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ABSTRACT

CENTRIFUGAL GRANULATING PROCESS FOR PREPARING DRUG-LAYERED
PELLETS BASED ON MICROCRYSTALLINE CELLULOSE BEADS

Md. Harun Ar Rashid, 2001, Dissertationes Biocentri Viikki Universitatis Helsingiensis 5/2001 pp. 64
ISBN 951-45-9930-6 (print), ISBN 951-45-9931-4 (pdf), ISSN 1239-9469

Centrifugal granulation is an advanced method of producing drug-layered pellets. It has numerous advantages
such as, lower manufacturing costs, flexibility in operation and ease of automation over other pelletisation
techniques. The main purpose of the present study was to investigate the feasibility of the centrifugal
granulating technique for preparing microcrystalline cellulose (MCC) beads and, subsequently, drug-layered
pellets using the MCC beads as substrates. Additionally, the effects of some independent material and process
variables on the properties of MCC beads and layered pellets were also studied.

MCC beads were prepared using four formulations consisting of Emcocel 90M as initial processing materials
and Emcocel SM15, 50M, 90M and HD90 as fillers. Povidone (Plasdone K-29/32) and maltodextrin (Maltrin
M040 and M100) were used as binders for preparing drug-layered pellets. The material variables studied were
concentration of the binder and size of the beads. The effect of the five independent process variables (rotor
rotation speed, slit air flow rate, spray air rate, spray air pressure and the spray nozzle distance from the bottom
plate) on the expected yield, mean size and shape characteristics (roundness, circularity, elongation,
rectangularity, and modelx) of the MCC beads were studied using 25-2 fractional factorial design. Furthermore,
the effects of three independent process variables (rotor rotation speed, slit air flow rate and spray air volume)
on the amount of drug loss, amount of agglomerates, bulk density, flowability, friability, shape and surface
roughness of the pellets were investigated using 33 full factorial design.

The results suggested that different microcrystalline cellulose grades can be chosen as a starting material for
preparing MCC beads by the centrifugal granulating process. All formulations studied yielded relatively
spherical, smooth,  free flowing and mechanically strong final beads. Based on the advantages and limitations
of the bead formulation tested, the formulation with Emcocel 50M as a filler seems to be more acceptable than
the others. Out of the process variables studied, the effects of rotor rotation speed, slit air flow rate and spray
air rate were found to be the most potent on the bead responses studied.

The mechanism of the MCC bead formation and growth comprises a wetting phase (nucleation region)
followed by a combination of coalescence between the previously formed nuclei and the layering of the
smaller fine powder over the nuclei. Finally, layering and abrasion transfer the predominant mechanisms.

Povidone (Plasdone K-29/32) and maltodextrin (Maltrin M040 and M100) as binders were found to be suitable
for preparing drug-layered pellets especially at higher concentrations and larger bead sizes in the centrifugal
granulating technique. Plasdone K-29/32 showed better performance with a smaller loss of drug during the
process and smaller amounts of undersized and friable pellets than the maltodextrin grades studied. Although
the pellets obtained with Maltrin M040 were stronger and the amount of undersized pellets was smaller than
with Maltrin M100,  the latter was preferable because of the lower agglomeration tendency and the pellets
obtained were better flowing, denser, more spherical and smoother. The binder concentration had significant
influence on the drug loss during the process and on the proportion of undersized pellets whereas both binder
concentration and bead size had a significant effect on the flowability and friability of the pellets.

As regards the drug-layering process, rotor rotation speed, slit air flow rate and spray air volume were found to
have a significant influence on the responses studied. Drug-layered pellets with a spherical shape, higher
density and flowability were obtained by increasing the rotor rotation speed and spray air rate. As the rotor
rotation speed and the slit air flow rate were increased, both the amount of drug loss and the agglomerates
increased. In addition to the main effects, there were some significant paired interaction between slit air flow
rate and spray air as well as rotor rotation speed and slit air flow rate.

In conclusion, centrifugal granulation is a convenient and flexible technique for producing MCC beads and
respective drug-layered pellets. The significance of both material and process parameters, however, should be
taken into account in the preparation of pellets by this method.
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1. INTRODUCTION

1.1 Pellets

Pellets are agglomerates of fine powders or granules of bulk drugs and excipients. They

consist of small, free-flowing, spherical or semi-spherical solid units, typically from

about 0.5 mm to 1.5 mm, and are intended usually for oral administration (Gadjos 1983

and 1984, Kristensen and Schaefar 1987, Ghebre-Sellassie 1989). Implants of small,

sterile cylinders formed by compression from medicated masses are also defined as

pellets in pharmacy (Cox and Spanjers 1970, Rudnic and Schwartz 1990, Niskanen

1992). Pellets can be prepared by many methods, the compaction and drug-layering

techniques being the most widely used today.

Regardless of which manufacturing process is used, pellets have to meet the following

requirements (Vuppala et al. 1997):

(1) They should be near spherical and have a smooth surface, both considered

optimum characteristics for subsequent film coating.

(2) The particle size range should be as narrow as possible. The optimum size of

pellets for pharmaceutical use is considered to be between 600 and 1000 µm.

(3) The pellets should contain as much as possible of the active ingredient to keep

the size of the final dosage form within reasonable limits.

In the last two decades, pellets have established their position for many reasons (Ghebre-

Sellassie 1989, Hellén 1992). Pellets offer a great flexibility in pharmaceutical solid

dosage form design and development. They flow freely and pack easily without

significant difficulties, resulting in uniform and reproducible fill weight of capsules and

tablets (Conine and Hadley 1970, Lyne and Johnston 1981, Ghebre-Sellassie et al. 1985,

Reynolds 1990, Niskanen 1992, Vuppala et al. 1997). Successful film coating can be

applied onto pellets due to their ideal spherical shape and a low surface area-to-volume

ratio (Rowe 1985, Vertommen et al. 1997). Pellets composed of different drugs can be
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blended and formulated in a single dosage form. This approach facilitates the delivery of

two or more drugs, chemically compatible or incompatible, at the same sites or different

sites in the gastrointestinal tract. Even pellets with different release rates of the same

drug can be supplied in a single dosage form (Ghebre-Sellassie et al. 1989, Wan et al.

1991).

The pelletised products can improve the safety and efficacy of the active agent. These

multiple-unit doses are usually formulated in the form of suspensions, capsules or

disintegrating tablets, showing a number of advantages over the single-unit dosage

system (Bechgaard and Nielsin 1978, Bechgaard 1982, Ganderton 1985, Ghebre-

Sellassie 1989). The pelletised product can freely disperse in the gastrointestinal tract as

a subunit, thus maximising drug absorption and reducing peak plasma fluctuation.

Consequently, potential side effects can be minimized without impairing drug

bioavailability. Local irritation derived from high local concentrations of a drug from a

single-unit dose, can be avoided.

The most important reason for the wide acceptance of multiple-unit products is the rapid

increase in popularity of oral controlled-release dosage forms. Controlled-release oral

solid dosage forms are usually intended either for delivery of the drug at a specific site

within the gastrointestinal tract or to sustain the action of drugs over an extended period

of time. With pellets, the abovementioned goals can be obtained through the application

of coating materials (mainly different polymers), providing the desired function (Mehta

et al. 1986, Ghebre-Sellassie et al. 1987, Ragnarsson et al. 1987, Ragnarsson and

Johansson 1988, Bianchini and Vecchio 1989, Wesdyk et al.1990, Holm et al. 1991, IIey

1991, Zhang et al. 1991a, 1991b, Ragnarsson et al. 1992, Jørgensen et al. 1997, Marvola

et al. 1999, Umprayn et al. 1999), or through the formulation of matrix pellets to provide

the desired effect (O’Conner and Schwartz 1985, Zhang et al. 1990,  Peh and Yuen

1995, Zhou et al. 1996, Montoussé et al. 1999).

The advantage of multiple-unit products as a controlled-release dosage form is believed

to be their behaviour in vivo because of their advantageous dispersion pattern in the

gastrointestinal tract and their special size characteristics. The transit time of a gastro-

intestinal drug delivery system along the gastrointestinal tract is the most limiting
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physiological factor in the development of a controlled-release gastrointestinal drug

delivery system targeted to once-a-day medication (Chien 1992). Gastro-intestinal transit

time, greatly affects the bioavailability of a drug from an orally administered controlled-

release preparation (Davis et al. 1984, Sugito et al 1990).  Gastric transit of both single-

and multiple-unit solid dosage forms is prolonged in a fed stomach compared to a fasting

one (Davis et al. 1987, Wilding et al. 1992, Yuen et al. 1993). Plastic spheres of 7 mm

remained in the food-filled stomach even as food itself expelled steadily (Hinder and

Kelly, 1977). Once the stomach had emptied, the spheres began to transit in clusters.  It

has been reported that pellets smaller than about 2.4 mm in diameter, are free from the

digestive function of the stomach and the closing system of the pyloric sphincter to be

emptied from the stomach (Freely et al. 1987, Davis et al. 1987). A maximum pellet

diameter of 1.5 mm has been recommended for an optimal multiple-unit formulation

(Bechgaard 1978, Bechgaard et al. 1982). Kelly 1981 and Devereux 1987 clearly

showed that the threshold size must be below 1 mm. According to Khosla et al. (1989),

there is no actual cut-off size for gastric emptying, but as the size of the pellets increase,

predictable emptying from the fed stomach becomes uncertain and highly variable.

However, it has been demonstrated that gastric emptying is not only dependent on the

size but also on some other important factors, such as density of pellets (Devereux et al.

1990, Clarke et al. 1993, Tuleu et al. 1999), nature of  food (Feely et al. 1987, Khosla et

al. 1989) and inter-subject variation (Davis 1989). Clarke et al. 1993 and Tuleu et al.

1999 showed that both density and size of the pellets affect the gastrointestinal transit

time. The higher density of the pellets prolonged the gastric transit time, while the larger

size slightly prolonged the small gut transit time but not the gastric transit time.

Controversial results have also been reported to the effect of pellets densities on the

transit times through the gastrointestinal tract (Bechgaard et al. 1985).

1.2  Theory of pellet formation and growth

In order to judiciously select and optimise any pelletisation/granulation process, it is

important to understand the fundamental mechanisms of granule formation and growth.

Different theories have been postulated related to the mechanism of formation and

growth of pellets. Some of these theories are derived from experimental results while
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others are confined to visual observations (Sastry and Fuerstenau 1973 and 1977,

Leuenberger and Imanidis 1986, Mehrotra and Sastry 1986). Results obtained from the

experiments with some form of tracer technique are regarded as acceptable and

convincing (Sastry and Fuerstenau 1973, Linkson et al. 1973). As the conventional

granulation (Kapur et al. 1964 and 1966), the most throughly studied, most classified

pelletisation process, which involves a rotating drum, a pan or a disc, has been divided

into three consequtive regions: nucleation, transition and ball growth. However, based on

the experiments on the mechanism of pellet formation and growth, the following steps

were proposed: nucleation, coalescence, layering and abrasion transfer (Sastry and

Fuerstenau 1973).

Nucleation (Figure 1A) is a common stage in all pelletisation/granulation processes and

occurs whenever a powder is wetted with liquid (Juslin 1997). The primary particles are

drawn together to form three-phase air-water-liquid nuclei and are attached together by

liquid bridges which are pendular in nature (Ghebre-Sellassie 1989). The bonding

strength is improved by reduction of particle size (Cape 1980). The sizes of the primary

particles, the moisture content, the viscosity of the binding particles, the wettability of

the substrate and the processing conditions, such as tumbling and drying rates, influence

the size, the rate and the extent of nuclear formation (Ghebre-Sellassie 1989).  Both the

mass and the number of nuclei in the system change as a function of time, which is an

important feature of nucleation (Sastry and Fuerstenau 1973).

Nucleation is followed by a transition phase, and the growth mechanisms affecting the

transition region are coalescence and layering (Sherrington and Oliver 1981, Juslin 1997,

Parikh 1997). Coalescence (Figure 1B) is defined as the formation of large-sized

particles by random collision of well-formed nuclei, and the mechanism requires slight

excess moisture on the nuclear surface (Kristensen and Schaefar 1987, Juslin 1997).

Although the number of nuclei is progressively reduced, the total mass of the system

remains unchanged during this step.  Layering (Figure 1C) is a slow growth mechanism

and involves the successive addition of fragments and fines on an already formed

nucleus (Ghebre-Sellassie 1989). In the layering step, the number of particles remains

the same, but the total mass in the system increases due to increasing particle size as a

function of time. The fragments or fine particles can be formed by particle size reduction
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Figure 1. Pellet growth mechanisms. (A) Nucleation, (B) coalescence, (C) layering and (D) abrasion transfer
(modified from Ghebre-Sellassie 1989).

that occurs due to attrition, breakage and shatter (Ghebre-Sellassie 1989).  The fines and

the fragments that are produced through size reduction are picked up by large pellets.

Production of fines and subsequent coalescence and layering continues until the number

of favourable collisions declines rapidly, thereby leading to a reduction in the rate of
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growth of the pellets. At this point the third phase, the ball growth region, is reached

(Ghebre-Sellassie 1989).

In the ball growth phase the main mechanism affecting the slow growth of

agglomeration is the abrasion transfer (Figure 1D) which involves the transfer of

materials from one granule formed to another without any preference in either direction.

This situation does not result in a change in the total number or mass of the particles.

The particles, however, undergo a continuous change in size as long as the conditions

that lead to the transfer of material exist (Ghebre-Sellassie 1989).

1.3 Methods of preparing pellets

Compaction and drug layering are the most widely used pelletisation techniques in

pharmaceutical industry. Of the compaction techniques, extrusion and spheronization is

the most popular method. Recently, however, melt pelletisation has been used frequently

in making compaction pellets using a different type of equipment, e.g. a high-shear

mixer (Ghali et al. 1990, Schaefer and Mathiesen 1996, Zhou et al. 1996). Other

pelletisation methods, such as globulation, balling and compression are also used in the

development of pharmaceutical pellets although in a limited scale (Ghebre-Sellassie

1989).

1.3.1 Extrusion-spheronisation

Extrusion-spheronisation is a multiple-step compaction process comprising dry mixing

of the ingredients with excipients, wet granulation of the mass, extrusion of the wetted

mass, charging the extrudates into the spheroniser to produce a spherical shape, drying

the wet pellets in a dryer and, finally, screening to achieve the required size distribution

(Conine and Hadley 1970, Reynolds 1970, O’Conor et al. 1984, Hellén 1992, Erkoboni

1997, Gazzaniga et al. 1998, Thoma and Ziegler 1998, Schmidt and Kleinebudde 1999).

The granulation step can be performed both in batch-type processors, including a

conventional planetary mixer, and in vertical or horizontal high-shear and sigma-blade

mixers (Schaefer 1988, Titley 1988, Ghali et al. 1990, Erkoboni 1997), and in
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continuous mixers, such as Nica M6 instant (Hellén 1992), and high-shear twin-screw

mixer-extruders (Kleinebudde and Linder 1993).

Extruders for the extrusion process (step) have been classified generally as screw, sieve

and basket, roll and ram extruders (Sherrington and Oliver 1981, Hicks and Freese

1989). Based on the type of feed mechanism used to transport the mass towards the die,

they have been broadly classified as screw, gravity or piston-type extruders (Rowe

1985). Most spheronisers have been designed based on a revolving grooved plate driven

by a variable-speed drive unit at the base of a smooth-walled drum. The drum capacity,

plate diameter and plate design may vary (Chapman 1985). In order to increase the

capacity of the spheronisation stage, a continuously working spheroniser has been

introduced (Appelgren 1987)

The process produces products ranging from barely-shaped, irregular particles like the

conventional granulation, to very spherical particles with drastically different properties

(Woodruff et al. 1972, Erkoboni 1997). Tabletting characteristics can be altered by

modifying the composition, the granulating fluid or the process conditions (Malinowski

and Smith 1974, Schwartz et al. 1994, Millili and Schwartz 1990, Erkoboni 1997). The

main advantage over other methods of producing drug-loaded spheres or pellets is the

capacity to produce  spherical pellets of a uniform size and a high drug content up to

90% (Ghali et al. 1990, Hellén 1992, Erkoboni 1997).

Recently, different types of fluidised bed rotary processors have been developed more

successfully for preparing compaction-type pellets such as the extrusion-spheronisation

process in a one-step process. This technique has solved many problems related to the

multi-step extrusion and spheronisation process; it consumes less time, requires lower

labour costs and less space (Jäger and Bauer 1982, Hodges et al. 1990, Robinson and

Hollenbeck 1991, Sienkiewicz et al. 1997, Vecchio et al. 1994, Heng et al. 1996,

Sienkiewicz et al. 1997, Vertommen and Kinget 1997, Vertommen et al. 1998,

Kristensen et al. 2000).
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1.3.2 Drug layering

The layering process comprises the deposition of successive layers of drug entities from

solution, suspension or dry powder on nuclei which may be crystals or granules of the

same material or inert starter seeds. In solution/suspension layering, drug particles are

dissolved or suspended in the binding liquid (Gamlen 1985, Jackson et al. 1989). In

powder layering, complete dissolution does not occur, due to low liquid saturation,

irrespective of the solubility of the active agent in the binding liquid. In powder drug

layering, a binder solution is first sprayed onto the previously prepared inert seeds,

followed by the addition of powder (Sherrington 1969, Ghebre-Sellassie 1985 and 1989,

Gajdos 1983 and 1984, Niskanen 1990abc, Mohammed et al.1991, Nastruzzi et al.2000).

Conventional pan coaters have been used from the very beginning of the history of drug

layering pelletisation. From the economic point of view, however, use of conventional

pan coaters is not very reasonable due to the higher labour costs and time consumption,

and lower yield. An important disadvantage of pan coaters is the shortage of process

control (Ghebre-Sellassie 1989, Niskanen 1992). More recently modified forms of pan

coaters have been developed, which resolves many of the drawbacks related to the old

system (Nastruzzi et al. 2000).

The problems of drug layering pelletisation by conventional pan coaters had led to the

development of two types of rotary granulators (fluidised-bed and centrifugal

granulators) presented by Bauer (1979) and Funakoshi et al. (1971, 1977 and 1980),

respectively. These devices offer many advantages including lower manufacturing costs,

flexibility of operation and ease of automation (Ghebre-Sellassie 1989). The main

features and differences of the four types of rotor granulators are presented in Table 1.

Centrifugal granulators can be used for manufacturing multiple-unit, immediate or

controlled-release drug products for oral use. Through the use of these systems, initial

beads can be prepared and subsequently drug-layered and coated in the same equipment,

resulting in highly spherical multi-layered granules with adequate controlled-release

characteristics (Gajdos 1984, Ghebre-Sellassie et al. 1985, Niskanen 1992). The
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schematic diagram of the centrifugal granulating process is shown in Figure 1 (Section

3.2).

Table 1. Summary of the main features of four types of rotor granulators (Ghebre-Sellassie 1989).

Feature Rotor granulator
(Glatt )

Rotor-processor
(Aeromatic)

Spir-a-Flow
(Freund)

CF-
granulator
(Freund)

Control of
drying air

Disc height; pan
speed

Chamber wall
height, pan speed

Plenum dampers
and disc height:
pan speed

Pan speed

Spray location Tangential Tangential and
top (angled)

Tangential and
top (vertical)

Tangential

Powder
application

Tangential into
bed

Top-angled         - Top vertical

Die speed Variable Variable Variable Variable

Charging Port in expansion
chamber

Port in expansion
chamber

Port in chamber Top loaded

Discharging Port in product
chamber

Port in product
chamber

Port in product
chamber

Port in
product
chamber

1.3.2.1  Material considerations and variables

The major material variables related to the preparation of spherical particles with

centrifugal granulators include type and concentration of binder, binder solvent system,

size and shape of non-pareil seeds, type and amount of filler and particle size of

(powdered) filler (Aulton and Banks 1981, Hodges et al. 1990, Niskanen 1992).

The initial materials required for the preparation of pellets by the layering process are the

inert starter seeds over which the powdered drug(s) is (are) layered and the possible

coating applied. The quality of the coated pellets has been found to be closely related to

the physical and mechanical properties of the initial seeds. Important properties of the

coated pellets like uniform coating thickness, non-segregation during capsule filling, rate

of drug release, film disposition and formation during coating, packing properties, etc.,
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are greatly influenced by the particle size distribution, smoothness, roundness and bulk

density of the initial seeds used as substrates (Ghebre-Sellassie 1989).

Non-pareils have been widely used as initial substrates in the preparation of pellets by

the layering process. However, sucrose, the main component of non-pareils, has some

well-known drawbacks like harmful effects on diabetics and potential cariogenicity

(Reynolds 1993, Wade and Weller 1994). Most recently, microcrystalline cellulose

(MCC) has been tested as a substrate for drug layering (Agyilirah 1995). So far,

however, there are no extensive studies on MCC for the preparation of initial cores/beads

in a centrifugal granulating process.

Binders play an important role in wet-granulating and drug-layering processes, affecting

the physical, mechanical and release properties of the final product. Ghebre-Sellassie et

al. (1985) evaluated the centrifugal granulation with commonly used binders (i.e. gelatin,

povidone, carboxymethyl cellulose, hydroxypropyl methylcellulose) and different sizes

of non-pareils. All binders studied were acceptable for preparing pellets, but gelatin and

carboxymethyl  cellulose were the most suitable ones with respect to the friability of the

pellets. Niskanen et al. (1992) observed that the concentration of the binder and the

particle size of the drugs affect the physical and mechanical properties of the pellets, the

latter being more critical. Virtually no studies on the effects of binders on drug layering

using MCC beads have been reported.

Maltodextrins are hydrolysed starches that are used as water-soluble, non-viscous

binders in pharmaceutical and food industry (Wade and Weler 1994). There are different

commercially available grades of maltodextrins with respect to dextrose equivalent (DE)

value and manufacturing process. The reports on the effectiveness of maltodextrins as a

binder in preparing granules and tablets are promising but somewhat contradictory

(Symecko 1993, Becker 1997). So far, no studies on the use of  maltodextrins in a

centrifugal drug layering process have been published.
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1.3.2.2 Process variables

Centrifugal granulation is a typical multivariate process and, consequently, it is

important to identify and control all critical process variables and conditions. The most

important process variables related to this technique include fluidised air flow rate, air

temperature, humidity, atomising liquid flow rate, atomising air flow rate and pressure,

spraying regime, droplet size, spray angle, powder dropping rate, batch size, rotor

rotation speed and distance of the nozzle from the product bed (Aulton and Banks 1981,

Hodges et al. 1990, Niskanen 1992).

The centrifugal granulation technique for drug-layered pellets was commercially

developed  about three decades ago. Only a limited number of studies on the effect of

process variables on the characteristics of pellets have been published during this long

period of time. In the 1980’s, the most significant studies were performed by Gajdos

(1983, 1984), following the exact processing system of the original centrifugal

technique. He studied the effect of three process variables (powder dropping rate, binder

spray rate and rotor rotation speed) on the properties of layered pellets.  The powder

addition rate was found to be the most critical parameter and the main reason was

attributed to its influence on the particle moisture. The binder spray rate was the next

significant parameter tested. The spray rate had a negative effect on the yield and was

assumed to be due to the shortage of friction of the twin pellets and agglomerates at the

wall of the processing chamber.

In the 1990’s, pellet preparation by the centrifugal granulating process was performed

using a modified technique. The centrifugal granulating technique was developed to

substitute the single-step method for more time consuming multiple-step extrusion and

spheronisation process (Vecchio et al. 1994, Heng et al. 1996, Holm et al. 1996,

Vertommen and Kinget 1997). In these studies, some process variables were evaluated

together with the material variables in order to develop this technique for preparing

matrix pellets, although the main part of the studies was confined to the development of

material variables. When indobufen pellets were made by the centrifugal rotary

fluidised-bed technique without starting seeds from a mixure of indobufen and

microcrystalline cellulose, the water spray rate was found to be an important parameter
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for the pellet growth (Vecchio et al. 1994).  The average pellet growth was proportional

to the spray rates of the water added. With increasing spray rate the average particle

sizes  increased accordingly.

Vertommen and Kinget (1997) studied the influence of two formulation variables

(microcrystalline cellulose content and water to microcrystalline cellulose ratio) and

three process variables (rotor rotation speed, spheronisation time after water addition and

water addition rate) on pellet size and friability. Both formulation variables and the three

process variables had a major influence on the pellet size and the friability. With

increasing independent process variables the size increased and the friability decreased.

Process variables, except for spheronisation time after water addition, rotor rotation

speed and water addition rate, had a positive effect on the size distribution. With

increasing spheronisation time the size distribution became narrower, although this

effect was not significant (p = 0.148).

The reproducibility of the preparation of pellets from powder mixture by centrifugal

rotary processing was investigated by Heng et al. 1996. Two process variables, the

amount of moistening liquid (300 to 450 ml) and spray rate (28 to 59 ml/min), were

varied to optimize the process conditions. The quality of the spheroids produced was

evaluated using three criteria, i.e., percent yield between 0.85 and 1.18 mm, geometric

mean diameter and geometric standard deviation of the spheroids. It showed that a

minimum water level must be achieved, regardless of the spray rate, in order to obtain

spheroids of a suitable size range and yield. On the contrary, if the amount of moistening

liquid was increased indiscriminately, a stage will be reached whereby the size

distribution of the spheroids will remain skewed. The geometric standard deviation at

any fixed amount of moistening liquid studied decreased with increasing spray rate,

whereas at any fixed spray rate the geometric standard also decreased with increasing

amount of moistening liquid.

Holm et al. (1996a,b) investigated  the effect of two process variables (disc speed and

spray rate) using formulations containing lactose and microcrystalline cellulose, and

dibasic calcium phosphate and microcrystalline cellulose in different proportions, on the

pellet growth, shape and porosity in a roto-processor. Pellets of the narrowest size
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distribution were produced with the highest disc speed, and spray rate had no effect on

the standard deviation of the size distribution (a minor effect on the quality). As regards

the effects on the porosity, both disc speed and spray rate had a significant effect, and

the effect of disc speed (p < 0.001) was dominant compared to spray rate (p < 0.02).

However, the effect of the process variables tested on the porosity of the pellets was

dependent on the formulations. Pellets containing lactose were free from this effect,

whereas formulations containing dibasic calcium phosphate were more affected.

The present literature review clearly indicates that most of the studies on the centrifugal

granulating technique were confined to the utilisation of traditional non-pareils as

substrates and to the characterisation of modified centrifugal granulating techniques.

There are virtually no studies on the effects of process variables on the properties of the

recently introduced beads or pellets prepared with the basic centrifugal technique.

Consequently, and for the reasons mentioned above, it is important to thoroughly

evaluate also this special technique of preparing drug-layered pellets.

1.3.3 Other pelletisation methods

Other pelletisation methods such as globulation, agitation and compaction (compression)

are also used, although in a limited scale, in the preparation of pharmaceutical pellets

(Ghebre-Sellassie 1989).

Globulation, or droplet information, consists of two related processes, spray drying and

spray congealing. Spray drying is the process in which drugs in the suspension or

solution without excipient are sprayed into a hot stream to produce dry and more

spherical particles. This process is commonly used for improving the dissolution rates,

hence bioavailability of poorly soluble drugs (Turkan et al. 1991, Ghebre-Sellassie

1989).

Spray congealing is the process in which a drug is allowed to melt, disperse or dissolve

in hot melts of gums, waxes or fatty acids, and is sprayed into an air chamber where the

temperature is kept below the melting point of the formulation components, to produce

spherical congealed pellets. Both immediate- and controlled-release pellets can be
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prepared in this process depending on the physicochemical properties of the ingredients

and other formulation variables (Ghebre-Sellassie 1989).

Compresssion is one type of compaction technique for preparing pellets. Pellets of

definite sizes and shapes are prepared by compacting mixtures or blends of active

ingredients and excipients under pressure. The formulation and process variables

controlling the quality of pellets prepared are similar to those used in tablet

manufacturing (Kader et al. 1998).

Balling is the pelletisation process in which pellets are formed by a continuous rolling

and tumbling motion in pans, discs, drums or mixers. The process consists of conversion

of finely divided particles into spherical particles upon the addition of appropriate

amounts of liquid (Ghebre-Sellassie 1989).

1.4 Characterisation of pellets

Pellets with rapid drug release are seldom delivered (supplied) as a finished product

without using an extra coating (Niskanen et al. 1992). The pellets are mainly coated for

aesthetic, taste masking, stability, enteric-release or controlled-release purposes. The

coating thickness of the pellets must be uniform in order to achieve any of these end

product performances. For uniform coating thickness, the formulation, equipment and

process variables are usually selected based on the reproducibility of the size

distribution, surface area, shape, surface roughness, density and friability, including the

reproducibility of morphologic properties of the pellets (Mehta 1989).

1.4.1  Size distribution

The size distribution of the pellets should be as narrow as possible due to the following

reasons:

1. For acceptable film coating, a narrow size distribution of pellets is a prerequisite (in

addition to spherical shape and smooth surface). The size distribution affects both
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the performance of the coating (Wesdyk et al. 1990, IIey 1991) and the release rate

of the drug (Ragnarsson and Johansson 1988, Husson et al. 1991). A narrow size

distribution will ensure minimum variation in coating thickness throughout the

batch of pellets and therefore result in a uniform performance of pellets within the

batch (Mehta 1989)

2. Segregation is a common occurence in capsule-filling and tablet compression due to

the wide size distribution of pellets and thus results in variations in content

uniformity and/or dosage form performance.

3. A narrow particle size-distribution improves (facilitates) the blending process in

blending different types of pellets or different batches of pellets  (Mehta 1989).

The size distributions of pellets are determined by different methods. The most common

and widely used method is sieve analysis (Kristensen et al. 2000). The reasons for its

extensive use are simplicity, lower costs, low time consumption and low turnover of

operators.  Sieve loading, type of motion (vibratory or tap), intensity and duration of

intensity are recognized critical variables. In spite of the simple and easy technique,

sieving has some disadvantages, such as the screen skewing particle size data due to the

inability of the sieve to detect variation in the shapes of particles.

Another widely used method of measuring the size distribution of pellets is microscopy.

The main advantage of this method over most other methods of size analysis is that the

particle profile itself is measured rather than some property which is dependent on the

particle size. Optical microscopy has been developed for particles size analysis from

simple eyepiece graticules to fast device projectors and comparators, and the latest

popular computerized method of image analysis (Hellén et al.1992b). Scanning electron

microscopy can also be used for measuring the size of the pellets. Both types of

microscopic techniques are tedious and time consuming, since a large number of

particles need to be measured individually to make a size-frequency distribution plot. In

addition, variation in the generated data is possible among operators.
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Another method developed for the measurements of pellet size distribution is laser

diffraction (Niskanen 1992, Hellén et al. 1992, Schaefer et al. 1996). This method is

most suitable for spherical particles.

1.4.2  Shape and surface roughness

One of the important objects of pellet preparation (pelletisation) is to produce spherical

and smooth particles, suitable for subsequent successful coating, i.e., optimal for

controlled-release products. Moreover, spherical particles help the transfer of materials

due to their good flow characteristics. And, last but not least, good spherical properties

are useful in processes that require an exact metering of granules such as capsule filling

(Vertommen et al. 1997). Different methods have been proposed for measuring the shape

and surface roughness of the pellets. The commonly used method is the analysis of

microscopic or non-microscopic pictures of objects of interest. However, the most

widely accepted advanced technique is optical microscopy with image analysis

(Lövgren and Lundberg 1989,  Wan et al. 1993, Podczeck and Newton 1994). The direct

measurement of surface roughness/smoothness by the image analysis method is not

sensitive enough. Instead, fractal geometry of particle obtained by microscopy with

image analysis, is used for the measurement of surface smoothness of pellets

(Vertommen et al.1997). In the pharmaceutical field, fractal geometry has mainly been

used in the study of surface roughness of powders, either excipient or drugs (Holgado et

al. 1995a,b). Since it has been revealed that powder or granule characteristics (Thibert et

al. 1988, Cartilier and Tawashi 1993) like flow and packing properties, are also related

to the smoothness of the particle surface, knowledge about the smoothness of the pellet

surface is important.

Electron microscopy (SEM) is the technique of choice for measuring the shape and

surface smoothness of the pellets to support visually the other qualitative and

quantitative results ( Hellen 1992, Vuppala et al.1997, Vecchio et al. 1998, Umprayn et

al.1999).
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1.4.3  Surface area

The characteristics of pellets, those controlling the surface area, are mainly size, shape,

porosity and surface roughness. Knowledge of the surface area of pellets is desirable

especially if film coating is considered. Because the thickness of the film applied to

pellets in a sustained-release -type dosage form dictates the rate at which drug is

released, knowledge about the surface area is important even in case of uncoated pellets,

since drug release is influenced by the surface area available (Vertommen et al. 1998).

There are three methods of measuring the surface area of pellets. It can be calculated

from the particle-size distribution by measuring/using the mean diameter, since the

surface area is equal to πd2. However, this calculation does not account for the

contributions of the surface area arising from other morphologic characteristics, such as

porosity, surface roughness and shape of the pellets. Therefore, two techniques, i.e. gas

adsorption (Lowell and Shields, 1991, Niskanen et al 1992) and air permeability (Lowell

and Shields 1991, Eriksson et al. 1993), permit direct calculation of surface area.

Quick and simple, air permeability methods are widely used pharmaceutically for

specific surface measurement, especially to control batch to batch variations. The

principal resistance to the flow of a fluid - such as air – through a plug of compacted

material is the surface area of the material. The applicability of air permeability methods

for pellets is not highly acceptable since the flow rate through the plug or bed is also

affected by the degree of compression of the material.

The gas adsorption method (commonly known as the BET method) was developed by

Brunauer, Emmett and Teller (1937). In this method the volume of nitrogen that is

adsorbed by the substrate contained in an evacuated glass bulb is measured at different

pressures, and the results are plotted as P/V (p0-p) versus p/p0 to generate a linear plot

where V is the volume of gas in cm3 adsorbed per gram of substare at pressure p and p0

is the saturation vapour pressure of liquefied nitrogen at the temperature of the

experiment. The slope and intercept of the plot yield the values b and Vm. The specific
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surface (sw) of the pellets is then obtained by using the following equation:

SW =  4.35 * Vm

1.4.4 Porosity

The porosity of pellets influences the rate of release of drugs from the pellets by

affecting the capillary action of the dissolved drug. It also affects film deposition and

formation during coating. The porosity of the pellets can be measured qualitatively by

scanning electron microscopy (SEM) and quantitatively by mercury porosimetry

(Leitner 1981, Moscou and Lub 1981, Ghebre-Sellassie et al. 1987, Iley 1991, Thoma et

al. 1992a, 1992b, Zhou et al. 1996,Vuppala et al. 1997, Vertommen et al. 1998). The

porosity of pellets can be determined quantitatively also by using optical microscopy and

scanning electron microscopy together with image analysis (Wang and Zaidi 1991).

1.4.5   Density

The density of pellets can be affected by changes in the formulation and/or process,

which may affects other processs or factors, such as capsule filling, coating, and mixing.

Variation of density from batch to batch affects the potency of the finished capsule,

causes problems in batch size determination during coating and produces segregation

during mixing.

The bulk density of the pellets can be measured by an automated tapper. It is indicative

of the packing properties of particles and, therefore, is greatly influenced by the diameter

and the size distribution of the pellets.

 True density indicates the extent of densification or compactness of substances. The true

density of pellets can be determined by an air-comparison pycnometer, a helium

pycnometer or by the solvent displacement method (Sonaglio et al. 1995, Kleinebudde et

al. 1999).
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1.4.5 Friability

The essential requirement of pellets is to have an acceptable friability to withstand

further processing, especially the subsequent coating. A high amount of attrition during

the coating procedure could modify the release behaviour due to the incorporation of

small particles in the film (Ghebre-Sellassie 1989, Schultz and Kleinebudde 1995). A

friability of less than 0.08% is generally accepted for tablets, but for pellets this value

could be higher due to the higher surface area/unit and subsequent involvement of

frictional force (Ghebre-Sellassie 1985).

A number of different methods for the determination of pellet friability have been

described in the literature and an overview of the present methods is shown in Table 2.

Table 2. Overview of friability testing methods for pellets (modified from Schultz and
Kleinebudde 1995).

Method Description References
Erweka friabilator
Roche friabilator
Pharma Test friabilator
”Friabilator”

Rotating drum like friability testing
apparatus for tablets

Baert et al. 1992, Funck et al.1991,
Goskonda et al. 1993 and 1994, Knop
et al. (1989, 1991and 1992),  Millilli
and Schwarz 1990, Zhang et al. 1990,
Biachini et al. 1992, Nastruzzi et al.
2000, Gazzaniga et al. 1998,
Eerikäinen 1991, Wan et al. 1985,
Hellen et al.1993, Vecchio et al. 1994,
Ghebre- Sellassie 1985,  Kim et al.
1991, Mesiha and Valles 1993

Turbula Turbula blender (closed test system) Niskanen et al. 1990a, Ghebre-
Sellassie 1985, De Doeuff et al. 1992,
Noche et al. 1994.

Born Friabimat
Retsch ball mill

Horizontal shaker (closed system) Körber et al. 1990, Lindner et al. 1994

Laboratory coating
apparatus

Fluid bed device
(open system)

Thoma et al. 1986
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2. AIMS  OF THE STUDY

The main objective of the present study was to develop and characterise a centrifugal

granulating process for preparing microcrystalline cellulose (MCC) beads and

subsequent drug-layered pellets.

Special aims of the study were:

•  to evaluate different grades of MCC for preparing highly spherical beads (i.e.

substrates for drug-layering) by the centrifugal granulating process

•  to investigate the mechanism of formation and growth of the MCC beads in a

centrifugal granulating process

•  to clarify the effects of aqueous binders and initial bead size on the properties of

drug-layered pellets

•  to study the effects of some process variables in a centrifugal granulator on the

properties of MCC beads and drug-layered pellets
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3. EXPERIMENTAL

3.1 Materials

For preparing spherical microcrystalline cellulose (MCC) beads, Emcocel 90M (NF, JP,

Ph.Eur., E. Mendell, Finland) was used as initial seed material (I, II). As fillers, Emcocel

90M, 50M (NF, JP, Ph.Eur., E. Mendell, Finland) HD90 and SM15 (NF, JP, Ph.Eur., E.

Mendell, United States) were used (I, II). Purified water (Ph.Eur.) was used as a wetting

agent.

Drug-layered pellets (III, IV) were prepared by using MCC beads previously prepared

in the centrifugal granulator as substrates. The bead size fraction used was 355-1000 µm.

Povidone and maltodextrin were used as aqueous binding agents. Povidone is a widely

used binder studied both for granule and pellet preparation (Ghebre-Sellassie et al. 1985,

Knop and Lippold 1989, Robinson and Hollenbeck 1991, Niskanen et al.1992). Two

grades of Povidone (Plasdone K-29/32 and K-25) at concentrations of 12%, 16%, 18%

and 20%, (w/w) were studied. Maltodextrins are water-soluble hydrolysed starchs

commercially available in different grades. They differ mainly due to their DE (dextrose

eqivalent) values. The maltodextrin grades used were Maltrin M040 and M100 at

concentrations of 12%, 16% and 20% (w/w).

As a model drug and solvent, previously milled sparingly water-soluble caffeine

anhydride (Ph.Eur.) and purified water (Ph.Eur.) were used, respectively (III, IV).

3.2. Equipment

A laboratory-scale centrifugal granulator (Freund CF-360EX, Freund Industrial Co.,

Ltd., Tokyo, Japan) was used for preparing both MCC beads and subsequent drug-

layered pellets (I-IV). The schematic diagram of the equipment is presented in Figure 2.

The principal units of the equipment are as follows:
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a) Product processing chamber - The chamber (marked C in Figure 1) consists of a fixed

cylindrical stator and a non-perforated rotating disc (D). The speed of the disc is

controlled by a variable-speed rotor attached to the bottom. The fluidized air (A) enters

the product area through the slit between the chamber and the rotating disc which is 0.2

mm. The dust accumulation during the operation is minimised by a cover and outlet air

tube (B). The cover has openings to allow the position of clamp assembly, tubings of the

spray guns and a powder delivery tube within the chamber. The product temperature and

moisture are monitored by probes positioned just above the rotating disc (I).

b) Powder feeding device - This device (F) is situated over the processing chamber and

consists of a vertical feed screw, a hopper and a hopper agitator. The rotation speed of

the screw controls  the powder dropping rate.

c) Liquid spray assembly – The assembly has two main units: 1) an exchangeable speed

flow gear pump (G) situated near the processing chamber and  2) a spray gun (E), the

position and angle of which can be altered as desired by means of a clamp unit. The

binders and coating solutions of different viscosities are delivered suitably with the gear

pump. The liquid is atomised by using air pressure through the spray gun which is

usually of a binary type.

d) Air supply system - Air supply into the processing chamber is maintained by a blower

(J). The blower air is supplied through a heat exchanger into the air chamber below the

processing chamber and then entered in the process chamber via the slit (A). The

function of the air is to facilitate the drying, to enhance the motion as well as to prevent

the blocking of the slit during the processing of fine granules.

e) Control panel – It consists of (1) a basic control panel with on-off switches, pilot

lamps, a thermometer and rotation speed meters, and is designed, on production units,

for remote locating and (2) optional moisture feed back control panels that optimise

agglomeration and granulating times by controlling the moisture content of the bed

during agglomeration.
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Figure 2.  Schematic diagram of the centrifugal granulator. Key: Inlet air (A), Outlet air (B), Granulation
chamber (C), Rotor (D), Solution spray system (E), Powder feeder (F), Liquid pump (G), Liquid vessel on a
balance (H), Moisture sensor (I), Blow air generator system (J) and Product outlet (K) (modified from
Goodhart 1989).

3.3. Methods

3.3.1 Characterisation of materials

Moisture content (I, III)

Moisture content was determined as the loss of weight using an infrared dryer

(Sartorious Thermocontrol YTC0IL, Sarturius GmbH, Germany). A 2-g sample was

heated up to 120 °C until the loss of weight was less than 0.1 mg in 50 s. Three parallel

determinations were performed in each case.
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Bulk and tapped densities (I, III)

The bulk density was determined by pouring 50 g of materials into a 250-ml graduated

glass cylinder which was kept at an angle of 450 to horizontal while pouring. The

cylinder was straightened up and the volume occupied by the materials read to the

nearest 1 ml. The bulk density was calculated by dividing the weight by the occupied

volume. The tapped density was determined by a tapped density tester (Erweka SVMI,

Erweka GmbH, Germany) in which the glass cylinder was tapped 750 times. The tapped

density was calculated in the same way as the bulk density. The Hausner ratio, i.e. the

ratio between the tapped and the bulk density, was calculated on the basis of bulk and

tapped density data. All measurements were made in triplicate.

Flow rate and angle of repose (I)

The flowability was determined by an automatic, non-commercial flow rate recorder

made by Orion Pharmaceutica, Finland, as the time required for 50 g of materials to flow

through a standard orifice (10mm). The angle of repose was determined in the same

equipment. All measurements were made in triplicate.

Particle size and size distribution (I, III)

The particle size and size distribution were determined by sieve analysis. Twenty  grams

of beads and pellets were shaken for 10 min in an automatic shaker (Fritsch

Laborgerätebau, Germany) using a series of 1400-µm, 1250-µm, 1000-µm, 800-µm,

710-µm, 630-µm, 500-µm, 450-µm, 355-µm and 250-µm sieves. The amplitude was 6.

The determinations were performed in triplicate.

Shape and surface characteristics (I, III)

The shape and surface structure were studied by scanning electron microscopy (Jeol

JSM-840A, Jeol, Japan). Before taking the photograph, the sample of the material was

coated with gold in an argon atmosphere by an ion sputter coater (SDOO4, Baltzers

Union, Liechtenstein).
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3.3.2 Preparation of MCC initial beads (I, II)

The composition of the spherical bead formulations tested are shown in Table 3. Tables

4 and 5 represent the constant operating process parameter settings (I, II) and the levels

of the process parameters tested (II), respectively.

Table 3.  Composition of  MCC bead formulations tested (I).

Material Formulation
I II III IV

As initial seed material:
Emcocel 90M

As filler:
Emcocel SM15
Emcocel 50M
Emcocel 90M
EmcocelHD90

500g

500g
-
-
-

500g

-
500g
-
-

500g

-
-
500g
-

500g

-
-
-
500g

In each experiment, 500 g of MCC (Emcocel 90M) was placed in the processing

chamber and allowed to moisten for 21.2 min. During the first 10.0 min the rotor rotation

speed was kept at 100 rpm/min and was then set at 200 rpm/min. After 21.2 min of

wetting the filler was added to the wetted mass, keeping all the process parameters

constant. The final product was taken out at 36.0 min after finishing the addition of the

filler, and dried at 60 °C in a fluidised-bed dryer for 40 min.

Table 4.  Operating parameter settings during initial bead preparation (I).

Parameter Setting
Rotor rotation speed (rpm)
Slit air (l/min)
Spray air (l/min)
Spray air pressure (kg/cm2)
Spray rate (ml/min.)
Filler dropping rate (g/min)
Spray nozzle distance from bottom plate (cm)

100-200
200
12.0
0.8
25
33.8
6.0

Table 5. Levels of process variables studied (Fractional Factorial Design, FFD 25-2) (II)

Process parameter Level (-) Level (+)
X1, rotor rotation speed (rpm) 180 280
X2, slit air flow rate (l/min) 140 240
X3, spray air pressure (kg/cm2) 0.6 1.4
X4, spray air rate (l/min) 10 16
X5, spray nozzle distance from bottom plate (cm) 5.0 7.0
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1.0 min before spraying the binder solution. After spraying for 0.5 min the drug was

added to the wetted mass at a screw rate of 5.0 rpm, keeping all the process parameters

constant. At 24.5 min, addition of the drug was finished and spraying of the binder

solution was continued at the same rate until 25.5 min. The spraying was continued at

25.5 min at a rate of 3.1 g/min. After the addition of 136.0 g of binder, the final pellets

were taken out at 26.5 min and dried at room temperature (23 ± 2 °C) for 48 h.

3.3.4 Evaluation of initial beads and pellets

The initial beads were evaluated with respect to yield, size and size distribution, shape,

surface morphology, bulk and tapped densities, flowability and friability. For evaluation

of drug-layered pellets, percentage of drug loss during the preparation, drug in the

expected yield fraction, expected yield as well as undersized and oversized pellets were

also tested in addition to the above tests performed for initial beads (I, II). The expected

yield fraction was used to characterise the shape, the surface morphology and the

relevant physical and mechanical properties of the pellets.

Expected yield

The expected yield, undersized and oversized pellets as well as size and size distribution

were determined by sieve analysis (Fritsch Analysette, Germany).

Loss of drug

The percentage of drug loss during the process and the percentage of drug in the

expected yield fraction were determined spectrophotometrically at a wave length of 273

nm.

The percentage of drug loss during the process, drug in the expected yield fraction,

expected yield and undersized and oversized pellets were calculated by using the

following formulas:



Drug loss during the process  (%)  =      [ 1-  (AT/AM) ] * 100            Eq. 1

Expected yield (%) = (L / M) * 100                       Eq. 2

Undersized pellets (%) = (U / M) * 100 Eq. 3

Oversized pellets (%) =      (O / M) *100 Eq. 4

Amount of drug in the expected
yield fraction (%)                             =        (AF / AM) * 100         Eq. 5

where 

M        = amount of total material used excluding moisture content 

L = amount of expected pellet fraction in the total product
                            excluding moisture content

U          = total amount of undersized pellets in the product
excluding moisture content

O         =    total amount of oversized pellets in the product
excluding moisture content

AT      =               amount of drug present in the total product

AF      =   total amount of drug present in the expected yield fraction
of the total product

AM      = total  amount of drug used

Bulk and tapped densities
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Friability

The friability of the beads/pellets was determined by weighing 20.0/10.0 g of

beads/pellets and 20.0/10.0 g of glass beads (diameter about 2 mm) into a 100-ml

container. The beads/pellets were mixed with the glass beads in a Turbula mixer (System

Schatz, W.A. Bachofen, Switzerland) for 10 min and then sieved through a 250/450 µm

sieve. The percent weight loss was then calculated. The measurements were made in

triplicate.

Shape and surface roughness

The shape and surface roughness of both initial beads and drug-layered pellets were

characterised using an optical microscopic image analysis system (Leach MZ6, Leica

Imaging Ltd, Cambridge, England). The sample of the initial beads/pellets was spread on

a two-sided adhesive tape with a spatula so as not to touch each other. The tape with the

samples was placed in a glass Petri dish. At least 500 beads/pellets from each batch were

measured from each experiment.

The characteristics measured for each bead/pellet were area, minimum diameter (dmin

and dmax), perimeter (perim) and convex perimeter (cperimeter). From the measured

data, the roughness and shape parameters were derived. The shape parameters included

sphericity (roundness and circularity) and oblongation (elongation, rectangularity,

modelx). These parameters are shown below (Eqs. 6-11).

Circularity = 4*π* area/(perim)2                                              Eq. 6

Roundness = (perim)2/(4*π *πarea *1.064)                                Eq. 7

Elongation = dmax/dmin                                                       Eq. 8

Rectangularity= area /dmin*dmax Eq. 9

Modelx   = perim* dmax/4*area                                            Eq. 10
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Roughness = Perim/cperim                                                       Eq. 11

The surface roughness was studied by scanning electron microscopy (Jeol JSM-840A,

Jeol, Japan ). Before taking the photograph, the sample of the beads/pellets was coated

with gold in an argon atmosphere by an ion sputter coater (SDOO4, Baltzers Union,

Liechtenstein).

3.3.5 Statistical analysis (II-IV)

Statistical evaluation was made using the Windows version of Systat 5.0. Modelling was

performed by Modde for Windows (Version 3.0, Umeå, Sweden).



40

4. RESULTS AND DISCUSSION

4.1 Initial beads (I, II)

4.1.1 Mechanism of growth and formation (I)

The spherical bead/core formation mechanism consisted mainly of three phases.

Nucleation is the phase where the initial processing materials were first wetted with

water and well-formed nuclei were then produced by random collision and coalesence.

The second phase, a transient region, consisted of coalescence between previously

formed weak nuclei and layering of the filler over the well-formed nuclei. The final

phase or the sphere growth region continued until the end of the process. Based on the

formation and growth of MCC beads/cores, there were no great differences between the

formulations tested. However, formulations (I and II), where MCC 50 µm and 15 µm

were used as filler, layering rather than coalescence was found to dominate in the

transition region as compared with MCC 90 µm and higher-density MCC 90 µm. This

was attributed to their differences in size.

4.1.2 Effects of material variables on the properties of initial beads (I)

4.1.2.1 Size characteristics

The amount of initial beads in the fraction of 250-710 µm was considered as expected

yield. The fractions larger than 1000 µm and smaller than 250 µm were classified as

agglomerates and the powered fraction of the formulations, respectively. With increasing

particle size of MCC as a filler the amount of expected yield and agglomerates (lumps)

decreased. Exceptionally, the formualtion with high-density MCC (Emcocel HD90) as a

filler produced a larger amount of agglomerates. The lumps in this case consisted of the

accumulation of individual round granules instead of large irregular intact particles

unlike other formulations (Table IV; I). The formation of agglomerates/lumps in

experiments with Emcocel SM15 was mainly due to the addition to the body of the

processing chamber, whereas in other formulations no adhesion to the processing
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chamber occurred. The only beads smaller than 250 µm were formed with Emcocel

SM15 as a filler.

4.1.2.2 Shape characteristics

The initial beads prepared with different grades of MCC as fillers were relatively

spherical. The initial bead fraction 250-500 µm was more spherical than 500-700 µm,

especially in formulations I and II. The image analysis results coincide with the visual

results obtained by SEM that all formulation yielded a relatively smooth surface with no

great deviations (Table V and Figure 4; I).

4.1.2.3 Packing characteristics

The bulk and tapped densities of the initial beads were positively related to the particle

sizes of the microcrystalline cellulose grades used as filler. These results agree with the

previous studies on wet granulation (Harwood and Pilpel 1968, Niskanen et al. 1990).

4.1.2.4 Flowability and friability

Flowability

The Hausner ratio measures the friction conditions in a moving powder mass, and a low

Hausner value is a criterion of good granulation (Hausner 1967, Aulton and Banks

1978). An  angle of repose < 30° can also be regarded as an indicator of good flowability

of materials.

The poorest flowability was observed with Emcocel SM15, whereas in the case of

respective initial core product, the direct measured flow rate, angle of repose and

Hausner ratio values showed good flowability. In all formulations tested the initial beads

of 250-500 µm had a higher flowability compared with 500-710 µm. Beads with high-

density MCC produced the highest flowability, which correlates with their highest

density, sphericity and surface  roughness  (Table VI; I).
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Friability

The friability of the initial beads measured by the Turbula method was negligible.  Only

fractions 250-500 µm and 250-710 µm of formulations I and II had small percentage that

was quite smaller in comparison to the upper limit. The friabilty of the other

formulations was > 0.05%. (Table VI; I).

4.1.2.5 Limitations

The flow characteristics of different grades of MCC used as filler in preparing the initial

beads created some limitations related to the process. The MCC grade (Emcocel SM15)

had such a poor flow rate that it was a problem to feed it uniformly from the feeding

device without external agitation. On the other hand, MCC grades Emcocel 90M and

HD90 created quite an opposite problem due to their higher flow rate. Therefore, to

maintain  the same flow rate for the above two grades, an  additional part was attached to

the feeding device. However, the MCC grade Emcocel 50M, which was used as a filler

in formulation II, was free from these problems.

4.1.3 Effects of process variables on the properties of initial beads (II)

Five process variables of potential importance with respect to the pharmaceutical quality

of the intial beads were evaluated. The parameters studied were rotor rotation speed, slit

air, spray air pressure, spray air rate and height of nozzle setting (Table 1; II).

4.1.3.1  Expected yield and mean diameter

The rotor rotation speed had a clear negative effect (p < 0.001), while the slit air flow

rate (p < 0.01) and the spray air rate (p < 0.05) had a positive effect on the expected

yield. When the rotor rotation speed was increased from 180 rpm to 280 rpm, the relative

change of expected yield was in the range of –(32.4-90.3)%. As the slit air rates and

spray air rates were increased from the lower to the higher, the relative changes in the

expected yield were in the range of +(6.7-36.7)% and +(3.0-30.9)%, respectively. Rotor

rotation speed (p<0.001), slit air flow rate (p< 0.001), and spray air rate (p< 0.001) were
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also critical parameters affecting the mean diameter. Increasing the rotor rotation speed

from 180 rpm to 280 rpm resulted in a relative change of +58.3% of mean diameter,

while incresing the slit air flow rate from 140 l/min to 240 l/min  (and spray air rate from

10 l/min to 16 l/min) resulted in a relative change of –26.5% (and –15.2%), respectively.

4.1.3.2  Bulk density

The process parameters statistically affecting the bulk densities of the initial beads were

rotor rotation speed (p < 0.001), slit air flow rate (p < 0.001) and spray air rate (p <

0.01). The rotor rotation speed had a positive effect, and the slit air flow rate and spray

air rate a negative effect on the bulk densities of the beads.

4.1.3.3  Shape and surface morphology

The shape of the beads was evaluated by measuring the sphericity (roundness and

circularity) and oblongation (elongation, rectangularity, and modelx). For a perfectly

round particle, the respective values are 1.

As regards quantitative values of roundness (Table 2 and 4; II), the rotor rotation speed

(p < 0.001) had a negative effect, the slit air flow rate (p < 0.01) and spray air rate (p <

0.05) had a positive effect. As regards values of circularity, the rotor rotation speed

(p<0.001) had a positive effect, and the slit air flow rate (p < 0.001) and spray air rate

(p<0.05) had a negative effect. This shows that by increasing the rotor rotation speed and

by decreasing the slit air and the spray air rate, more spherical beads can be obtained.

In case of oblongation, the rotor rotation speed and slit air flow rate had significant effect

on the elongation and modelx, but not on the rectangularity of beads. Rotor rotation

speed (p < 0.001) had a clear negative effect, and slit air flow rate (p < 0.05) a positive

effect on the elongation. On the modelx values the rotor rotation speed (p < 0.001) had a

negative and the slit air flow rate (p < 0.01) and spray air rate (p < 0.05) a positive effect.

Consequently, increasing the rotor rotation speed resulted in a decrease in the elongation

and modelx values, thus producing rounder beads.
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The differences in the rectangular and roughness values of the experiments were

negative for calculation of any significance (Table 2; II).

4.2 Drug-layered pellets (III, IV)

4.2.1 Effects of material variables on the properties of pellets (III)

4.2.1.1 Drug loss

The drug loss during the process was defined as the amount of active ingredient lost

during the preparation of pellets due to adhesion to the body and/or leakage through the

opening of the processing chamber. The results show that the drug loss during the

process was lower in formulations with povidone (Plasdone K-29/32) than those with

maltodextrins mainly at a lower concentration level. There was no clear difference in

drug loss during the process between the maltodextrin grades tested.

The concentration of the binders had a negative effect on the size of the drug loss during

the process (p < 0.05). With increasing binder concentration the size loss of the drug

decreased. The effect of concentration was greater with Maltrin M100 than with

Plasdone K-29/32 and Maltrin M040. The initial bead size had no significant effect on

the drug loss (Table IV and Figure 3; III).

4.2.1.2 Expected yield

The expected yield was defined as the amount of pellets in fractions 630-1250 µm, 500-

1000 µm and 350-800 µm, including process loss, loss due to the formation of

agglomerates and undersized pellets. The results indicate that the lowest expected yield

was obtained with Plasdone K-29/32 at a lower bead size and higher concentration level,

followed by Maltrin M040 and M100. Plasdone K-29/32 at a lower concentration and

higher bead size level gave the highest expected yield, and maltodextrins at a higher

concentration and higher bead size level followed the same trend. For Plasdone K-29/32
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and maltodextrins, this was mainly due to the formation of a smaller amount of

agglomerates and undersized pellets, respectively.

4.2.1.3 Amount of drug in the expected yield fraction

The results indicate that the expected yield fractions for a higher binder concentration

and lower bead size produced the smallest amount of active drug, and this was mainly

due to the formation of a larger amount of oversized pellets (agglomerates). The

response was opposite at higher concentration and bead size levels. The expected yield

fraction with Plasdone K-29/32 at a lower concentration gave more active ingredient

compared with maltodextrins.  This  could be due to  the formation of more undersized

pellets and greater drug loss during the process for maltodextrin.

4.2.1.4 Size and shape characteristics

Size and size distribution

The fraction below the minimum size of initial beads was regarded as undersized pellets.

The pellets prepared with Plasdone K-29/32 yielded the smallest amount of undersized

pellets (Table III; III). Formulations with Maltrin M100 were more prone to form

undersized pellets than those with Maltrin M040 at lower concentrations, whereas at

higher concentrations there was no big difference. This could be explained by the higher

DE values of Maltrin M100 showing a smaller binding capacity, and thereby producing

more undersized  pellets at lower concentrations.

The concentration of the binder was more critical and had an opposite effect on the

amount of undersized pellets (p < 0.01). The effect of binder concentration was more

pronounced with maltodextrins (p > 0.001) than with Plasdone K-29/32. The initial bead

size had no effect on this response (Table IV and Figure 4; III).

Plasdone K-29/32 was more inclined than the maltodextrin grades tested at higher

concentrations to produce a larger amount of agglomerates, thus influencing the size of
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the expected yield fraction and thus influenced the size of the expected yield fraction.

Maltrin M100 produced less agglomerates than Maltrin M040.

The size distributions of the pellets were quite equal for all types of binders tested

(Figure 3). Smaller initial bead size yielded a wider size distribution than a higher initial

bead size. The size distribution of the final pellets was wider compared with the

respective initial bead size distribution, which was more pronounced with smaller initial

beads.

Figure 3. Size distribution of pellets containing povidone and maltodextrin. A: pellets with Plasdone K-29/32
at higher binder concentration and larger bead size (▲), B: pellets with Plasdone K-29/32 at higher binder
concentration and smaller bead size (∇ ), C: pellets with Maltrin M100 at higher concentration and larger bead
size (!), D: pellets with Maltrin M100 at higher concentration and smaller bead size ("), E: large beads (#),
F: small beads  ($) (III).

Shape

All formulations yielded relatively spherical pellets, and the drug-layered pellets were

less spherical than the corresponding MCC beads. The drug-layered pellets were less

spherical and rougher than the respective MCC beads. Formulations with a higher initial
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bead size and lower binder concentration yielded more spherical and smoother pellets

than the other ones. Pellets with Maltrin M040 were rougher than those with other

binders used (Table III and Figure 2; III).

4.2.1.5 Packing characteristics and flowability

Packing properties

The pellets with Maltrin M040 exhibited lower bulk densities than the pellets with other

binders. The bulk densities of the pellets with Plasdone K-29/32 were quite equal to

those with Plasdone K-29/32. The lowest bulk densities of the pellets with Maltrin M040

were mainly due to their rough surface. In the case of M100 the effect was quite

opposite.

Flowability

Pellets with Plasdone K-29/32 and Maltrin M100 were better flowing than those with

Maltrin M040. One of the reasons could be the rough surface of the pellets prepared

with M040. Based on the flowability of the respective pellets, the binders studied were

ranked as M100 > Plasdone K-29/32 > M040 (Table III; III).

Both independent variables concentration and initial bead size had a significant   inverse

effect on the flowability of the pellets. With increasing concentration and initial bead

size the flowability of the pellets decreased. The higher flowability of the pellets with

small bead size was assumed to be due to the higher flowability of the small initial beads

used (Table IV and Figure 6; III)

4.2.1.6 Friability

With the exception of maltodextrins (Maltrin M040 and M100) at a lower concentration

(12% w/w) and smaller bead size, all binders produced pellets within an acceptable

range of values. Plasdone K-29/32 yielded stronger pellets compared with the

maltodextrin grades. Pellets prepared with Maltrin M100 were slighly more friable than
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those with Maltrin M040. The difference between the friability values of the pellets

could be due to their different DE values (Table III; III).

With increasing binder concentration and initial bead size, the friability of the pellets

decreased. The concentration of the binder (p < 0.01) and the size of the initial beads (p

< 0.05) had a negative effect on the friability of the pellets. The effect of binder

concentration and initial bead size was more evident with Plasdone K-29/32 than with

maltodextrins. This  was thought to be due to the higher tendency of Plasdone K-29/32

to form agglomerates.

4.2.2 Effects of process variables on the properties of pellets (IV)

The feasibility of the centrifugal granulating process for preparing drug-layered pellets

using microcrystalline cellulose beads as substrates and a sparingly water-soluble drug

as a filler has been reported in previous sections. Three process variables which were

found to have a significant effect on the quality of the MCC beads prepared in the same

equipment were studied using 33 full factorial design. The results are presented in Table

2 (IV). The summary of the fitted models and statistical analysis with estimated effects

are shown in Table 3  (IV).

4.2.2.1 Drug loss during the process

The main ingredients used for the preparation of pellets were powdered drug and MCC

beads. There is no possibility of loss of MCC beads due to leakage through the opening

of the processing chamber except adhesion to the body of the chamber, whereas drug

loss probably occurred by both ways. The drug loss during the process could be reduced

by controlling the process parameters. In the literature, yields of 90% are regarded as

acceptable in a corresponding drug layering process (Vuppala et al. 1997). In our study,

the drug loss was 5-10%.

The statistical analysis shown in Table 3 (IV) indicated that the rotor rotation speed (p <

0.01) and slit air flow rate (p < 0.001) were important parameters affecting the drug loss
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during the process. Both parameters had a positive effect on the drug loss. The effect of

slit air was more pronounced than that of rotor rotation speed.

4.2.2.2 Formation of agglomerates

Agglomeration is a common processing problem in preparing pellets by the drug

layering technique. Generally the problem of agglomeration could be minimised by

controlling the critical process parameters. The statistical analysis shown in Table 3 (IV)

indicates that all three parameters studied (rotor rotation speed p < 0.001, slit air flow

rate p < 0.001 and spray air rate p < 0.001) had a significant influence on the formation

of agglomerates during the pellet preparation. As shown in Figure 4, the amount of

agglomerates was positively affected by the rotor rotation speed and the slit air flow rate,

and negatively by the spray air flow rate. With increasing rotor rotation speed, the slit

and spray air rates and the amount of agglomerates increased. By increasing the spray air

rate from the lowest to the highest level the amount of agglomerates decreased.  An

obvious explanation is that a higher rotor rotation speed and slit air flow rate wetted the

initial beads more due to the leakage of fine filler drug powder through the opening of

the processing chamber, while increasing the spray air rate the overwetting of the pellets

decreased.
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(i)      (ii)

       

(iii)

     

Figure 4. Surface plots representing the effects of slit air flow rate and spray air rate on the amount of
agglomerates (i), roundness (ii) and friability (iii). Key: The rotor rotation speeds are 150 rpm (A), 200 rpm (B)
and 250 rpm (C).
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4.2.2.3 Bulk density

The process parameters affecting the bulk densities of the pellets were rotor rotation

speed (p < 0.01), slit air flow rate (p < 0.01) and spray air rate (p < 0.001) (Table 3; IV).

The rotor rotation speed and the spray air rate had a positive effect and the slit air flow

rate a negative effect on the bulk densities of the pellets. Of the process parameters

studied, the rotor rotation speed was dominant.

The effect of spray air rate on the bulk density of the pellets was inverse to that found

previously with the initial MCC beads (see Section 4.1.3.2). This could be due to, e.g.,

only water being used as wetting agent without any binder in the preparation of MCC

beads. MCC could not agglomerate until it was fully wet and had achieved plastic

properties. The wetter the MCC powder was, the denser and rounder beads were

obtained. In the preparation of drug-layered pellets, layering of drug powder over the

initial beads depends mainly on the binding capacity of the binder. Overwetting of the

surface of the initial beads with the binder solution enhances their agglomeration,

resulting in irregular and rough pellets. As the spray air rate was increased, overwetting

of the surface of the pellets decreased, and this obviously resulted in smoother and

rounder pellets.

4.2.2.4 Pellet flow rate

As seen in Tables 2 and 3, both rotor rotation speed (p < 0.001) and spray air rate (p <

0.001) had a significant positive effect on the flow rate of the pellets. With increasing

rotor rotation speed and  spray air rate the flow rate increased.

4.2.2.5 Shape and surface morphology

One of the main goals in pellet preparation is to produce spherical round particles, which

contribute to successful coating and, thus, are optimal for controlled-release products.

Good flow characteristics of particles during coating and accurate metering of granules,

e.g. in capsule filling, are clearly dependent on the roundness of the particles.
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Roundness is often defined by Equation 7 (Section 3.3.4). By this definition for a

perfectly round particle the roundness value is one. For the MCC beads the value was

1.061. Concerning the quantitative values of roundness, the rotorrotation speed (p <

0.05) and spray air rate (p < 0.001) had a negative effect,the slit air (p < 0.001) a positive

effect (Figure 4; Section 4.2.2.2). This means that by increasing the rotor rotation speed

and spray air rate, and by decreasing the slit air flow rate, more spherical and rounder

pellets could be prepared. In this case, the effect of the spray air rate on the roundness

was opposite to that on the shape of MCC beads. The reasons could be the same as for

the bulk density of the pellets.

The  surface roughness properties of the pellets measured by image analysis exhibited

no significant differences. However, the SEM micrographs representing the pellets of the

corner points of the full 33 factorial design shown in Figures 3 (IV) and 4 (IV) indicate

that the pellets with a rounder shape had a relatively smoother surface than the less

round ones.

4.2.2.6 Friability

As seen in Table 3 (IV), both the rotor rotation speed (p < 0.001) and the spray air flow

rate (p < 0.001) had a statistically significant effect on the friability of the pellets. The

rotor rotation speed had a negative and the spray air rate a positive effect on the friability

(Figure 4; Section 4.2.2.2). At the highest rotor rotation speed, however, the spray air

rate had virtually no effect on the friability. Change in spray air rate at the lower level of

rotor rotation speed influenced the friability to a greater extent than the respective

change at the higher speed (Figure 4; Section 4.2.2.2). This can be explained by the fact

that as the rotor rotation speed is higher, the initial beads become wetter due to the loss

of drug and thus nullify the effect of the spray air.

4.2.2.7 Interactions

Some significant paired interactions can be seen between the process parameters tested

(Table 3; IV). Slit air rate and spray air rate were shown to interact with the formation of
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agglomerates, bulk density and friability. Significant paired interactions related to bulk

density were also found between all process parameters tested.
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5. CONCLUSIONS

On the basis of the present results, the following conclusions can be drawn:

1. The centrifugal granulating process is a convenient method of manufacturing

microcrystalline cellulose (MCC) initial beads (substrates). As regards process-

related advantages and limitations, the formulation with MCC 90M as a seed

material and MCC 50M as a filler seems to be more acceptable than the other

ones.

2. Nucleation, coalescence, abrasion transfer and layering are the major mechanisms

of the formation and growth of MCC beads in the centrifugal granulating

technique.

3. The selection of binder for use in preparing drug-layered pellets in the centrifugal

granulating process should be made with care. With povidone (Plasdone K-29/32)

and maltodextrins (Maltrin M100 and M040) as aqueous binders, satisfactory

drug-layered pellets based on MCC initial beads can be prepared. Binder

concentration and bead size are critical material variables in processing the

pellets. MCC initial beads of a larger size and a binder concentration as low as

possible should be chosen for better reproducibility.

4. The effects of important process variables, i.e. rotor rotation speed, slit air

(fluidized air) flow rate and spray air (atomizing air) rate, should be taken into

account in preparing acceptable MCC initial beads and subsequent drug-layered

pellets. The present process parameters can have a great influence on the physical

and pharmaceutical characteristics of the MCC beads and subsequent drug-

layered pellets such as yield, size, size distribution, shape, flowability and

friability.
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