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ABSTRACT 
 
von Bonsdorff-Nikander, A.K., 2005. Studies on a cholesterol-lowering microcrystalline 
phytosterol suspension in oil 
 
Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki,  
2/2005, 55 pp., ISBN 952-10-2289-2 (print) ISBN 952-10-2290-6 (pdf) ISSN 1239-9469 
 
Some cholesterol-lowering drugs have lately caused severe side-effects in humans and the 

potential use of phytosterols as an optional method of lowering serum cholesterol has been 

given considerable attention. Although the positive effect of phytosterols has been known for 

decades, their unpleasant gritty texture and the poor solubility has prevented their widespread 

use.  

In the present study, an oral phytosterol suspension was prepared by adding water to a 

supersaturated sterol in oil solution. The addition of water decreased the solubility in oil and 

microsized sterol crystals were formed. By changing the amount of sterol and/or water it was 

possible to control the crystal form, habit and size distribution. In the presence of water 

phytosterol recrystallised as needle-shaped hemihydrate or monohydrate crystals. Without 

added water, anhydrous plate-like crystals were achieved. Higher sterol concentrations 

resulted, due to supersaturation, in the formation of small crystals. By optimised process 

parameters, i.e. cooling temperature and stirring, it was also possible to achieve the desired 

crystal size for a so-called creamy suspension. Hardly any changes in crystal habit, size 

distribution or form were observed during storage of these suspensions for four months.  

Incorporation of the suspension into cholesterol-lowering products includes heating and thus 

the knowledge of structural and mechanical changes of the suspension during heating is of 

importance. Dehydration of phytosterol crystals in an oil suspension was, similarly to plain 

crystals, a two-phased process. The suspension became less elastic and the crystals started to 

dissolve at relatively low temperatures. 

A clinical study performed earlier using a similar microcrystalline suspension revealed a 

significant reduction of serum cholesterol levels. A dynamic in vitro study was performed to 

understand the mechanism by which phytosterols can inhibit cholesterol absorption in the 

small intestine. In addition to phytosterol, the choice of lipid in the suspensions was observed 

to have a significant effect on the solubilisation of sterols into the mixed micelles. The in 

vitro studies, in which medium chain length (MCT) and long chain length (LCT) lipids were 

compared, showed that phytosterols formulated in MCT efficiently displaced cholesterol 

from mixed micelles. Solubilisation into intestinal mixed micelles is a prerequisite for sterols 

to reach the site of absorption and thus cholesterol absorption is decreased. 
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1 INTRODUCTION 

  
The presence of cholesterol in human and other mammals is vitally important for the cell 

membrane function. However, an excessively high serum cholesterol concentration is a 

risk factor for cardiovascular diseases (CVD). In today’s world CVD is the leading cause 

of death in developed countries and is becoming one of the leading causes of death in 

developing countries as well (www.who.int, 2003). This means that despite the successful 

prevention of atherosclerosis, cardiovascular diseases are still responsible for one of 

every three cases of death. The combination of changed eating habits, the use of tobacco, 

and less physical activity are the main causes of the wide spread distribution of CVD. 

Genetic factors may also be a reason for enhanced serum cholesterol levels (Fuentes et 

al., 2000; Lind et al., 2002; Zuliani and Fellin, 2003). It has been demonstrated that a 

10% decline in total cholesterol is associated with a 20% risk reduction of coronary heart 

disease at the age of 70 and even lowers the risk by 50% at the age of 40 (Law et al., 

1994). Traditionally, high serum cholesterol levels have been normalised using 

cholesterol-lowering drugs. At the same time, the importance of dietary intake has been 

emphasised by the nutritionists.  

 

Selective inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA or 

statins), the rate-controlling enzyme of cholesterol synthetic pathway, are effective drugs 

but a very expensive method to treat hypercholesterolemia. Statins (e.g. mevastatin, 

lovastatin, cerivastatin and simvastatin) are able to lower serum total cholesterol by 

decreasing low density lipoprotein (LDL) cholesterol by 20%, even up to 55% (Chong et 

al., 2001; Blasetto et al., 2003; Endo, 2004). Some statins have, however, lately caused 

severe side effects which have resulted in major estimated revenue decreases for the 

pharmaceutical industry (Clark, 2003; Jamal et al., 2004). In August 2001, Bayer AG had 

to withdraw their cholesterol-lowering drug Lipobay®/Baycol® (cerivastatin) worldwide 

due to reports of side effects involving muscular weakness (rhabdomyolysis) (Maggini et 

al., 2004; www.investor.bayer.com, 2004). In less than a month, Bayer’s share had lost 

over 42% of its value (Bloomberg Terminal, 2004). The FDA (Food and Drug 

Administration) has received reports of serious muscle toxicity of another statin drug, 

Crestor® (rosuvastatin) by AstraZeneca (www.fda.com, 2004). At the moment the FDA is 

evaluating these reports and comparing the frequency of reports to the reports of other 
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statins. The importance of looking for optional methods of lowering cholesterol is 

therefore imminent. 

Studies of phytosterols, which are structurally related to cholesterol, date back to the 

1950s, when large amounts of phytosterols (10-15 g/day) were administrated in the form 

of a powder (Pollack, 1953; Farquhar et al., 1956). The unpleasant texture of phytosterols 

and the poor solubility in oil or water has caused several problems in preparation and 

administration, and thus prevented their widespread use (Miettinen, 2001).  

 

High-fat foods such as margarines and butters appear to be ideal vehicles for phytosterols 

and its saturated form phytostanol because of their strong hydrophobic nature (Mattson et 

al., 1982). Finnish science is at the forefront of development in sterols/stanols dietary 

products. The Raisio corporation launched the first commercialised phytostanol ester- 

containing cholesterol-lowering margarine, Benecol®, in 1995 (Miettinen et al., 1995). 

High-fat foods are contradictory to the current approaches of maintaining healthy diets 

and a healthy lifestyle. Therefore, the attempt has been to incorporate phytosterols into 

lower-fat foods (St-Onge and Jones, 2003). Because of the hydrophobic nature of 

phytosterols, the cholesterol-lowering efficacy in low-fat foods was thought to be minor. 

Studies, however, show that the effect of low-fat foods have a significant cholesterol-

lowering effect (Volpe et al., 2001; Nestel et al., 2001).  

In the middle of the 1990s a new method was developed, to make the use of phytosterols 

more accessible. A microcrystalline suspension in oil allows incorporation of up to 30% 

of phytosterols into a food product without any chemical reactions or additives. The 

extent of cholesterol-lowering in vivo is similar to those examined using phytosterol or 

phytostanol esters dispersed in high fat spreads. In 2003, the European Union’s Novel 

Foods Regulator gave its approval to begin marketing this suspension (Diminicol®) 

throughout the EU. Diminicol® received GRAS status (Generally Recognised As Safe) 

earlier the same year in the US by the FDA. The FDA also granted products containing 

Diminicol® the right to use the approved sterol heart health claim. 

Functional foods have no precise, universally accepted definition in general, but they can 

be considered food components (being nutrient or not), which affects one or a limited 

number of function of the body in a positive way, providing a health benefit beyond 

traditional nutritional value (Roberfroid, 2000; Palou et al., 2003). 
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The combination of statins and sterols/stanols has only been tested on a small scale so far. 

It appears that for patients who are taking statins and are in need of additional cholesterol 

lowering, the addition of sterols/stanols into the diet is more effective than the increase of 

statin doses (Katan et al., 2003). A wide study carried out in Finland (FINRISK 2002) 

revealed that of all patients who were aware of their high cholesterol levels, 19% used 

cholesterol-lowering medicines, 11% used cholesterol-lowering bread spreads and 5% 

combined both therapies (de Jong et al., 2004).  

 

2 REVIEW OF THE LITERATURE 
 

2.1 Phytosterols as cholesterol-lowering agents 

2.1.1 Composition, sources and consumption of phytosterols  
 
Phytosterols are a natural mixture of sterols containing a minimum 70% β-sitosterol 

(Ph.Eur. suppl. 4.1, 2001). They differ from cholesterol by the presence of an extra 

methyl or ethyl group on the cholesterol side chain at the C-24 position. The planar sterol 

structure with a hydroxyl group and a hydrophobic tail is characteristic for the molecular 

structure. Over 200 different types of phytosterols have been identified, of which β-

sitosterol, campesterol and stigmasterol are the major dietary sterols (Fig. 1) (Moreau, 

2002). Phytostanols are saturated phytosterols, that is, they have no double bonds in the 

sterol ring. 

 

 

 

 

 

 

 

 

 

 

     
         Figure 1. Structure of β-sitosterol (A), campesterol (B), stigmasterol (C) and cholesterol (D) 
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Phytosterols are important structural components of plant membranes, and they play a 

key role in plant cell membrane function just as cholesterol does in animal cell 

membranes (Quílez et al., 2003). Phytosterols are found in significant amounts in seeds, 

nuts, fruits and vegetables; however, the most concentrated source is vegetable oils 

(Ostlund, 2002). Since humans are not able to synthesize phytosterols, all phytosterols in 

the human body originate from dietary intake. As part of a normal healthy diet, most 

people eat 100-500 mg of phytosterol each day (Ostlund, 2002). Most of the phytosterols 

or phytostanols currently incorporated into foods are esterified to unsaturated 

sterol/stanol esters to increase lipid solubility, thus allowing maximal incorporation into a 

limited amount of lipid. Phytosterol or phytostanol intake from functional foods (e.g. 

bread spreads) is usually 1.5-3g/day. Phytosterol and phytostanol products reduce the 

serum concentration of total cholesterol by up to 15% and that of LDL cholesterol by up 

to 22% (Moghadasian and Frohlich, 1999; Ostlund, 2002; Christiansen et al., 2001a) (see 

also Table 1).  

Cholesterol derives the intestinal tract from two major sources. A normal Western diet 

provides 300-600 mg cholesterol per day to the intestine and an additional 1000-1500 

mg/day is derived from endogenous sources, mostly from the bile (Trautwein et al., 

2003).  

 
Table 1. Examples of different clinical studies with phytosterols incorporated in bread spread and the 
reduction in serum LDL cholesterol. 

 
Phytosterol 

(carrier) 

Dose 
(g/d) Time (wk) 

Changes in 
LDL  

cholesterol (%) 
Reference 

Sterol ester 
(margarine) 1.8 3 -6.5 Mussner et al., 2002 

Sterol (butter) 1.8 3 -11.3 Vanstone et al., 2002 
Sterol  (margarine) 1.5 

3.0 
26 
26 -11.6 Christiansen et al., 2001a 

Sterol (butter) 1.0 4 -6.2 Volpe et al., 2001 

Sterol ester (fat 
spread) 2.5 8 -10.0 Neil et al., 2001 

Sterol ester (butter) 2.4 4 -12.2 Nestel et al., 2001 
Sterol ester 
(margarine) 2.1 4 -10.4 Hallikainen et al., 2000 

 

At first, animal and human studies showed that phytostanols inhibit cholesterol 

absorption and lower serum cholesterol more effectively than phytosterols (Sugano et al., 

1977, Heinemann et al., 1986; Heinemann et al., 1991). However, more recent studies 
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reveal no difference between phytosterols and phytostanols in the lowering of the 

absorption or the serum concentration of cholesterol (Hallikainen et al., 2000; Law, 

2000).  

The daily dose of sterol/stanol food products is often divided into 2-3 portions, although 

it has been shown that a large single daily dose is equally effective (Plat et al., 2000). It is 

likely that part of the phytosterol is precipitated in the intestine and re-solubilised during 

lipolysis of lipids contained in the food ingested at a later time. Lately it has been 

revealed that phytosterols may also have an effect on cholesterol metabolism inside the 

enterocytes.  

2.1.2 Safety of phytosterols and phytostanols 
 
The current opinion is that phytosterols are safe when added to the diet because they are 

found in natural foods. Phytosterol and phytostanol-enriched foods, which decrease 

serum cholesterol levels, are among the first examples in Europe of functional foods 

whose safety has been evaluated following the legislation applied to Novel Foods (SCF 

2000, 2003).  

However, some observations of decreased levels of the absorption of other lipid soluble 

components such as vitamins and antioxidants are of concern (Plat et al., 2000; Mensink 

et al., 2002). Some randomised studies report that phytosterols and phytostanols lower 

serum concentration of β-carotene by up to 25%, concentrations of α-carotene by 10%, 

and concentration of vitamin E by 8% (Weststrate and Meijer, 1998; Hallikainen et al., 

1999; Gylling and Miettinen, 1999). The serum concentration of vitamin D and retinol 

has been observed to be unaffected (Gylling and Miettinen, 1999). Contrary to the above, 

several studies report no significant effects on serum lipid soluble vitamins (Christiansen 

et al., 2001a; Davidson et al., 2001; Volpe et al., 2001 Raieni-Sarjaz et al., 2002). Thus 

the relevance of the observed changes is not yet adequately known and warrants further 

attention. A part of the reported reduction can be explained by a decreased amount of 

LDL particles in the circulation, which transports these lipid-soluble antioxidants (de 

Jong et al., 2003). Phytosterols and phytostanols may also interfere with the incorporation 

into the mixed micelles. Furthermore, phytosterol esters did not substantially affect 

vitamin K-dependent hemostasis on individuals that underwent warfarin therapy, 

suggesting that, at least in short term studies, vitamin K status was not affected by the 

consumption of phytostanols (Nguyen, 1999). Phytosterols have shown no evidence of in 
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vitro mutagenic activity (Wolfreys and Hepburn, 2002). Safety data of phytosterols and 

phytostanols collected for a period of more than five years in Finland and two years in the 

US show no evidence of hazard adverse effects (Katan et al., 2003). 

2.1.3 Phytosterol absorption 
 
The amounts of absorption vary among the individual phytosterols due to both the sterol 

nucleus and the length of the side chain (Ostlund, 2002). In humans, less than 2% of the 

ingested phytosterols is absorbed. β-sitosterol, which is the most extensive phytosterol, is 

the least well absorbed (0.5%) due to its high hydrophobicity. The absorption of 

phytosterols, therefore, is considerably smaller than that of cholesterol, which can be up 

to 60% (Ostlund et al., 2002). Total serum phytosterol concentrations in healthy adults 

range from 7 µmol/L to 24 µmol/L (Moghadasian, 2000).  

Due to the hydrophobicity of the sterols, solubilisation into intestinal mixed micelles is a 

prerequisite for reaching the site of absorption. Phytosterols are solubilised under the 

same conditions that exist for cholesterol and other lipids (Ros, 2000; Moghadasian, 

2000). Solubilisation into mixed micelles is greatly enhanced in the presence of products 

of triglyceride digestion (monoglycerides (MG) and fatty acids (FA)) (Fig. 2) (Carey and 

Small, 1970; Ros, 2000).  

 
Mechanism of dietary mixed micelle formation 
 

The mechanical digestion of lipids starts as early as in the mouth and continues in the 

stomach with emulsification. Chewing breaks down large pieces of fat into smaller sizes 

whereafter the peristaltic movements further grind the smaller pieces into a creamy 

emulsion (chyme). The purpose of emulsification is to increase the surface area of the 

lipid droplets, thereby increasing the area on which the digestive enzymes can act 

effectively. Lingual lipase probably has a minor effect on lipolysis, unlike gastric lipase, 

which hydrolyses approximately one out of four triglycerides molecules during digestion 

of a meal (Embleton and Pouton, 1997; Ros, 2000). The gastric (and lingual) lipase is 

responsible for the hydrolysis of triglyceride (TG) to the corresponding diglyceride (DG) 

and fatty acid (FA). The presence of lipolysis products (mainly FA) in the duodenum 

stimulates the release of the hormone cholecystokinine, which then induces the secretion 

of bile acids from the gallbladder and the release of pancreatic juice containing lipases. 

The sudden increase in pH in the duodenum causes an abrupt change in the physical 
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behaviour of the fatty acids contained in the emulsion droplets. These become partly 

charged and migrate to the interface of the emulsion droplet, inhibiting the binding of the 

principal lipolytic enzyme, pancreatic lipase. The effect of co-lipase is to anchor 

pancreatic lipase to the surface of the emulsified lipid droplet. By the enzymatic action of 

pancreatic lipase on TG droplets, the corresponding 2-monoglyceride and two fatty acids 

are produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2. Schematic model of intestinal lipid digestion and trafficking of lipolysis products. D=drug or 
other compound, BS= Bile salts, FA= Fatty acid, PL= Phospholipid, MG= Monoglycerides, DG= 
Diglyceride (partly adapted from Porter et al., 2004). 
 

Bile, containing a mixture of bile salts and phospholipids, plays a fundamental role in the 

solubilisation of lipid digestion products and other poorly water-soluble compounds. A 

typical concentration of bile salts in the fasted intestine is 4-6 mM, compared to post-

prandial concentrations of 10-20 mM (Ladas et al., 1984; Armand et al., 1996; 

Humberstone and Charman, 1997). When the concentration of bile salts in the intestine 

exceeds critical micellar concentration (cmc), lipids and bile salts interact spontaneously 

to form polymolecular aggregates, micelles. Lipids (digestion products) promote micellar 

swelling and therefore increase the capacity of the micelles to solubilise 

lipophilic/hydrophobic compounds (Porter and Charman, 2001). When the amount of 

lipid digestion products in the aqueous phase increases, while the amount of bile does 
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not, the lipolytic products accumulate on the surface of the lipid droplet. This results in 

the shedding of lipolytic products in the form of multilamellar liquid crystalline 

structures. These structures are normally dissolved quickly into mixed micelles at the 

appropriate bile salt concentration (Ros, 2000). Thus, higher bile salt concentrations 

improve lipid digestion through effective solubilisation of lipolytic products, leading to 

an abundance of swollen micellar structures. This promotes the solubilisation of sterols or 

other lipophilic compounds. 

 
Influx/efflux of sterols in the enterocytes 
 
The transfer of sterols/stanols from the mixed micelles into the enterocytes has long been 

considered a passive process. Recently it has been suggested that a specific protein in 

jejunal enterocytes called Niemann-Pick C1 Like 1 (NPC1L1) shuttle system facilitates 

sterol absorption from the intestinal lumen through the brush border membrane of the 

enterocyte (Davis et al., 2004; Altmann et al., 2004). The ATP-binding cassette (ABC) 

transporters, ABCG5 and ABCG8, are two quite recently discovered half-transporters, 

strongly present in the liver and the intestines. They are involved in the excretion of 

sterols back into the intestinal tract (Berge et al. 2000; Chen, 2001; Albrecht et al., 2002; 

Trautwein et al., 2003, Ostlund, 2004). ABC transporters are proteins that use ATP as a 

source of energy to transport substrates between different cellular compartments and out 

from the cell (Oram and Lawn, 2001). In a similar way another ATP-binding cassette A1 

(ABCA1) is involved in the transport of excess tissue sterol from the enterocytes into the 

lumen. Mutations in any of the ABCG5 and ABCG8 genes are associated with 

sitosterolemia. Sitosterolemia (also known as phytosterolemia) is a rare genetic disorder, 

(one in 6 million people), where patients who fail to excrete sterols into bile have 

extremely high concentrations of serum phytosterols, particularly sitosterol, in serum and 

tissues (Moghadasian, 2000; Lu et al., 2001). Patients with sitosterolemia also 

hyperabsorb cholesterol and are usually hypercholesterolemic (Berge et al., 2001; Lee et 

al., 2001). 

 
Esterification and incorporation into chylomicrons 

 
Absorbed free cholesterol is esterified by acyl-coenzyme A cholesterol acyltransferase 

(ACAT) inside the enterocyte. Only the esterified form is incorporated into chylomicrons 

and excreted into the circulation. There are several potential explanations for the low 
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phytosterol (phytostanol) absorption compared to that of cholesterol.  Phytosterols have a 

low affinity for ACAT and are therefore poorly esterified (Field and Marthur, 1983). 

Since only the esterified form is incorporated into chylomicrons, and further excreted into 

the circulation, the concentration in circulation remains low.  

2.1.4 Phytosterol mechanisms of action on intestinal cholesterol absorption 
 
The mechanism of the cholesterol-lowering activity of phytosterols is not completely 

understood but several theories have been proposed (Fig. 3). Phytosterols are claimed to 

inhibit the absorption of dietary and reabsorption of endogenous cholesterol from the 

gastrointestinal tract. Additionally, phytosterols seem to enhance the efflux of excess 

absorbed cholesterol. Consequently, the excretion of cholesterol in the faeces leads to 

decreased serum levels of this sterol.  

 
Competition between cholesterol and phytosterols for solubilisation in mixed micelles 
 
Cholesterol has to be solubilised within mixed micelles, containing bile-salts and 

phospholipids, in order to reach the site of absorption and further be absorbed into 

circulation. Mixed micelles have a limited capacity to solubilise hydrophobic molecules. 

In vitro and in vivo studies suggest that phytosterols have a greater affinity for micelles 

and can therefore displace cholesterol from the mixed micelles (Ikeda and Sugano, 1983; 

Mel´nikov et al., 2003b; Trautwein et al., 2003). Armstrong and Carey reported that 

phytosterols, due to their increased hydrophobicity compared to cholesterol, have a lower 

solubility in, but a higher affinity for bile acid micelles than does cholesterol (1987).  

 
Co-crystallisation of phytosterols and cholesterol  
 
One potential mechanism of lowering the intestinal cholesterol absorption is co-

crystallisation of cholesterol and phytosterols in the gastrointestinal tract, forming poorly 

absorbable mixed crystals (Christiansen et al., 2001b; Christiansen et al., 2003). Both 

phytosterol and cholesterol are, in a free form, sparingly soluble in oil (3 g/100 ml at 37 

°C in presence of water) and practically insoluble in water (~0.2 mg/100 ml) (Jandacek et 

al., 1977). As early as in the 1950s Davis noticed that cholesterol and β-sitosterol formed 

a new crystal form when the sterols were precipitated in methanol (1955). Co-

crystallisation of phytosterols and cholesterol in the gastrointestinal tract should lead to 

the reduction of intestinal cholesterol uptake since the solubility of the new crystal is 
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considerably lower than that of cholesterol.  Recently, however, Mel´nikov et al. (2003a; 

2003b) reported that it is unlikely that the formation of mixed crystals largely affects the 

intestinal absorption of cholesterol in vivo. This is due to the relatively high solubility of 

cholesterol, phytosterol and phytostanol in products of fat lipolysis. 

 

 
Figure 3. Phytosterols 
displace cholesterol from 
intraluminal intestinal 
micelles, reducing 
cholesterol absorption by the 
brush border membrane. The 
exact mechanism by which 
sterols are absorbed to 
enterocytes is not fully 
known. The transfer of 
sterols/stanols has long been 
considered a passive process. 
Recently the Niemann-Pick 
C1 Like 1 (NPC1L1) shuttle 
system was found to be the 
intestinal phytosterol and 
cholesterol transporter. The 
ATP-binding cassette 
transporters (ABCG5, 
ABCG8 and ABCA1) are 
similarly involved in the 
efflux of excess sterol from 
the enterocytes back into the 
intestinal lumen. 
Phytosterols may also reduce 
the esterification rate of 
cholesterol inside the 
enterocytes through 
inhibition of acyl-coenzyme 
A cholesterol acyltransferase 
(ACAT). Only the esterified 
form (cholesterol ester CE, 
phytosterol ester, PE) is 
incorporated into 
chylomicrons and secreted 
into circulation.  
 

 
Decreased cholesterol influx from and increased cholesterol efflux back into the 
intestinal lumen   
 
Recently it has been stated that the Nieman Pick C1 L1 (NPC1L1) shuttle system plays a 

fundamental part in the regulation of cholesterol influx into the enterocytes. However, it 

appears that these transport systems are unable to differentiate between cholesterol and 

phytosterols. Thus an increased amount of phytosterol in the intestine results in reduced 
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cholesterol in the enterocyte and further reduced cholesterol in circulation. In the same 

way the cellular ATP-binding cassette transporters (ABCG5, ABCG8, ABCA1) are 

involved in the efflux of excess sterol from the enterocytes back into the intestinal lumen 

(Plat and Mensink, 2002; de Jong et al., 2003).  

 
Inhibition of ACAT activity 
 
Another proposed cholesterol-lowering mechanism of phytosterols is the possible 

reduction of the esterification rate of cholesterol inside the enterocytes through inhibition 

of acyl-coenzyme A cholesterol acyltransferase, ACAT (Chen, 2001; de Jong et al., 2003; 

Trautwein, 2003). ACAT reduces the intracellular free cholesterol concentration by 

transforming it into cholesteryl ester. Phytosterols might challenge ACAT activity and 

reduce the absorption of cholesterol because of the high intracellular free sterol 

concentration. Cholesterol has to be incorporated into chylomicrons before it is secreted 

into the lymph. Up to 80% of the cholesterol incorporated in the chylomicrons is in an 

esterified form (Ikeda et al., 1988; Dawson and Rudel, 1999).  

 

2.2 Theory of suspensions and crystal properties 
 
A suspension can be defined as a heterogeneous system in which one phase, a solid, is 

finely divided and dispersed in the other, generally a liquid (the dispersion medium). 

Drugs and other compounds are dispensed as suspensions for different reasons, the most 

common being poor solubility in water, oil or an organic liquid (Falkiewicz, 1988). The 

large surface area of the suspended compound ensures a high degree of bioavailability for 

absorption. Suspensions may also be used to mask the taste of a bitter or unpleasant 

compound. Pharmaceutical suspensions are prepared mainly for oral use, topical 

administration, parenteral use or inhalation therapy (Nash, 1996). Other applications for 

suspensions are e.g. cosmetics, foods and household products.  

2.2.1 Properties of solid particles 
 
The number of particles and different crystalline modifications of the solid material, such 

as crystalline, amorphous or solvated forms, can affect certain properties of a suspension, 

for example solubility, dissolution rate and chemical stability (Haleblian, 1975). 

Crystalline solid is a state where structural units, formed by molecules, atoms or ions, are 
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arranged in a regular, repeating array (Vippagunta et al., 2001). Within a specific crystal, 

each unit cell is the same size and contains the same number of molecules. The unit cell 

can be thought of as a box, which when stacked together three-dimensionally, produces 

the crystal lattice. The simplest and most symmetric of these is the cubic system. The 

other six systems are the hexagonal, tetragonal, trigonal, orthorhombic, monoclinic and 

the triclinic systems.  

When a material is in solid state but consists of disordered arrangements of molecules, it 

is said to be amorphous (glass state). Amorphous solids have properties very different 

from the crystal form, no melting point and no definitive x-ray pattern. Consequently, 

they have zero crystallinity. The crystallinity can be described as the degree of 

crystallinity which is the ratio of the crystalline to amorphous parts in a substance.  

 
Crystals in a suspension are larger than those in colloids or solutions; they are visible 

under a microscope, and some can be seen with the naked eye. The particle size 

distribution of the suspended phase is one of the most important parts in the formulation 

and stability of a suspension (Nash, 1996). A fine particle size is important to ensure a 

slow rate of sedimentation of the suspended particles and better resuspendability. While 

most of the existing suspensions have particle sizes in the micron range, technology 

development in recent years has extended the range down to the submicron region. One 

of the advantages of nanosized crystals is the possibility of intravenous administration 

(Merisko-Liversidge et al., 1996). When particle size grows beyond ~1 µm, the system is 

called coarse suspension (Nash, 1988). The upper limit for a suspendable solid particle in 

coarse pharmaceutical suspensions is from 50 to 75 µm. However, particles larger than 5 

µm will cause a gritty texture when administered in the eye and particles over 25 µm 

might block the needle in parenteral use. The optimum particle size for a so-called 

creamy suspension administered orally lies, according to the food industry, between 10 

µm and 50 µm (Viaene and Januszewska, 1999; Kilgast and Clegg, 2002).  

 
Research has focused more on crystal size distribution than on crystal habit, which is 

another critical property of a crystalline solid in suspensions. The crystal habit 

particularly affects the stability of suspensions and their usage. Regarding the physical 

stability, needle-shaped crystals are preferred, since they stay suspended better than 

prismatic crystals (La Manna, 1985). The crystal habit, or overall shape of the crystal, 

depends on internal factors (e.g. structure and bonds) and external factors (e.g. 
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supersaturation and solution composition) (Boistelle and Astier, 1988). The shapes of 

particles are classified into ten classes according to British Standards (BS 2955).  Crystals 

are, however, usually classified according to the seven general systems as acicular 

(needle), prismatic, pyramidal, tabular, equant, columnar and lamellar types (Fig. 4). 

Acicular, prismatic and plate-like crystals are common habits for recrystallised 

compounds (Anwar et al., 1989; Agafonov et al., 1991).  

 

 

 

 

 

 

 

 

 
 

 

 
Figure 4. Some crystal habits A. tabular, B. platy, C. prismatic, D. acicular and E. bladed. 

 
Different crystal structures of the same compound (polymorphism) can also be a factor in 

suspension technology. Polymorphism is defined as the ability of a compound to 

crystallise in at least two different crystal forms (Haleblian and McCrone, 1969). 

Polymorphs of a certain substance usually have different physicochemical properties, 

such as melting point, solubility and density. Polymorphism may thus have an effect on 

the bioavailability, manufacturability, and stability of the product. Pseudopolymorphs, 

also known as solvates, are crystalline solids that include solvent molecules within the 

crystal structure (Vippagunta, 2001). The differences between polymorphs and 

pseudopolymorphs are significant. Whereas polymorphs are different crystal structures of 

the same molecules, pseudopolymorphs, on the other hand, are crystals of the same 

molecule with different numbers of solvent molecules. If the solvent molecule is water, 

these crystals are termed hydrate. The liberation of water molecules or organic solvents 

from crystals is dependent on environmental conditions such as temperature, humidity 

and pressure. Crystalline hydrates can be classified into three categories (Morris and 
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Rodrigues-Hornedo, 1992). The first category (class 1) is the isolated lattice site hydrates, 

where the water molecules are not in direct contact with each other. The second category 

(class 2) is channel hydrates, where the water molecules lie next to other water molecules 

forming channels through the crystals. The third category (class 3) is the ion-associated 

hydrates, in which the metal ions coordinate with the water molecules, and are included 

in the growing lattice structure. Today more than ever before, the ability to develop a 

suitable salt form of a new compound during development and preformulation has to be 

considered. Evaluating the physical properties of potential salt forms is of major 

importance as they may cause changes in dissolution rates and solubility. Changes in the 

hygroscopicity and stability of different salt forms have to be taken into consideration 

during formulation.  

2.2.2 Properties of the dispersion medium 
 
The dispersion medium (i.e. external or continuous phase) is generally a liquid or a 

semisolid. The medium is selected on the basis of safety, density, viscosity, taste and 

stability (Nairn, 1990). Water is the most commonly used medium in pharmaceutical 

suspensions. One factor to consider in the preparation of suspensions is the degree of 

interaction between the internal phase and the dispersion medium. If there is little 

interaction between the internal phase and the dispersion medium, the dispersion is 

lyophobic (or hydrophobic if water is used). The internal phase consists of either organic 

or inorganic compounds and thus has little interaction with the aqueous phase. As a 

result, the suspensions are physically unstable and should be prepared by the methods 

discussed below (section 2.2.3). If there is considerable interaction between the internal 

and external phases, the dispersion is lyophilic (or hydrophilic). In this type of dispersion 

(e.g. gels), the internal phase has polar groups with a hydrophilic character.  

By increasing the viscosity of the dispersion medium, a slower particle sedimentation rate 

can be achieved and thus an increase in stability. The most common method of increasing 

the viscosity is by adding a viscosity enhancer (e.g. natural, semisynthetic, or synthetic 

hydrocolloids, and clays) (Ofner et al., 1989). Ideally, the system should be 

pseudoplastic, i.e., it should have high viscosity during storage and low viscosity during 

shaking.  
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2.2.3 Formulation of a suspension 
 
Since the specific properties of various suspended compounds differ, there is no single 

procedure that will always lead to a successful suspension product; however, certain 

principles are fundamental in all formulations. Suspensions can be prepared either by 

dispersing finely divided powders in an appropriate vehicle or by precipitation.  

 
Dispersion method 

 
The preparation of suspensions by dispersion method consists of three main steps: first it 

is necessary to ensure that the internal phase is of fine particle size, then the internal 

phase is dispersed in the dispersion medium, and finally, the product is stabilised (Nairn, 

1990). Common methods of particle size reduction include e.g. dry milling, spray drying 

and recrystallisation from supercritical fluids (SCF) (Nash, 1988; Mullin, 2001). When 

the dispersion method is utilised for suspension preparation, the vehicle must be 

formulated so that the solid phase is easily wetted and dispersed. Certain solids are 

readily wet by the dispersion medium whereas other are not. The use of surfactants (e.g. 

sodium lauryl sulfate, polysorbates or sorbitan esters) is then desirable to ensure uniform 

wetting of hydrophobic solids as they decrease the solid-liquid interfacial tension, 

because of their dual affinity for both oil and water. Once the particles have been wetted, 

they must be separated and distributed uniformly throughout the liquid vehicle. Sufficient 

agitation of the mixture of solid and liquid must be provided initially to obtain a high 

degree of dispersion (the extent to which particles are separated and distributed 

throughout the vehicle). Sometimes shearing forces from mixers are used to break up 

particle aggregates for better wetting and distribution of the compound. The final step is 

to maintain the stability of the dispersed state. This is mainly done by increasing the 

viscosity of the dispersion medium or by reducing the particle size (see sections 2.2.2 and 

2.2.8). 

 
Precipitation method 

 
The more seldom used method to suspend an insoluble compound is by precipitation 

from a solution. There are several common methods for the production of solids in the 

pharmaceutical industry. Water-insoluble compounds can be precipitated by first 

dissolving them in water-miscible organic solvents and subsequently adding water under 
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standard conditions. The technique where changing the pH causes the precipitation is 

only applicable to those compounds in which solubility is dependent on the pH value. 

When a solution contains a solute (solid e.g. drug) at the limit of its solubility at any 

given temperature and pressure, it is said to be saturated. If the saturation limit is 

exceeded, the solution is supersaturated. Supersaturation is the thermodynamic driving 

force for both crystal nucleation and growth. A supersaturated solution can also be 

achieved by evaporating, cooling or heating the solution or by adding a precipitant 

(Boistelle and Astier, 1988).  

In Fig. 5, point A shows the zone where the solution is undersaturated and any crystals 

present in the system would dissolve. When the concentration increases at a constant 

temperature, the solution reaches the saturation point B. At concentrations greater than B, 

the solution is supersaturated. 

 

 

 

 

 

 

 

 
 

 

  Figure 5. The solubility/supersolubility diagram. 

 

Nucleation (see section 2.2.4) will, however, not occur until the concentration reaches 

point C, which defines what is called the metastable limit. The metastable region (cm-c* 

or Tm-T*) varies from one substance to another and also within one substance because of 

impurities.  

2.2.4 Crystal nucleation 
 
Primary nucleation 
 
Nucleation is the process that precedes crystallisation. Within this process, a nucleus, 

onto which a crystal can grow, develops. If a solution does not contain any solid foreign 
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particle or any roughness of the walls of its container, nuclei can be formed by 

homogeneous type (Myerson and Ginde, 1993). In primary homogeneous nucleation, the 

molecules randomly collide with each other forming small aggregates (Boistelle and 

Astier, 1988). The formation of the aggregates continues up to a critical size above which 

the nuclei transform into crystals.  

Most primary nucleation is of the heterogeneous 

type as it is almost impossible to remove foreign 

bodies completely from crystallising systems. 

Still homogeneous nucleation does form the 

basis of several nucleation theories (Myerson 

and Ginde, 1993; Mullin, 2001). Heterogeneous 

nucleation takes place on foreign surfaces, e.g. 

on the walls of the crystallisation vessel, on the 

surface of the stirrer or any other added seed 

crystal, or on dust present in the solution 

(Boistelle and Astier, 1988). The presence of 

foreign substrates catalyses the nucleation and can induce nucleation at a lower 

supersaturation.  

 

Secondary nucleation 
 

All nucleation that occurs after primary nucleation is called secondary nucleation. When 

crystals of the solute are present or deliberately added, nucleation occurs at a 

supersaturation lower than the one needed for primary nucleation (Mullin, 2001). 

Secondary nucleation can occur through several different mechanisms (Davey and 

Garside, 2000; Myerson and Ginde, 1993). The most common mechanism of secondary 

nucleation, contact nucleation, can result from a disturbance occurring on the surface of a 

growing crystal. Possible contact sources are the crystalliser, impeller or another crystal. 

Collision or attrition breeding results from crystal fragments that serve as nucleation 

sites. The collision breeding is dependent on e.g. crystal hardness (Myerson and Ginde, 

1993). In initial or dust breeding, the secondary nuclei originate from the seed crystals. 

Small crystallites are formed on the seed crystal surface and when placed into solution 

the crystallites become new centres for growth (Myerson and Ginde, 1993; Davey and 

Figure 6. Classification of types of nucleation 
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Garside, 2000). At a high level of supersaturation crystals are needle-like. They are often 

fragile and may break into small parts. These crystal fragments serve as nucleation sites 

and the process is called needle breeding. Shear nucleation has also been presented as 

one mechanism of secondary nucleation, when shear forces due to solution flowing past 

crystals may cause crystal breakage and produce secondary nuclei on the surface (Davey 

and Garside, 2000). 

2.2.5 Crystal growth  
 
When stable nuclei, i.e. particles larger than the critical size, have been formed, they 

begin to grow into crystals of visible size (Mullin, 2001). When a growth unit reaches the 

crystal surface, it either integrates into the lattice or returns to the fluid phase. The ability 

of a surface to capture arriving growth units is dependent upon e.g. the structure, bonds 

and defects (Garside, 1984; Boistelle and Astier, 1998; Davey and Garside, 2000).  

There are several possible pathways by which a molecule passes from the solution to 

become integrated into lattice position on a growing-phase crystal. Crystals are thought to 

grow in a layer-by-layer fashion. Fig. 7 shows the three possible sites for the molecule to 

incorporate into the crystal surface. At site A, the molecule is only attached to the surface 

of a growing layer (flat), at site B, the molecule is attached to both the surface and the 

growing layer (stepped), while at site C, the molecule is attached at three surfaces 

(kinked). Molecules tend to bond at locations where they have the maximum number of 

nearest neighbours as these are the most energetically favourable sites (Myerson and 

Ginde, 1993). The growth units are believed to adsorb onto the crystal surface (A) 

followed by diffusion along the surface to a step site (B), and then further diffused to a 

kink (C), where the incorporation takes place (Mullin, 2001; Myerson and Ginde, 1993).  

 

 

 

 

 

     
  

 

          Figure 7. Kossel´s model of a growing crystal surface 
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When the surface of a crystal is rough there are many potential kink sites, and new 

growth units arriving at the surface will find a growth site (Fig. 8) (Garside, 1984). The 

crystal growth is therefore continuous. On the other hand, when the interface is smooth, 

growth is more difficult. If the growth units do not find a growth site, they either return to 

the liquid phase or form two-dimensional circular clusters on a flat surface (Fig. 8)  

(Davey and Garside, 2000). These islands act as new kink sites where additional growth 

units can join the surface. When a complete layer has been formed, the crystal has grown 

by one monolayer (Boistelle and Astier, 1988). 

Crystal growth like this is referred to as two-

dimensional growth or surface nucleation. 

Two-dimensional growth can be mononuclear 

when there is only one cluster which spreads 

across the surface at the same time. In the 

polynuclear model several clusters 

simultaneously spread on the crystal surface. 

In contrast to the mononuclear growth where the 

whole crystal surface is covered before the next cluster is formed, this model allows 

several layers to grow at the same time.  

Most crystals contain imperfections (see section 2.2.6); most commonly screw 

dislocations, providing one or more steps which can spread over the surface (Boistelle 

and Astier, 1988; Myerson and Ginde, 1993). Molecules absorb on the crystal surface and 

diffuse to the top step of the dislocation and the surface becomes a spiral staircase. When 

one layer is complete, the dislocation still exists and the spiral growth can continue. 

Growth can continue to a certain maximum determined by the supersaturation in the 

medium in which the crystal is growing (Mullin, 2001). 

2.2.6 Imperfections in crystals 
 
In a crystal, each atom or molecule has a precise location, forming a continuous structure 

(Mullin, 2001). If the structure is disrupted in any way, the crystal is said to have 

imperfections. Crystals are always imperfect in some sense, and although the defects 

usually are small, they might have an impact on some important chemical and physical 

factors, e.g. dissolution, solubility, and melting point (Burt and Mitchell, 1981). The 

defects in organic crystals can be divided into point, line and surface defects. 

Figure 8. Two-dimensional crystal 
growth on a flat site. 
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Dislocation lineDislocation line

Point defects  
 
A point defect is a defect that occurs at a 

specific lattice point. The most common point 

defects are presented in Fig. 9. Vacancies are 

lattice sites from which units are missing 

(Myerson and Ginde, 1993; Mullin, 2001). 

The missing units may be atoms, molecules or 

ions. A foreign unit occupying positions 

between the regular lattice sites of the crystals is 

called interstitial impurity. When a foreign unit occupies a regular lattice site, taking the 

place of the host atom, it is a so-called substitutional impurity. These defects are called 

point units, as they involve a single unit of the crystal structure.  

 
Line defects (dislocations) 
 
Line defects are defects that extend through the 

crystal along a one-dimensional boundary, such as 

a line or a curve. These defects are formed when 

planes of atoms are out of place. The two main 

types of line defects are the edge and screw 

dislocations (Mullin, 2001). An edge 

dislocation is illustrated in Fig. 10. The figure 

shows that half of the vertical row of atoms is missing. The position of the dislocation is 

marked by an arrow. The lattice points are displaced in the region of the dislocation but 

get smaller and finally return to normal. The other type of line defect is the screw 

dislocation. In screw dislocations, atoms have moved one lattice unit higher at the edge 

forming a cotinuous spiral-formed step. Without dislocation, the movement of atoms 

relative to each other would be very difficult, and no plastic deformation would be 

possible. The enormous number of dislocations is also the reason why metallic parts bend 

during manufacturing. Ceramic materials, for exmple, are brittle as they do not contain as 

many dislocations.  

 
 
 
 

           Figure 10. Line dislocation 
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Figure 9. A schematic model of vacancy, 
interstitial and substitutional point defects 
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Surface defects 
 
Surface defects occur wherever the crystalline structure of 

the material is not continuous across a plane. Surface, 

planar, or interfacial defects are divided into crystallite, tilt 

and twist boundaries. These boundaries are formed in 

crystalline materials as the result of mechanical or thermal 

stresses or irregular growth (Mullin, 2001). Crystallite 

boundaries, for example, can be created when the crystalline 

structure does not match perfectly with the crystalline 

structure in the neighboring area (Fig.11). The area between 

these crystalline areas (crystallites) is called a crystallite 

boundary. 

2.2.7 Factors affecting crystal properties 
 
The degree of saturation is the critical parameter controlling the rate of nucleation 

(Myerson and Ginde, 1993). At a high supersaturation, the presence of fragments that 

serve as a source of secondary nuclei, is greater and results in a larger number of nuclei. 

The number of crystals is dependent on the nucleation and thus “one nucleus, one large 

crystal; a billion nuclei, a billion tiny crystals” (Byrn et al, 1999). As the degree of 

saturation increases, the crystal size distribution tends to reduce and additionally the habit 

tends to change towards acicular-shaped (Haleblian, 1975).   

     
When crystal growth takes place in the presence of impurities, the growth rates of the 

crystal can be strongly affected. Impurities, such as ions and surface-active agents, may 

decrease the amount of molecules incorporating onto the crystal surface by selective 

adsorption (Dirksen and Ring, 1991). Impurities may affect the crystal morphology even 

at a very low concentration (ppm), but usually they become more efficient with 

increasing concentration (Davey and Garside, 2000; Mullin 2001). Sometimes impurities 

are deliberately added to achieve the desired crystal morphology.  

 
The cooling of a solution is one of the most widely used methods for achieving the 

supersaturation essential for crystallisation (Jones and Mullin, 1974). At low cooling 

temperatures the crystal size decreases owing to a higher level of supersaturation and an 

Figure 11.  Crystallite boundary 
between two crystalline areas. 
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increase in nucleation rate (Myerson and Ginde, 1993). The cooling rate also affects the 

crystal habit through an effect on the degree of supersaturation. Rapid cooling results in 

needle-shaped or thin plate-shaped crystals.  

 
The crystal size can be altered by varying the stirring rate owing to its influence upon 

nucleation rate (Mackellar et al. 1994). Generally, rapid stirring is said to enhance the 

nucleation rate resulting in smaller crystal size, although this is not always the case 

(Mullin, 2001). In some cases, stirring might also lead to a thinning of the absorbed layer 

(in secondary nucleation), causing fewer fragments and thereby leading to lower 

nucleation rates (Myerson and Ginde, 1993). The rate of stirring must be strong enough 

to provide a complete contact between the crystals and the solvent. When a particular 

stirring rate is reached, it should not be exceeded as this could cause a mechanical 

breakage of the crystals. 

2.2.8 Physical stability of suspensions 
 
Since a suspension exists in more than one state (liquid and solid), it possesses some 

disadvantages relative to other dosage forms. Suspensions are thermodynamically 

unstable systems, i.e. they always tend toward ultimate loss of stability. The primary 

disadvantage is their physical instability, such as the difficulty of redispersability of the 

sediment and crystal growth (Akers et al., 1987). A suspension must remain sufficiently 

homogeneous for at least the period of time necessary to remove and administer the 

required amount after shaking.  

The rate of sedimentation of a suspended phase depends on several factors which may be 

controlled by pharmaceutical manipulation. For example, by reducing the particle size or 

by increasing the viscosity and density of the dispersion medium (see sections 2.2.2 and 

2.2.8), the rate of sedimentation can be retarded. Even though the particle size of a 

compound is small when the suspension is first prepared, a certain degree of crystal 

growth always occurs during storage. Over a period of time the small crystals will 

diminish further, whereas the larger particles will increase in size, owing to a difference 

in solubility rates of particles of different sizes (Ostwalt ripening). A number of additives 

such as polymers and surfactants have been suggested to prevent crystal growth (Motawi 

et al., 1982). A change from one pseudopolymorphic form to a thermodynamically more 

stable crystal form, or a change in the crystal habit due to the degree of hydration of the 
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compound may lead to crystal growth in the suspensions. This may cause caking and 

deflocculation of the suspension (Khankari and Grant, 1995). The effect of temperature 

changes is important when measuring physical stability as it might affect both the 

solubility and the recrystallisation of the suspended compound. Chemical and microbial 

stability factors are also relevant when studying the stability of suspensions.  

2.2.9 Methods for analysing suspensions 
 
Microscopy 

 
Optical microscopy is the only technique by which it is possible to achieve information 

about both the morphology and size distribution of the crystals under study (Brittain, 

1999). This widely used method is an important tool for characterising different 

polymorphs and pseudopolymorphs as the crystal habit usually changes with the 

structure.  The magnification of an optical microscope is usually not beyond 600x, which 

might limit its use when observing microcrystalline materials. When a higher 

magnification level is needed, the electron microscope can be used as a complementary 

method on account of its very high level of magnification (90 000x).   

 
Structure of the solid material 

 
X-ray powder diffraction (XRPD) has been used in two main areas, for the fingerprint 

characterisation of crystalline materials and the determination of polymorphs (Cullity, 

1978). 

Fig. 12 illustrates the principle of x-ray 

diffraction technique which is based on 

Bragg’s law. This describes the diffraction of 

monochromatic x-ray radiation impinging on 

a plane of atoms. The two paths, A and B for 

the incident and diffracted beams, differ in 

length by nλ = 2d sin θ where d is the distance 

between atomic layers in a crystal and θ the 

angle of beam diffraction. The variable lambda (λ) is the wavelength of the incident x-ray 

beam, and n is the order of the diffraction pattern. Quantitative determination of the 

Figure 12. Schematic diagram for  

determining Bragg’s law 
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estimated amount of different polymorphs can be difficult due to preferred orientation. 

Preferred orientation can be defined as a condition where the distribution of crystal 

orientation is non-random (Cullity, 1978). The changes in the intensity of the diffraction 

maximum can be explained by this. Needle-shaped and plate-like particles are prone to 

preferred orientation. Yet these effects can be minimised by reducing the particle size 

(Byrn et al., 1999). The presence of overlapping reflections can also make the 

determination of intensity more difficult (Agatonovic-Kustrin et al., 1999). XRPD has 

also been used to quantify sample crystallinity, even though no clearly defined diffraction 

peaks can be recorded with amorphous materials. 

 
Near-infrared (NIR) was discovered in 1800 as the first non-visible region in the 

absorption spectra (Blanco et al., 1998). Near-infrared spectroscopy covers the 

electromagnetic spectrum from 760 to 2600 nm. Like the other vibrational spectroscopy 

methods, NIR spectroscopy measures stretchings and bending of bonds between atoms. 

All organic bonds have absorption bands in the NIR region but the method is particularly 

used for quantitative measurements of O-H, N-H, and C=O bonds. NIR spectroscopy is 

widely used for quantification of water and it can also be used to examine the state of 

water. The most intense absorption bands of pure water in the NIR region are found 

around 1450 and 1940 nm (Osborne et al., 1993). NIR spectroscopy offers a number of 

important advantages, being a fast, non-destructive method of high precision that requires 

minimal sample preparation. Raw data often needs to be mathematically processed before 

removed in the spectra. The first and the second derivatives are most commonly used.  

 
Thermal methods  

 
By using a hot stage on the microscope, any changes in a solid can be related to 

temperature by direct observation (Byrn et al., 1999). Hot stage microscopy with imaging 

facilities is an important supportive tool for the characterisation of melting, desolvation, 

crystallisation and solubility as a function of temperature (Brittain, 1999). Changes in 

crystal morphology during heating may indicate a change from one crystal form to 

another, while a change in the transparency may be caused by dehydration prior to 

melting (Byrn et al., 1999).   
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Differential scanning calorimetry (DSC) is a routinely used thermal analytical technique 

for measuring phase transitions (Giron, 1998; Clas et al., 1999; Bond et al., 2002). DSC is 

used to measure the heat flow into and out of a sample cell with respect to a reference cell 

in a controlled atmosphere and over a wide temperature range (Byrn et al., 1999; Giron, 

1998). The result of a DSC analysis is a thermogram, where the endotherms represent 

processes in which heat is absorbed (e.g. desolvation, melting, and phase transitions) 

(Brittain, 1999). The exotherms represent processes where energy is released, such as 

crystallisation. This method together with thermogravimetric analysis (TGA) is 

particularly useful in the study of hydrates with dehydration steps at low temperatures 

(Giron, 1995).  

In TGA, the measured parameter is the weight loss of the material as a function of the 

applied temperature (Brittain 1998). This may involve controlled heating or cooling or a 

maintained constant temperature. The TGA is most commonly used to study the 

desolvation processes of hydrates and other solvates and can be used as an adjunct to 

Karl-Fisher titrations for the determination of moisture.  

 
Rheology and mechanical properties 

 
Rheology is used to define the consistency and can be described by viscosity (thickness) 

and elasticity (stickiness) of a product (Blomstedt, 2000). Rheology is a viscosity 

measurement by which it is possible to characterise the flow behaviour and determine the 

structure of a material. Gases and liquids are usually described as viscous fluids and 

solids as elastic materials. Several materials (e.g. food products) show both viscous and 

elastic properties (i.e. viscoelastic), as they are able to store some of the deformation 

energy while some of it is lost. The main types of viscometers are rotational and 

capillary. The cone-plate viscometer, an example of a rotational viscometer, consists of a 

flat circular plate with a wide-angle cone placed centrally above it. The cone just touches 

the plate and the sample is loaded into the gap.  

Dynamic mechanical analysis (DMA) supplies information about the viscoelastic 

properties of pharmaceutical and biomedical systems (Menard, 1999; Jones, 1999). It 

enables the measurement of the viscosity of the material during applied force and 

stiffness (modulus) from the sample recovery (Menard, 1999). These properties are often 

described as the ability to lose energy as heat and the ability to recover from deformation. 
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DMA is a versatile technique that may be used to simultaneously characterise both 

rheological and thermal properties of a wide range of sample types (Jones, 1999). 

Dynamic mechanical testing methods have been widely used in the characterization of 

viscoelastic materials, particularly in the polymer sciences (Craig and Johnson, 1995; 

Giron, 1998).  
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3 AIMS OF THE STUDY 

 
The unpleasant gritty texture of phytosterols and the poor solubility in oil or water has 

caused several problems in their preparation and administration. In the present study, a 

non-esterified phytosterol suspension in oil was prepared for oral administration. To 

avoid the gritty sensation in the mouth, the preparation of this suspension was optimised 

in order to achieve a microcrystalline particle size. As this phytosterol suspension is 

intended for addition into cholesterol-lowering food and pharmaceutical products, the 

knowledge of its thermal changes during process is of importance as well as the physical 

stability during storage. A clinical test performed earlier using a similar microcrystalline 

suspension revealed a significant reduction of cholesterol levels. A dynamic in vitro study 

has been performed to understand the mechanism by which phytosterols interfere with 

cholesterol absorption. 

 

 
The specific aims were  

 
- to prepare a microcrystalline phytosterol suspension in oil by precipitation method 

and to describe how different processing parameters affect crystal properties of 

phytosterol, 

- to investigate the different pseudopolymorphic forms of phytosterol in the 

presence and absence of water,  

- to evaluate physical properties of the microcrystalline suspension during storage 

and to characterise the changes that occurred during heating, and 

- to study the effects of the microcrystalline phytosterol suspension on cholesterol 

solubilisation in vitro, and to compare the effect of medium and long chain length 

lipid on the solubilisation. 
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4 EXPERIMENTAL 

 
A more detailed description of the materials and methods is given in the respective 

original publications (I-V). 

 

4.1 Materials 
 
β-sitosterol (β-sitosterol for biochemistry) was purchased from Merck, Germany (I,V), 

DRT (Les Dérivés Résiniques et Terpéniques), France (II,III) and from Calbiochem 

(Biosciences Inc., La Jolla, USA) (IV). According to our GC-MS analyses, the 

phytosterol from Merck contained 79% pure β-sitosterol (14% β-sitostanol, 6% 

campesterol and 2% campestanol). The wood-based phytosterol from DRT contained 

≥78.5% β-sitosterol (10% β-sitostanol, 8.7% campesterol and campestanol 1%) and the 

Calbiochem phytosterol with 75.5% pure β-sitosterol (13.0% β-sitostanol). The 

cholesterol was a Sigma Chemical Co. (St. Louis, USA) product (V). According to the 

GC-MS analyses the cholesterol was 99% pure.  

The MCT oil (medium chain triglyceride) was from SHS International Ltd., UK (I-IV). 

The purified MCT oil that was used contained mainly caprylic and capric acid-based 

triglycerides. The other oils used were soybean oil (LCT; ≥ 85% linoleic, oleic and 

linolenic acid), which was a Sigma product and Captex 355 (MCT; ≥ 95% caprylic and 

capric acid) a product from Abitech Corporation (Janesville, USA) (V). Polyoxyethylene 

20 sorbitan mono-oleate (polysorbate 80), (Tween 80® for parenteral use, ICI Surfactant, 

Germany) was added when studying the effect of surfactant on the crystal size 

distribution (III). 

4.2 Preparation of phytosterol crystals (I) 
 
Anhydrous phytosterol was prepared by crystallising the sterol from supersaturated 

acetone and hydrated from crystals from acetone-water 95:5 (v/v) mixture. Anhydrous 

crystals were dried over night at 80 °C and stored over silica gel at 20±2 °C. Hydrated 

phytosterol was stored over a saturated solution of K2SO4 at 20±2 °C, which 

corresponded to 98% relative humidity. 
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4.3 Preparation of the suspensions (I-V) 
 
The suspensions were prepared by heating phytosterol or cholesterol and oil (MCT, 

Captex 355 or Soybean oil) in a vessel while stirring. Phytosterol/cholesterol was 

dissolved at about 100 °C and a clear solution was formed. 

Suspensions were prepared by heating the phytosterol (I-IV) or cholesterol (V) in 

medium chain triglyceride (I-IV) oil or long chain triglyceride (V) up to 100-110 °C until 

a clear solution was formed. During cooling, at about 90 °C, purified water of the same 

temperature was added. The suspension was stirred until it reached room temperature (I-

III). Additionally, the suspensions were prepared by rapid cooling (II-V) in order to 

achieve a smaller crystal size. The first part of the process was the same as explained 

earlier. However, following the addition of water (90°C) to the clear solution, in this case, 

the vessel was then immediately immersed in ice. The suspension was subsequently 

stirred until it reached room temperature (+25 °C). After preparation the samples were 

kept at room temperature for half an hour. The samples were then stored in airtight plastic 

containers at +4 °C (I-V) and -19 °C (II). Compositions of the sterol suspensions are 

presented in Table 2. 
 

Table 2. Compositions of the studied suspensions in publications I-V.  
The proportions of phytosterol: oil: water (w/w). 

I II III IV V 

20:80:00 05:90:05 17:70:13 05:82:13 17:70:13 
20:80:01 05:75:20  17:70:13  
20:80:05 17:78:05  17:83:00 17:83* 
20:80:10 17:63:20  30:57:13  
20:80:15 30:65:05    
10:80:05 30:50:20    
05:80:05     

* Cholesterol: MCT/LCT 
 

When studying the effect of surface-active agent on the crystal size, polyoxyethylene 20 

sorbitan mono-oleate (polysorbate 80), was added to the water before combining the 

water and phytosterol-oil mixture (III). Batches with surface-active agent contained 1% 

(w/w) polysorbate 80. The effect of cooling temperature was studied by immersing the 

vessel in which the suspensions were made in an ice/water bath at six different levels of 
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temperatures: 0°C, 10°C, 20°C, 30°C, 40 °C and 50 °C (±2 °C). The cooling temperature 

was measured every 30 seconds for four minutes. By this time the suspensions immersed 

in either 0 °C or 10 °C had reached at least room temperature. To investigate the effects 

of stirring time and stirring rate, the batches were prepared with a mixer (Kenwood Chef 

Classic KM 400, Great Britain). The metallic bowl was covered with a frozen shell to 

cool down the suspension in the same way as was done when immersing the beaker in 

ice. The rotation speed of the mixer was 0, 60, 120, 200 and 250 rpm. Stirring time was, 

in this case, 3 minutes. At this point the mass had reached room temperature and visually 

the system was equally well agitated. Every 30 seconds the bowl was cleaned on the sides 

with a spatula. The effect of stirring time was studied at 250 rpm at the following times: 

30, 60, 120, 240 and 360 s. In these cases also, the bowl was cleaned on its sides every 30 

seconds. 

4.4 Analysis of phytosterol crystals and suspensions 
 
Optical Microscopy (I-IV) 
 
The size distribution and the habit of the crystals were evaluated by optical microscopy 

(Leica DMLB, Leica Mikroskopie und Systeme GmbH, Germany). The samples were 

prepared by taking a small amount of the suspension and diluting it with a small amount 

of MCT oil, because of the high viscosity. The crystal size of 300 particles per sample 

was measured manually using a measuring rod. Observations regarding crystal habit 

during storage were made on a visual basis (II). Crystal size and habit determinations 

were carried out on the samples stored at +4°C, initially, and after 1, 2, 4, 8, 12 and 16 

weeks of storage. Samples stored at -19 °C were determined initially and after 12 weeks 

of storage.  

 
X-Ray Powder Diffraction (XRPD) (I-IV) 
 

The crystal structure of the phytosterol suspensions was measured using an x-ray powder 

diffractometry (XRPD) with a theta-theta diffractometer (Bruker AXS, D8 Advance, 

Germany) in a symmetrical reflection mode with Cu Kα radiation (1.54 Å) using Göbel 

mirror bent gradient multilayer optics. The scattered intensities were measured with a 

scintillation counter. The angular range was from 3° to 30° using a step size of 0.05° and 

the measuring time was 1s/increment. The x-ray diffraction measurements for the thermal 
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analyses were made as described although each sample was measured at several 

temperatures (VT-XRPD) between 25 and 60 °C (IV).  

 
Differential scanning calorimetry (DSC)(IV) 

 
A differential scanning calorimeter (Mettler DSC30 with TC15 TA processor, Mettler-

Toledo AG, Switzerland) was used in the study. The analyses were made by STARe 

Thermal Analysis System version 3.1 (Mettler-Toledo-AG). The DSC was calibrated 

using the melting temperature of n-pentane, n-hexane, mercury, ion changed water, 

gallium and indium. In addition, the melting point of indium was checked once during the 

determinations. Each sample was first heated from 25 to 60 °C/min. This was followed 

by cooling down to 25 °C and heating back to 60 °C, 5 °C/min. The samples (10-30 mg) 

were hermetically sealed in 40 µl aluminium pans (n≥2; analysed the day after 

preparation). An empty aluminium pan was used as reference sample.  

 
Dynamic mechanical analysis (DMA) (IV)  
 
A dynamic-mechanical analyzer (DMA 242, Netzsch-Gerätebau GmbH, Selb, Germany) 

was used to observe the storage modulus, loss modulus and tan δ as a function of 

temperature. The DMA was equipped with a DMA 242 measuring unit, a cooling gas 

controller, a DMA 242 and TASC 414/3 controller, and Netzsch DMA 242 software 

version 1.5.  The instrument was used with a disk-bending sample holder. The sample 

holder consisted of three stainless steel layers with circular holes of 30 and 26 mm in 

diameter. The layers were separated by two 0.05 mm thin PET plastic films and the 

sample was located between these two films. During the analysis, sinusoidally varying 

stress was applied to the material observed as a function of temperature. The samples 

were analysed on the day after preparation, at frequencies of 0.1, 0.5, 1, 2.5 and 5 Hz and 

the amplitude was 7.5 µm. The samples were heated at a heating rate of 2 °C/min from 30 

°C to 60 °C. These analyses were used to obtain three major parameters: (1) the storage 

modulus, G′, which measured the amount of energy stored in the material during 

deformation; (2) the loss modulus, G′′, which is proportional to the amount of energy 

dissipated per cycle; and (3) the loss tan δ, which corresponds to the ratio of energy 

stored per cycle (Menard, 1999). 

 



 

 
32

Thermogravimetric (TG) analysis (I) 
 

The thermogravimetric (TG) analyses of the crystalline phytosterol samples were 

performed with a Mettler TGA/SDTA analyzer (model 851e, Mettler Toledo, 

Switzerland). Samples (5 mg) were analysed in open aluminium pans under nitrogen flow 

(50 ml/ min) at 25-150 °C with a heating rate of 10 °C/min. The temperature scale of the 

equipment was calibrated with zinc and indium, while the microbalance was calibrated 

with calcium carbonate. 

 
Near-infrared spectroscopy (NIR) (I) 
 

Near-infrared (NIR) spectra were measured with a Fourier transform (FT-NIR) 

spectrometer (Bomem MD-160 DX, Hartman&Braun, Quebec, Canada) using Bomem-

GRAMS software (version 4.04, Galactic Industries, Salem, NH, USA). The spectra were 

measured through the bottom of a glass vial containing the sample. FT-NIR spectra of the 

crystals and suspensions were recorded over a range of 4000 and 10 000 cm-1 with a 

resolution of 16 cm-1. Standard reflection was measured using a Teflon background 

(Labsphere, SRS-99-070, North Sutton, NH, USA). The samples were scanned 40 times, 

and each spectrum was reported as the average of these scans.  

 
Cone and plate rheometer (I, II) 
 

The viscosity of the suspensions was measured, as a function of shear rate, with a cone 

and plate rheometer (CP 5/30, Bohlin VOR Rheometer, Bohlin Reologi, Sweden). The 

gap between the lower and the upper plate was 0.5 mm. The measuring temperature was 

20°C. 

 
Karl Fisher Analysis (I, III) 
 
The water content of the phytosterol starting material was determined by Karl Fisher 

titrimetry (Mettler DL35, Mettler-Toledo, Switzerland). Hydranal®- Titrant 2 (Sigma, 

USA) was used as the titer and Hydranal® Solvent CM (Sigma, USA) as the solvent.  
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4.5 Dynamic in vitro lipolysis method (V) 
 
In vitro lipolysis 
 

In in vitro lipolysis, a pH-stat continuously titrates the fatty acids that are liberated via 

lipolysis. The lipolysis is carried out in a reaction medium with a low buffering capacity, 

thereby ensuring that fatty acids liberation causes the pH to drop. The number of moles of 

neutralising hydroxyl ions present in this volume of titrant is parallel to the fatty acid 

liberation caused by lipolysis (MacGregor et al., 1997).  

The in vitro lipolysis experiments were performed in accordance to the previous studies 

described earlier by Professor Charman and his team (Sek et al., 2001; Sek et al., 2002; 

Kaukonen et al., 2004a; Kaukonen et al., 2004b). Cholesterol and/or phytosterol 

suspensions were dispersed in 9 mL of bile salts (BS)/phospholipids (PL) and mixed 

micelles prepared in a pH 7.5 buffer. All digests contained a total of 50 mg of LCT or 

MCT, i.e. 25 mg of pure triglyceride was added when only cholesterol or phytosterol 

suspensions were studied. Two levels of BS/PL concentrations were used to represent fed 

or fasted state small intestinal conditions. The amount of phytosterol contained in the 

dose of suspension was either 14 µmol or 28 µmol while the amount of cholesterol was 

15 µmol. Cholesterol-loaded micelles with 1.5 mM cholesterol were also used to simulate 

the presence of endogenous or pre-solubilised cholesterol under fed state conditions. 

Lipolysis experiments were performed at 37°C in a stirred and thermostatted glass vessel 

and initiated by the addition of 1 mL of 20% pancreatin suspension. The pancreatin 

extract contained 10 000 TBU/ml of pancreatic lipase conferring physiologically relevant 

lipase activity. The lipolysis was performed over 60 min using a pH-stat titration unit 

(Radiometer, Copenhagen, Denmark) which maintained the pH at 7.5. The fatty acids 

produced by triglyceride lipolysis were titrated with 0.2 M NaOH. At the end of each 

experiment a lipolysis inhibitor was added to the digestion mixture to stop further 

digestion. Two 4 mL aliquots of the post-digestion mixtures were then ultracentrifugated 

in order to separate the digests into an oil phase, an aqueous phase, and a precipitated 

pellet. The aqueous phase was aspirated into a syringe by penetrating the side of the tube 

and transferred into glass vials. Finally, the samples were dried overnight in a 

lyophilisator (HETO LyoPro 3000, Freeze dryer) prior to analysis by gas chromatography 

(GC, Agilent technologies 6890N Network GC with a RTX®-5w/INTEGRA fused silica 

column).  
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Solubility determination 

 
The equilibrium solubility of phytosterol was determined by adding anhydrous 

phytosterol crystals (dried over night at 80 °C, 0% RH) into the aqueous phase obtained 

after in vitro lipolysis of 50 mg of LCT or MCT in fed state micelles pre-loaded with 1.5 

mM cholesterol. A total of four lipolyses were performed (both for MCT and LCT) 

whereafter the aqueous phase was separated by ultracentrifugation. Solid phytosterol was 

added, after which the samples were incubated at +37 °C for the entire period of the 

solubility studies and vortexed periodically. Sterol concentrations were analyzed from 

samples taken at the start of the experiment and after 6, 24, 48, and 120 hours of 

incubation by GC. The samples were filtrated prior to determination and the filtrate was 

collected for analysis. In order to assess the potential loss of solubilised sterol by 

filtration, aqueous phase samples from digests containing both cholesterol and 

phytosterols were analysed prior to and after filtration. The loss of sterols was ≤ 1.7%. 

No apparent visual changes were observed during the solubility study. 
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5 RESULTS AND DISCUSSION 

5.1 Crystal forms of phytosterol (I-IV)  
 
Phytosterol was observed to exist in three different crystal forms; anhydrous, 

hemihydrate and monohydrate crystals (I). When phytosterol was crystallised in the 

absence of water from acetone, anhydrous flaky-like sterol crystals were formed (I, Fig. 

6a). In the presence of water phytosterol precipitated from acetone-water as needle-

shaped monohydrate crystals (I, Fig. 6c-d). This crystal form is unstable and a more 

stable hemihydrated phytosterol was formed when approximately half of the water left 

the monohydrated structure. The main x-ray reflections of the three pseudopolymorphic 

forms are presented in Table 3.  

 
Table 3. The main x-ray reflections of the three different pseudopolymorphic forms of phytosterol (I) 

Crystal form (Å)           

Anhydrous 17.6 11.7 8.8 7.07 5.87 5.23 3.92     

Hemihydrated 18.8 12.4 7.45 6.22 5.90 5.70 5.32 5.05 4.81 4.74 4.61 

Monohydrated 17.6 11.7 7.05 5.86 5.03 4.81 4.56 3.92    

 
 
Phytosterol crystal forms in oil suspensions 
 
The formation of phytosterol crystal structure in oil suspension is dependent on the water 

content (I, Fig. 8). When anhydrous phytosterol was used, oil suspensions without added 

water produced x-ray reflections that corresponded well to those of anhydrous 

phytosterol. However, if phytosterol was used as received and no water was added, the 

crystal form was mostly anhydrous but reflections corresponding to a hydrated 

phytosterol crystal form were also apparent (IV, Fig.2). When the added amount of water 

was 1%, both the hemihydrated and monohydrated crystal forms were observed (I, Fig. 

8). As the amount of water was beyond 5%, the x-ray diffraction patterns showed that the 

monohydrated form was in majority (I,IV).  

Further analysis indicated that the amount of phytosterol, in addition to the water content, 

can affect the crystal structure (II). When the suspension contained less sterol (5%), the 

monohydrated phytosterol was in majority, but as the sterol concentration increased 

(30%), so did the hemihydrated crystal form. This implies the possibility of an increased 

penetration of water into the crystals when sterol content was low. The suspension that 
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contained 5% sterol was mostly amorphous, from the large amount of oil, and thus the 

estimation was difficult.  

Different preparation methods (i.e. changes in temperature, stirring, addition of a surface-

active agent) were observed not to affect the crystal structure of phytosterol in oil-water-

suspensions (III). Despite the preparation, the diffraction patterns of the suspensions 

included reflections of both hemihydrated and monohydrated forms indicating that the 

suspensions contained a mixture of both crystal forms.  

 
Stability of phytosterol crystal forms 

 
The sterol crystal forms, containing different amounts of phytosterol, were stable in 

suspensions during a storage period of 16 weeks in +4 °C and in -19 °C (II). Since the 

suspensions contained water (5%), the initial crystal form was a mixture of hemihydrate 

and monohydrate forms. A minor increase of the monohydrate form was observed, 

although an accurate quantitative determination of different phytosterol crystal forms in 

suspensions is difficult because of preferred orientation and due to the presence of some 

overlapping reflections. 

However, the degree of crystallinity changed during the storage period and caused a 

typical sigmoid-shaped curve (II, Fig. 7) (Avrami, 1939). The amorphous form increased 

during the first four weeks whereafter it began to decrease and the degree of crystallinity 

returned to the initial level in twelve weeks. During the last four weeks, some decrease in 

the degree of crystallinity was observed again. An increase in oil content reduced the 

amount of crystalline form while water content had no effect. A clear increase in the 

degree of crystallinity was observed with growing phytosterol concentrations.  

 

5.2 Dehydration from phytosterol  

5.2.1 Dehydration from hydrated phytosterol crystals (I) 
 
Thermal analysis (DSC, TG) of phytosterol crystals showed that the dehydration of 

monohydrated phytosterol was a two-step process. The monohydrated form contained 

approximately 1 mol water/mol phytosterol, while the dehydration to the hemihydrated 

form reduced the amount to 0.5 mol water/mol phytosterol. The evaluation of the 

phytosterol crystals using near-infrared (NIR) reflectance spectroscopy revealed the 

presence of two different energy states of water in the spectra of the different 
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pseudopolymorphs (I, Fig. 4). The less tightly bound water (absorbance maxima at 1901 

nm) of the monohydrate form dehydrated at temperatures below 60 °C and a 

hemihydrated structure was formed. The more tightly bound water (absorbance maxima 

at 1949 nm), which appeared both in monohydrate and the more stable hemihydrate 

structure, dehydrated after further being heated up to 90 °C. The early onset of 

dehydration during heating is characteristic of channel hydrate dehydration (Morris and 

Rodrigues-Hornedo, 1992). The explanation for the ease with which phytosterol 

dehydrates is the migration of the water molecules along tunnels where they lie 

(Vippagunta et al., 2001).  

5.2.2 Dehydration from phytosterol crystals in oil suspensions (IV) 
 
The dehydration of phytosterol crystals in oil suspensions was studied at temperatures 

from 25 to 60 °C. The main changes in the suspensions were detected around 40 °C. In 

accordance to the previous section (4.2.1) the water molecules were weakly bonded to 

phytosterol, as the dehydration from monohydrate to hemihydrate crystal form occurred 

at such low temperatures. The somewhat earlier onset of dehydration compared to plain 

crystals is explained by the surrounding oily vehicle and the crystal size distribution, 

which in this study was considerable smaller. The broad endotherms, resulting from the 

DSC measurements (IV, Fig. 3), are typical for crystals with weakly bonded water 

molecules and strengthen the assumption of channel hydrates (Morris and Rodrigues-

Hornedo, 1992). At the end of the study, at 60 °C, the dehydration process was not 

completed, since there were still both mono- and hemihydrated crystal forms left. Further 

heating was, however, impossible due to rapid dissolution of the crystals. With the DMA 

it was possible to follow the dehydration from a rheological point of view. At increasing 

temperatures the dehydrated water molecules were immiscible in the surrounding oil 

phase and acted as a lubricant between the solid phase and the oil phase (IV, Fig. 4). In 

addition to dehydration, an increase in temperature caused the dissolution of the smallest 

phytosterol crystals and larger crystals were formed at the expense of the smaller ones 

(Ostwald ripening). This was recognised as increased elasticity in terms of DMA 

measurements and as a growth in the intensities of some reflections during x-ray 

measurements (IV, Fig. 2). At temperatures beyond 50 °C, even the larger crystals started 

to dissolve, and the suspension became less elastic again. Due to the dissolution of the 

crystals, the x-ray reflections also started to diminish. As the water was immiscible in the 
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surrounding oil phase, the water molecules were available for phytosterol crystals during 

cooling. The DSC results suggested a reversible dehydration process.  

5.3 Crystal habit and size distribution of phytosterol 
 
For poorly soluble compounds, particle size distribution is one of the most important 

factors which affects bioavailability in relation to the physicochemical properties of a 

compound. Thus the large differences in the phytosterol crystal length and the habit 

modification produced by various process parameters are likely to have an effect on 

bioavailability of the suspension. The use of phytosterols in functional foods has faced 

several problems since phytosterols have an unpleasant texture. To avoid the gritty 

sensation in the mouth, a microcrystalline particle size is desirable. The optimum particle 

size for a so-called creamy product lies between 10 µm and 50 µm (Tyle, 1993; Viaene 

and Januszewska, 1999; Kilgast and Clegg, 2002). The crystal size is of greater 

significance if the crystal habit is hard and sharp than if it is flat and rounded. Crystal can 

be even up to 80 µm, if the habit is soft, and still have a creamy oral texture. 

Additionally, small crystals have a high free surface area, which facilitates the saturation 

of the sterol solubility in the intestinal lumen and interference with cholesterol 

absorption. 

5.3.1 The effect of the composition on crystal modifications (I,II) 
 
Phytosterols are practically insoluble in water and the solubility in MCT-oil was between 

3.5-4.0% (w/w) and 1.5-2.0% (w/w) when water was present (I). Due to the low 

solubility in oil or a mixture of oil and water, β-sitosterol was saturated in all the studied 

compositions. The phytosterol crystal appearance in oil suspensions was affected by the 

presence of water in the suspension (I). The absence of water resulted in large platy-like 

particles (I, Fig. 6a). When the water content was between 5 and 20%, the crystals were 

acicular (I, Fig 6c-e and II). Crystal length varied according to the concentration of the 

sterol. The length of the acicular-shaped crystals in the water-containing oil suspensions 

decreased with an increasing phytosterol concentration (I, Fig. 7 and II Fig. 2). A high 

sterol concentration resulted in high supersaturation and thus the formation of small 

crystals. At a high level of supersaturation the needle-shaped crystals can be fragile and 

break into small parts (Myerson and Ginde, 1993). These parts act as secondary nuclei 

onto which molecules can attach and new crystals can be formed.   
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It is thought that adsorption of an impurity onto the crystal surface most likely has an 

inhibitory effect on crystal growth. The addition of a surface-active agent (Polysorbate 

80) in the suspension did, however, only have a minor effect on the phytosterol crystal 

growth (III). The crystal length was reduced only if the crystals were larger, due to the 

preparation method. By visual examination it was recognised that these phytosterol 

crystals grew in width rather than in length. It seems that the surface-active agent (1%, 

w/w) adsorbs selectively onto a specific crystal face and only retards, into some degree, 

the growth in length. Similar observations of specific adsorption have been made when 

crystallising e.g. carbamazepine (Luhtala, 1992). Usually only a small amount of a 

surface-active agent is required to bring noticeable changes to crystallisation phenomena, 

but, for some purposes, more than 1% is needed to achieve the desired effect (Canselier, 

1993). 

 
The differences in the compositions in phytosterol suspensions in oil not only affected the 

crystal size distribution and the habit but also the viscosity of the suspensions (I, Fig. 5 

and II). Phytosterol suspensions in oil in the absence of water caused nearly Newtonian 

flow behaviour since the anhydrous platy-like crystals have a tendency to align in the 

direction of the applied shear (Pena et al., 1995). Addition of 1% water did not affect the 

rheology of the suspension, even though the crystals were partially hydrated. The 

viscosity of the suspensions containing 5-13% water was considerably higher compared 

to the suspensions with plate-like crystals whereafter the viscosity systematically 

increased with higher phytosterol concentrations. Needle-shaped crystals have a tendency 

to aggregate. Yet a drastic decrease in viscosity was discovered with increasing shear rate 

due to rearrangement of the particles. This resulted in lower flow resistance and 

consequently lower viscosity (Pena et al., 1995; Zitoun et al., 2001). The viscosity of the 

suspension was also dependent on the phytosterol concentration. An increase in solid 

concentration limited the movement of the particles and increased the interactions 

between the particles, resulting in higher viscosity (Zitoun et al., 2001). The diminished 

viscosity with higher shear rates showed that the network formed by the particles was 

rather weak.   
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(a)B(a)B(c)A(c)A

5.3.2 The effects of process parameters on crystal modifications (I,II, III)  
 
Effect of cooling temperature  
 
Cooling temperature turned out to have a remarkable effect on phytosterol particle size 

distribution in oil suspension due to the effect on supersaturation. Rapid crystallisation of 

phytosterol, produced by sudden cooling, resulted in the formation of needle crystals with 

a median crystal length of 23 µm. However, the suspensions still contained a distinct 

number of larger crystals (Fig. 12 and III, Fig. 2). With an increase in cooling 

temperature the crystal habit also changed to some degree. At low temperatures (≤10 °C), 

when the crystals were small, they were needle-like and even in shape and length, while 

they grew in width to a certain extent in increased temperatures (≥20 °C). Additionally 

the crystals were uneven in shape and length (III, Fig. 1).  

 

 

 

 

 

 
        

 Figure 12. Microscope images of phytosterol suspensions prepared by cooling at  

        (A) 0 °C (immersed in ice) and (B) 50 °C (bar =100 µm). 

 

A similar decrease in crystal length was observed when crystallising porcine insulin at 

different temperatures (Feldmeier et al., 1991). By increasing the cooling temperature 

from 0 °C to 30 °C, the average crystal length increased from 15 µm to 24 µm. Similarly, 

Motawi et al. showed that raising the temperature from 20 to 30 °C increased the rate of 

sulfathiazole crystal growth about 4.5 times (1982). At low cooling temperatures, the 

supersaturation level is high, resulting in an increased nucleation level and a large 

number of small crystals (Myerson and Ginde, 1993). The increase in the viscosity of the 

oil as the temperature decreased was a minor factor in our study. The diminished 

molecular movement slowed down both nuclei formation and the growth rate of the 

nuclei formed (Ebian et al., 1973; Mullin, 2001).  
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Effect of stirring rate and time 
 
Crystallisation at a low stirring rate (60 rpm) produced a few needle-shaped but mostly 

large platy-like crystals (median size 40 µm) (III, Fig. 3). By increased stirring (up to 250 

rpm), it was possible to achieve a nearly two-fold decrease in the median crystal size. The 

reduced phytosterol crystal size observed with stronger stirring was the result of 

increased secondary nucleation since crystal fragments acted as nucleation sites (Myerson 

and Ginde, 1993). Stirring is known to have a strong influence upon the nucleation rate 

until a particular stirring rate is reached. Similar results were obtained by Feldmeier et al. 

as increased stirring (from 0 rpm to 200 rpm) reduced the crystal size of porcine insulin 

roughly three-fold (1991).  

In addition, the stirring time has an influence on the crystal habit and size distribution. 

With increased stirring time, the length of the phytosterol crystals decreased (III, Fig. 4). 

The main recrystallisation in the oil suspension appeared at around 60 °C. If the agitation 

was stopped at higher a temperature, large crystals with a median crystal length of 38 µm 

were obtained. When stirring continued until the phytosterol suspension had reached 

room temperature (25 °C), the median crystal size was less than 20 µm.  

5.3.3 Changes in crystal size distribution and crystal habit during storage (II) 
 
Suspensions containing different amounts of phytosterol were stored at two different 

temperatures (+4 °C and -19 °C) for 16 weeks (II). The stability study showed that the 

viscosity of the suspensions seemed to have an influence on crystal length during storage 

although the crystal habit remained the same. Suspensions containing 5% (w/w) 

phytosterol had a much lower viscosity than the two other suspensions made with higher 

concentrations (II, Fig. 4). In 16 weeks the median phytosterol crystal length in this 

suspension increased from ~40 µm to ~60 µm when stored at +4 °C. With increasing 

sterol concentration and consequently at higher viscosity (see also section 4.3.1), the 

diffusion-controlled process involved in the crystal growth was retarded. Thus, there was 

no change in crystal size distribution in suspensions containing 17% and 30% 

phytosterol.  

On the other hand, phytosterol crystals in suspensions stored at -19 °C did not change in 

size during the period of storage at any concentrations. Equally, lower temperatures 
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decreased the molecular diffusion onto the surface of the particle, thereby affecting the 

crystal growth (Motawi et al., 1982). 

5.4 Effects on cholesterol solubilisation in vitro (V) 
 
Previously an in vivo study with 155 hypercholesterolemic volunteers has been performed 

to evaluate the cholesterol-lowering effect of the microcrystalline phytosterol suspension 

(Christiansen et al., 2001a). The in vitro study was performed to understand the 

mechanism by which phytosterols interfere with cholesterol absorption. The study was 

performed using a similar suspension as in the in vivo study, containing either a medium 

chain or long chain triglyceride.   

 
In vitro digestion of cholesterol and/ phytosterol during lipolysis  
 

The prediction of the solubilisation profile for a poorly water-soluble compound in a lipid 

formulation is complex and cannot be accurately achieved using simple dispersion 

methods. Recently various in vitro lipolysis methods have been used as models of 

solubilisation of water-insoluble substances (Trautwein et al., 2003; Zangenberg et al., 

2001a; Zangenberg et al., 2001b). Digestion experiments with LCT or MCT lipids 

containing either cholesterol or phytosterol were made to establish their individual 

solubilisation behavior.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Solubilisation of co-administered phytosterol and cholesterol into mixed 
micelles. The sterols were suspended in either LCT or MCT (n=3) (V, Figure 2). 

 

 

0

200

400

600

800

1000

1200

1400

1600
Phytosterols
Cholesterol

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol 
(fed)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fasted)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fed)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fasted)

LCT

MCT

C
on

ce
nt

ra
tio

n 
in

 m
ic

el
la

r p
ha

se
 (µ

m
ol

/l)

 

0

200

400

600

800

1000

1200

1400

1600
Phytosterols
Cholesterol

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol 
(fed)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fasted)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fed)

Phytosterol dose 14 µmol
Cholesterol dose 15 µmol
(fasted)

LCT

MCT

C
on

ce
nt

ra
tio

n 
in

 m
ic

el
la

r p
ha

se
 (µ

m
ol

/l)



 

 
43

The mixed micellar phase containing digestion products of LCT was able to incorporate 

significantly higher amounts of cholesterol than those obtained after digestion of MCT 

(IV, Fig. 1a). Replacing the long chain length triglyceride with one containing medium 

chain length fatty acids decreased the amount of solubilised cholesterol by 50% in the 

aqueous phase. Similar serum reduction has been observed earlier in vivo with both 

cholesterol and fat-soluble vitamins following ingestion of MCT compared to LCT 

(Kritchevsky and Tepper, 1965; Borel et al., 1998).  

Co-administration of phytosterol and cholesterol, particularly when suspended in MCT, 

showed a significant reduction of solubilised cholesterol in digests using cholesterol-free 

micelles (Fig. 13 and IV, Fig. 2). The amount of cholesterol solubilised into the micellar 

phase was further reduced to ~24% of the administered dose. Digestion of co-

administered phytosterol and cholesterol suspensions in either LCT or MCT was 

performed to simulate dietary intake of both sterols and to study the capacity of 

phytosterol to reduce cholesterol solubilisation. Despite the promising results with co-

administered sterols, it was not possible to displace pre-solubilised cholesterol during 

digestion in either MCT or LCT systems (IV, Fig. 3). These results were supported by the 

solubility studies (IV, Fig 4). Mel’nikov et al. showed in their study that phytosterols and 

phytostanols were able to compete with and displace pre-solubilised cholesterol from 

mixed micelles (2003b). This is explained by the saturated micelles ascribable to higher 

concentrations of lipolysis products. The pre-solubilised micelles were used to simulate 

the presence of endogenous cholesterol. 

When cholesterol and phytosterols are simultaneously present in the intestinal lumen 

during lipid digestion, it seems that both will be solubilised by the mixed micelles. 

However, it is obvious that phytosterols, together with MCT, act as a more efficient 

limiting factor of the micelle’s capacity to solubilise cholesterol. Thus, the results suggest 

that micelles, containing MCT digest products, would provide a more effective 

cholesterol-lowering agent compared to LCT. In addition to the transporter-associated 

mechanisms, the dynamic competition between these two sterols is one of the 

mechanisms contributing to the reduction of cholesterol absorption.  
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6 CONCLUSIONS 

 
In the present study, preparation of a microcrystalline phytosterol suspension in oil and 

water is described. By changing the amount of sterol and water, it was possible to 

influence the crystal habit and size distribution. Without added water, anhydrous plate-

like crystals were achieved. Addition of water to the composition produced mostly 

needle-shaped monohydrated crystals. Monohydrated crystal form is unstable and 

dehydrates to a hemihydrated form at a low temperature. Dehydration was similar both 

from plain crystals and crystals suspended in oil. The early onset of dehydration is 

characteristic of channel hydrates and it appears that water molecules are weakly bonded. 

Due to supersaturation, higher sterol concentrations resulted in the formation of small 

crystals. No changes in crystal habit, size distribution or crystal form were observed 

during storage of these small crystal sized suspensions, at either +4 °C or -19 °C for four 

months. A microcrystalline particle size was desirable to avoid a gritty feeling in the 

mouth. In addition to the saturation level, optimisation of the preparation process had a 

great impact on the crystal size distribution and crystal habit as well. By changing the 

process parameters, i.e. cooling temperature and stirring, it was possible to achieve the 

optimum crystal size for a so-called creamy suspension. In addition to phytosterol, the 

choice of lipid in the suspensions was observed to have a significant effect on 

solubilisation of sterols into the mixed micelles. The dynamic in vitro studies, in which 

medium and long chain length lipids were compared, showed that phytosterols 

formulated in MCT efficiently displaced cholesterol from mixed micelles, thereby 

contributing to the reduction of intestinal cholesterol absorption. Solubilisation into 

intestinal mixed micelles is a prerequisite for sterols to reach the site of absorption. As a 

result, the cholesterol absorption is decreased, which agrees with previous in vivo studies 

with a similar suspension.  
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