Newton, 1994, 1995, Podczeck et al., 1999). 
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2.1.5 Segregation 
 

Differences in particle size, shape and density in a powder system may cause segregation, 

e.g. during mixing or the handling of a tabletting mass. The difference in particle size is 

the most important factor (Williams, 1990).  The particle size distribution of both drugs 

and excipients will have consequences on the mixing phenomena and potential 

segregation of mixed materials (Carson, 1988, Wong and Pilpel, 1990). Segregation of 

coarse and fine particles can result tablet die fill variations and hence weight variation in 

tablets. Travers (1988) and Johanson (1996) have described the most usual mechanisms 

of segregation (1996). The ability of smaller particles to fit between coarser particles is 

critical for segregation. A size difference of three times or more in particle diameter may 

cause considerable segregation (Johanson, 1996).  

 

2.1.6 Adhesion, cohesion and triboelectrification 
 
Profound forces that have an impact on bulk behaviour are adhesion and cohesion. 

Cohesion occurs between similar surfaces (particle-particle) and adhesion e.g. between 

the particle and an instrument wall.  The forces are mainly non-specific short-range van 

der Waal’s forces. The van der Waal’s forces increase when particle size decreases and 

diverge with changes in relative humidity. Other attractive forces in interparticulate 

cohesion can be electrostatic forces, which arise from contact or frictional charging 

(Staniforth, 1998). Generally, particles are charged statically by grinding, attrition and 

collision or triboelectrification. When dry particles are sieved, mixed and moved through 

a hopper, surface charge can also be generated.  According to Staniforth (1982) 

excipients are normally charged negatively in contact with metal or glass surfaces, while 

positive charges are created with plastic surfaces. Moisture, particulate contamination and 

method of cleaning of processing equipment during pharmaceutical manufacturing 

operations may influence the electrostatic behaviour of powders (Eilbeck et al., 2000). 

Rowley (2001) studied pharmaceutical solid systems and found that charge acquisition 

was inversely related to particle size where contact surface contamination was negligible.  

Electrostatic studies on pharmaceutical powders have recently been made by Murtomaa 

(2002). Pharmaceutical compounds are cohesive in nature meaning that their flow 

characteristics are most likely undesirable (Brittain et al., 1991). A typical way of reducing 
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the cohesivity and improving flowability of materials is by different granulation 

techniques. 

 
2.1.7 Flowability  
 

The importance of flow properties in powder handling cannot be overemphasized 

(Swarbrick and Boylan, 1988). Carr (1965) has done fundamental work in evaluation and 

classification of the flow properties of solids.  In drug product formulation work the 

understanding of powder flow properties is essential. Flowability influences and may 

cause problems in the mixing of powders, as well as tabletting and encapsulation 

processes. The powder flow properties are related to weight variation in tablets and 

capsules and consequently dose uniformity. For the pharmaceutical industry, problems 

with flowability can be critical and cause major economic setbacks (Prescott and 

Hossfield, 1994). The particle size of a material has an impact on the flow properties of a 

powder (Staniforth, 1988). Particles larger than 250 µm are usually relatively free flowing.  

Finer particles (<100 µm) with larger surface areas tend to be more cohesive, which 

results flow problems. The flow rate and particle size has been shown to have a strong 

correlation (Gold et al., 1968, Danish and Parrot, 1971). However, the particle shape also 

affects the flow properties. Spherical particles have least interparticle contacts and good 

flow properties. The flowability of elongated and irregular particles is poorer. Thus, 

powders with similar particle size but different shape characteristics may have very 

different flow properties. The effects of particle shape on particle flow have been 

extensively studied (Ridgeway and Rupp, 1969, Danjo et al., 1989, Cartilier and Tawashi, 

1993).   
 

2.2. Particle size measurement techniques 
 

Various techniques for measuring the particle size distribution of powders exist. A single 

measurement technique cannot be used to cover the wide size range from nanometres to 

millimetres. Moreover, the many aspects have to be considered before making the proper 

choice of measurement principle e.g. the capital costs versus running costs, speed of 

operation, degree of skill required for operation, and most important, the end-use 

requirement (Show et al., 1998). Different particle size analysis techniques are well 

described in the literature (Allen, 1990, Washington, 1992, Iacocca and German, 1997, 
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Show et al., 1998). Microscopy or computer-assisted microscopy is often considered as a 

reference method in particle size analysis since they enable visual inspection of particles. 

Probably the most common particle-sizing methods for pharmaceutical dry powders and 

granules are sieve analysis, laser diffraction and computerised image analysis techniques. 

According to Brittain (1991) microscopy and sieving are normally carried out on dry 

powders and are truthful indicators of the actual particle size of a powdered solid. 

Measuring particle size distributions by sieving is a simple and inexpensive method and it 

gives reproducible results.  

 

Nevertheless, there are many problems in sieving. For reaching better accuracy, great 

care of sieves and careful calibrations are necessary (Allen, 1997). Sieving is a useful 

technique in particle sizing if the goal is to produce a certain size fraction. It is also 

convenient for easily flowing and fairly coarse material above e.g. 100 µm with a few 

fines (Washington, 1992). The choice of sieving time can have considerable effects on 

the results and the amount of material sieved may affect reproducibility.  Material 

cohesiveness may also cause errors in measurements and result in false size distributions. 

The amount of sample in sieving is relatively large, therefore, it is not suitable for 

expensive materials or materials of which only small quantities are available.  Sieve 

analysis is also very time consuming. 

 

Optical microscopy has a magnification limit approximately of 600x. Electron 

microscopy may be utilised at remarkably higher magnifications; it gives more 

information about surface structures. Simple microscopic examination is relatively slow 

and the information is only visual and descriptive. However, microscopy can be used in 

conjunction with image analysis systems. Microscopy is often used as an absolute method 

of particle size analysis (Allen, 1997). Yet, there are some problems encountered in 

microscopic examination of particles. When three-dimensional particles are studied they 

usually lie in their energetically most favourable position and tend to show their 

maximum area to the viewer. Since particles orientate in this manner particle sizes have a 

tendency to be somewhat larger than measured with other methods. The analysis can be 

time consuming. A relatively small number of particles is usually analysed, which may 

lead to statistical errors. The introduction of combined microscopy and computerised 

analysis systems has made particle studies faster, consequently more particles can be 
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examined. Sample preparation plays a significant role for successful particle size analysis 

in microscopy (Iacocca and German, 1997). 

 

Washington (1992) lists various errors and disadvantages of laser diffraction size analysis, 

such as poor submicrometer performance and computing artefacts. A disadvantage is 

that the amount of sample is very large when using the particles in air (PIA) -method. 

For small particles, the particles in liquid (PIL) -method is used in order to achieve an 

effective dispersion. For some materials, finding a well-dispersing and suitable solvent 

might be difficult. There are many advantages with laser diffraction analyses, for 

example, the ease of operation and that the instruments usually produce very 

reproducible results. Light scattering methods do not produce flawless data for particles 

in all size ranges (Iacocca and German, 1997).  Inaccuracy is created e.g. by particle 

aggregation, multiple particles in the measurement zone, unknown or improper relative 

refractive index. 

 

Instruments that are based on measurements of a particle’s aerodynamic time-of-flight 

have been developed and have gained a lot of popularity in particle size analysis of 

pharmaceutical materials, especially within aerosol sciences (Dahneke, 1973, Dahneke 

and Cheng, 1979, Niven, 1993, Mitchell and Nagel, 1996, Laitinen and Juppo, 2003). 

Other methods within pharmaceutical particle size analysis include electrical sensing zone 

(Beaubien and Vanderwielen, 1980), sedimentation and photon correlation spectroscopy. 

Comparative studies between methods have been made (Kanerva et al., 1993, Etzler and 

Sanderson, 1995, Andrès et al., 1996, Etzler and Deanne, 1997, Kaye et al., 1997). On-line 

techniques for particle size process control have been developed and reported, including 

image processing-based systems and light scattering methods (Lin and Miller, 1993, 

Watano and Miyanami, 1995, Bonifazi, 1997, Novales et al., 1998, Scott et al., 1998, 

Perry, 1998, Watano et al., 2000, Bordes et al., 2002). The concept of computerised 

image analysis is described more thoroughly below. 
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2.3. Image analysis 
 

2.3.1 Digital image information 

 

A digital image consists of picture elements called pixels. The pixels contain information 

about the brightness of a certain location in the image.  Therefore, the term 

monochrome image or a black and white image refers to a two-dimensional matrix of 

pixels with particular levels of brightness. Only monochrome images are covered in this 

text since these were used in the experimental part of this thesis. The concept of digital 

images is well described in textbooks (Sonka et al., 1998, Gonzalez and Woods, 2001).  

The image and its two-dimensional pixel matrix can be presented as a light intensity 

function f(x,y), where x and y are discrete valued spatial coordinates and f at the point 

(x,y) is proportional to the brightness of the image at that point. Depending on the 

application and imaging resolution, the size of the images i.e. size of its brightness matrix 

can vary. In monochrome images, for each pixel, the grey level that corresponds to the 

average transmitted beam from the surface of the object, is typically characterised by a 

number in the 0–255 range. In this range 0 is totally black and 255 completely white. 

Figure 1 illustrates the concept of pixels and grey level values in an image. 

 

 

 

 

In an image the three-dimensional (3-D) reality is projected on a plane. A certain amount 

of 3-D characteristics is often required in order to get quantitative information about 

particle morphology. To acquire 3-dimensionality in images, viewing under different 

angles is possible (Russ, 1999). Furthermore, depending how the picture is produced 

different amount of 3-D features can be distinguished. For example, optical microscopy 

has a poorer depth of field than scanning electron microscopy. 3-D features can also be 

revealed using lateral illumination (Pons et al., 1999). These features are connected to 

106 112 116 120 120 122 122 121
95 105 112 117 118 119 120 120
84 95 104 111 114 116 117 118
76 86 96 104 108 111 113 115
71 80 89 98 103 106 109 112
66 75 82 90 97 101 105 107
61 68 75 82 89 94 98 101
56 60 67 74 80 84 88 91
52 54 58 63 69 74 79 85
51 52 52 57 62 66 71 77

Figure 1. The concept of a digital image. Left: original digital image (resolution 800x600), Middle: top 
right corner of the original image with visible pixels, Right: gray level values of the white rectangular area 
from the previous image. 
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shading effects that expose the topography or the visual texture of an object or a surface 

(Fig. 2.). A rough structure produces an image with large grey scale variations and 

smoother structures generate images with smaller grey scale variations. If we consider 

particulate analysis, in controlled illumination conditions comparisons between materials 

can be made. The challenge is to find, extract and quantify the information that is 

produced. 

 

 
 
2.3.2 Computerised image analysis in powder technology 

 

Computerised analyses of microscope pictures have gained much popularity in particle 

size and shape analysis since they allow relatively fast handling of a great amount of 

information in a picture. Computerised systems make particle size measurements faster 

and more practical. Image analysis (IA) systems allow the user to process images.  

However, Pons et al. (1999) have discussed the reluctance of the use of IA in routine 

analysis of particle morphology e.g. due to relative slowness of the process and the large 

size of the image as a dataset. Orientation effects of particles can also distort the 

generated IA data (Turbitt-Daoust et al., 2000). 

 

By image processing it is possible to correct defects in the measured particles, e.g. 

enhance the visibility of particular structures, outline the particles from the background 

and perform steps to separate touching objects or select those particles to be measured 

(Russ, 1999). The field of image processing is used for two purposes: to improve visual 

appearances of images and to prepare images for measurement of characteristic features 

and structures.  In general, image processing and analysis methods include the steps of 

image acquisition, preprocessing, segmentation, data extraction and data representation 

Shade  
formation  

Direction of lateral light

Surface

Figure 2. Shade formation using lateral illumination.  
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(Nazar et al., 1996, Russ, 1999). Image acquisition means digitalisation of the picture, e.g. 

transformation of the picture to numerical values for the computer. Correcting image 

faults such as noise and brightness defects and enhancing distinct characteristics of 

images falls under preprocessing. In segmentation, the aim is to select the objects of 

interest. Different image analysis systems apply many operations for separating objects 

from each other with procedures such as skeletonisation, watershed and erosion-dilation. 

In traditional IA of powders and granules different particle size and shape parameters of 

individual particles are then measured. 

 

Since image processing tasks are needed the IA procedure is usually performed semi-

automatically and a skilled operator is usually needed. The largest source of error in 

optical IA is probably the sample preparation i.e. the dispersion of the powder (Iacocca 

and German, 1997). However, even automated on-line systems have been successfully 

used (Watano and Miyanami, 1995, Watano et al., 2000). In pharmaceutical technology, 

computerised image analysis has been widely used in particle size measurement and 

shape analysis (Staniforth, 1987, Hellén, 1993a, 1993b, Lindner and Kleinebudde, 1993, 

Podczeck and Newton, 1994, 1995, Etzler and Sanderson, 1995 Andrés et al., 1996, 

Eriksson et a., 1997, Hundal, 1997, Podczeck 1997, Podczeck et al., 1999, Larsen et al., 

2002). According to Pons et al. (1999) there is a demand for routine morphology 

quantification of particles. However, they stated that operator dependence in sample 

preparation does not enable real –time process control.   

 

2.3.3 Content-based image retrieval  
 

The objective of the development of content-based image retrieval (CBIR) systems is to 

efficiently extract relevant feature information from images. These systems compare 

images based on the content information. Recent descriptions of principles of visual 

information retrieval have been given in literature (Del Bimbo, 1999, Lew, 2000, Castelli 

and Bergman, 2002). Gudivada and Raghavan (1995) have represented possible 

approaches that can be used in similarity retrieval: retrieval by texture, shape, spatial 

constraints, colour, sketch, volume, motion, objective and subjective attributes, and text. 

The development of CBIR systems uses ideas from areas such as knowledge-based 

systems, cognitive science, user modelling, computer graphics, image processing, pattern 

recognition, database management systems, and information retrieval. 
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According to Aigran et al. (1996), a system for content-based image retrieval by similarity 

rests on three components: 1. Extraction of features from images and an efficient system 

of representation and storage of this data, 2. Assortment of meaningful and effectively 

computable similarity measures, 3. User interface for the choice of the similarity measure 

to be applied and for efficient presentation of retrieved images. 

 

In a typical content-based image retrieval system, the image features are pre-computed 

and indexed as the images are loaded in the system. The features include properties such 

as local intensity histograms, edge histograms, region-based moments. The features are 

stored in a database and to make a query, the user normally presents a sample image to 

the system. Retrieval by a user-drawn sketch is also possible. When the query image has 

been introduced, its features are calculated and compared against the features of the 

images in the database. The result of the comparisons is a score that indicates the degree 

of similarity and is used to rank order the images. This process can be very fast since 

image features are pre-computed in the image insertion phase, and distance functions 

have been designed to be extremely efficient at query time (Bach et al., 1996). A 

schematic diagram of the operation of a CBIR system is presented in figure 3. 

 

 

 
Query by image  

content information 

Image 
database 

Selected query 
image(s) 

Feature 
 information 

Selection of weights of  
content measures:  
shape, texture, color  

Similarity 
measure 

Images in 
certain 
rank order 

Figure 3. A diagram of a content-based image retrieval system.  
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Content-based image retrieval systems create an abstraction of the raw information of 

images in the form of features. Current approaches to CBIR differ in terms of choice of 

image features extracted, level of abstractions manifested in the features, similarity 

functions used and the degree of desired domain independence. Two major categories of 

features are primitive and logical (Gudivada and Raghavan, 1995). Primitive image 

features include, e.g. object centroids and boundaries. Logical features are abstract 

representations of images at various levels of detail. The logical features express the 

deeper domain semantics represented in an image (Gudivada and Raghavan,1995). For 

image information, features may be regarded as belonging to five abstract data types 

presented by Bach et al. (1996): values, indexed values, distributions, indexed 

distributions, and graphs. A value is usually a set of vectors that presents a global 

property of the image. An indexed value is an indexed set of vectors local to a region of 

an image. A distribution, like a colour histogram, is a multi-dimensional vector. An 

indexed distribution is a local pattern like the intensity profile of a region of interest. A 

graph represents relational information like spatial relations of objects in an image. 

Queries of the image data include comparisons of feature vectors of a query image with 

the stored database images.  

 

Colour, texture and shape are the most commonly acknowledged and utilised feature 

categories and the data type grouping in the previous paragraph suits them all. The grey 

level images used in this study are a special example of colour features. A number of 

researchers have proposed methods for image indexing based on colour (Ng et al., 1995, 

Smith and Chang, 1996), texture (Pentland et al., 1994, You et al., 1997, Aksoy and 

Haralick,  1998) and shape (Mehrotra and Gary, 1995). Caelli and Reye (1993) and 

Niblack et al. (1993) have described methods for indexing combining all these three 

features.  

 

CBIR systems may be developed with emphasis on automatic and dynamic feature 

extraction or with weight on semi-automatic extraction (Gudivada and Raghavan 1995). 

Ideally all object and feature identifications would be done automatically, but automatic 

methods to identify and outline objects are not yet adequate enough. Naturally, manual 

or semi-automatic methods are more time-consuming, but they are often necessary for 

satisfactory feature extraction. Colour and texture features are often extracted without 

manual intervention. One of the most difficult aspects of content-based image retrieval is 
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retrieval by shape (Faloutsos, 1994). Ashley et al. (1995) describe two methods, enhanced 

floodfill and snake-based edge following, for semi-automatic object shape identification. 

As shapes can be arbitrary, exact descriptions of shape are very difficult. There is no 

mathematical definition that would accurately match the human conception of shape 

(Del Bimbo, 1996). Many practical shape description methods exist, but there is no 

generally accepted methodology of shape description (Sonka et al., 1998). In a CBIR 

system, described by Faloutsos et al. (1994), the primary shape features are based on the 

combination of area, circularity, eccentricity and major axis orientation, in addition to a 

set of algebraic moment invariants.   

 

CBIR systems for general use do not usually meet the same level of performance as 

systems which are tuned for special applications. Therefore, almost every application 

requires special development of a CBIR system. The aim is often to develop systems 

which can distinguish the objects in an image and which have the capability to learn, e.g. 

by employing relevance feedback given by the user. Several image retrieval applications, 

such as, QBIC (Niblack et al., 1993, Flickner et al., 1995), Photobook (Pentland et al., 

1994), VisualSEEk (Smith and Chang, 1996), Virage (Bach et al., 1996), and PicSOM 

(Laaksonen et al., 2000, 2001, 2002) have been developed and described in literature. 

 

CBIR systems have been used with applications in various fields. In medicine, magnetic 

resonance chest images were retrieved by certain proposed spatial features of images 

(Hou et al., 1992). Gupta et al. (1996) described a prototype content-based retrieval 

system for ophthalmologic images. Medical applications for CBIR are useful since image 

archives are large, and certain people need to use the image databases effectively. Medical 

images are often not only retrieved by looking at the image content but also in terms of 

other information associated with the images, such as text describing treatment and 

diagnosis (Gudivada and Raghavan, 1995). Retrieval systems have been developed also, 

e.g. for fingerprint identification (Manjunath and Ma, 1996) and for geographical images 

(Ratha et al., 1996, Soffer and Samet, 1996). 

 

2.3.4 Surface and bulk imaging 
 

Optical techniques for measurement of surface characteristics are widely used in different 

industrial inspection applications (Cielo, 1988). Often, these industrial techniques are 



 

 22

used to characterise roughness properties of different kinds of surfaces in process 

control and quality control. Russ (1999) has described the concept of surface imaging.  

 

The inspection of surface information can be made in terms of qualitative or quantitative 

properties. To obtain quantitative information exact descriptors for the image 

information is required. In order to receive qualitative data generalisation of the image 

information is possible.  

 

A key property of a bulk particulate material is a typical pattern of the image field-of-view 

called texture (Fig. 4.). Texture is related to distribution of the spatial variation in grey 

scale levels (or colour levels in colour images) and can be connected to general bulk-

particle characteristics (Bonifazi, 2002).  Global measurements of the texture that is 

observed in an image can portray information about the size of the particles (Novales et 

al., 1998). Smaller particles lead to finer textures and larger particles to coarser textures. 

Apparently the presentation geometry, e.g. the magnification and resolution used will 

affect the outcome. Standardised imaging conditions for this kind of textural 

comparisons are therefore needed. An advantage of textural methods is that particles do 

not have to be identified individually. Bonifazi (2002) has shown that particulate overall 

pictorial characteristics influenced by grain size, shape and colour distribution can be 

correlated to the chemical composition of powders.  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Bertrand et al. (1991) characterised the texture of pea samples by the grey level run 

lengths method and found it to be useful in powder classification. A grey level run length 

Figure 4. Demonstration of textural differences in a set of six different granules with dissimilar
size characteristics. Smaller particles have finer textures and larger particles coarser textures. 
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is a set of subsequent pixels having the same grey scale value. In this approach, for each 

grey level, the number of runs that have a certain length are counted for a given 

direction. Novales et al. (1998) successfully used global features of images in particle size 

characterisation of a cereal milling process. The methods applied were based on textural 

analysis, such as grey level run lengths and grey level co-occurrence.  Gray level co-

occurrence describes the spatial relationships between grey level values. Russ (1999) has 

covered the general concept of texture and different texture operators.  

 

Bonifazi and co-workers (1997, 2002) discussed the new perspectives in the field of 

particulate solids control of bulk or collection of particles instead of single particles. 

Huang and Esbensen (2000) introduced a method of IA that does not deal with 

individual particles and acquires images directly from in-situ powders. They addressed 

that this type of images of the entire field-of-view of powders also contain some 

information which relates to individual particles, but mainly about the bulk powder. They 

presented that this information is the reflection of complex bulk properties, such as 

flowability and fluidisation velocity.  In a later study with seven reference powders Huang 

and Esbensen (2001) established quantitative predictive models between multivariate 

images and particle size, density, minimum fluidisation velocity, wall friction angle and 

angle of repose. They applied Angle Measure Technique (AMT) in image analysis of a 

variety of powders. In the AMT approach a special camera with red, green and near 

infrared channels was used with low-angle unilateral illumination. AMT has been 

developed to describe signal complexity as a function of geometrical scale from local to 

global. In the described application the images of powders were unfolded to produce 

one-dimensional measurement series, which AMT transforms to multivariate scale 

characterisations.  

 

2.4 Data projection methods 
 

Commonly, any produced measurement data is multidimensional. In order to 

understand, interpret and summarise a large data set, visualisation of its structure with 

projection methods is needed. A functional projection tool compresses the original data 

while preserving relevant features in the original data structure, and allows its 

visualisation. Different projection techniques, linear and nonlinear, exist.  When 

chemically relevant information is extracted from data produced in chemical experiments 
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the term chemometrics is often used (Wold, 1995). Chemometrics offers a large variety of 

compression techniques, which by data dimensionality reduction allow data visualisation. 

Daszykowksi and co-workers (2003) have recently reviewed different chemometric 

projection methods.   There are two dominant projection methods in chemistry. The 

most popular linear projection method is principal component analysis (PCA). If PCA is 

not suitable for efficient compression of the data, then usually the nonlinear self-

organising maps (SOM) are used. Other projection methods are Sammon mapping, 

generative topographic mapping (GTM), principal curves, multidimensional scaling and 

auto-associative neural networks (Daszykowksi et al., 2003). Here, the methods used in 

this thesis, PCA and SOM, are presented.   

 

2.4.1 Principal component analysis  
 
Pearson (1901), Hotelling (1933) and Karhunen (1947) were pioneers with principal 

component analysis. Today, PCA is the most popular linear projection method 

(Daszykowksi et al., 2003). PCA is used to examine observations, structures, similarities 

and trends of large data tables.  It projects multidimensional data into a few orthogonal 

features, called principal components (PCs).  

 

The PCs are constructed as a linear combination of the original variables to maximise the 

preservation of the data variance. The PCs of a data set are found by calculating the 

eigenvectors and eigenvalues of the data covariance matrix. These vectors give the 

directions in which the data cloud is stretched in the data space. The projections of the 

data on the eigenvectors are the PCs. The corresponding eigenvalues give an indication 

of the amount of variance the respective PCs stand for, i.e. large eigenvalues signify a 

large amount of variance in the data set. Consequently, principal components with large 

eigenvalues inform more about the relations between the data points than any other 

directions. 

 

The principal components are also known as latent variables which sum up the variation 

of the original dataset.  The reduction of the dimensionality of the original variables to 

latent variables makes the data visualisation possible. The main property of PCA is that it 

reaches the best linear map by minimising the squared error of the data reconstruction 

from the latent variables back to the original high-dimensional space. Significant principal 
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components are often used as a starting point in other methods, such as Sammon 

projection, SOM or GTM (Daszykowksi et al. 2003). 

 

The formation of PCs is illustrated in figure 5. The N observations are each characterised 

by a point in the K-dimensional space, i.e. K is the dimensionality of the raw data space. 

The raw data matrix X is a group of points in this space. The first principal component 

(PC1) is a line in the X data space which makes the best approximation of the raw data 

(least squares fit). The approximation of X is improved by a line PC2 as much as possible 

with the restriction that PC2 is orthogonal to PC1. The two principal components are 

represented by a plane in the X space. The original data points can be projected on the 

plane, on which the scores, (t1 and t2), summarise the relationship between the 

observations.  

 
 
 
Partial least squares projection to latent structures (PLS) relates two data matrices, X and 

Y, to each other by a multivariate model. PLS is a regression extension of PCA. The PLS 

method enables modelling of data in which the number of variables exceeds the number 

of observations (Wold, 1995). 

 

In pharmaceutical technology PCA has been used in formulation development 

(Benkerrour et al., 1994, Gabrielsson et al., 2000), optimisation of manufacturing of solid 

dosage forms (Bergman et al., 1998) and process monitoring (Rantanen et al., 2000). It 

has been widely used in pharmaceutical research including different investigations of 

formulation and response variables, particle characterisation and composition design. 

Recently, Ålander et al. (2003) applied PCA in the evaluation of shape and size factors of 

paracetamol agglomerates measured with image analysis. They concluded that visually 

observed differences in crystallised products of paracetamol can be characterised by 

Figure 5. Data projection in PCA. Group of data points (observations) in K-dimensional space 
(K=3, including variables X1, X2, X3) and the projection of the points onto a plane.  
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image analysis in combination with PCA. Lindberg and Lundstedt (1995) have reviewed 

applications of multivariate analysis in pharmaceutical development work. 

 
 
2.4.2 Self-organising maps 
 

Artificial neural networks (ANNs) became quite widely used as a data analysis method in 

the 1990s in pharmaceutical development (Hussain et al., 1991, Murtoniemi et al., 1994, 

Watano et al., 1997, Bourquin et al., 1997). A specific method that is based on neural 

networks is the self-organising map (SOM) (Kohonen, 1982, 1997).  The SOM is an 

unsupervised ANN. While typical ANNs are often used for data modelling the SOM can 

be applied for data visualisation.  Supervised techniques (e.g. back-propagation algorithm 

(Haykin, 1994)) create a model for the relationships between training inputs and the 

required responses. Unsupervised techniques discover similarity in the input vectors 

without a training target. The purpose of SOM is to perform nonlinear mapping of input 

data objects typically on a two-dimensional grid with a distinct topology, i.e. a layer of 

active neurons is arranged into a grid of squares or hexagons on a two-dimensional 

plane. The SOM is particularly advantageous in visualisation of high-dimensional, 

nonlinear data. 

 

The SOM is an elastic net with a grid of nodes connected to their neighbours with elastic 

bands. Input observations are presented in random order for training and for each 

observation the winning node is located on the map. The winning node is the one best 

matching the presented observation. The standard method is to represent the 

observations and SOM nodes with vectors. The vectors of the SOM nodes are often 

called model vectors. Thus, the winning node is the one whose model vector has the 

shortest distance to the presented vector. In the training the model vectors of the winner 

and its neighbouring nodes are modified to represent the input signals more closely.  

Such training causes the net to stretch through the densely populated areas of the input 

data space. This net can be straightened back to two dimensions from the K-dimensional 

space and investigated with different visualisation methods. This gives information with 

regard to how the data resides in the K-dimensional space, which is the principal 

advantage of the SOM.  The architecture of the SOM is illustrated in figure 6. 
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If the input vector is denoted by x=[ x0, x1,…,xK-1]T and the model vector of a map node 

by mi =[mi,0, mi,1,…,mi,K-1] T, then the algorithm which explains the self-organising 

operation can be presented: 
 

A. Model vectors of the nodes are initialised with random values. 

 

B. Steps C and D are computed for each vector x(t) in the training data. 

 

C. The SOM node mc (winning neuron) that matches best to the data vector x(t) is 

found by searching all nodes by:  

 

||})()({||min||)()(|| tmtxtmtx iic −=−       

 

D. The model vectors of the nodes are adjusted by  

 

  
where the parameter (t) is a coefficient which determines to what extent the winning 

node and the neighbourhood are moved in the direction of vector x(t). During training, 

the parameter (t) is decreasing with time. Nc is a neighbourhood set of map points 

around node c and it can be defined Nc(t) as a decreasing function of time. Euclidean 

metric can be used as the distance measure |||| ⋅ in equation 4. 
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Figure 6. The 
architecture of the 
self-organizing 
map (SOM). A 
topological map of 
the input vector 
signals is created 
during the training 
phase. Each input 
vector finds a 
winning neuron. 
Similar vectors 
become arranged 
in same regions of 
the SOM during 
the training cycle. 

(Eq. 6) 

(Eq. 4) 

(Eq. 5) 
=+ )1(tmi
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Zupan and Gasteiger (1993) and Melssen et al. (1994) have discussed the practical issues 

concerning the use of self-organising maps in solving chemical problems. In 

pharmaceutical technology Antikainen et al. (2000) have used the SOM to predict the 

flowability of powders with satisfactory results. Recently, Kachrimanis et al. (2003) 

applied SOMs for visualisation of the correlation of certain micromeritic properties of 

powders. The SOM was also successfully used for visualisation of fluid bed granulation 

by Rantanen et al. (2001).  Bourquin et al. (1997) modeled data sets from tablet 

compression with different ANN models, including self-organising maps. 
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3. AIMS OF THE STUDY 
 
The purpose of this study was to find new ways of using image information in 

pharmaceutical powder technology and characterisation of pharmaceutical solids. The 

goal was to extract relevant information from powder surfaces with the aim to broaden 

the use of image information compared to the commonly used image analysis (IA) 

approaches in pharmaceutical technology, which only measure properties of individual 

particles. The specific aims of the study were: 

 

1. to characterise undispersed particulate populations through surface images.  

 

2. to extract relevant information from powder surfaces.  

 

3. to link the information from powder surface images with functional physical 

properties of pharmaceutical solids. 
 

4. to enhance the use of surface imaging as a tool for pharmaceutical process analytical 

technologies (PAT).  

 

5. to develop a useful and reliable method for particle size analysis with emphasis on 

uncomplicated sample preparation.  

 

6. to evaluate different chemometric methods in data visualisation.  
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4. EXPERIMENTAL 
 

In this chapter the materials and methods used in this thesis are covered. A more detailed 

description of materials and methods is given in the original publications which are here 

referred to by their respective Roman numerals I-IV. 
 

4.1 Materials 
 

4.1.1 Excipient mixtures 
 
Microcrystalline cellulose (MCC), Avicel grades PH 101, PH 102, and PH 200 (FMC 

International, Ireland), was used as test material in the first stage of the study (I). Sixteen 

mixtures of the different MCC grades were prepared. A mixture design was used. 

 
4.1.2 Model particles 
 
In the second phase of the study a series of model particles with a range of different 

shapes and sizes were used (II). A pilot batch of pellets was chosen to represent large 

round particles (Pharmaceutical Technology Division, University of Helsinki, Finland). 

Sodium phosphate (Riedel de Häen, Seelze, Germany) particles had sharp edges and 

many were diamond-shaped with a large size distribution. The salt (Jozo, Amersfoort, 

The Netherlands) and sugar (Finnsugar, Finland) particles represented cube-shaped 

particles with smaller particles and a narrower size distribution, lactose monohydrate 

(Pharmatose 200 M, DMW International, Veghel, The Netherlands) was chosen to 

represent a finer material with a smaller particle size distribution. Finally, dry black tea 

(Twinings Ltd, London, England) represented elongated particles with large size and 

shape variations.  

 
4.1.3 Granules 
 

Seventeen different granulations were made in study II using verapamile hydrochloride 

(Orion Pharma, Finland) as a model drug substance with varying amounts of three 

excipients: MCC (Emcocel 50M, Penwest Pharmaceuticals, Nastola, Finland), lactose 

monohydrate (Pharmatose 200 M, DMW International, The Netherlands) and 
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pregelatinised starch (Starch 1500, Colorcon, Indianapolis, IN, USA). A mixture design 

was used.  In study III granules from 40 different pilot batches (Pharmaceutical 

Technology Division, University of Helsinki, Finland) with varying particle sizes and 

compositions prepared with fluidised bed granulation were analysed.  

 

In the final stage of the study (IV), a model formulation (batch size 3500 g) consisting of 

5% wt/wt of caffeine (Orion Pharma, Espoo, Finland), 475 g MCC (Emcocel 50M, 

Penwest Pharmaceuticals, Nastola, Finland), 2200 g lactose monohydrate (Pharmatose 

200M, DMV Pharma, Veghel, The Netherlands), and 500 g pregelatinised starch (Starch 

1500, Colorcon, Indianapolis, IN, USA). Polyvinylpyrrolidone (PVP) (Kollidon K25, 

BASF, Ludwigshafen, Germany) was used as a binder in the formulation (5 % wt/wt). 

Solutions in purified water were prepared using 8.75 % wt/wt of PVP. In total, 34 

granulations were prepared. 

 

4.2 Unit operations 
 

4.2.1 Mixing (I) 
 

200 grams of each powder mixture was mixed at 14 rpm for 8 min using glass jars in a 

laboratory mixer (Turbula mixer T10B, Willy A. Bachofen AG Maschinenfabrik, Basel, 

Switzerland).  

 

4.2.2 Fluidised bed granulation (II,III,IV) 
 

All granulations were made in a bench-scale fluidised bed granulator (Glatt WSG 5, Glatt 

GmbH, Binzen, Germany). The granulation setup has been described in detail by 

Rantanen et al. (2000). In study IV 34 granulations were made with a bench-scale 

fluidised bed granulator (Glatt, WSG 5, Glatt Gmbh, Binzen, Germany). The process 

conditions were planned using an experimental design.  Three process variables were 

altered on three levels: inlet air temperature (30°, 40°, 50°C), nozzle spraying pressure (1, 

1.5, 2 bar) and granulation liquid flow rate (160, 175 and 190 g/min).  A series of 17 

granulations was performed two times in randomised order.  
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4.2.3 Tablet compression (IV) 
 

Tablets of 17 batches were compressed using an instrumented Korsch (EK-0, Korsch 

AG, Berlin, Germany) eccentric tablet machine. Flat-faced 9 mm punches were utilised. 

The target crushing strength of tablets was 100 N and the target weight was 250 mg. 

Prior to tabletting the granules were mixed with 0.5 w-% magnesium stearate (Ph.Eur.) in 

a Turbula mixer for 5 minutes. The tabletting was carried out in a condition-controlled 

room (55 ± 3 RH%, 24 ± 2°C). In total, 500 tablets of a selection batches were 

compressed. The weight variation of the tablets was determined using the relative 

standard deviation of the upper punch force profiles for the 500 tablets. The weight 

variation (wv) of the tablets was calculated according to equation 6: 

 

wv= r.s.d.fv/ average fv · 100 %,     (Eq. 6) 

 

where r.s.d.fv is the relative standard deviation in the upper punch force profile and  

average fv  is  the average of the upper punch force measurements for the 500 

tablets/batch. The tablet weight variation was also measured by weighing 50 tablets from 

a random selection of 10 tabletted batches.   

 

4.3 Characterisation of materials 
 
4.3.1 Laser diffraction (I- III) 
 

The particle size of the MCC mixtures (I) and 40 granule batches (III) were measured 

with a Fraunhofer laser diffraction particle sizer (Malvern 2506 LC Droplet and Particle 

Size Analyser, Malvern Instruments Ltd., Worcestershire, UK) using a dry powder feeder. 

The focal lens lengths used were 600 mm (I) and 800 mm (III). Three replicate samples 

were measured (n=3). 

 

4.3.2 Sieve analysis (III, IV) 
 

The particle size distributions were measured with sieve analysis (Fritsch analysette, Idar-

Oberstein, Germany) using the following sieves:  0.045 mm; 0.071 mm; 0.090 mm; 0.125 
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mm; 0.180 mm; 0.250 mm; 0.355 mm; 0.500 mm; 0.710 mm; 1.000 mm; 1.400 mm and 

2.000 mm. The sample size in sieve analysis was 20 grams (5 min with amplitude 6)(n=3).  

 

4.3.3 Scanning electron microscopy (II) 
 

A scanning electron microscope, SEM, (Zeiss DSM 962, Zeiss, Germany) was used to 

take the micrographs of the model particles. 

 
4.3.4 Optical microscopy (I) 
 

An optical microscope (Leica MZ6, Leica Mikroskopie und Systeme Gmbh, Bensheim, 

Germany) was used to take surface images of the mixtures of MCC. The magnification 

was 0.8x. The microscope was operated in a dark room with the absence of any 

background illumination. The sample was illuminated with two light fibers and the light 

intensity was constant during the imaging. The positioning of the lights was made in a 

way that the illumination created a good contrast and shadows could be distinguished 

when the sample was inspected through the microscope. Three grey scale images of each 

MCC mixture were captured and stored in bmp (bit map picture) format.  

 

4.3.5 Image analysis of size and shape parameters (II) 
 
An optical microscope (Leica MZ6, Leica Microskopie und Systeme GmbH, Germany) 

which was connected to an image analysis (IA) software (Leica Qwin, Leica Imaging 

Systems Ltd, Cambridge, England) was used to determine the size and shape parameters 

of the granules and model particles in study II. The parameters were: Convex area, 

Aspect Ratio, Equivalent diameter, Roundness and Fullness ratio. Approximately 1000 

particles of the 6 model particles and the 17 granule batches were measured.  The 

description of the shape parameters is given in table 1 (II).  

 

4.4 Content-based image retrieval (I) 
 
A web version of the QBIC system, Query by Image Content (IBM, Almaden Research 

Center, CA, USA), was used as the content-based image retrieval system. This QBIC 

version included an indexing and a retrieval engine, a user interface, and APIs 

(Application Programming Interface). The QBIC version supported queries based on 
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colour histogram, colour layout, and texture. The image database created consisted of 64 

images. The images were indexed, and thereafter each image was used as a sample image 

for a query. The texture feature was used as the search criterion. The texture feature in 

QBIC is based on mathematical representations of coarseness, contrast, and 

directionality. Coarseness measures the scale of texture (pebbles vs. boulders) and is 

calculated by using moving windows of different sizes. Contrast describes the vividness 

of pattern. It is a function of the variance of the grey level histogram. Directionality 

describes whether the image has a favored direction (e.g. grass) or is isotropic (e.g. a 

smooth object), and it is a measure of the peakedness of the distributions of gradient 

directions in the image (Faloutsos et al., 1994). In QBIC, similarity queries are performed 

against the database of pre-extracted features using distance functions between the 

features (Flickner et al., 1995). The normalisation factors are the inverse variances of 

each feature component. In a texture query, the distance d between object i and object j 

is calculated as 

 

dij =  (Oi-Oj)2/ δ2 
O + (Ci-Cj)2/ δ2 

C + (Di-Dj)2/ δ2 
D ,    (Eq. 7) 

 

where O, C, and D represent the features coarseness, contrast, and directionality, 

respectively. The δ stands for the variance factor (Faloutsos et al., 1994).  

 

The rank order of images and the image similarity values were compared to the particle 

size of the different mixtures. The similarity value of each image shows how the 

extracted image features differ from the features of the sample image. The similarity 

value for the query image is 0.000000 and the more dissimilar the compared images are 

the higher the value. The program used (Modde 3.0, Umetri AB, Umeå, Sweden) 

calculated the predictive power according to cross validation. The original model was a 

quadratic mixture model from which the least significant terms were removed as long as 

the predictive power was increasing. A statistical analysis (Spearman test)  of the 

correlation of the similarity value and the particle size was made using the Windows 

version of Systat 5.0. Figure 7 shows the course of the use of QBIC in analysis of the 

images of MCC. 
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4.5 Surface imaging of powders and granules 
 

4.5.1 The imaging setup (III, IV) 
 
In order to improve imaging conditions and reproducibility, a new optical setup was 

constructed during the study. This optical instrument consisted of the following 

elements. The imaging unit, with a light source, a monochrome CCD camera (JAI, CV-

M50, Copenhagen, Denmark) and a lens objective, is connected to a frame grabber 

(WinTV, Hauppauge Computer Works Inc., Hauppauge, NY, USA) and a Personal 

Computer. The symmetrically positioned, bilateral light sources, on opposite sides of the 

sample, stand on rails, on which they can be accurately positioned. The illumination 

system includes two lamp housings, 100 W quartz tungsten halogen lamps, and two 

collimating lens assemblies (Oriel Instruments, Stratford, CT, USA). The collimated 

output beam can be turned 90 degrees with a beam turning assembly. The light sources 

are connected to stabilised DC power supplies (Oriel Instruments, Stratford, CT, USA).  

A sketch of the imaging setup is presented in figure 8. 

 

 

Image 
acquisition 

of MCC 
powders 

Extraction 
of texture 
features 

Determi-
nation  of 
similarity 
measure 

Correlation 
with particle 

size data 
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4. 

5. 

2b. 

3. 

Figure 7. The flow of the use of QBIC texture features in analysis of surface images of MCC powders. 

Fig 8. Imaging setup. 1: CCD camera with optics. 2a and 2b: light sources on rails with collimated light

beams. 3: Powder sample in sample cup 4: PC and frame grabber. 
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Extensive optimising studies concerning the illumination and imaging conditions were 

performed. Consequently, the following imaging settings were established for studies III 

and IV. A 50 mm lens objective with additional 40 mm extension tube was used. The 

light source distance from the sample was 20 cm. The angle of illumination was 30° with 

referral to the horizontal line. The used power source voltage was 5.5 V and the image 

resolution in the frame grabber was 600 x 800 pixels. The dimensions of each sample 

surface in the taken images were 8.2 mm x 6.1 mm. All images were taken in a dark room 

with no disturbing light sources. The calibration of the imaging conditions was made 

with a smooth white calibration board (Xerox Premier, batch 11/DD/YKD/1, Xerox 

Corporation, CONN, USA). 

 

4.5.2 Grey scale difference matrix  (III,IV) 
 

In studies III and IV a parameter, grey scale difference matrix (GSDM), for calculations 

of the particle size from surface images was developed and used. The subsequent steps 

were taken in the creation of the GSDM. The two light sources were used to illuminate 

the sample from opposite sides. Two images of a sample surface were taken. A digital 

image of the sample was first captured by using one light source. Then, another image 

was taken by illuminating the sample with the other light source. Consequently, two 

digital images were received and two matrices of their grey scale values were formed. The 

difference of these two matrices was then calculated. The operation of matrix subtraction 

is explained by equation 8 using a 2x2 example matrix.  

 









−

−
=








−








=−=

64
04

115
68

59
64

21 MMGSDM ,   (Eq. 8) 

where M1 is the grey scale matrix of image 1 and M2 is the grey scale matrix of image 2.  

The difference is thus calculated for each corresponding pixel in M1 and M2.  

 

For an ideal completely smooth surface the difference of the two matrices consist of 

zeros. For a real surface the difference matrix gets values between –255 and +255. In the 

next step a distribution of the difference matrix is formed: i.e. how many matrix cells 

holds each of the possible 511 values. Figure 9 presents two different example granule 

sample surfaces with two images illuminated from the opposite sides for each material. 

Subsequently, the formation of the difference distributions from the difference matrices 
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is shown. One can notice that the difference distribution is characteristic for the different 

kind of surfaces. The particle size distributions in studies III and IV was derived from 

the GSDM . 

 
 

4.6 Data analysis 
    
4.6.1 Correlation analysis (I, III, IV) 
 

A Spearman test to find out the correlation of the similarity value and the particle size 

was performed (I). In the later part of the work (III, IV) Pearson correlation analysis was 

made between the particle sizes modelled from image information and particle median 

size values measured with sieve analysis and laser diffraction. 

 

4.6.2 Multivariate regression (I) 
 
In the first study (I) a regression model between the image similarity values and the 

particle size of the different mixtures was created using Modde software (Modde v. 3.0, 

Umetri AB, Umeå, Sweden). The program calculated the predictive power according to 

Figure 9. Generation of the grey scale difference distribution from granule surface images. 
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cross validation. The original model was a quadratic mixture model from which the least 

significant terms were removed as long as the predictive power (R2) was increasing. 

Modelling can be used to find quantitative relations between predictors and responses. 

The model explains the variation in the responses with R2 and Q2. R2 is the fraction of 

the variation which is explained by the model and Q2 indicates the fraction of the 

variation that can be predicted by the model. Possible values will be in the range of 0-1.0 

where 1.0 represents a model with excellent predictive power. 

 
4.6.3 Principal component analysis (II, IV) 
 

The measured image analysis data was evaluated using principal component analysis 

(PCA) employing Simca-P Software version 8.0 (Simca-P v. 8.0, Umetrics, 

Umeå,Sweden) software.  

 
4.6.4. Self-organising maps (II) 
 

The SOM was used for training and visualisation of the IA data matrix. The work was 

performed using a Matlab (Matlab, v. 5.3, MathWorks Inc., USA) SOM toolbox, which is 

available on a public domain (Alhoniemi et al., 1997). Figure 10 shows a simplified 

illustration of the steps in data reduction and visualisation.  

 

 
 
4.6.5 Partial least squares modelling (III, IV) 
 

PLS models were created in studies III and IV. The vector with 511 values consisting of 

GSDM distribution data was used as explanatory variables (predictors) and size fractions 

were used as the response variables in the creation of the model (Fig. 11.). In both 

studies (III and IV) the percent mass proportion of sieve fractions of the analysed 
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Figure10. The reduction of dimensionality and visualisation of the IA data in paper II. 
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granule batches were used as the response variables. In the former study a model was 

also created for laser diffraction data using the percent volume proportions of size 

fractions as response variables. In the former study, the models were evaluated using 

nine granule batches as test data.  In the later study, the created model was evaluated by 

inspecting the goodness of fit (R2) and the predicted variation (Q2). The terms R2 the Q2 

are explained above in paragraph 4.6.2. 
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Figure 11. A simplified graph showing the idea of the creation of a PLS model 
between the gray scale distribution data and the measured size distributions. 
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5. RESULTS AND DISCUSSION 
 
In this chapter the results of this thesis are summarised. A more detailed discussion is 

presented in the original publications which are referred to in the text by their respective 

Roman numerals I-IV. 

 

5.1 Visualisation of traditional image analysis data  
 

5.1.1 Principal component analysis (II) 
 

The two principal components form a plane in the original image analysis data space. 

The differently shaped and sized model particles are projected on different areas on the 

score plot (II, Fig. 6a-b.). PCA indicated that two components explained about 83 

percent of the variance of the data investigated. The first component accounted for 50 % 

of the variance and was characterised by the size factors. The second component 

described the shape parameters. Similar PCA plots for the IA for the granules were 

formed (Fig. 7a-b.). The first two components accounted for 85.2 % of the variation, 

with the first component explaining 54.9 % of the variance. The results indicated that 

PCA is a good technique to study the variance within samples of different kind of 

particles.  

 

5.1.2 Self-organising maps (III) 
 

Self-organising maps were also used for visualisation and reduction of the IA data. The 

results of the trained SOM for the model particles are visualised in Figures 8 – 9 (II). In 

figure 8 the values of the 5 different variables of the particles are visualised. The colour 

of the node indicates the level of the individual variable in the specific region of the map. 

The high values are indicated with red colour. When the size parameters (equivalent 

diameter and convex area) are studied we can notice that the particles with the largest 

values for these variables are organised in the lower left corner of the map with 

maximum values in the middle on the left side edge.  The particles with large values for 

the shape factors roundness and aspect ratio are located in the upper left corner of the 

SOM.  The particles with highest values of the fullness ratio shape parameter are 

organised in the bottom of the map, around the left side corner.  
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Figures 9a-f (II) show the organisation of the particle data on the map for each sample of 

model particles. The SOM visualises clearly the differences between the particles. For 

example, when studying the size variables one can notice that the particles with larger 

values for these variables are organised on the lower side of the map, more specifically, in 

the left-hand corner. Particles with a wider size distribution are spread more widely on 

the map, such as sugar (II, Fig. 9 a, yellow colour) and salt (II, Fig. 9 d, cyan colour) 

particles. The smallest particles (lactose, II, Fig. 9 b, red colour) could also be 

distinguished. The variation and the differences in the data for the 5x17330 data matrix 

for the granules were also clearly visualised by the SOM. The results of the trained SOM 

are visualised in figures 10-11(II).  Figure 11a-c (II) shows the visualisation of the particle 

data on the map for the granule formulations A, B, C, which represented the corner 

points of the mixture design used.  

 
5.1.3 Comparison of data visualisation with PCA and SOM  

 

Multivariate data analysis methods are capable of creating a perceptive presentation of 

various data sets. Both methods used, SOM and PCA, enable the lowering of the 

dimensionality of multivariate data. In this study (II) SOM was capable of creating 

intuitive presentation of the differences between the examined particles. If more than 

two principal components are needed to capture the variation in data with PCA, the 

visualisation of the projection is more complicated. Subsequently, 3D or parallel 2D plots 

are needed. The use of the unsupervised SOM enables the 2D plotting, and all the 

information is in the same plot. The SOM illustrates structures in the data in a different 

way than PCA multivariate data analysis by focusing to preserve the topological 

neighbourhood relations in the data instead of trying to preserve the distances between 

the data items. In a majority of cases, PCA, as a linear projection method, allows efficient 

compression of the data and produces profound insight into the data structure. When 

PCA is inefficient, nonlinear projection methods, such as the SOM, should be applied 

(Daszykowski et al. 2003). For inexperienced persons in data analysis the interpretation 

of SOMs can be somewhat more difficult than the analysis with PCA plots.  
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5.2 Data extraction from powder surface images 
  
5.2.1 Content-based image retrieval  
 
Surface images of powders and granules were evaluated with respect to particle size of 

the materials (I, III, IV).  The results from first the phase studies showed that the 

content-based image retrieval system used, QBIC, extracted applicable information 

connected to the particle size of the excipient mixtures (I). The texture feature used was 

capable of extracting relevant information of the appearance of the powder surfaces, 

which could be connected to particle size (I, Fig. 4.).  

 

With large image databases and a lot of image information, efficient image retrieval 

systems become a necessity. Image retrieval technology combined with text querying can 

lead to powerful retrieval of image data, which may effectively be used in different fields 

of pharmaceutical research and industry. Possible application areas include: measurement 

of size and shape distributions of samples, analysis of crystalline habit and the 

examination of batch quality of raw materials.   

 

Applications of CBIR are usually automatic and do not take into account user feedback 

during queries. Interactivity in a CBIR system could be an advantage in image retrieval of 

pharmaceutical powder images. Laaksonen et al. (2000, 2001, 2002) have developed a 

content-based image retrieval system using the self-organising map (SOM) as the image 

similarity scoring method. The system employs user feedback for supervised learning to 

adjust following queries.  We applied PicSOM successfully in classification of granules 

using certain shape and texture features (Laitinen et al., 2002). To achieve the goal of 

developing a CBIR tool, which is efficient and has a high precision rate for powder 

technology, requires that the algorithms for measurement of image content should be 

essential.  

 

This study (I) was a fundamental step towards further advances in the use surface image 

information of pharmaceutical solids. It established the basis of the development of the 

GSDM algorithm and evolved the sample preparation and the methods of imaging. 
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5.2.2 GSDM in particle size measurements 
 
 
Models between surface image information of granules and their respective particle size 

distributions were formed (III, IV).  The results indicate that the GSDM feature can be 

used in particle size measurements. The modelled particle size distributions of 5 test 

batches with respect to particle size measurements with sieve analysis are presented in 

figure 5 (III) and one example batch is shown in figure 12. The figures indicate that the 

created models corresponded fairly well with the particle size distributions measured with 

sieve analysis. The correlation coefficient between the median particle size of the results 

from the optical measurements and sieve analysis was 0.82 (P<0.0001).  The distributions 

are more similar for particles in the size range from 100 to 200 micrometers (mean 

granule size with sieve analysis). Granule batches with size fractions with smaller sizes 

were over-represented in the training data compared to granules with fractions 

containing larger sizes. This is an explanation for the better models for the batches with 

smaller particles. This is clearly indicated in the cumulative graphs (III, Fig. 5.). When the 

batches with the largest particle sizes were omitted from the test data the correlation 

coefficient improved significantly to 0.915 (P< 0.0001).   
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Comparable models were made between the GSDM data and laser diffraction 

measurements (III, Fig. 6a-e). The correlation coefficient between the median particle 

size of the results from the optical measurements and laser diffraction was 0.92 

(P<0.0001). These figures show that the created models correspond well with the particle 

size distributions measured with laser diffraction. However, there are some differences 
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Figure 12. An example of the particle size distributions measured with sieve analysis (A) and modelled
using the GSDM (B). Figure C shows the cumulative graphs (sieve analysis= • , GSDM (image information)
= ) with the mean granule size (dotted lines). Figure taken from publication III. 
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compared to the models of sieve analysis. The differences of the models for sieve 

analysis and laser diffraction result from the different nature of the particle sizing 

methods. Sieve analysis measures the percent mass proportions and laser diffraction 

measures the percent volume proportion of the size fractions.  

 
An improved model between the GSDM features and sieve analysis was created in paper 

IV. The Pearson correlation coefficient between the mean sizes measured from surface 

images and the mean size measured by sieving was 0.97. The degree of explanation or 

goodness of fit (R2) for the PLS-model was 0.91 and the predicted variation (Q2) was 

0.87.  

 
5.2.3 Imaging Conditions 

 

Digital images taken from powder surfaces contain substantial information that is needed 

for particle size distribution analysis. To obtain this information reproducibly from 

images, careful consideration has to be given on the imaging conditions.  In this work 

(III, IV) two stabilised collimated illumination units were used, but the illumination could 

also be made with one light source and by rotating the sample. The main issue is that the 

sample has to be unilaterally illuminated and the optical axis has to remain the same. By 

taking several images while rotating the sample round its optical axis, 3–D spatial 

information of the surface could be revealed (Russ, 1999). Lateral illumination reveals 

distinct details of the analysed material (Pons et al. 1999, Huang and Esbensen, 2000). A 

controlled and reproducible imaging environment enables inspection of differences 

between batches. As we are examining surface images from identically-sized areas we are 

in fact inspecting textural properties of materials. The texture of a surface is formed by 

shading effects, which in turn expose the topographic properties of the surfaces (Pons et 

al. 1999). When the GSDM is calculated the means of image subtraction is used. 

Subtraction is primarily a way to discover differences between images (Russ 1999). In the 

present approach, the combining of information from two images strengthens the 

shading effects.  

 

The measurement sensitivity and the particle size range depend on the magnification 

used. In studies III and IV the approach was used for granules in the size range of 

approximately 20 – 2500 µm. In future studies the use of this optical technique with 
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larger magnifications and a smaller particle size range has to be investigated. The limiting 

factor for very small particles will be the wavelength of electromagnetic light. Larger 

particles can be measured representatively by taking several images of a powder surface. 

Some improvements in the imaging can be made with increased resolution of the system. 

Likewise, using more advanced cameras can increase the number of grey scale levels 

distinguished at each point. On the other hand, these improvements would mean slower 

image acquisition, digitisation and overall data processing time. Naturally, with high-

resolution imaging the costs of equipment rise (Russ, 1999).  

 
 
5.2.4 Comparison of methods used in particle size analysis  
 

The introduced approach is very fast including the sample preparation, imaging and 

achieving the results, compared with sieve analysis.  The time of analysis for replicate 

samples was 3 minutes for the introduced optical method and approximately 120 min for 

sieve analysis (III). In practice, the analysis of three samples with one sieve took 

approximately 8 hours if the time for cleaning and drying of equipment was included.  

When comparing to particle size determination with traditional image analysis, the 

examination is easier as the sample does not have to be dispersed. However, lately IA 

system providers have introduced relatively effective sample dispersers for measurements 

of individual particles (Hammond 1999). Extensive image pre-processing is also avoided 

when analysis is made directly from a surface image of undispersed particles. Such image 

processing steps, including noise reduction, binarisation and filtering, are needed to 

obtain results when measuring single particles.    

 

An advantage of the GSDM method described in this paper is that the analysed sample 

can be utilised for other purposes after the analysis, since the sample is not destroyed. 

This is an advantage when the analysed particles are brittle. Sometimes a particle sizing 

method, such as sieve analysis might break larger granules to smaller units and give 

erroneous results.  In sieving the blockage or blinding of the sieves is often encountered 

(Iacocca and German, 1997). In addition, static attraction of particles on sieves may 

create a problem.  
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The sample size, when using the introduced imaging method can be very small (a few 

milligrams). However, it has to be enough to completely cover the field-of-view of the 

employed imaging equipment. Samples for especially sieve analysis but also most often 

for laser diffraction as well have to be much larger. This makes the technique suitable for 

samples and materials which are expensive or available in small quantities only. Wet 

samples e.g. analysis of granules during granulation, can also be measured (IV). In this 

work (III, IV) models were calculated for sieve-analysis and laser diffraction, but similar 

models can be created for other particle size analysers as well. If viable models are 

created between the powder surface information and different sizing instruments, a 

particle size distribution that corresponds to all methods can be determined from powder 

surface data simultaneously.  While the models are created using a reference method they 

can only be as good as the quality of measurements with the reference method.   

 

Since the function of the GSDM approach has only been studied with granular materials 

in this work, future studies should focus on a wide range of materials including relatively 

small particles with different properties, e.g. highly cohesive powders. Moreover, studies 

on the effects of particle shape and the relation of shape on shade formation in particle 

size measurement from powder surface images have to be made. This will enable the 

evaluation of the possibilities and limitations of the introduced approach in powder 

characterisation. Naturally, also issues of qualification and validation have to be 

addressed. This aspect has been taken up by Bell et al. (1999) in the case of new analytical 

techniques for particle size measurement. 

  

 

5.2.5 Surface images in process monitoring  
 

Particle size measurements from a selection of 10 batches with different kind of granule 

growth behaviour are presented in figure 2 (IV).  Three different growth kinetics curves 

(one from each distinct size range from figure 2, IV) were chosen to show how the 

process can be controlled and monitored visually by images and data points. These 

batches, R2, R13, and R23 with one image from each data point during processing and 

three end-point images are shown in Figs 3a-c (IV). Batch R23 is also visualised in figure 

13 below. By inspecting the images, it is clearly seen how the particle growth is evolving.   
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As images from only one sample per data point were captured and used in particle size 

measurement, the particle size might be slightly over- or underestimated. The sizes of the 

samples that are taken from the process are also relatively small with respect to total 

mass in the granulator. However, as approximately 14 samples were collected from one 

process run both over- and underestimations occur evenly. In order to create a growth 

kinetic curve, a log-normal curve fit was made, which travels as close to the centre of 

data points as possible (IV, Eq. 2). 

 

Non-destructive at-line particle sizing methods can be advantageous to use if the applied 

method provides close to real time results and the analysis of material can be made 

during all process phases from both moist and dry samples. When samples are taken out 

of the process during granulation, it may be beneficial for the operator to be able to 

inspect the material visually. If real time monitoring of the particle size can be made at-

line leaving the sample undamaged, physical characterisation of the sample with other 

techniques is also possible. The method used was suitable in the measurement of granule 

samples during all process phases. It was possible to measure both dry and wet samples 

with a wide particle size range. We used a prototype of the imaging instrument that was 

Figure 13. The granule growth of example batch R23.  Each dot (•) shows the data point for the particle
mean size measured from the surface image information. Each numbered dot corresponds to the numbered
surface images. Additionally, three end-point data points and images are shown together with three replicate
data points from end-point sieve analysis ( ). The spraying and drying phases of the process are separated
with the dashed line. Figure taken from publication IV. 
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built in our laboratory, which was not located in the same room with the granulator. This 

did not enable real time monitoring of particle size. However, if the optical instrument 

would be located next to the granulator the analysis of a sample within 5-10 s would be 

possible. Automatic sampling would enable on-line measurements. A pilot scale fluidised 

bed granulation process is usually relatively short (15-25 min). The monitoring of granule 

growth by the introduced method is more suitable for large-scale granulations, where 

processing times are longer. The operator has more time to use the visual information of 

the images and the particle data generated as a tool in process control decision-making. 

One advantage of the presented approach is that inspection of different granule samples 

can be made visually without difficulty and batch-to-batch comparisons of these images 

can be helpful. Optimally the visual inspection can be made first in real time and then in 

addition as a control after the completed process.  

 

Process monitoring can often be established on visual observations. The use of acoustic 

methods in monitoring of particle fluidisation has been investigated successfully 

(Tsujimoto et al., 2000). An interesting aim would be to try to mimic human perception 

in process control situations.  By combining acoustic and visual methods together with 

multivariate modelling one could open further perspectives in process control.  

 

5.2.6 Prediction of compression behaviour 
 

Principal component analysis was capable of visualising the differences in the particle 

size distribution information generated from the images. The observations are arranged 

into a plane (IV, Fig 4a-b.). The granule batches with different kind of particle size 

distributions are projected on different areas on the score plot. PCA indicated that two 

components explained about 85 percent of the variance of the data investigated. The first 

component accounted for 59.8 % of the variance. The loadings plot shows how the 

different size fractions reside on the plane. The area with the tablets with the smallest 

weight variation (r.s.d. between 1.8 and 4.2 %) is marked with a circle on the score plot. 

Characteristic for this area is that size fractions 0.250-0.355 mm and 0.355-0.500 mm 

dominate. The batches with a large amount of particles in this size range are situated 

here. This is confirmed by table 3 (IV). It can clearly be seen from the score plot that the 

granule batches that have the largest weight variation are situated outside the circle. In 

the case of size fractions with the largest particles the larger weight variation is caused by 
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the fact that large particles do not fill the die completely and a varying amount of empty 

space is left between the granules. The weight variation of the batches containing smaller 

particle fractions is most likely explained by poor flowability of smaller particles.  

 

There has to be a balance between fine and coarser particles. A critical increase in the 

amount of fines results in poorer flowability (Danish and Parrot, 1971). The results of 

this study show that granules with a larger amount of particles in size fractions 0.250-

0.355 mm and 0.350-0.500 mm have the best behaviour to fill the tablet machine die 

causing the smallest weight variation in tablets. This valuable information could be 

directly extracted from the images of granule surfaces.  

 

Principal component analysis as a data projection method was capable of efficiently 

visualise the variation in the data. PCA was useful in the prediction of tabletting 

behaviour of granules in question when using particle size data generated from surface 

images. It has always been difficult to give a definition for good granules. From the 

tabletting point of view granules are good when the bulk behaviour results in minimal 

weight variation of tablets. The introduced method gives one example how to define 

good granules by using information extracted from images.  
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6. SUMMARY AND CONCLUSIONS 
 

In this study, the use of image information from surfaces of pharmaceutical powders was 

exploited in a novel fashion. The characterisation of particulate populations through 

surface images was successful, with respect to classification of images, measurement of 

the particle size of granular materials and the prediction of tabletting behaviour of 

granules. 

 

The novel surface-imaging instrument was successfully used in surface imaging of 

undispersed powder surfaces.  A new descriptor for describing the particle size of 

granular material, the grey scale difference matrix (GSDM), was developed and used 

effectively in particle size measurement. 

 

The idea of using a content-based image retrieval (CBIR) technique for pharmaceutical 

powder images was introduced and a basis was laid for the future use of CBIR in powder 

technology.  

 

It was also found that the current visual characterisation approach could be used as an 

effective process analytical tool. The utilisation of surface image information to assure 

acceptable end product quality at the completion of a granulation process was also 

possible. Fast screening of properties can be made using the combination of 

automatically processed image information and multivariate visualisation. 

 

This work promotes the use of image information more comprehensively in 

pharmaceutical powder technology and physical characterisation. In general, the idea of 

characterisation of bulk surface images opens new perspectives for visual characterisation 

of pharmaceutical solids. 
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