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ABSTRACT 

Drugs of abuse share a common ability to increase dopamine release in the 
mesolimbic and nigrostriatal dopamine pathways. Furthermore, drugs of abuse 
generally increase the locomotor activity of animals, which is believed to result, at 
least partly, from increased dopamine release in the nucleus accumbens. After 
repeated treatment, the effects of these drugs, both on locomotor activity as well as on 
mesolimbic dopamine release, are enhanced, i.e. these drugs induce neurochemical 
and behavioural sensitisation. This phenomenon of sensitisation is believed to be 
involved in the reinforcing effects of drugs of abuse. 
 
The aim of this study was to explore whether acute and repeated treatment with 
morphine and cocaine differentially activates the locomotor activity and mesolimbic 
and nigrostriatal dopaminergic mechanisms in alcohol-preferring AA (Alko Alcohol) 
and alcohol-avoiding ANA (Alko Non-Alcohol) rats. 
 
An initial dose of morphine was found to increase locomotor activity to a greater 
extent in AA than in ANA rats. This increase of locomotor activity after acute 
morphine was associated with increased release and metabolism of nigrostriatal 
dopamine in AA rats but not in ANA rats. Repeated 4-day treatment with morphine (1 
mg/kg) induced behavioural sensitisation in AA but not in ANA rats. However, no 
sensitisation occurred either in mesolimbic or nigrostriatal dopamine release, 
suggesting that an additional, non-dopaminergic component, may be involved in 
morphine-induced behavioural sensitisation. Sensitisation of dopaminergic 
mechanisms was, however, seen in AA rats, where sensitisation of rotational 
behaviour was observed when the rats were challenged with morphine 8 days after 
withdrawal from repeated 4-day morphine treatment. Acute administration of 
morphine enhanced brain 5-HT metabolism in AA rats but not in ANA rats, this was 
in contrast to repeated treatment, where morphine was found to induce no significant 
enhancement of 5-HT metabolism in either AA or ANA rats.  
 
In naive AA and ANA rats an acute dose of cocaine increased the locomotor activity 
as well as mesolimbic and nigrostriatal dopamine release. After repeated treatment, 
behavioural sensitisation was seen with a smaller dose of cocaine in AA rats than in 
ANA rats. Furthermore, on examintion of mesolimbic dopamine release, only AA rats 
showed sensitisation to repeated doses of cocaine, whereas the effect of cocaine on 
nigrostriatal dopamine release was not sensitised in rats from either line.  
 
Thus, AA rats show both psychomotor and/or neurochemical sensitisation to repeated 
doses of morphine and cocaine more easily than ANA rats. This difference may also 
be involved in the different alcohol preference between these rats. 
 
Keywords: Dopamine, serotonin, reinforcement, morphine, cocaine, caudate-putamen, 
nucleus accumbens, nigrostriatal, mesolimbic, locomotor activity, AA rats, ANA rats 
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1. INTRODUCTION 

 

 

The main goal of alcoholism research is to explain why people drink, why some drink 

to excess, and why some are unable to stop drinking even when they understand that 

drinking has extremely harmful consequences (see McBride and Li 1998). Although 

environmental effects undoubtedly have an important role in alcohol use (Light et al. 

1996), inherited characteristics seem to play an important role in determining the 

susceptibility of an individual to become drug dependent or an alcoholic (for reviews 

see Ball and Murray 1994; Cloninger 1987; Crabbe et al. 1994). For instance, studies 

examining twins and adoptions have found moderate to strong genetic influences on 

alcoholism among men, with heritability estimates of 40 – 60 % (see Prescott and 

Kendler 1999).  

 

Selective breeding for alcohol preference is the process whereby systematic mating of 

animals that exhibit the most extreme levels of high and low alcohol preference from 

a heterogeneous stock, over many generations, yields two lines of animals that exhibit 

high and low alcohol drinking (see McBride and Li 1998). Theoretically, these lines 

should then have either a high or low frequency of genes that impact on alcohol 

preference, whereas the frequency of irrelevant genes in this respect would remain 

randomly distributed. Thus, rat lines selectively bred for differential alcohol 

preference are a useful tool in research of alcohol consumption, because all 

differences between rats of these lines should be related to differential alcohol 

consumption. 

 

Drugs of abuse have reinforcing effects, which may be positive or negative, and are 

major reasons for drug abuse. If a drug (e.g. alcohol) is used, for example, to reduce 

anxiety or to alleviate the withdrawal symptoms after alcohol drinking, then the states 

of withdrawal or anxiety serve as negative reinforcers. Negative reinforcing effects 

are not the only reason why many people use alcohol or other drugs of abuse. Alcohol 

and other drugs of abuse have positive reinforcing effects, and people drink or use 

drugs because these substances have some properties that make people want to drink 
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or use the drug again and again. A growing body of evidence supports the role of 

cerebral dopaminergic mechanisms in drug reinforcement (for reviews see Koob 

1992; Koob et al. 1998a; Robinson and Berridge 1993; Spanagel and Weiss 1999; 

Wise and Bozarth 1987). Alcohol, opioids, such as morphine, psychostimulants (in 

this thesis the term psychostimulant is used to represent both cocaine and 

amphetamine) along with a variety of other drugs of abuse, all share a common ability 

to increase dopamine release in the terminal areas of mesolimbic and nigrostriatal DA 

pathways (Di Chiara and Imperato 1988a). These pathways, especially the 

mesolimbic pathway, seem to play an important role in the reinforcing properties of 

drugs of abuse (for reviews see Koob 1992; Robinson and Berridge 1993). Changes in 

cerebral dopaminergic mechanisms, for example, polymorphisms in the dopamine 

metabolising enzyme, catechol-O-methyl transferase (COMT) (Kauhanen et al. 2000; 

Tiihonen et al. 1999) and changes in dopamine transporters (Repo et al. 1999; Tupala 

et al. 2000), have also been associated with high alcohol consumption in humans. 

 

The alcohol-preferring AA (Alko Alcohol) and alcohol-avoiding ANA (Alko Non-

Alcohol) rats have been selectively bred for high and low alcohol consumption, 

respectively (Eriksson 1968). In addition to alcohol, AA rats consume more cocaine 

and etonitazene, an opioid agonist, when offered in drinking fluid, than ANA rats 

(Hyytiä and Sinclair 1993). This suggests that the reinforcing effects of these drugs 

may be stronger in AA than in ANA rats. Given that alcohol drinking activates brain 

dopaminergic mechanisms in AA rats (Honkanen et al. 1997a), possibly mediating 

reinforcement, it is possible that differences in the dynamics of dopaminergic 

transmission contribute to the different alcohol-preferences between rats of these 

lines. 

 

The aim of the present series of experiments was to study possible differences in 

cerebral dopaminergic mechanisms between the AA and ANA rats. This was done by 

measuring motor activity and cerebral dopamine release and metabolism after acute 

and repeated treatment with morphine and cocaine, two drugs that by diverse primary 

mechanisms increase cerebral dopamine release. 
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2. REVIEW OF THE LITERATURE 

 

 

2.1. Dopamine and drug addiction 

 

2.1.1. Drug addiction 

 

Drug (or alcohol) addiction is a chronically relapsing disorder that is characterised by 

the compulsion to seek and take the drug, followed by loss of control over drug intake 

and subsequent emergence of a negative emotional state when access to the drug is 

prevented (see Koob et al. 1998b). Typically, the daily activities of individuals 

addicted to drugs are centred on obtaining and consuming the drug at the expense of 

social and occupational commitments and despite the knowledge of the related 

adverse medical consequences. Moreover, there are usually attempts to abstain from 

drug or alcohol use.  

 

Abused drugs have rewarding and reinforcing effects, which are important in 

maintaining drug intake. In the present context reward is used as a synonym for 

euphoria, pleasure and liking. Reinforcement is a more neutral term and may be 

roughly divided into two main classes; positive and negative reinforcement. A 

positive reinforcer may be defined as a stimulus that increases the frequency of 

behaviour upon which it is contingent (for reviews see Altman et al. 1996; Stolerman 

1992). For example, most drugs of abuse that are self-administered by humans serve 

as positive reinforcers when used in operant paradigms in rats by reinforcing lever-

pressing to obtain intravenous infusion of the drug. Negative reinforcers, in turn, are 

stimuli or events, the omission or termination of which increases the probability of the 

response upon which it is contingent (for reviews see Altman et al. 1996; Stolerman 

1992). Thus, the use of the drug is maintained because the aversive symptoms 

associated with withdrawal are alleviated by the drug.  
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2.1.2. Life cycle of dopamine 

 

The major routes for synthesis and metabolism of dopamine are presented in figure 

2.1. The synthesis of all catecholamines, including dopamine, originates from the 

amino acid tyrosine, which is converted to 3,4-dihydroxyphenylalanine (DOPA) by 

the enzyme tyrosine hydroxylase. This is the rate-limiting step in the synthesis of 

catecholamines. DOPA is subsequently converted to dopamine by aromatic amino 

acid decarboxylase (see Cooper et al. 1996).  

 

Newly synthesized dopamine is stored in synaptic vesicles, from where it is released 

in a calcium dependent manner upon arrival of neuronal stimuli. Dopamine may also 

be released from extravesicular pools, for instance by amphetamine, when vesicular 

stores have been depleted by reserpine (see Bartholini et al. 1989). In addition to 

transmitter release into the synaptic cleft, transmitters may also be released non-

synaptically by non-synaptic varicosities (see Vizi 2000).  

 

After its release, dopamine can interact with its receptors, diffuse out of the synaptic 

cleft and/or may be removed by uptake or metabolism by monoamine oxidase (MAO) 

or catechol-O-methyl transferase (COMT). MAO is located both in dopaminergic 

nerve endings and in extraneuronal compartments, e.g. glial cells (Schoepp and 

Azzaro 1983) for review see (Wood and Altar 1988). It is known that the MAO 

enzyme exists in two isoforms, MAO-A and MAO-B. There seems to be little species 

variation in the distribution of  these isoforms in the brain, but MAO-A is 

predominantly found in catecholaminergic neurons whereas MAO-B is the form most 

abundant in serotonergic and histaminergic neurons and in glial cells (see Shih et al. 

1999). Dopamine is a substrate for both isoforms, but MAO-A seems to be the 

isoform responsible for the oxidative metabolism of dopamine in the rat striatum 

(Fornai et al. 2000; see Cesura and Pletscher 1992). In contrast to MAO, there seems 

to be no significant COMT activity in presynaptic dopaminergic neurons, but some 

activity is present in postsynaptic neurons and substantial activity has been found in 

glial cells (Kaakkola et al. 1987; Kastner et al. 1994; see Männistö and Kaakkola 

1999). COMT itself can be found in two active forms, one being soluble whilst the 

other is membrane-bound. The soluble form has been suggested to be located in glial 
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cells and the membrane bound form in postsynaptic neurons and extraneuronal cells 

(Kaakkola et al. 1987; Rivett et al. 1983). However, as there are no specific soluble 

COMT or membrane-bound COMT antisera available, it has not been possible to 

separately analyze the tissue distribution of these two forms of the enzyme (see 

Männistö and Kaakkola 1999). Dopamine, as mentioned previously, can also be 

metabolised intraneuronally in dopaminergic nerve endings by MAO to 3,4-

dihydroxyphenylacetaldehyde which is then converted to 3,4-dihydroxyphenylacetic 

acid (DOPAC) by aldehyde-dehydrogenase (Fornai et al. 2000; see Wood and Altar 

1988). Subsequently, DOPAC can be metabolised to homovanillic acid (HVA) by 

COMT. Dopamine may also be metabolised by COMT to 3-methoxytyramine (3-

MT), which may be further metabolised to HVA. Changes in 3-MT levels have been 

suggested to reflect dopamine release, changes in DOPAC levels may signify  

Figure 2.1. Major routes for synthesis and metabolism of dopamine. 
Abbreviations: DOPA = 3,4-dihydroxyphenylalanine, DA = dopamine, DOPAC = 
3,4-dihydroxyphenylacetic acid, HVA = homovanillic acid, 3-MT = 3-
methoxytyramine, MAO = monoamine oxidase, COMT = catechol-O-methyl 
transferase, AD = aldehyde-dehydrogenase. 
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dopamine synthesis and metabolism, whereas changes in HVA levels seem to be 

secondary to the efflux of DOPAC from nerve terminals (Brown et al. 1991; 

Kuczenski and Segal 1992; see Wood and Altar 1988) as well as dopamine release.  

 

It has been estimated that about 70 to 80 % of the released dopamine is removed from 

the synaptic cleft by re-uptake into dopaminergic nerve terminals (see Bartholini et al. 

1989). Dopamine uptake transporters in the nucleus accumbens seem to be located 

extrasynaptically rather than in the synapses themselves (Garris et al. 1994; Nirenberg 

et al. 1997a). However, in the VTA, the transporters are mainly located in the 

perikarya and dendrites of dopaminergic neurons (Nirenberg et al. 1997b). 

 

2.1.3. The ascending dopamine pathways 

 

The ascending dopamine systems are long projections originating from the VTA 

(A10), the substantia nigra (A9) and the retrorubral nucleus (A8). The dorsal 

component of the mesostriatal pathway (the nigrostriatal pathway) mainly stems from 

the substantia nigra, in particular from the zona compacta (group A9) and not only 

innervates the entire caudate nucleus and putamen, but also the subthalamic nucleus 

and globus pallidus (Fig. 2.2.). The ventral component of the mesostriatal dopamine 

pathway (the mesolimbic pathway) is derived mainly from the VTA, but also from the 

A9 area, and innervates the nucleus accumbens, olfactory tubercle and nucleus 

interstitialis striae terminalis (Fig. 2.2.). The mesolimbocortical dopamine system 

originates primarily from the VTA with minor projections from the A9 group. These 

fibres innervate the septum, hippocampus, amygdala and many limbic cortical 

regions. The medial forebrain bundle is formed by noradrenergic and dopaminergic 

pathways (for reviews see Björklund and Lindvall 1984; Fallon and Loughlin 1995; 

Fuxe et al. 1985). 
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2.1.4. Dopamine receptors 

 

Dopamine receptors belong to the family of G-protein coupled receptors and can be 

divided into 2 subfamilies, namely D1- and D2-like receptors (for reviews see Cooper 

et al. 1996; Vallone et al. 2000). The D1-subfamily comprises of D1- and D5-

receptors, and the D2-subfamily of D2-, D3- and D4 receptors. The D1-like receptors 

are positively coupled to adenylyl cyclase, whereas the D2- like receptors are 

negatively coupled to adenylyl cyclase, and thus, are inhibitory in nature. Both 

somatodendritic and nerve terminal autoreceptors controlling the activity of dopamine 

neurons and dopamine release seem to be D2-like, whereas postsynaptic dopamine 

receptors can be classified as either D1- or D2-like receptors (see Cooper et al. 1996). 

Recently it has been shown that D2-receptor has two isoforms, the long D2L-receptor 

and the short D2S-receptor, which are generated by alternative splicing (Picetti et al. 

Fig. 2.2. A schematic 
drawing illustrating 
the nigrostriatal 
(upper panel) and 
the mesolimbic 
(lower panel) 
dopamine pathways. 
Abbreviations: Acb = 
nucleus accumbens, 
CPU = caudate-
putamen, GP = globus 
pallidus, MFB = 
medial forebrain 
bundle, OTu = 
olfactory tubercle, 
STh = subthalamic 
nucleus, SNC = 
substantia nigra pars 
compacta, SNR = 
substantia nigra pars 
reticulata (modified 
from Fuxe et al. 1985). 
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1997). The D2L-receptor is mainly located at postsynaptic sites wherese the D2S-

receptor is a presynaptic autoreceptor (Usiello et al. 2000).  

 

2.1.5. Dopamine and drugs of abuse 

 

Virtually all drugs of abuse, including psychostimulants, opioids, alcohol as well as 

nicotine share a common ability to increase the release of dopamine in the nucleus 

accumbens and in the caudate-putamen (Bassareo et al. 1996; Cadoni and Di Chiara 

1999; Di Chiara and Imperato 1988a; Di Chiara and Imperato 1988b; Honkanen et al. 

1997a; Honkanen et al. 1994b; Hurd et al. 1989; Kalivas and Duffy 1990; Kiianmaa et 

al. 1995; Liljequist and Ossowska 1994; Pei et al. 1993; Piepponen et al. 1999a; 

Pontieri et al. 1995; Pontieri et al. 1996; Spanagel et al. 1993). Cocaine prevents the 

uptake of dopamine by acting as an inhibitor of dopamine transporters, and thus, 

increases the extracellular concentrations of dopamine (Koe 1976; Kuhar et al. 1991; 

see Reith et al. 1997). Alcohol has been shown to increase the firing rate of dopamine 

neurons in the VTA (Brodie and Appel 1998; Brodie et al. 1999a; Brodie et al. 1999b; 

Brodie et al. 1990) which results in increased dopamine release in the nucleus 

accumbens. The increase in activity of dopamine neurons may result from action of 

alcohol directly on dopaminergic neurons (Brodie et al. 1999a) or indirectly via 

GABAergic (see Grace 2000) or glutamatergic (Rossetti et al. 1999) mechanisms. 

Opioids, such as morphine, have been suggested to increase the release of dopamine 

in the nucleus accumbens indirectly via the VTA, by hyperpolarizing γ-amino butyric 

acid neurons that tonically inhibit the activity of dopaminergic neurons (Gysling and 

Wang 1983; Johnson and North 1992). In addition to elevated dopamine release, µ-

opioids increase the synthesis and metabolism of dopamine (Ahtee and Kääriäinen 

1973; Attila and Ahtee 1984; Di Chiara and Imperato 1988b; Honkanen et al. 1994b; 

Piepponen and Ahtee 1995). The effects of drugs of abuse on brain dopaminergic 

mechanisms seem to be stronger in the nucleus accumbens than in the caudate-

putamen (Attila and Ahtee 1984; Di Chiara and Imperato 1988a; Di Chiara and 

Imperato 1988b). Furthermore, it has been determined that acute morphine, nicotine, 

cocaine and amphetamine can all increase dopamine release preferentially in the shell 

subdivision of the nucleus accumbens as compared with the core subdivision (Cadoni 

and Di Chiara 2000; Cadoni et al. 2000; Pontieri et al. 1995). Besides well known 
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stimulatory effect on dopamine release, microdialysis studies suggest that morphine 

may also have a local inhibitory effect on dopamine release in the caudate-putamen 

(Piepponen et al. 1999b; Rossetti et al. 1990).  

 

After repeated treatment, the effects of opioids and psychostimulants on brain 

dopamine mechanisms seem to be augmented. This sensitisation may be perceived, 

for instance, as enhanced depletion of dopamine in the nucleus accumbens, in the 

limbic forebrain or in the striatum after inhibition of tyrosine hydroxylase (Attila and 

Ahtee 1984; Kalivas and Duffy 1987) or alternately as increased dopamine release in 

the nucleus accumbens or striatum (Acquas and Di Chiara 1992; Ahtee et al. 1989; 

Cadoni and Di Chiara 1999; Honkanen et al. 1994b; Kalivas and Stewart 1991; 

Spanagel et al. 1993) induced by morphine challenge after repeated morphine 

treatment. Similarly, the ability of psychostimulants to elevate the concentration of 

extracellular dopamine in the nucleus accumbens is enhanced after repeated treatment 

(Cadoni et al. 2000; Kalivas and Duffy 1990; Kalivas and Duffy 1993). It also seems 

that the sensitisation to opioids, nicotine and psychostimulants may be seen 

particularly in the core subdivision of the nucleus accumbens but not in the shell 

subdivision (Cadoni and Di Chiara 1999; Cadoni and Di Chiara 2000; Cadoni et al. 

2000). Alcohol may differ from opioids and psychostimulants, in that respect, in that 

there may be no sensitisation of its effect on cerebral dopamine after repeated 

treatment. When AA and ANA rats were administered alcohol repeatedly 

intragastrically, and thereafter given i.p. injections of alcohol, similar increases in 

accumbal dopamine concentrations occurred to those found previously with acute IP 

administration of alcohol (Kiianmaa et al. 1995; Nurmi et al. 1996). Indeed, prior 

alcohol drinking would seem to induce even tolerance to the effect of IP alcohol on 

accumbal dopamine release in AA rats (Nurmi et al. 1996). 

 

2.1.6. Dopamine and addiction theories 

 

The pivotal role of dopamine in the reinforcing or rewarding properties of drugs of 

abuse has been known for several years, and there has been a lot of discussion on the 

exact role of dopamine in drug addiction during recent years (for reviews see Bechara 

et al. 1998; Berridge and Robinson 1998; Di Chiara 1995; Di Chiara 1999; Ikemoto 
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and Panksepp 1999; Koob et al. 1997; Robinson and Berridge 1993; Spanagel and 

Weiss 1999; Wise 1996; Wise and Bozarth 1987; Wise and Rompré 1989). The 

incentive-sensitisation theory of addiction by Robinson and Berridge (1993) suggests 

that after repeated use of drugs of abuse, the feeling of “wanting” drugs transforms 

itself into excessive drug craving. The sensitisation of the mesolimbic dopamine 

system plays a critical role in this phenomenon. Moreover, they suggest that 

dopamine is necessary only for “wanting” the incentives, but not for “liking” them or 

learning new “likes” or “dislikes” (see Berridge and Robinson 1998). On the other 

hand, the opponent process model of addiction suggests that in addition to positive 

reinforcement processes, the motivation for maintenance of compulsive drug use 

requires negative reinforcement processes (see Koob et al. 1997). Thus, abstinence 

from drugs of abuse, e.g. psychostimulants, results in negative motivational states, so 

called hedonic homeostatic dysregulation, associated with dysphoria, anxiety and 

irritability (for reviews see Koob et al. 1997; Koob and Le Moal 1997; Koob et al. 

1998b), and the drug alleviates this aversive state. This state of withdrawal is 

associated with decreased levels of dopamine and 5-HT and increased levels of 

corticotrophin-releasing factor in the nucleus accumbens, as well as increase in 

intracranial self-stimulation reward thresholds (Koob et al. 1997; Koob and Le Moal 

1997). Drug addiction has also been suggested to be a dopamine-dependent 

associative learning disorder (see Di Chiara 1999). Thus, both drugs of abuse and 

natural rewards increase dopamine transmission in the shell subdivision of the nucleus 

accumbens. The difference between natural rewards and drugs of abuse is that the 

enhancement of  DA transmission habituates rapidly with natural rewards, but slower 

with drugs of abuse. The effect of repeated stimulation of dopamine transmission in 

the nucleus accumbens shell with drugs of abuse results in abnormal associative 

learning, which leads to the expression of excessive control over behaviour (see Di 

Chiara 1999).  

 

2.1.7. Dopamine and behaviour 

 

Locomotor activity. In addition to enhancing cerebral dopamine release, drugs of 

abuse increase the locomotor activity of animals (for reviews see Kalivas and Stewart 

1991; Koob 1992). It has been suggested that mesolimbic dopaminergic neurons 
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mediate both the rewarding and locomotor activity stimulating effects of the various 

drugs of abuse (for reviews see Wise and Bozarth 1987; Wise and Rompré 1989). It 

seems that, in the case of psychostimulants, the stimulation of locomotor activity 

results primarily from an interaction with dopamine transporters (for reviews see Di 

Chiara 1995; Pierce and Kalivas 1997; Wise and Bozarth 1987; Woolverton and 

Johnson 1992). The terminal areas of dopaminergic neurons in the striatum, especially 

in the nucleus accumbens, seem to play an important role in psychomotor stimulation 

induced by psychostimulants. An example of this is that local infusion of cocaine into 

the VTA did not enhance the locomotor activity of rats (Chen and Reith 1994) 

whereas local microinjections of cocaine into the nucleus accumbens or into the 

striatum did promote an increase in locomotor activity, with the effect of cocaine 

being noticeably intence when injected into the nucleus accumbens (Delfs et al. 

1990). Opioids have also been shown to exert and effect on locomotor activity, both 

dependently and independently of dopamine. Dopamine dependent locomotion seems 

to result from opioid-action in the VTA (Di Chiara 1995; Stinus et al. 1992), whereas 

dopamine independent locomotion seems to derive from the nucleus accumbens 

(Kalivas et al. 1983; Pert and Sivit 1977; Stinus et al. 1985). However, when 

administered intra-nigrally, opiates elicit stereotypical behaviour, that is sensitive to 

low doses of dopamine D1-receptor antagonists (Morelli et al. 1989). The effect of 

opioids on horizontal locomotor activity also depends on the dose of the drug used, 

that is, smaller doses of morphine increase the locomotor activity of the animals, 

whereas larger doses cause initial depression, followed by delayed excitation (Babbini 

and Davis 1972).  

 

The role of central catecholamines on alcohol-induced euphoria and stimulation was 

shown by studies that took place in the early 1970’s, when a group of Swedish 

scientists took placebo or α-methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, prior 

to drinking alcohol (Ahlenius et al. 1973). They found that those subjects who took α-

methyl-p-tyrosine demonstrated significant reduction in alertness, talkativeness, 

elation and happiness as compared to placebo taking controls. Although alcohol 

increases dopamine release, it has sedative-hypnotic effects, probably resulting from 

its action on GABAA receptors (Grobin et al. 1998; Korpi 1994). Thus, experimenter-

administered alcohol does not generally increase locomotor activity in rats (Criswell 

et al. 1994; Cunningham et al. 1993; Frye and Breese 1981; Masur et al. 1986; 
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Päivärinta and Korpi 1993). Low doses of alcohol (≤ 0.25 g/kg, IP) were shown to 

increase spontaneous motor activity in alcohol-preferring P rats and Maudsley 

Reactive rats (Waller et al. 1986), but this could not be replicated later with P rats 

(Criswell et al. 1994). However, voluntary alcohol drinking seems to have a 

permissive effect on the locomotor activity of at least some lines of alcohol-preferring 

rats (Colombo et al. 1998; Päivärinta and Korpi 1993). In addition, several studies 

have also shown that alcohol increases the locomotor activity in some strains of mice 

(Carlsson et al. 1972; Cunningham et al. 1993; Liljequist 1991; Liljequist et al. 1981; 

Liljequist and Karcz-Kubicha 1993; Liljequist and Ossowska 1994; Masur and 

Boerngen 1980). This effect of alcohol described above seem to be, at least partly, 

dopamine dependent, since several types of dopamine receptor antagonists have been 

found to suppress the alcohol-induced locomotor stimulation in mice (Broadbent et al. 

1995; Cohen et al. 1997; Le et al. 1997; Liljequist et al. 1981; Risinger et al. 1992). 

 

Repeated treatment with opioids or psychostimulants has also been shown to induce 

behavioural sensitisation in rats, which is manifested as an enhancement of the effect 

of drug on horizontal locomotor activity and has been associated with increased 

dopamine release in the nucleus accumbens (Acquas and Di Chiara 1992; Cadoni and 

Di Chiara 1999; Cadoni and Di Chiara 2000; Cadoni et al. 2000; Kalivas and Duffy 

1990;  Spanagel et al. 1993). The sedative and cataleptic effects of acute 

administration of opioids may be converted, after repeated treatment, into stereotypies 

(Ahtee 1974; Babbini and Davis 1972; Fog 1970), which have been associated with 

enhancement of the effect of the drug on nigrostriatal dopamine mechanisms (Ahtee 

1974; Ahtee and Attila 1987; Bloom et al. 1989; Patrick et al. 1991). It seems, 

however, that behavioural sensitisation is not always associated with increased 

dopamine release (Acquas and Di Chiara 1992; Heidbreder et al. 1996; Johnson et al. 

2000; Kalivas and Duffy 1993; Segal and Kuczenski 1992). The length of the 

withdrawal period between repeated drug treatment and the test session appears to 

play important role in the expression of neurochemical sensitisation. Thus, even if 

behavioural sensitisation occurs, sensitisation of accumbal dopamine may not be seen 

if cocaine challenge is given in the early stages of withdrawal (1 or 2 days after 

repeated treatment) (Heidbreder et al. 1996; Johnson et al. 2000; Segal and Kuczenski 

1992), but may be detected after prolonged withdrawal (22 days) (Heidbreder et al. 
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1996). The dose of drug used may also play an important role in this phenomenon. 

For instance, repeated treatment with 15 mg/kg of cocaine for 4 or 5 days resulted in 

behavioural sensitisation associated with increased dopamine release in the nucleus 

accumbens when the rats were challenged with the same dose of cocaine on the 

following day (Kalivas and Duffy 1990; Kalivas and Duffy 1993), whereas when the 

rats were pretreated with 30 mg/kg of cocaine for 5 days and on the following day 

challenged with 15 mg/kg of cocaine, behavioural sensitisation was again present, but 

the increase in extracellular DA was reduced when compared with naive rats (Kalivas 

and Duffy 1993). However, when the rats were challenged with cocaine (15 mg/kg) 

17-21 days after discontinuing the repeated cocaine treatment (15 or 30 mg/kg for 5 

days), both sensitisation of locomotor activity and mesolimbic dopamine release 

occurred (Kalivas and Duffy 1993). Generally, both neurochemical and behavioural 

sensitisation may be seen in rodents when they are challenged with the drug 3 or more 

days after discontinuation of the daily drug treatment (Acquas and Di Chiara 1992; 

Cadoni and Di Chiara 1999; Cadoni and Di Chiara 2000; Cadoni et al. 2000; Spanagel 

et al. 1993; see Kalivas and Stewart 1991). Behavioural sensitisation associated with 

sensitisation of dopaminergic mechanisms has been shown to last for at least 3-4 

weeks (Kalivas and Duffy 1993; Spanagel et al. 1993) even after a single exposure to 

amphetamine (Vanderschuren et al. 1999).  

 

Rotational behaviour. Dopaminergic neurons can be lesioned by injecting 6-

hydroxydopamine (6-OHDA) into the dopaminergic pathways (Ungerstedt 1971b). 

Unilateral lesions of, for example, the nigrostriatal dopaminergic pathways, induce 

motor disturbances, and the effects of drugs on the nigrostriatal dopaminergic system 

may be investigated by examining the rotational behaviour of the rat (Ungerstedt and 

Arbuthnott 1970). The dopamine receptors in the denervated striatum become 

hypersensitive after 6-OHDA lesion, and, thus, drugs that activate presynaptic 

dopamine receptors directly (like apomorphine or L-DOPA) induce contralateral 

circling, i.e. circling away from the denervated striatum (Costall et al. 1983; 

Ungerstedt 1971a). In turn, drugs that activate the remaining dopamine pathways 

presynaptically, like amphetamine, cocaine or morphine, induce ipsilateral rotation, 

i.e. rotation towards the lesioned side (Browman et al. 1998; Crombag et al. 1999; 

Guan et al. 1985; Kimmel and Holtzman 1997; Robinson 1984; Silverman 1990; 

Ungerstedt 1971c; Volpicelli et al. 1999). Repeated drug treatment with morphine, 
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cocaine or amphetamine also induces behavioural sensitisation in this animal model, 

which can be seen as increases in the rotational behaviour of the rats (Browman et al. 

1998; Crombag et al. 1999; Guan et al. 1985; Robinson 1984; Silverman 1990; 

Ungerstedt 1971c; Volpicelli et al. 1999). 

 

2.1.8. Neuronal adaptations underlying sensitisation 

 

Repeated injections of opioids or psychostimulants into the VTA, according to several 

studies, induce behavioural and biochemical sensitisation to subsequent intra-

accumbal or systemic administration of drugs (Cador et al. 1995; Hooks et al. 1992; 

Kalivas and Weber 1988; Perugini and Vezina 1994; Vezina 1993; Vezina 1996; 

Vezina et al. 1987; Vezina and Stewart 1984; Vezina and Stewart 1989; Vezina and 

Stewart 1990). This sensitisation does not occur if these drugs are administered 

repeatedly into the nucleus accumbens (Cador et al. 1995; Hooks et al. 1992; Vezina 

et al. 1987; Vezina and Stewart 1990). This evidence seems to indicate that the critical 

locus in the initiation of sensitisation may be the VTA.  

 

Chronic drug treatments have been shown to provoke both functional and structural 

changes in mesolimbic dopamine systems (for reviews see Pierce and Kalivas 1997; 

Self and Nestler 1995). Chronic cocaine or amphetamine treatments, for example, 

produce transient increases in the spontaneous firing rate of VTA dopamine neurons 

in the early stages of withdrawal (Ackerman and White 1990; Henry et al. 1989), 

which, however, turns into decrease after prolonged withdrawal (10-14 days) 

(Ackerman and White 1992). Chronic cocaine and morphine also increase the levels 

and activity of tyrosine hydroxylase in the VTA (Beitner-Johnson et al. 1992a; 

Masserano et al. 1996). In addition to neurochemical changes, structural changes also 

occur in the VTA after repeated drug treatment, and these may include decreased 

levels of neurofilament proteins and increased levels of glial fibrillary acidic proteins 

(Beitner-Johnson et al. 1992b; Beitner-Johnson et al. 1993). The neurofilament 

proteins are a major element of the neuronal cytoskeleton and are involved in the 

axonal caliber and transport (see Self and Nestler 1995). Interestingly, alcohol-

preferring P rats as well as alcohol- and other drugs-preferring Lewis rats have lower 
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levels of neurofilaments in the VTA than their non-preferring counterparts, NP and 

Fisher 344 rats, respectively (Guitart et al. 1992; Guitart et al. 1993).  

 

In the nucleus accumbens, enhancement of the release of dopamine may involve 

changes in calcium transduction, dopamine uptake mechanisms or autoreceptor 

sensitivity (see Pierce and Kalivas 1997). The expression of behavioural sensitisation 

was found to be blocked by L-type calcium channel antagonists (Karler et al. 1991b; 

Martin-Iverson and Reimer 1994). In studies concerning dopamine uptake 

mechanisms there are some inconsistencies, but generally, the dopamine transporter 

mechanisms seem to be upregulated during early withdrawal from repeated 

psychostimulant administration, but in contrast, after a week or more of withdrawal 

the dopamine transporter density may be reduced in the shell of the nucleus 

accumbens (see Pierce and Kalivas 1997). Concerning dopamine autoreceptor 

function, increases (Dwoskin et al. 1988), decreases (Yi and Johnson 1990) or no 

changes (Fitzgerald and Reid 1991; Gifford and Johnson 1992) in the dopamine D2-

autoreceptor function have been reported after repeated psychostimulant 

administration.  

 

There may be also changes in the postsynaptic neurons that contribute to the 

expression of behavioural sensitisation. Repeated morphine and cocaine treatments 

have been shown to induce long lasting hypersensitivity in postsynaptic dopamine 

D1-receptors (Henry and White 1991; Tjon et al. 1994). However, it seems that the 

density of D1 or D2 receptors is not altered after repeated psychostimulant 

administration (see Pierce and Kalivas 1997). Thus, there may be changes at the 

signal-transduction level in postsynaptic dopamine receptors. In addition, chronic 

cocaine and morphine treatments increase the activity of adenylyl cyclase (Terwilliger 

et al. 1991) and decreases it the levels of G protein subunit Gi in the nucleus 

accumbens have been brought about by both chronic morphine and cocaine 

administration (Nestler et al. 1990; Terwilliger et al. 1991). Thus, the inhibition of 

adenylyl cyclase arising from Gi coupled receptors may be reduced (Pierce and 

Kalivas 1997). As D1 receptors mediate their action via activation of adenylyl 

cyclase, this may contribute to the hypersensitivity of D1-receptors after repeated 

drug treatment. 
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The antagonists of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor 

have been shown to block the development of behavioural sensitisation to 

psychostimulants (Druhan and Wilent 1999; Gaytan et al. 2000; Kalivas and 

Alesdatter 1993; Karler et al. 1991a; Li et al. 1999; Li and Wolf 1999; Pudiak and 

Bozarth 1993; Stewart and Druhan 1993; Wolf and Jeziorski 1993; Wolf and Khansa 

1991), morphine (Jeziorski et al. 1994; Wolf and Jeziorski 1993) and apomorphine 

(Druhan et al. 1993; Voikar et al. 1999), supporting the role of glutamatergic 

mechanisms in behavioural sensitisation. In addition to NMDA receptors, the α–

amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype of ionotropic 

glutamate receptors as well as metabotropic glutamate receptors seem to be involved 

in this process (Carlezon et al. 1999; Kim and Vezina 1998; Li et al. 1997). Repeated 

administration of morphine and psychostimulants also increases glutamate receptor 

subunit levels in the VTA (Churchill et al. 1999; Fitzgerald et al. 1996), increases the 

responsiveness of VTA dopamine neurons to glutamate (Zhang et al. 1997), and 

moreover, the induction of behavioural sensitisation to psychostimulants can be 

blocked by intra-VTA administration of glutamate antagonists (Cador et al. 1999; 

Kalivas and Alesdatter 1993; Kim and Vezina 1998). This indicates that glutamatergic 

transmission especially in the VTA may be critically involved in the sensitisation 

process. 

 

 

2.2. The endogenous opioid system 

 

The endogenous opioid system is involved in several physiological processes, 

including pain relief, reward, mood, ingestive behaviour, motor behaviour, release of 

hormones and neurotransmitters, gastrointestinal transit and respiration. Opioid 

receptors were initially discovered in the early 1970´s (Pert and Snyder 1973; Simon 

et al. 1973; Terenius 1973) and soon thereafter it was found that the brain contains 

endogenous peptides with opiate-like activities (Bradbury et al. 1976; Hughes et al. 

1975; Lord et al. 1977; Pasternak et al. 1975). Opioid receptors can be divided into 

three major classes of receptors, namely the µ-, δ- and κ- receptors, which are 

differentially distributed throughout the central nervous system (Mansour et al. 1995; 

Mansour et al. 1988; see Loughlin et al. 1995) Morphine will bind to all opioid 
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receptors, but its relative affinity for µ-receptors is far stronger than its affinity for δ- 

or κ- receptors (see Corbett et al. 1993), and it is, thus, considered to be somewhat 

selective for µ-opioid receptors. Endogenous opioid peptides are derived from three 

major precursor proteins. Pro-opiomelanocortin is a precursor molecule that may be 

converted into the opioid peptide β-endorphin, as well as other peptides with no 

opioid receptor activity, including adrenocorticotrophic hormone (for reviews see 

Loughlin et al. 1995; Young et al. 1993). β-Endorphin has similar affinities for µ- and 

δ- opioid receptors but is much less active at the κ-binding site (see Corbett et al. 

1993). Another family of peptides are the enkephalins, which are all derived from 

proenkephalin. These include the opioid peptides Met-enkephalin and Leu-enkephalin 

as well as several related peptides such as Met-enkephalin-Arg-Gly-Leu and Met-

enkephalin-Arg-Phe (for reviews see Loughlin et al. 1995; Rossier 1993). The Met- 

and Leu-enkephalins are relative selective for δ-opioid receptors (see Corbett et al. 

1993). Finally, the dynorphins, like dynorphin A and dynorphin B, are derived from 

prodynorphin and have the highest affinity for κ-opioid receptors (for reviews see 

Corbett et al. 1993; Day et al. 1993; Loughlin et al. 1995).  

 

Alcohol has been found to stimulate release of endogenous opioid peptides both in 

humans and rodents (De Waele and Gianoulakis 1994; de Waele et al. 1994; De 

Waele et al. 1992; Gianoulakis 1989; Gianoulakis 1990; Gianoulakis 1996; 

Gianoulakis et al. 1996; Keith et al. 1986) and additionally, alcohol may also affect 

opioid receptor sensitivity (for reviews see Herz 1997; Ulm et al. 1995). Enhanced 

opioid activity might lead to enhancement of mesolimbic dopamine release, possibly 

through the action of µ-opioid receptors in the ventral tegmental area (VTA) or δ-

opioid receptors in the nucleus accumbens (for reviews see Gianoulakis 1996; Herz 

1997). As cerebral dopaminergic mechanisms seem to be important in reinforcing 

effects of drugs of abuse (see section 2.1.), the stimulation of endogenous opioid 

mechanisms by alcohol may also be involved in the rewarding or reinforcing effects 

of alcohol (see Herz 1997). 
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2.3. Serotonin 

 

Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found throughout the 

central nervous system. The cell bodies of brain 5-HT neurons are mostly located in 

the medial and dorsal raphe nuclei, from where the 5-HT fibres project to the 

forebrain and terminate in several cortical areas as well as in the striatum, nucleus 

accumbens, VTA, amygdala and hippocampus. To date, 7 main families of 5-HT 

receptors have been found, 5-HT1  to 5-HT7 . The 5-HT1 receptor family can be 

subclassified into 5-HT1A,  5-HT1B/D,  5-HT1E and  5-HT1F subtypes, the 5-HT2 receptor 

family into 5-HT2A, 5-HT2B and 5-HT2c subtypes and the 5-HT5 receptor family into 

5-HT5A and 5-HT5B subtypes (see Ciccocioppo 1999).  

 

The synthesis of 5-HT begins with the amino acid tryptophan, which is derived 

primarily from the diet. Tryptophan is first hydroxylated to 5-hydroxytryptophan by 

enzyme tryptophan hydroxylase. 5-Hydroxytryptophan is subsequently converted to 

5-HT by amino acid decarboxylase. 5-HT may be metabolized by monoamine oxidase 

and aldehyde dehydrogenase to 5-hydroxy indole acetic acid (5-HIAA), which is the 

main metabolite of 5-HT. In the pineal gland, 5-HT may also be metabolized to N-

acetyl serotonin, by 5-HT N-acetylase, which is then further converted to melatonin 

by 5-hydroxy indole-O-methyl transferase (see Cooper et al. 1996). 

 

5-HT is involved in the function several physiological processes (including 

gastrointestinal transit, cardiovascular system, nociception, sleep-wake rhythm) and 

clinical disorders such as migraine, anxiety, depression, psychosis, eating disorders, 

emesis as well as alcoholism and drug addiction. Alcohol, morphine and cocaine have 

all been shown to increase 5-HT release in the nucleus accumbens (Parsons et al. 

1995; Tao and Auerbach 1994; Yoshimoto et al. 1992). Withdrawal from alcohol or 

the abused drug may be associated with a reduction in accumbal 5-HT release 

(Parsons et al. 1995; Weiss et al. 1996), suggesting that 5-HT mechanisms are also 

involved in drug dependence. A deficit in brain 5-HT function may contribute to the 

loss of control associated with drug craving (Ciccocioppo 1999) and type 2 

alcoholism in humans (characterised by antisocial, often violent behavioural traits) is 
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also related to low cerebrospinal fluid 5-HIAA concentrations (for reviews see 

Cloninger 1987; Linnoila et al. 1994; Virkkunen and Linnoila 1997).  

 

 

2.4. AA and ANA rats 

 

2.4.1. Rat lines selected for differential alcohol consumption 

 

One of the oldest alcohol-preferring/alcohol non-preferring rat lines in experimental 

use is the AA (Alko Alcohol) and ANA (Alko Non-Alcohol) rats bred in Helsinki. 

The breeding of these lines of rats started in 1960´s in the Research Laboratories of 

the State Alcohol Monopoly (ALKO), Helsinki, Finland, by Kalervo Eriksson, when 

he discovered a wide range of individual variation and a rather high average 

preference for alcohol among rats of Wistar origin (Eriksson 1968). Systematic 

mating of rats exhibiting high and low alcohol consumption selected from a large 

population resulted in two outbred rat lines, the AA and ANA rats, that differed in 

their levels of voluntary alcohol consumption (Eriksson 1968; for reviews see 

Eriksson 1969; Eriksson 1971; Eriksson and Rusi 1981; Sinclair et al. 1989). Line 

difference in alcohol consumption was found already in the F8 generation of these rats 

(see Eriksson 1969). Even before the AA and ANA rats, another breeding project was 

started in the 1940´s in Chile, that yielded inbred UChA (alcohol non-preferring) and 

UChB (alcohol-preferring) rat lines (see Mardones and Segovia-Riquelme 1983). 

Other selectively bred rat lines have been produced later on, namely the alcohol-

preferring (P), non-preferring (NP), high alcohol-drinking (HAD) and low alcohol-

drinking (LAD) rats from Indianapolis (for reviews see Li et al. 1993; Li et al. 1987) 

and the Sardinian alcohol-preferring (SP) and non-preferring (SNP) rats from Sardinia 

(Fadda et al. 1989). All these rat lines show clear differences in their voluntary 

alcohol consumption between the “alcoholic” and “non-alcoholic” rats (Table 2-1). It 

has been estimated that, taking in to account the different rate of drug metabolism in 

rats and humans, the amount of ethanol (about 6-7 g/kg/day) these “alcoholic” rats 

consume would correspond to about 5 measures of whisky per day for humans (see 

Colombo 1997). 
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Table 2-1. Voluntary alcohol consumptions (g/kg/day, mean ± SD) in rat lines 
selected for differential alcohol-preference. 

Rat line “Alcoholic” 
♂ 

“Alcoholic” 
♀ 

“Non-Alcoholic” 
♂ 

“Non-Alcoholic” 
♀ 

AA/ANA (F55)
a 7.6 ± 2.1 8.0 ± 2.3 0.4 ± 0.5 0.3 ± 0.2 

sP/sNPb,c 6-7  <1  

P/nP (S-31)d 5.7 ± 0.16 6.6 ± 0.19 0.5 ± 0.08 0.4 ± 0.08 

HAD-1/LAD-1 
(S-13)d 

5.6 ± 0.34 4.5 ± 0.45 0.3 ± 0.06 0.7 ± 0.12 

HAD-2/LAD-2 
(S-12)d 

4.7 ± 0.43 7.0 ± 0.58 0.3 ± 0.04 1.5 ± 0.36 

(Sinclair et al. 1989)a, (Colombo et al. 1995; Lobina et al. 1997)c,d, (Li et al. 1993)d . F 
and S indicate the generations of the rat lines. 
 

2.4.2. Drinking behaviour 

 

One of the proposed criterias for an animal model of alcoholism is that ethanol should 

be positively reinforcing, and animals should be willing to work for alcohol and 

overcome obstacles to obtain it (see McBride and Li 1998). AA rats learn to press a 

lever to get a dose of alcohol even in the absence of water or food, or special training 

(Hyytiä and Sinclair 1989). Furthermore, AA rats respond significantly more for 

alcohol than water, and if the fixed-ratio schedule to obtain a measure of alcohol is 

increased from 1 to 2 or 4, the lever pressing of AA rats increases (Hyytiä and 

Sinclair 1990; Ritz et al. 1989). Thus, alcohol seems to serve as a reinforcer in AA 

rats. Using a sucrose-substitution procedure, a training procedure that initially 

involves sucrose which is subsequently replaced little by little by alcohol (Samson 

1986), ANA rats can also be taught to press lever for alcohol (Files et al. 1997). If the 

rats are given a liquid, alcohol containing diet as the only source of energy, even 

ANA rats can be made to drink significant amounts of alcohol. In a study by (Winkler 

et al. 1999), using the aforementioned liquid alcohol containing diet, ANA rats drank 

9.3 ± 0.3 g/kg/day of alcohol while AA rats drank 8.5 ± 0.2 g/kg/day. 
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When AA and ANA rats were given alcohol solutions intraorally with intraoral 

fistulas, AA rats produced more ingestive responses (mouth movements, tongue 

protrusions) to alcohol than ANA rats (Badia-Elder and Kiefer 1999). This occurred 

both before and after the rats had had 3-weeks free access to a 10 % alcohol solution. 

There were no differences in the aversive responses to alcohol prior to continuous 

alcohol access between rats of these lines. However, after 3-weeks of alcohol 

consumption the AA rats were shown to have decreased aversive responses to 

alcohol, particularly at higher (> 20 %) alcohol concentrations. These results suggest 

that the AA rats respond to alcohol solutions in a highly ingestive manner (Badia-

Elder and Kiefer 1999). However, line difference in voluntary alcohol consumption is 

probably not completely related to oral factors, since AA rats self-administer more 

alcohol intravenously than ANA rats (Hyytiä et al. 1996). AA rats have also been 

found to consume more concentrated solutions of quinine, saccharin, citric acid and 

salt than ANA rats (Hyytiä and Sinclair 1993; Sinclair et al. 1992), suggesting that 

AA rats may be less sensitive to strong or aversive tastes than ANA rats. However, 

when quinine was given intraorally, AA rats showed more aversive responses than 

ANA rats (Badia-Elder and Kiefer 1999). 

 

Opioid receptors and endogenous brain opioid systems (see chapter 2.2.) seem to be 

involved in alcohol drinking behaviour (see Herz 1997). The involvement of opioids 

in drinking behaviour has been shown both in experimental animals as well as in 

humans (for reviews see O. Brien et al. 1996; Ulm et al. 1995; Volpicelli et al. 1995). 

Of the opioid receptor antagonists, naloxone, a non-selective antagonist, and CTOP 

[D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2], a selective µ-opioid receptor 

antagonist have been shown to reduce alcohol consumption in AA rats (Hyytiä 1993; 

Wegelius et al. 1994). Furthermore, naloxonazine, a selective µ1-opioid receptor 

antagonist initially reduced alcohol consumption of AA rats on the first day of drug 

treatment, but was without effect on the 2nd and 3rd days of drug treatment (Honkanen 

et al. 1996). δ-Opioid receptor antagonists were found to have no significant effect on 

voluntary alcohol consumption in AA rats (Honkanen et al. 1996; Hyytiä 1993).  

 

In addition to alcohol, AA rats consume more aqueous solutions of etonitazene, a µ-

opioid receptor agonist, and cocaine than ANA or non-selected Wistar rats (Hyytiä 



 30 

and Sinclair 1993). AA rats have also been shown to self-administer initially higher 

amounts of heroin intravenously than ANA rats (Hyytiä et al. 1996). Thus, cerebral 

mechanisms mediating reward may be more sensitive in AA than in ANA rats. No 

difference has been found between AA and ANA rats when examining alcohol-, 

morphine- or stress-induced analgesia (Honkanen et al. 1995), which suggests that 

there is no general enhanced sensitivity of AA rats to opioids.  

 

2.4.3. Blood and brain alcohol levels 

 

The levels of blood alcohol in AA rats measured after voluntary alcohol drinking with 

continuous access to alcohol have been shown to be in the intoxicating range, the 

highest levels being 25 mmol/l (= 1.15 ‰) (Aalto 1986). With the limited access 

method, in which the rats are only allowed to drink alcohol solution for one hour 

daily, brain alcohol concentrations as high as 33.6 mmol/l (=1.55 ‰) have been 

measured in AA rats (Nurmi et al. 1999). In one study, AA rats have been found to 

have lower concentrations of blood alcohol than ANA rats after intraperitoneal (IP) 

injection of 2 or 4 g/kg doses of alcohol but not after a 1.5 g/kg dose of alcohol 

(Hilakivi et al. 1984). However, in a later study after IP injection of alcohol, no 

significant differences between AA and ANA rats were found in the levels of alcohol, 

either in the blood (Kiianmaa et al. 1995; Koivisto et al. 1993) or in the brain (Nurmi 

et al. 1994) after IP injection of alcohol. 

 

2.4.4. Alcohol metabolism  

 

The elimination rate of alcohol has been shown to be faster in female AA than female 

ANA rats (Eriksson 1973; Forsander and Sinclair 1992), which may allow higher 

alcohol consumption. However, no such difference in alcohol metabolism was found 

between male AA and ANA rats and therefore it can-not account for the difference in 

alcohol consumptions between the rat lines. One difference, which may account for 

the low alcohol intake of ANA rats is that these rats accumulate higher levels of blood 

acetaldehyde during alcohol metabolism than AA rats. This difference was first 

reported in the F17 generation (Eriksson 1973) and has been later confirmed in the F40, 
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F43 and F60 generations (Hilakivi et al. 1984; Koivisto et al. 1993). The activity of 

liver alcohol dehydrogenase was found to be higher in ANA than in AA rats (Koivisto 

and Eriksson 1994; Koivula et al. 1975) or equivalents (Forsander and Sinclair 1992), 

whereas the activity of liver aldehyde dehydrogenase was found to be lower in ANA 

than in AA rats (Koivisto and Eriksson 1994; Koivula et al. 1975). The higher activity 

of alcohol dehydrogenase and lower activity of aldehyde dehydrogenase may account 

for the higher acetaldehyde levels during alcohol metabolism in ANA rats as 

compared with AA rats. Further support for the hypothesis that acetaldehyde plays a 

role in the low alcohol consumption of ANA rats comes from a study, in which AA 

rats were transplanted with livers of ANA rats (Eriksson et al. 1997). Those AA rats, 

who received livers from ANA rats, showed very low drinking, whereas those AA 

rats, who were transplanted with livers of AA rats showed heavy drinking.  

 

2.4.5. Neurotransmitters  

 

Among the first differences found between AA and ANA rats were findings by Ahtee 

and Eriksson in the early 1970´s, that AA rats have about 15-20 % higher cerebral 

concentrations of 5-HT and 5-HIAA than ANA rats (Ahtee and Eriksson 1972; Ahtee 

and Eriksson 1973). This has later been confirmed several times in different brain 

regions (Honkanen et al. 1999; Korpi et al. 1991; Korpi et al. 1988). AA rats were 

also found to have higher (up to 33 % depending on brain area studied) cerebral levels 

of dopamine than ANA rats (Ahtee et al. 1980; Ahtee and Eriksson 1975; Honkanen 

et al. 1999; Kiianmaa et al. 1991; Kiianmaa and Tabakoff 1984; Korpi et al. 1988). In 

contrast to higher tissue levels of dopamine in AA rats, basal dopamine release, when 

measured as levels of 3-methoxytyramine (3-MT), seems to be slower in the caudate-

putamen and nucleus accumbens of AA than ANA rats (Honkanen et al. 1999). 

However, no significant differences have been found in basal extracellular dopamine 

levels in the nucleus accumbens between these rats when measured with in vivo 

microdialysis (Kiianmaa et al. 1995; Nurmi et al. 1996). Noradrenaline concentrations 

have been found to be lower (up to 15 %) in AA than in ANA rats in whole brains, 

including hemispheres, diencephalon, cerebral cortex, frontal cortex, and 

hippocampus (Ahtee et al. 1980; Kiianmaa et al. 1991). Whereas, higher levels (by 
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about 12 %) of noradrenaline were found in the limbic forebrain of AA rats when 

compared to levels from ANA rats. 

 

Another neurochemical difference is that the activity of tyrosine hydroxylase has been 

found to be higher in whole brains of AA than ANA rats (Pispa et al. 1986). As this 

enzyme is the rate-limiting step in biosynthesis of dopamine, the higher enzyme 

activity in AA rats may contribute to the higher concentrations of dopamine in brains 

of AA rats. 

 

AA rats have been found to have a higher content of proopiomelanocortin (POMC) 

messenger RNA (mRNA) than ANA rats in the hypothalamus and in the anterior and 

intermediate lobes of the pituitary (Gianoulakis et al. 1992; Marinelli et al. 2000). 

Proenkephalin content has been found to be higher in AA rats in the prefrontal cortex 

and prodynorphin content in the mediodorsal nucleus of the thalamus (Marinelli et al. 

2000), whereas (Met)enkephalinArg6Phe7 (MEAP) levels, a marker of the 

proenkephalin system, were lower in the nucleus accumbens of AA rats than in that of 

ANA rats (Nylander et al. 1994). Similarly, levels of the markers of the prodynorphin 

system, dynorphin A and dynorphin B, have been found to be lower in the nucleus 

accumbens and (Leu)enkephalin6 levels lower in the VTA of AA than of ANA rats 

(Nylander et al. 1994). β-Endorphin-like immunoreactivity has been found to be 

higher in AA rats than ANA rats in the septum and the anterior lobe of the pituitary, 

but lower in the amygdala and the periaqueductal grey matter, whereas no difference 

was found between the rat lines in the arcuate nucleus plus median eminence, the 

nucleus accumbens, the caudate, the hippocampus and the cortex (Gianoulakis et al. 

1992). Spontaneous in vitro release of β-endorphin-like peptides (β-EPLPs) has been 

found to be raised in the hypothalamus of ANA when compared to that of AA rats (de 

Waele et al. 1994) but ethanol-stimulated increases of release of β-EPLPs did not 

differ between the rats of these lines. However, the β-EPLPs released by ethanol in 

ANA rats were predominantly in the acetylated forms, which are devoid of opioid 

activity (de Waele et al. 1994). This might lead to lower reward after alcohol in ANA 

than in AA rats, and may contribute to the low alcohol consumption of ANA rats. 

Voluntary alcohol consumption in turn increased the content of MEAP in the nucleus 

accumbens of AA rats (Nylander et al. 1994), which may be important in maintaining 
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the alcohol consumption in AA rats. Furthermore, lower concentrations of dynorphin 

peptides in the nucleus accumbens of AA rats compared with ANA rats, may indicate 

less inhibitory modulation of dopamine release by these peptides acting on κ-opioid 

receptors on dopaminergic terminals in the nucleus accumbens, which may also 

account for the differential alcohol preference of these rats (Nylander et al. 1994). 

 

Microdialysis studies have shown that IP administered alcohol increases the 

extracellular concentrations of dopamine in the nucleus accumbens of AA and ANA 

rats to either the same extent (Kiianmaa et al. 1995; Nurmi et al. 1996) or more in 

ANA rats (Sällström Baum et al. 1999). When dopamine release was measured post 

mortem using 3-MT as indicator of dopamine release, no elevation of 3-MT could be 

detected in rats of either line (Honkanen et al. 1994a). Thus, studies where alcohol is 

administered IP suggest that the difference in the voluntary alcohol intake between 

these rats is not related to differences in the alcohol-induced cerebral dopamine 

release. Voluntary alcohol drinking has been shown to increase dopamine release in 

the nucleus accumbens, the caudate-putamen and the olfactory tubercle of AA rats, 

when measured post mortem, whereas water drinking increased dopamine release 

only in the caudate-putamen, indicating selective activation of the mesolimbic 

dopaminergic pathway by alcohol. (Honkanen et al. 1997a). However, when 

measured with in vivo microdialysis, the dopamine elevating effect of voluntarily 

consumed alcohol was very low and of short duration (Nurmi et al. 1998).  

 

Morphine increased dopamine release (post mortem 3-MT concentration) to a similar 

extent in the nucleus accumbens of AA and ANA rats. In the caudate-putamen, the 

effect of morphine on dopamine release was more pronounced in AA than in ANA 

rats (Honkanen et al. 1999). Additionally, morphine increased the tissue 

concentrations of 5-HIAA more in the nucleus accumbens and caudate-putamen of 

AA than in those of ANA rats (Honkanen et al. 1999). However, no significant 

differences were found in the effects of nicotine on extracellular accumbal 

concentrations of dopamine between AA and ANA rats (Kiianmaa et al. 2000).  
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2.4.6. Receptors 

 

AA rats were found to have slightly fewer D2-receptors in the striatum as compared 

with ANA rats (Korpi et al. 1987). However, this finding could not be replicated later 

on, where no baseline difference was found in the D1- or D2-receptor binding or in 

the D2-receptor gene expression between AA and ANA rats (Syvälahti et al. 1994). In 

all probability, the differences in dopamine receptor densities between AA and ANA 

rats are marginal and are not likely to contribute to the differential alcohol intake 

between these rats (Syvälahti et al. 1994). No difference between AA and ANA rats 

could be detected when binding of serotonergic ligands to 5-HT1-, 5-HT2- or 5-HT3-

receptors was examined in any of the brain areas studied (Ciccocioppo et al. 1997; 

Ciccocioppo et al. 1998; Korpi et al. 1992).  

 

Distribution and density of opioid receptors in AA and ANA rats have both been 

studied using autoradiography with opioid receptor agonist (de Waele et al. 1995; 

Marinelli et al. 2000; Soini et al. 1999) or antagonist (Soini et al. 1998) ligands. 

However, the studies do not support fully each other. De Waele et al. (1995) found a 

higher density of µ-opioid receptors in AA than in ANA rats in the medial nucleus 

accumbens, the caudate, the ventral tegmental area, the central grey matter, the 

septum, the hippocampus, the interpeduncular nucleus and the superior colliculus. 

Soini et al. (1998) found a higher density of µ-opioid receptors in AA than in ANA 

rats in the substantia nigra and in superior colliculus, whereas in the hippocampus the 

µ-receptor density was lower in AA than in ANA rats. Soini et al. (1999) found  a 

higher density of µ-opioid receptors in AA than in ANA rats in the substantia nigra 

pars reticulata, the globus pallidus, the basolateral amygdala and the medial preoptic 

area. Marinelli et al. (2000) found a higher density of µ-opioid receptors in AA rats 

than in ANA rats in the shell region of the nucleus accumbens and the prefrontal 

cortex. These results, when taken together, suggest that AA rats seem to have higher 

density of µ-opioid receptors in the substantia nigra pars reticulata and in the superior 

colliculus than ANA rats with a similar trend occurring in the nucleus accumbens 

shell and in the caudate-putamen.  

 

 



 35 

AA rats were found to have a higher density of δ-opioid receptors than ANA rats in 

the caudate, the cortex, the thalamus and the nucleus accumbens (de Waele et al. 

1995), whereas Soini et al. found lower density of δ-opioid receptors in the cingular 

cortex, the hippocampus, the basolateral amygdala, the thalamus, the interpeduncular 

nucleus and the colliculus (Soini et al. 1998) or no differencies in δ-opioid receptor 

density in any of the brain areas studied (Soini et al. 1999). AA rats also seem to have 

a higher density of κ-opioid receptors in the limbic areas and the basal ganglia (Soini 

et al. 1999). 

 

2.4.7. Behaviour 

 

Alcohol reduces anxiety, and one of the main reasons that humans use alcohol is due 

to its anxiolytic action (see Nutt 1999). Several studies have been conducted to 

investigate possible differences in levels of anxiety and fearfulness between AA and 

ANA rats (Table 2-2). In the early generations of AA and ANA rats, there was a 

tendency that AA rats were more active than ANA rats in the open field test (see 

Sinclair et al. 1989). However, in later generations, the activities of AA and ANA rats 

in the open field were found to be similar (Badishtov et al. 1995; Overstreet et al. 

1997) or lower activity in AA rats was observed (Fahlke et al. 1993). Reduced activity 

in the open field test is usually interpreted as a sign of fearfulness (see Archer 1973). 

Furthermore, AA rats were found to respond to a strong auditive stimulus with a more 

sustained freezing reaction than ANA rats, which presumably reflects a stronger fear 

response in threatening situations (Fahlke et al. 1993). On the other hand, ANA rats 

defecated more than the AA ones in the open field, a behaviour suggestive of 

enhanced emotionality/anxiety in ANA rats (Badishtov et al. 1995; Fahlke et al. 

1993). ANA rats emitted more ultrasonic vocalizations after aversive but non-painful 

head/neck-focused air-puff than AA rats, which again may indicate a greater level 

anxiety or fear in ANA rats (Knapp et al. 1997). ANA rats were found to be more 

anxious (Möller et al. 1997) or as anxious as AA rats in elevated plus maze test 

(Tuominen et al. 1990; Viglinskaya et al. 1995). AA rats showed longer latencies in 

burying in shock prod defensive burying test, and less stomach ulceration in 75-min 

water immersion test compared with ANA rats (Sandbak et al. 1998). AA rats were 

also found to be calmer also in 2-min forced swim test and in escapable electric shock 
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test (Korpi et al. 1988). ANA rats were also found to show defective habituation to 

nociception as compared with AA rats (Honkanen et al. 1995). These results suggest 

that AA rats may be less fearful and less sensitive to aversive stimuli.  

 

Taken together, the experiments described above do not support the idea that AA rats 

are more anxious than ANA rats, and that consequently AA rats would drink alcohol 

to relieve anxiety. In contrast, these behavioural studies suggest generally more 

anxiety/emotionality in ANA rats than AA rats. However, the lower sensitivity to 

aversive stimulation in AA than in ANA rats may also indicate lower sensitivity to 

aversive properties of alcohol in AA rats, which in turn might allow higher alcohol 

consumption in AA than in ANA rats.  

 

Table 2-2. Comparison of AA and ANA rats in behavioural studies measuring 
experimental anxiety/fearfulness.  
Test Result Conclusion 

Open field test AA rats less active 
AA and ANA rats as active 
AA rats defecate less 

AA rats more fearful a 

No difference in fearfulness b,c 
AA rats less anxious a,b,c 

Strong auditive stimulus More sustained freezing in 
AA rats 

AA rats more fearful a 

Head/neck-focused air-
puff 

Less ultrasonic vocalisations 
in AA rats 

AA rats less anxious or fearful d 

Elevated Plus Maze Times spent in open arm 
similar 
AA rats longer and more 
often in open arm 

No difference in anxiety f,g 
 
AA rats less anxious h 

2-min forced swim test 
75-min water immersion 
test 

AA rats more calm 
Less stomach ulcers in AA 
rats 

AA rats less anxious e 

AA rats less anxious or fearful i 

Shock prod defensive 
burying test 

Longer latency in burying in 
AA rats 

AA rats less anxious or fearful i 

Punished drinking test More punished drinking 
episodes in AA rats 

AA rats less anxious or fearful h 

(Fahlke et al. 1993)a, (Badishtov et al. 1995)b, (Overstreet et al. 1997)c, (Knapp et al. 
1997)d,(Korpi et al. 1988)e, (Tuominen et al. 1990)f, (Viglinskaya et al. 1995)g, 
(Möller et al. 1997)h, (Sandbak et al. 1998)i 
 

AA rats have been found to express more offensive and defensive behaviour than 

ANA rats, and these findings support the observation that high alcohol-preference is 

related to elevated levels of aggression (Tuominen et al. 1990; Virkkunen and 

Linnoila 1997).  
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Voluntary alcohol drinking increases the locomotor activity in AA rats, but acute IP 

injection of alcohol (0.6 or 1.0 g/kg) does not alter the locomotor activity either in AA 

or ANA rats (Päivärinta and Korpi 1993). Nicotine increased the locomotor activity 

equally in AA and ANA rats (Kiianmaa et al. 2000) and repeated nicotine treatment 

progressively enhanced the locomotor activity in rats of both lines, indicating 

sensitisation, but there was no difference in the magnitude of sensitisation between 

rats of these lines (Kiianmaa et al. 2000). 
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3. AIMS OF THE STUDY 

 

 

The main aim of this study was to explore the effects of repeated morphine and 

cocaine treatments on striatal dopaminergic mechanisms and dopamine-mediated 

behaviour in alcohol-preferring AA and alcohol avoiding ANA rats in order to study 

the role of cerebral dopaminergic mechanisms in alcohol drinking behaviour and drug 

addiction. AA rats were used as a model for a rat line vulnerable to addictive 

behaviour. 

 

Specific goals of this work were 

 

1) To examine whether alcohol, cocaine and morphine differentially enhance 

locomotor activity in AA and ANA rats treated acutely or repeatedly with 

these drugs in order to clarify the role of drug-induced psychomotor 

sensitisation in addictive behaviour. 

2) To biochemically examine whether the responses of striatal dopaminergic 

mechanisms to acute or repeated treatment with drugs of abuse differ between 

AA and ANA rats in order to study the importance of striatal dopaminergic 

mechanisms in addictive behaviour. This was done by using 2 drugs i.e. 

morphine and cocaine that activate the cerebral dopamine pathways by 

different primary mechanisms.  

3) To examine whether the effects of acute or repeated morphine or cocaine 

treatments on rotational behaviour differ between AA and ANA rats. 

Rotational behaviour was used as a model for dopamine dependent behaviour 

to investigate functional differences in the ascending dopamine pathways 

between AA and ANA rats. 
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4. MATERIALS AND METHODS 

 

 

4.1. Animals 

 

Adult male Wistar (Laboratory Animal Centre, University of Helsinki, I), AA and 

ANA (from generations F68-F75, F78-F80, Department of Mental Health and Alcohol 

Research, National Public Health Institute, Helsinki, I-V) rats (3-6 months old 

weighing 250-500 g) were used. The rats were housed in groups of 3 to 6 rats of each 

line per cage, except as described below, under 12/12 h light/dark cycle (lights on at 6 

a.m.) at an ambient temperature of 22-23 °C. Tap water and standard laboratory food 

[Altromin 1324, Chr. Petersen A/S, Denmark (I, III-V) or RM1 (E) SQC pellets from 

SDS, Witham, UK (II)] were available ad libitum. The rats were weighed and 

accustomed to handling for at least 2 consecutive days before the experiments. The 

animal experiments were approved by the local institutional animal care and use 

committee and the chief veterinarian of the county administrative board, and were 

conducted according to the “European Convention for the Protection of Vertebrate 

Animals used for Experimental and other Scientific Purposes”. 

 

 

4.2. Drugs and their administration 

 

Alcohol (ethanol 96 %, purchased from Alko Ltd.) solution was given IP as a 12 % 

(m/V) solution prepared in saline (0.9 % NaCl). Morphine and cocaine hydrochloride 

were obtained from the University Pharmacy (Helsinki, Finland). Morphine was 

administered SC and cocaine IP, in a volume of 1 ml/kg, dissolved in saline. 6-

Hydroxydopamine (6-OHDA) and desipramine were obtained from Sigma Chemical 

Co. (St. Louis, MO). Desipramine was administered IP, 15 mg/kg, 1 ml/kg, dissolved 

in purified water. 6-OHDA was dissolved in saline containing 0.02 % ascorbic acid. 
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4.3. Measurement of locomotor activity (I) 

 

The horizontal locomotor activity of the animals was registered daily in transparent 

Macrolon III cages (18x33x15 cm) by means of computer controlled photocells. Test 

cages were placed on top of a sensor (area:18x33 cm) containing 40 photocells under 

a transparent cover. Interruptions of light beams to the photocells during horizontal 

movement of the animals were registered by computer. Animals were habituated to 

the locomotor activity cages for 120 min on the day preceding the first experimental 

day, and subsequently for 40 or 45 min on each day before experimental treatments. 

 

In some of the cocaine experiments, the behaviour of the rats was videotaped at 5 min 

intervals for 10 s during the 60 min following the first and fourth cocaine injections. 

From these recordings behaviour of the animals was later rated using a 9-point scale 

described by Ellinwood and Balster (Ellinwood and Balster 1974). On this scale, 1 = 

asleep; 2 = inactive; 3 = normal in place activity; 4 = normal, alert, active; 5 = 

hyperactive; 6 = slow patterned stereotyped behaviour; 7 = fast patterned stereotyped 

behaviour; 8 = restricted stereotyped behaviour, 9 = dyskinetic-reactive behaviour. 

 

 

4.4. Determination of dopamine, DOPAC and HVA from microdialysis samples 

(II and IV) 

 

The system used for determination of the extracellular concentrations of dopamine, 

DOPAC and HVA, consisted of an ESA Coulochem II detector (ESA Inc., MA, USA) 

equipped with a model 5014A microdialysis cell, a Pharmacia LKB model 2248 

HPLC pump (Pharmacia LKB, Sweden) and a SSI model LP-21 pulse damper 

(Scientific Systems Inc., PA, USA). The column (Spherisorb ODS2, 3 µm, 4.6 x 100 

mm or Spherisorb ODS 2, 3 µm, 2.0 x 100 mm) was kept at 40 °C with a column 

heater (Croco-Cil, France). The mobile phase consisted of 0.1 M NaH2PO4 buffer, pH 

4.0 (adjusted with 1.0 mM citric acid), 0.1-0.2 mM octane sulfonic acid, 16 % 

methanol and 1.2 mM EDTA. Twenty microlitres of the dialysate sample was injected 

with a CMA/200 autoinjector (CMA, Stockholm, Sweden). Dopamine was reduced 
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with an amperometric detector (potential - 80 mV) and DOPAC and HVA were 

oxidized with a coulometric detector (+ 300 mV). The flow rate of the HPLC pump 

was set at 0.3 ml/min (with 2.0 x 100 mm column) or 1.0 ml/min (with 4.6 x 100 mm 

column) and the chromatogram was processed with a Hitachi D-2000 chromato-

integrator. 

 

 

4.5. Determination of dopamine, 3-MT, HVA, 5-HT and 5-HIAA from brain 

samples (III and V) 

 

Samples were homogenized in 1 ml of 0.2 M HClO4 after which 25 µl KOH/HCOOH 

buffer was added to the homogenates to adjust the pH to 2.4. Samples were 

centrifuged at 5,500 x g for 45 min. The supernatants were purified using a method 

described earlier (Haikala 1987) with slight modifications. In brief, a 950 µl sample of 

supernatant was pipetted onto Sephadex G-10 columns and washed with 3.0 ml of 

0.01 M HCl. Dopamine and 3-MT were collected by washing the columns with 1.5 ml 

0.01 M HCl  and 1.0 ml 0.02 M NH3. HVA, 5-HT and 5-HIAA were collected by 

subsequent washing of the columns with 1.0 ml of 0.02 M NH3 and 4.0 ml of 0.01 M 

KOH. Thirty microlitres of 2.6 mM sodium pyrosulfite and 5.7 mM ascorbic acid (in 

0.01 M HCl) were added into the tubes containing dopamine/3-MT and HVA/5-HT/5-

HIAA, respectively. The samples were assayed for the concentration of dopamine and 

its metabolites by using HPLC with electrochemical detection as described earlier 

(Honkanen et al. 1994a).  

 

 

4.6. Measurement of plasma and brain morphine concentrations (I) 

 

After sacrifice of the rats trunk blood was collected into chilled heparinized test tubes 

and samples centrifuged for 15 min. Morphine and its metabolites, morphine 3-

glucuronide and morphine 6-glucuronide, in rat plasma and whole brain, were 

determined according to Svensson and associates (Svensson 1986; Svensson et al. 

1982) by HPLC (HP 1081 B, Hewlett-Packard, USA; 4.6 mm x 25 cm Zorbax ODS 
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C18 Column, Du Pont, France) method, utilizing both electrochemical and UV (PU 

4020, Pay Unicam, England) detection in the same run. Before analysis, the brains 

were homogenized mechanically (Ultra Turrax, Janke & Kunkel, Germany) in 0.1 M 

HClO4 (Merck, Germany). Oxymorphone was used as an internal standard. 

Extraction and other details were carried out according to the original papers 

(Svensson 1986; Svensson et al. 1982). 

 

 

4.7. Measurement of rotational behaviour (V) 

 

Rotational activity of the rats was measured in circular metal bowls (35 cm diameter 

and 15 cm high) with a transparent Plexiglas cylinder (40 cm high) surrounding the 

bowls. The rat was attached to a rotation sensor by means of a spring tether connected 

to a plastic belt around the neck of the rat. The rotation sensor detected full (360°) 

clockwise and counter clockwise turns.  

 

 

4.8. Implantation of the microdialysis guide cannula (II and IV) 

 

The rats were implanted with guide cannulae (CMA/11 or BAS MD-2250) under 

halothane anaesthesia (3.5 % during induction for 5 min and then 2.5-1 % during 

surgery). The location of the guide cannulae were calculated relative to bregma and 

were aimed at the point above the nucleus accumbens (NAC), A/P = + 1.7, L/M = - 

1.2, D/V = - 6.8, or the caudate-putamen (CPU), A/P = + 1.0, L/M = + 2.7, D/V = -

4.0, according to the atlas by Paxinos and Watson (Paxinos and Watson 1986). The 

cannula was fastened to the skull with dental cement (Aqualox, Voco, Germany) and 

three stainless steel screws. After the surgery the rats were placed into individual test 

cages (30x30x40 cm) and allowed to recover for at least 4 days before the experiment. 

The rats were weighed and handled for at least 2 days before the beginning of the 

microdialysis experiments.  
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After completion of the experiments, the positions of the probes were verified by 

fixing the brain in formalin which was then sliced into frozen 100 µm coronal 

sections, stained with thionine, and the placement examined microscopically.  

 

 

4.9. 6-OHDA lesion (V) 

 

Unilateral lesions of the right nigrostriatal tract were produced by injection of 6-

hydroxydopamine (6-OHDA, 8 µg, 2 µg /µl, 1 µl/min for 4 min) into the medial 

forebrain bundle of rats under halothane anaesthesia (3.5 % during induction and 2 % 

during surgery) with a 30 gauge needle. Upon completion of the injection the needle 

was kept in place for an additional minute to minimize backflow of the solution. The 

coordinates used were A/P – 4.4 mm, L/M + 1.3 mm, D/V – 8.2 mm relative to 

bregma according to the atlas of Paxinos and Watson (1986). Prior to surgery, 

desipramine (15 mg/kg, IP, 1 ml/kg) was administered to the rats to prevent the 

uptake of 6-OHDA into noradrenergic nerve endings and thus to protect these nerve 

terminals from denervation. After the surgery, the rats were placed into individual 

cages for 1 to 2 days and thereafter returned to the group cages and were allowed to 

recover for 2 weeks after the surgery before any further experimental procedures were 

performed. 

 

6-OHDA lesion was verified by measuring the depletion of striatal DA concentration. 

One to two weeks after the experiments, the rats were decapitated, brains removed 

from the skull, placed on a glass plate and the striata dissected as described previously 

(Ahtee et al. 1989). The dissected samples were frozen immediately on dry ice and 

stored at –80 °C until assay. Samples were homogenized and purified as described 

earlier (Haikala 1987) and were assayed for the concentration of dopamine by using 

HPLC with C-18 reverse-phase column (Spherisorb ODS2, 4.6 x 250 mm) and 

electrochemical detection (+780 mV, Waters Model 464 detector, Millipore, MA, 

USA). Only rats with a dopamine depletion of more than 95% in the lesioned right 

striatum as compared to the intact left striatum were included in the final data 

analysis. The mean dopamine depletion % ± S.D. of rats included in results were: AA 

98.8 ± 1.6 %, ANA 99.7 ± 0.8 %. 
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4.10. Drug treatments 

 

4.10.1. Effects of repeated alcohol, cocaine and morphine on locomotor activity (I) 

 

Animals were habituated to the locomotor activity cages for 120 min on the day 

preceding the first experimental day, and subsequently for 40 or 45 min on each day 

before experimental treatments. On the first experimental day all rats were given 

saline, and thereafter they were treated with alcohol (0.4 or 1.0 g/kg) on 6 consecutive 

days, or cocaine (5 or 20 mg/kg, as base) on 4 consecutive days. On experimental day 

8 (alcohol) or on experimental day 6 (cocaine), all rats were given again saline. 

Locomotor activity was measured daily for 30 or 60 min following the saline and drug 

treatments. The control animals were given an equivalent volume of saline daily for 8 

and 6 days, respectively. Since there was no rat line differences in the effects of saline 

injections on motor activity, and because responses to saline did not change in any rat 

line during repeated treatment, no separate control groups were included in further 

experiments, in which the effects of morphine (0.3, 1.0 and 3.0 mg/kg, as base) and a 

10 mg/kg dose of cocaine were studied. In these experiments all rats were treated with 

saline on the first experimental day and from day 2 to 5, the rats were treated with 

morphine or cocaine, and on experimental day 6, all animals were again given saline 

injections. Locomotor activity was measured for 120 or 180 min following treatments 

and the locomotor activity after saline treatment was used as a control. 

 

4.10.2. Effects of repeated morphine or cocaine on striatal neurotransmitters (II-IV) 

 

Microdialysis studies (II and IV). Rats were treated with morphine HCl (1 or 3 mg/kg 

as base, II), cocaine HCl (5 or 10 mg/kg, IV) or saline once daily for 4 consecutive 

days. Microdialysis experiments were performed on days 1 and 4. In the morning of 

the experiment days, a microdialysis probe (CMA/11, 2 mm membrane, o.d. 0.24 mm 

or BAS, MD-2200, 2 mm membrane) was inserted into the guide cannula. Modified 

Ringer solution (147 mM NaCl, 1.2 mM CaCl2, 2.7 mM KCl, 1.0 mM MgCl2 and 

0.04 mM ascorbic acid) was infused through the probe at a flow rate of 1.5 µl/min. 

The collection of microdialysis samples (every 15 min, 22.5 µl/sample) was started 
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2.5-3 hours after probe insertion. The samples were discarded until a stable baseline 

was achieved; the average concentration of the first 3-4 stable samples was used as 

basal level. Thereafter, rats were given morphine (II), cocaine (IV) or saline, and the 

samples collected for the next 3-4 hours. The probes were subsequently removed and 

inserted again on day 4. It has been shown that extracellular DA concentrations in the 

striatum remain constant even after 10 dialysis experiments (i.e. 10 probe insertions 

and removals) over a 23 day period, and thus, repeated microdialysis may be used in 

this brain region (Martin-Fardon et al. 1997). In nucleus accumbens experiments 

reported in paper II conducted by inserting the probes on day 1, the average 

extracellular accumbal concentrations of DA declined during the experiments to 

approximately 50 % of basal levels, and surprisingly, morphine was without effect on 

DA. Therefore, these experiments (paper II) were conducted by inserting a probe into 

the guide cannula 4 days before the actual microdialysis experiment, perfusing the 

probe with a Ringer solution for 6 hours and then removing the probe. Four days after 

that the actual accumbal microdialysis experiment was conducted as described above, 

either in naive control rats receiving morphine for the first time or in rats which had 

received morphine on the three previous days. The rats were kept individually in the 

same cages throughout the experiments and received morphine or saline repeatedly in 

the same environment. 

 

Metabolism of DA in tissue samples (III). Forty AA and ANA rats were given 

repeatedly morphine (1 mg/kg) or saline for 4 days. The rats were kept overnight in 

groups of 4 to 5 rats of either line. The rats were placed in individual cages 20 min 

before morphine or saline injection and were kept in these cages for 2 h post-

injection, after which they were moved back to the original cages. Rats of both lines 

were divided into four experimental groups that received different treatments. Group 

1: morphine once daily for 4 days. Group 2: saline once daily for 4 days. Group 3: 

morphine once daily for 3 days and saline on day 4. Group 4: saline once daily for 3 

days and morphine on day 4. Each cage housed rats given different treatments. 

 

Sixty minutes after the last administration of morphine or saline (on day 4), each rat 

was taken from its cage to another room, killed with head-focused microwave 

irradiation (7 kW for 1.4 s) using model NJE 2603-10kW microwave instrument 

(New Japan Radio Inc., Japan), and decapitated. The brains were removed from the 
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skull and placed on a brain mold (RBM-4000C, ASI Instruments, USA) cooled on ice, 

and sectioned coronally with razor blades at 2.7 and - 0.3 mm from bregma (Paxinos 

and Watson 1986). The caudate-putamen and nucleus accumbens were dissected from 

the 2nd slice by using needles with inner diameters of 2 and 3 mm, respectively. 

Tissue ventral to the nucleus accumbens was dissected as the olfactory tubercle. The 

tissues were immediately frozen on dry ice and stored at – 80 °C until assayed for 

DA, serotonin and their metabolites (see section 4.4.). 

 

4.10.3. Effects of repeated cocaine and morphine on rotational behaviour (V) 

 

Rats were taken from cages housing 3-5 rats, given saline (1 ml/kg, SC or IP), placed 

individually into test chambers, and allowed to habituate to the chamber for 30 min. 

Thereafter, rats were given morphine (1 or 3 mg/kg), cocaine (10 mg/kg) or saline and 

rotations counted for 2, 3 or 3.5 h (cocaine, morphine 1 mg/kg and morphine 3 mg/kg, 

respectively). After the sessions, the rats were returned to the home cages. The 

procedure was repeated on 4 consecutive days with an additional challenge session 8 

days after the fourth session. In the challenge session all rats, including those that had 

previously received saline were given either morphine or cocaine.  

 

 

4.11. Statistical analysis 

 

Locomotor activity data (paper I) was analysed with two- or three-way analysis of 

variance (ANOVA) for repeated measures. Between factors were rat line, treatment 

and session (experimental day). When appropriate, comparisons between groups or 

sessions were conducted using contrast analysis with Bonferroni adjustment or 

Tukey’s compromise post-hoc test (when separate control group was included). The 

behavioural rating scores were analyzed with Kruskall-Wallis statistics, after which 

comparisons between groups or sessions were performed with the Mann-Whitney U-

test. Two-way ANOVA (rat line, dose) was used to test significance of differences in 

plasma morphine concentrations.  Microdialysis data (papers II and IV) was analysed 

using two- or three-way ANOVA (rat line, treatment, day) for repeated measures. 
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When appropriate, the effect of different doses of morphine or cocaine were 

compared with the corresponding saline group with the Student-Newman-Keuls post-

hoc test (paper II) or contrast analysis (paper IV). Differences in the basal 

concentrations of DA between rat lines and days were tested with two-way ANOVA 

(paper IV). Possible differences in the histologically verified coordinates of probes 

implanted in the nucleus accumbens between the rat lines were investigated with 

Mann-Whitney U-test in rats that received morphine or cocaine. When the 

concentrations of DA, 5-HT and their metabolites were measured in tissue samples 

(paper III), differences in the basal concentrations of DA, 5-HT and their metabolites 

between the rat lines were tested with Student’s t-test in rats treated repeatedly with 

saline. Effects of drug treatments and the interactions between drug pretreatments and 

drug treatments within rat lines were tested with two-way ANOVA (treatment, 

pretreatment) followed by Tukey´s compromise –test. The effects of morphine and 

cocaine on rotational behaviour were tested with two- or three-way ANOVA (rat line, 

treatment, day) followed by Tukey´s compromise –test (paper V).  
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5. RESULTS 

 

 

5.1. Effects of acute and repeated treatments with alcohol, morphine or cocaine 

on locomotor activity (I) 

 

Locomotor activities of AA and ANA rats did not differ following acute or repeated 

treatment with saline. Furthermore, acute or repeated treatment with alcohol did not  

produce any change in the locomotor activity in AA or ANA rats at either dose (0.4 or 

1 g/kg, IP) studied.  

 

Acute administration of morphine induced a greater degree of locomotor stimulation 

in AA than in ANA or Wistar rats. Furthermore, during repeated 4-day treatment with 

1 mg/kg of morphine AA rats, but not ANA or Wistar rats, showed sensitisation to 

morphine (Fig. 5.1.). Repeated treatment with 0.3 or 3 mg/kg of morphine did not 

induce sensitisation of locomotor response in rats of these three lines. 
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Figure 5.1. Effects of saline (Sal), acute (Mo 1) and repeated 4-day treatment 
(Mo 4) with morphine (1 mg/kg) on horizontal locomotor activity and release of 
dopamine (DA) in the nucleus accumbens in AA and ANA rats. (Means ± S.E.M., 
DA values are means of 13 samples collected during 180 min after morphine 
injection, 3-MT concentrations were estimated at 1 h after morphine injection, n=6-
10) * P < 0.05, in comparison with acute morphine (2-way ANOVA). 
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Acute administration of cocaine increased the locomotor activity to a similar level in 

AA and ANA rats and to an lesser extent in Wistar rats. AA rats, but not ANA or 

Wistar rats, were sensitized to cocaine after 4-day treatment with 10 mg/kg of cocaine 

(Fig. 5.2.). Rats of all lines were sensitised to a dose of 20 mg/kg of cocaine, which 

was seen as enhanced stereotyped behaviour, although the ambulatory activity of AA 

and ANA rats was even reduced after repeated treatment with this dose of cocaine. 
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Figure 5.2. Effects of saline (Sal), acute (Coc 1) and repeated 4-day treatment 
(Coc 4) with cocaine (10 mg/kg) on horizontal locomotor activity and 
extracellular dopamine (DA) concentration in the nucleus accumbens in AA and 
ANA rats. (Means ± S.E.M., DA values are means of 13 samples collected during 
165 min after cocaine injection, n=6-10) * P < 0.05 in comparison with acute drug 
treatment (2-way ANOVA). 
 

 

5.2. Plasma and brain morphine concentrations (I) 

 

One week after the end of the four-day treatment with morphine, the AA and ANA 

rats were given morphine as before and killed 30 min (1 mg/kg) or 60 min (3 mg/kg) 

later. The plasma concentrations of morphine (μg/ml) were 0.29 ± 0.03 and 0.36 ± 

0.03 in AA rats and 0.33 ± 0.03 and 0.38 ± 0.06 in ANA rats after 1 or 3 mg/kg of 

morphine, respectively. These values did not differ significantly between AA and 

ANA rats. The concentrations of morphine in brains were below the detection limit (5 

ng/g) of the analysis method used. 
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5.3. Basal levels of DA, 5-HT and their metabolites (II-IV) 

 

In the nucleus accumbens, the concentrations of 5-HT and 5-HIAA, and in the 

olfactory tubercle, the concentrations of DA, 5-HT and 5-HIAA were higher (by 

about 10-15 %) in AA rats than in ANA rats (paper II). In the caudate-putamen, the 

concentration of 3-MT was lower (by about 25 %) in AA rats than in ANA rats (paper 

II). No significant differences were found in the extracellular levels of DA, DOPAC 

or HVA between AA and ANA rats (papers II and IV). 

 

 

5.4. Effects of acute and repeated morphine and cocaine treatments on DA 

release and metabolism (II-IV) 

 

No significant differences were found on examination of the effects of acute or 

repeated morphine administration on DA release or metabolism in the nucleus 

accumbens between AA and ANA rats (papers II and III; see also Fig. 5.1.). In 

contrast to this, acute morphine increased the release (Table 5.1.) and metabolism 

(Table 5.2.) of dopamine in the caudate-putamen of AA but not ANA rats. After 

repeated morphine treatment, the morphine induced release of DA was not enhanced 

in AA or ANA rats. However, the effects of morphine on DA metabolism was 

enhanced in rats of both lines treated with the larger dose (3 mg/kg) of morphine but 

not in those treated with the lower dose (1 mg/kg) of morphine (Tables 5.1. and 5.2.). 

Results from the olfactory tubercle were found to be comparable with those obtained 

from the nucleus accumbens, in that no significant differences were found in the 

metabolism or release of DA between the AA and ANA rats (III). 

 

Acute cocaine administration (5 and 10 mg/kg) increased DA release equally in AA 

and ANA rats in both the nucleus accumbens and in the caudate-putamen (IV). After 

repeated treatment, the effect of cocaine on dopamine release was enhanced in the 

nucleus accumbens of AA rats but not in that of ANA rats (IV; see also Fig. 5.2.). 

Neither was any enhancement of DA release observed in the caudate-putamen in rats 

of either line (IV; Table 5.1.). 
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Table 5.1. Effects of acute ( day 1) and repeated 4-day treatments (day 4) with 
morphine ( 1 or 3 mg/kg) or cocaine (10 mg/kg) on dopamine release in the 
caudate-putamen of AA and ANA rats.  
 
Treatment Microdialysis (dopamine) Tissue sample (3-MT) 
 Morphine 1  Morphine 3  Cocaine 10  Morphine 1  
AA day 1 NS ↑  ↑↑  ↑↑  
AA day 4 NS ↑↑  ↑↑  ↑  
ANA day 1 NS NS ↑↑  NS 
ANA day 4 ↑  ↑  ↑  NS 
NS = not significant, ↑  P < 0.05 and ↑↑  P < 0.01, in comparison with corresponding 
rats treated with saline acutely and repeatedly (microdialysis experiments) or saline 
on day 4 instead of morphine (3-MT experiment) (Contrast analysis, Student-
Newman Keuls or Tukey’s compromise post-hoc test). 
 
 
Table 5.2. Effects of acute ( day 1) and repeated 4-day treatments (day 4) with 
morphine (1 or 3 mg/kg) on dopamine metabolism in the caudate-putamen of AA 
and ANA rats.  
 
Treatment Microdialysis  Tissue sample  
 Morphine 1 

DOPAC  
Morphine 3 
DOPAC 

Morphine 1 
HVA 

Morphine 3  
HVA 

Morphine 1  
HVA 

AA day 1 ↑↑  ↑↑  ↑↑  ↑↑  ↑↑  
AA day 4 ↑↑  ↑↑   

*** 
↑  ↑↑   

** 
NS 

ANA day 1 NS NS NS NS NS 
ANA day 4 NS ↑↑   

*** 
NS ↑↑   

** 
↑  

NS = not significant, ↑  P < 0.05 and ↑↑  P < 0.01, in comparison with corresponding 
saline treated rats. For treatments see subtitle for Table 5.1. (Student-Newman Keuls 
or Tukey’s compromise post-hoc test). ** P < 0.01 and *** P < 0.001, in comparison 
with day 1 (2-way ANOVA). 
 
 

5.5. Effects of acute and repeated morphine treatments on 5-HT and 5-HIAA 

(III) 

 

Morphine did not significantly affect the concentrations of 5-HT in any of the brain 

areas studied in either saline or morphine pretreated rats of either line (III).  

 

Morphine significantly increased the concentration of 5-HIAA only in AA rats in the 

caudate-putamen and olfactory tubercle (III). 
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5.6. Locations of the accumbal microdialysis probes (II and IV) 

 

No significant differences were found in the histologically verified coordinates (A/V, 

L/M, D/V) of dialysis probes between AA and ANA rats, indicating that there were 

no systematic differences in the placements of the probes between AA and ANA rats, 

which might affect the responses measured. 

 

 

5.7. Effects of acute and repeated morphine and cocaine on rotational behaviour 

in AA and ANA rats (V) 

 

Acute administration of morphine (3 mg/kg) induced a significant elevation of 

ipsilateral rotational behaviour in AA but not in ANA rats (Fig. 5.3.).   

Furthermore, morphine treated AA rats significantly showed more rotational 

behaviour over the 4-day treatment period than morphine treated ANA rats. In the 

challenge session when all rats received morphine, morphine pretreated AA rats 

showed more rotational behaviour than saline pretreated AA rats. No such 

sensitisation was seen in ANA rats. 

 

The smaller dose of morphine (1 mg/kg) did not induce any significant rotation over 

the 4-day repeated treatment session or in the challenge session, 8 days after repeated 

morphine treatment (V). 

 

Acute administration of cocaine significantly increased ipsilateral rotations only in 

AA rats, and cocaine-induced rotational behaviour was more pronounced in AA rats 

over the 4-day treatment period than in ANA rats (Fig. 5.3.). In the challenge session, 

significant sensitisation of the effect of cocaine could not be detected in rats of either 

line. 
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Figure 5.3. Effects of 
acute and repeated  
treatments with 
morphine (3 mg/kg) 
or cocaine (10 mg/kg) 
on rotational 
behaviour in AA and 
ANA rats. In the 
challenge session all 
rats received 
morphine or cocaine. 
Columns represent 
means ± S.E.M. (n=8-
14). * P < 0.05 and ** 
P < 0.01 in 
comparison with 
corresponding saline 
treated rats, o P < 0.05 
and oo P < 0.01 in 
comparison with 
corresponding ANA 
rats. 
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6. DISCUSSION 

 

6.1. Effects of acute and repeated treatments with alcohol, morphine and cocaine 

on the locomotor activity of AA and ANA rats 

 

6.1.1. Effects of alcohol  

 

Alcohol did not have any effect on locomotor activity either in AA or in ANA rats (I). 

Although there are some reports that low doses of alcohol (≤ 0.25 g/kg, i.p.) can 

increase the spontaneous motor activity, at least in some lines of rats (Waller et al. 

1986), experimenter-administered alcohol does not generally increase locomotor 

activity in rats (Criswell et al. 1994; Cunningham et al. 1993; Frye and Breese 1981; 

Masur et al. 1986; Päivärinta and Korpi 1993). Furthermore, Masur et al. (1986) have 

shown that non-selected rats do not become sensitized to alcohol even after extensive 

chronic intraperitoneal alcohol administration. However, voluntary alcohol drinking 

may enhance locomotor activity, an effect that has been seen also with AA rats 

(Colombo et al. 1998; Päivärinta and Korpi 1993). In agreement with these results are 

studies showing that dopamine release is increased in the nucleus accumbens of AA 

rats after voluntary alcohol drinking (Honkanen et al. 1997a) but not after acute 

intraperitoneal alcohol (Honkanen et al. 1994a). From these observations one can 

conclude that experimenter-administered alcohol and voluntarily consumed alcohol 

seem to induce diverse behavioural and neurochemical effects. 

 

6.1.2. Effects of morphine and cocaine  

 

Acute morphine enhanced the horizontal locomotor activity more in AA than in ANA 

or Wistar rats (I). Furthermore, AA rats become behaviourally sensitized to morphine, 

an effect that did not occur in ANA or Wistar rats. The greater efficacy of morphine 

in AA rats as compared with ANA rats is apparently not related to different 

pharmacokinetics of the drug in these rats, since there was no difference in the plasma 

morphine concentrations after administration of morphine (I). Furthermore, two 
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additional studies have demonstrated that AA and ANA rats also differ in response to 

the µ-agonist DAMGO given repeatedly intracerebroventricularly (Honkanen et al. 

1997b) and that analgesic effects of morphine do not differ between these rat lines 

(Honkanen et al. 1995). This implys that the different behavioural effects of morphine 

found in AA and ANA rats do not result from differences in the entry of morphine 

into the brain.  

 

Acute cocaine increased the locomotor activity to a similar extent in both AA and 

ANA rats. However, AA rats developed behavioural sensitisation to smaller doses of 

cocaine than ANA rats. The concentrations of cocaine in brain or plasma of these rats 

were not assessed, and thus, the possibility that the variations in the sensitisation to 

cocaine in AA and ANA rats are due to different pharmacokinetics can not be 

completely excluded. This is unlikely, however, since between AA and ANA rats 

there were no differences in the acute effects of cocaine on locomotor activity (I) or 

on mesolimbic or nigrostriatal DA release (IV), and, moreover, the differential 

behavioural sensitisation emerged with one dose only. Furthermore, if bioavailability 

of cocaine after repeated treatment differed between AA and ANA rats, one would 

also expect differences, not only in the mesolimbic, but also in nigrostriatal dopamine 

release, which was not the case. Thus, it seems that AA rats develop behavioural 

sensitisation to morphine and cocaine more easily and with smaller doses of these 

drugs than ANA rats. 

 

 

6.2. Effects of morphine and cocaine on dopamine release and metabolism 

 

6.2.1. Basal levels of dopamine and its metabolites 

 

The AA rats have been found to have more dopamine in the whole brain as well as in 

the caudate-putamen than the ANA rats (Ahtee and Eriksson 1975; Honkanen et al. 

1999; Kiianmaa et al. 1991). A similar difference was found in the olfactory tubercle 

(paper III). As found previously (Honkanen et al. 1999), the 3-MT concentrations 

were smaller in the caudate-putamen of AA than in that of ANA rats. In microdialysis 
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studies no significant differences between AA and ANA rats were found on 

examination of extracellular accumbal levels of dopamine, DOPAC or HVA, which is 

in agreement with results from previous microdialysis studies (Kiianmaa et al. 1995; 

Nurmi et al. 1996). Additionally, the extracellular concentrations of dopamine, 

DOPAC and HVA were similar in the caudate-putamen of rats from both lines. 

 

6.2.2. Effects of acute morphine in the nucleus accumbens 

 

Acute doses of morphine increased dopamine release and metabolism similarly in AA 

and ANA rats in the nucleus accumbens (II and III). This is in line with the findings 

of Honkanen et al. (Honkanen et al. 1999) showing no differences in the effect of 

morphine on accumbal dopamine release or metabolism between AA and ANA rats. 

Therefore, it seems that dopaminergic mechanisms in the nucleus accumbens are not 

involved in the differences seen in locomotor activity after acute morphine 

administration between the rats from these lines (see paper I). Morphine and opioid 

peptides have been shown to induce locomotor activity independently of DA when 

administered directly into the nucleus accumbens (Kalivas et al. 1983; Pert and Sivit 

1977). Thus, there may be differences between AA and ANA rats in the postsynaptic 

mechanisms in the nucleus accumbens, or other brain areas, e.g. the caudate-putamen 

(see 6.2.4.), or other brain transmitters, such as serotonin (see 6.3. and Honkanen et al. 

1999), may be involved. 

 

6.2.3. Effects of repeated morphine in the nucleus accumbens 

 

The effect of morphine on accumbal dopamine release and metabolism remained 

similar during 4-days of repeated morphine administration in rats of both lines (II and 

III). Sensitisation of locomotor activity after repeated morphine treatment has been 

found to be associated with enhanced dopamine release in the nucleus accumbens 

(Kalivas and Stewart 1991; Spanagel et al. 1993). In my experiments, sensitisation of 

dopaminergic mechanisms could not be detected either when the animals received 

morphine in their home environment (II) or even when the drug administration was 

paired to a distinct context (III), which should increase the probability of sensitisation 
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occurring (Di Chiara 1995). Thus, the results reported in papers I, II and III do not 

support the dopamine hypothesis of behavioural sensitisation, at least where enhanced 

dopamine release is concerned. However, sensitisation of mesolimbic dopamine 

release has usually been seen after 3 or more days of withdrawal after repeated 

morphine administration and also using higher doses of morphine than those used in 

the present study (Acquas and Di Chiara 1992; Cadoni and Di Chiara 1999; Kalivas 

and Stewart 1991; Spanagel et al. 1993). Acquas and Di Chiara (1992) reported a 

tolerance rather than a sensitisation of dopamine release after 1-day withdrawal from 

repeated high dose morphine treatment and sensitisation of dopamine release after 3 

days of withdrawal (Acquas and Di Chiara 1992). Thus, the results of the present 

series of experiments suggest that the sensitisation of locomotor activity after repeated 

four-day treatment with relatively low doses of morphine may not be associated with 

increased dopamine release in the nucleus accumbens, at least after only one day of 

withdrawal. On the other hand, it has recently been shown that the effect of repeated 

morphine treatment on accumbal dopamine release may differ between the two 

subdivisions of the nucleus accumbens, the core and the shell (Cadoni and Di Chiara 

1999). Thus, dopamine release was only context-independently sensitised in the core 

of the nucleus accumbens after repeated morphine treatment, whereas in the shell, 

tolerance developed to the morphine-induced dopamine release. In the experiments 

reported in paper III the subdivisions of the nucleus accumbens could not be 

differentiated due to dissection technique. This raises the possibility that the possible 

sensitisation of dopamine release in the core could be masked by a tolerance in the 

shell. However, no differences were found in the locations of dialysis probes between 

the AA and ANA rats (paper II), thus, the placements of dialysis probes cannot 

explain the lack of difference in dopamine release between these rats. To summarise, 

the results of these studies suggest that differential opioid regulation of accumbal 

dopamine mechanisms is not critically involved in the differences in opioid-induced 

locomotor activity between these rat lines. 

 

6.2.4. Effects of acute morphine in the caudate-putamen 

 

AA rats seem to be more sensitive to acute morphine-induced dopamine release and 

metabolism in the caudate-putamen than ANA rats (papers II and III). When 



 58 

dopamine release and metabolism were estimated from post mortem tissue samples 

(paper III), acute doses of morphine elevated the concentrations of 3-MT by 43 % and 

21 % and the concentrations of HVA by 49 % and 19 % in the caudate-putamen of 

AA and ANA rats, respectively; with these effects only significant in AA rats. In the 

microdialysis study (paper II), significant elevation of dopamine release only occurred 

with the higher (3 mg/kg) dose of morphine and only in the AA rat line. Furthermore, 

the first morphine injection elevated the striatal extracellular concentrations of 

dopamine metabolites (DOPAC and HVA) significantly more in AA than in ANA 

rats. The same difference has also been found in a previous study, where 

concentrations of DOPAC, HVA and 3-MT, were measured from post mortem tissue 

samples (Honkanen et al. 1999). Together, these findings suggest that morphine 

activates the nigrostriatal dopaminergic pathway more easily in AA than in ANA rats. 

One explanation for this is that AA rats have been found to have a higher density of 

µ-opioid receptors in the substantia nigra, especially in the pars reticulata, and the 

striatal patches containing µ-opioid receptors are larger than in ANA rats (Soini et al. 

1999; Soini et al. 1998). This may contribute to the greater effect of morphine on 

dopamine in the caudate-putamen of AA rats. It is unclear as to whether this 

enhancement of sensitivity of the nigrostriatal dopamine system in AA rats 

contributes to the increases observed in locomotor activity after acute morphine 

treatment, since increased dopamine release in the caudate-putamen is usually linked 

to stereotyped behaviour, and not to horizontal locomotor activity (see Bloom et al. 

1989). On the other hand, there is some evidence in the literature that µ-opioids may 

also induce locomotor activity by acting on the substantia nigra (Morelli et al. 1989). 

Connected with this, it has recently been found, that a selective µ-opioid receptor 

agonist, [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO; 0.05 µg), when 

administered bilaterally into the substantia nigra of Wistar rats enhanced locomotor 

activity, in addition to stereotypic gnawing (Honkanen et al., unpublished results). 

Therefore, it is possible that the nigrostriatal dopamine pathway plays a role in the 

morphine-induced enhancement or modulation of locomotor activity in AA rats. 
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6.2.5. Effects of repeated morphine in the caudate-putamen 

 

After repeated treatment, the effect of 1 mg/kg dose of morphine on striatal dopamine 

or metabolite concentrations was not significantly altered in rats of either line when 

compared with the first dose (papers II and III). As regards the larger, 3 mg/kg, dose 

of morphine (III), its effects on striatal dopamine metabolite concentrations were 

similarly enhanced in rats of both lines, but no enhancement of elevation of 

extracellular dopamine concentration was seen in either rat line after repeated 

treatment with this dose. In the microdialysis study, morphine elevated the 

concentrations of DOPAC and HVA more in AA than in ANA rats on both days 1 and 

4, but the ratio of the enhancement of metabolite concentrations between days 1 and 4 

did not differ between rats of these lines. Therefore, these results suggest that the 

effects of morphine on nigrostriatal dopamine function are more prominent in AA 

than in ANA rats, but there is no difference in the sensitisation of nigrostriatal 

dopamine metabolism to morphine between these rats. Thus, the effects of morphine 

on nigrostriatal dopamine do not, apparently, explain the differential behavioural 

sensitisation in these rats. 

 

6.2.6. Effects of acute cocaine in the nucleus accumbens 

 

In agreement with previous studies conducted using microdialysis (Cadoni et al. 2000; 

Di Chiara and Imperato 1988a; Kalivas and Duffy 1990; Kalivas and Duffy 1993; 

Pontieri et al. 1995) acute administration of cocaine increased the extracellular levels 

of dopamine in the nucleus accumbens of AA and ANA rats (paper IV). The 

locomotor activity enhancing effect of acute cocaine seems to be derived 

predominantly from the nerve terminal areas of mesolimbic dopamine neurons (Chen 

and Reith 1994; Delfs et al. 1990). The effect of cocaine on dopamine release did not 

differ between AA and ANA rats, which is in accordance with the results of the 

locomotor activity study (paper I). Taking into account the mechanism of action of 

cocaine (Chen and Reith 1994; Delfs et al. 1990; Koe 1976; Kuhar et al. 1991; Reith 

et al. 1997), these results suggest that there are no significant differences in accumbal 

dopamine transporter mechanisms between AA and ANA rats after acute cocaine 

administration. 
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6.2.7. Effects of repeated cocaine in the nucleus accumbens  

 

Although three-way ANOVA did not reveal any significant difference between rat 

lines after repeated cocaine treatment, the effect of cocaine on accumbal dopamine 

overflow on day 4 was enhanced in AA but not ANA rats, when compared with its 

effect on day 1 (IV). On day 4, moreover, the effect of cocaine on DA was 

significantly greater in AA rats than in ANA rats. Thus, our results suggest that AA 

rats begin to show sensitisation to the effects of cocaine on mesolimbic dopamine 

more easily than ANA rats. 

 

Statistical analysis did not reveal any significant differences in the locations of 

microdialysis probes between AA and ANA rats. Thus, the placements of the probes 

apparently cannot account for the differences observed in the sensitisation of 

dopamine release between AA and ANA rats. 

 

It is well known that, in addition to increasing the concentration of dopamine in the 

nucleus accumbens, cocaine increases the locomotor activity of rats. After repeated 

cocaine treatment, cocaine-induced psychomotor stimulation is enhanced, which has 

been associated with enhanced extracellular concentrations of dopamine in the 

nucleus accumbens (Cadoni et al. 2000; Kalivas and Duffy 1990; Kalivas and Duffy 

1993). Thus, these results showing sensitisation of mesolimbic dopamine in AA rats 

together with the locomotor activity study (I) suggest that the sensitisation of 

locomotor activity of AA rats to cocaine after repeated treatment may be associated 

with increased release of dopamine in the nucleus accumbens.  

 

The mechanisms underlying possible differences between AA and ANA rats 

concerning the sensitisation of cocaine-induced accumbal dopamine release are not 

clear. The proposed mechanisms involved in the sensitisation of psychomotor 

stimulant-induced dopamine release include changes in uptake mechanisms, 

autoreceptor sensitivity and calcium transduction (see Pierce and Kalivas 1997). The 

sensitivity of dopamine D2-like autoreceptor mechanisms has not been studied in AA 

and ANA rats. There is no basal difference in D2 receptor binding or gene expression 

in the nucleus accumbens or caudate putamen between these rat lines (Syvälahti et al. 
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1994), which, however, does not exclude the possibility that D2-receptors might differ 

between AA and ANA rats after repeated cocaine treatment. Concerning DA uptake 

mechanisms, the present results (no significant differences in the effects of acute 

cocaine on extracellular dopamine in the nucleus accumbens or caudate-putamen 

between AA and ANA rats) suggest that the dopamine transporter mechanisms in 

these rats are similar. However, differences in DA uptake mechanisms between AA 

and ANA rats after repeated cocaine treatment cannot be ruled out. It has been 

suggested (Cass et al. 1993) that there may be alterations in the clearance rate of 

accumbal dopamine after repeated cocaine treatment, even without any differences in 

the affinity of the dopamine transporter for cocaine or density of binding sites.  

 

6.2.8. Effects of acute and repeated cocaine in the caudate-putamen 

 

In agreement with previous studies (Di Chiara and Imperato 1988a; Martin-Fardon et 

al. 1996), acute cocaine increased extracellular dopamine concentrations in the 

caudate-putamen of AA and ANA rats. The effect of acute cocaine did not differ 

between AA and ANA rats, and no enhancement in the effect of cocaine on dopamine 

was seen in rats of either line after repeated cocaine treatment (paper IV). Thus, it 

appears that the nigrostriatal dopamine is not involved in the sensitisation of 

locomotor activity to cocaine seen in AA rats, which is in line with the suggestion that 

the predominant site of action of cocaine for the enhancement of locomotor activity 

seems to be the nucleus accumbens (Chen and Reith 1994; Delfs et al. 1990). 

 

6.2.9. Methodological points concerning repeated microdialysis 

 

When morphine was given acutely to rats with microdialysis probes implanted for the 

first time approximately 3.5-4 hours before drug administration, morphine was, 

surprisingly, without effect on extracellular dopamine in the nucleus accumbens (data 

not shown). Therefore, the microdialysis studies examining nucleus accumbens with 

acute and repeated morphine were conducted using different rats, resulting in similar 

elevations of dopamine after morphine both when the rats received morphine for the 

first time and when they had received morphine on the three previous days. All other 
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microdialysis trials (effects of morphine in the caudate-putamen and all cocaine 

experiments) were performed using the same rat on both days 1 and 4. The use of 

multiple probe insertions raises the possibility that previous damage to the dialysis 

area induced by insertion of the probe and possible gliosis may have impaired 

dopamine overflow. In the cocaine study, the baseline levels of dopamine declined 

somewhat between days 1 and 4 in the nucleus accumbens in both lines, possibly due 

to the microdialysis procedure. As pointed out in the materials and methods section 

(4.10.2.), it has been suggested that repeated microdialysis experiments may be used 

in the striatum (Martin-Fardon et al. 1997). However, there is some evidence that the 

effect of amphetamine may be attenuated following the second insertion of the probe 

into this region of the brain (Camp and Robinson 1992). If such attenuation also 

occurred in our experiments with cocaine, it might have masked any possible 

sensitisation in ANA rats. Nevertheless, the effect of cocaine was stronger in AA than 

in ANA rats after repeated cocaine treatment. 

 

 

6.3. Effects of morphine on 5-HT and 5-HIAA 

 

6.3.1. Basal levels of 5-HT and 5-HIAA 

 

In contrast to P/NP and HAD/LAD rats, lines in which the alcohol-preferring rats 

have lower cerebral concentrations of 5-HT and its major metabolite, 5-HIAA, than 

the alcohol-avoiding rats (McBride and Li 1998; McBride et al. 1993), we found that 

AA rats have higher cerebral concentrations of 5-HT and its 5-HIAA when compared 

to ANA rats in the nucleus accumbens and in the olfactory tubercle (III). These 

findings agree with previous studies starting already in the early generations of these 

rat lines (Ahtee and Eriksson 1973; Honkanen et al. 1999; Korpi et al. 1988). 

Interestingly, low concentrations of 5-HIAA in the cerebrospinal fluid has been 

associated with type 2 alcoholism in humans (Cloninger 1987; Virkkunen and 

Linnoila 1997). Thus, in respect to 5-HIAA, the AA rats may represent a different 

type of alcoholism than the P and HAD rats. 
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6.3.2. Effects of acute and repeated morphine on 5-HT and 5-HIAA 

 

Cerebral serotonergic mechanisms have been suggested to be involved in the 

regulation of alcohol consumption, locomotor activity and mesolimbic dopamine 

release (Benloucif et al. 1993; Geyer 1996; Gillies et al. 1996; Koob et al. 1998a; 

Mylecharane 1996). In study III, it was found that acute administration of morphine 

increased 5-HT metabolism in AA rats by about 20 % but in ANA rats clearly less. 

The elevation was most pronounced in the olfactory tubercle, and may contribute to 

the enhanced locomotor activity of AA rats as compared with ANA rats after acute 

administration of the drug. However, repeated morphine administration caused 

tolerance rather than sensitisation in the effects of morphine on tissue concentrations 

of 5-HT and 5-HIAA. Therefore, it seems that the serotonergic mechanisms are not 

involved in the differences that occur in morphine-induced locomotor stimulation 

between AA and ANA rats after repeated administration. 

 

 

6.4. Effects of acute and repeated morphine and cocaine on rotational behaviour 

(V) 

 

6.4.1. Effects of morphine on rotational behaviour 

 

Acute administration of a 3 mg/kg dose of morphine induced significant ipsilateral 

rotational activity in AA rats, but did not enhance the rotational activity in ANA rats. 

This finding is in agreement with the locomotor activity study (paper I) showing a 

greater degree of morphine-induced locomotor activity enhancement after acute 

morphine treatment in AA rats as compared to that found in ANA rats. This suggests 

that morphine more readily activates the dopaminergic transmission in AA than in 

ANA rats, agreeing with the neurochemical studies performed in the caudate-putamen 

(papers II and III and Honkanen et al. 1999). However, in the locomotor activity study 

already 1 mg/kg dose of morphine increased the locomotor activity of rats of both 

lines, whereas this dose of morphine was not sufficient to enhance the rotational 

behaviour in rats of either line. It should be noted that the rotational behaviour 
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measured in nigrostriatally 6-OHDA lesioned rats mainly reflects the responses of 

dopaminergic nigrostriatal mechanisms, whereas opioids have also been shown to 

increase locomotor activity independently of dopamine, when administered directly 

into the nucleus accumbens (Kalivas et al. 1983; Pert and Sivit 1977). Thus, in 

addition to the possible role of cerebral DA, nondopaminergic mechanisms might also 

be involved in the differences of locomotor activity responses to morphine shown by 

rats of these two lines. This may be related to, for instance, findings that AA rats have 

a higher density of µ-opioid receptors in the shell subdivision of the nucleus 

accumbens than ANA rats (de Waele et al. 1995; Marinelli et al. 2000).  

 

On the fourth day of repeated daily treatment with 1 or 3 mg/kg of morphine no 

significant sensitisation of rotational behaviour was found in rats of either line. In line 

with the responses uncovered concerning rotational behaviour, no significant 

sensitisation of the locomotor activity stimulating effects of morphine could be 

detected in either AA or ANA rats during 4-days treatment with a 3 mg/kg dose of 

morphine. However, AA rats but not ANA rats were sensitised to the locomotor 

activity stimulating effects of 1 mg/kg of morphine during 4-day treatment (I). If the 

sensitisation of locomotor activity enhancing effect of 1 mg/kg of morphine resulted 

from enhanced dopaminergic transmission, at least some enhancement of rotational 

behaviour should have been observed in the AA rats after repeated treatment with this 

dose of morphine. Thus, our behavioural studies (I and V) together with the 

neurochemical studies (II and III) suggest that morphine-induced cerebral dopamine 

release is not altered significantly during repeated 4-day treatment with morphine in 

AA or ANA rats.  

 

When the rats were challenged with a 3 mg/kg dose of morphine 8 days after repeated 

saline or morphine pretreatment, morphine pretreated AA but not ANA rats showed 

enhanced rotational behaviour when compared with saline pretreated controls 

suggesting enhanced dopaminergic transmission. The enhanced dopaminergic 

transmission in the challenge session in AA rats agrees with several studies showing 

sensitisation of mesolimbic dopamine release after 3 or more days of withdrawal from 

repeated morphine administration (Acquas and Di Chiara 1992; Cadoni and Di Chiara 

1999; Kalivas and Stewart 1991; Spanagel et al. 1993). This suggests that a 
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withdrawal period from repeated morphine treatment is needed to reveal the 

enhancement of cerebral dopaminergic transmission in AA rats, but even so this 

enhancement is not seen in ANA rats. 

 

6.4.2. Effects of cocaine on rotational behaviour  

 

Cocaine induced rotational behaviour in both AA and in ANA rats, but this effect was 

more pronounced in AA rats, especially on days 3 and 4 during repeated cocaine 

treatment. However, no significant differences between AA and ANA rats were found 

concerning the effect of cocaine on day 1. This is in line with the results showing that 

the effects of acute cocaine on horizontal locomotor activity (I) or on mesolimbic or 

nigrostriatal dopamine release (IV) do not differ between rats of these lines.  

 

Repeated cocaine treatment did not induce significant enhancement of ipsilateral 

rotations in rats of either line. In agreement with these results, sensitisation of the 

effect of cocaine on the concentration of dopamine in the dorsal striatum was not seen 

in either AA or ANA rats (paper IV). Only rats that showed 95 % or larger depletion 

of nigrostriatal dopamine were included in the data. However, as the 6-OHDA lesion 

was aimed to the medial forebrain bundle, depletion of mesolimbic dopamine may 

also occur. In fact, we also measured dopamine concentrations in the nucleus 

accumbens of some rats, and found approximately 90 % depletion of mesolimbic 

dopamine (data not shown). Therefore, any direct conclusions as to whether the 

rotational behaviour of the rats results from a depletion of mesolimbic or nigrostriatal 

dopamine cannot be made on the basis of these experiments. Although mesolimbic 

dopamine function may not be essential for the initiation of rotational behaviour 

(Costall et al. 1976), it may be important in mediation of circling seen after unilateral 

lesions of the nigrostriatal dopaminergic pathways. It has been suggested that 

imbalance in the nigrostriatal dopamine system after unilateral 6-OHDA lesion causes 

a postural asymmetry and head turning and determines the direction of rotation, but 

the mesolimbic dopamine system provides a locomotor component and converts the 

postural asummetry into active circling behaviour (Pycock 1980). Thus, the findings 

of the rotational study (V) fit to neurochemical findings (IV), in that where there were 
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no changes in nigrostriatal dopamine release, no significant sensitisation of rotational 

behaviour during repeated cocaine treatment occurred in rats of either line. The 

influence of the sensitisation of mesolimbic dopamine release, previously found in 

AA rats, can be seen in the more pronounced rotational behaviour in these rats on 

days 3 and 4 when compared to ANA rats.  

 

In the challenge session, 8 days after repeated cocaine treatment, when all rats were 

given cocaine acutely, no significant differences between saline or cocaine treated rats 

were seen in rats of either line. It should be noted that the variation in the saline 

pretreated group of AA rats is relatively high, which is mainly due to 2 rats out of 9 

rotating over 600 rounds. If these 2 rats were excluded from data, the difference in 

saline and cocaine pretreated AA rats would be statistically significant, with cocaine 

pretreated rats rotating more than saline pretreated rats.  

 

 

6.5. Role of brain dopamine in morphine and cocaine-induced behavioural 

sensitisation 

 

It has been suggested that the mesolimbic dopaminergic neurons mediate both the 

reinforcing and locomotor activity stimulating effects of various drugs of abuse. Thus, 

accelerated dopamine release in the nucleus accumbens causes both the psychomotor 

stimulant and the reinforcing effects of drugs of abuse (Wise and Bozarth 1987; Wise 

and Rompré 1989). Furthermore, after repeated treatment, the drug induced 

mesolimbic dopamine release becomes sensitised, an effect associated with 

enhancement in the reinforcing effects of drugs of abuse (Robinson and Berridge 

1993). In my studies, AA rats became sensitised to both the locomotor stimulant and 

to the mesolimbic dopamine release enhancing effects of repeated cocaine with 

smaller doses of cocaine than ANA rats (I and IV). Therefore, it seems that 

psychomotor sensitisation may be associated with sensitisation of dopamine release in 

AA rats after repeated cocaine, which effect may be involved with the stronger 

vulnerability to addictive behaviour displayed in AA rats. In contrast to cocaine, 
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psychomotor sensitisation after repeated morphine treatment (I) was not associated 

with sensitisation of mesolimbic dopamine release in AA rats (II and III). Therefore, 

it seems that there is also a non-dopaminergic component included in the morphine-

induced psychomotor stimulation/sensitisation. Thus, in that respect, the effects of 

cocaine and morphine may be different. Sensitisation of ascending dopamine 

pathways to morphine may, however, also be seen in AA rats if there is a withdrawal 

period of several days between the repeated treatment and the test session (V). No 

such sensitisation is seen in ANA rats, which may, again, be involved with the 

enhanced vulnerability to addictive behaviour shown in AA rats than in ANA rats. 
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7. CONCLUSIONS 

 

1. Morphine induces more pronounced psychomotor stimulation in naive AA 

than ANA rats, but the effect of acute cocaine on locomotor activity does not 

differ between these rat lines. When treated repeatedly, AA rats became 

sensitised to this locomotor activity enhancing effect with lower doses of 

morphine and cocaine than ANA rats. Thus, the cerebral mechanisms 

mediating reinforcement may be particularly sensitive to repeated drug 

treatment in AA rats, a phenomenon which may be involved in their high 

alcohol intake as well. 

2. The effects of either acute or repeated 4-day treatments with morphine on 

mesolimbic dopamine mechanisms do not differ between AA and ANA rats, 

and as such, these findings do not support a role for accumbal dopamine 

systems in morphine-induced behavioural sensitisation in AA rats. However, 

the effect of acute morphine on nigrostriatal dopamine mechanisms seems to 

be more prominent in AA rats when compared with ANA rats. Acute cocaine 

tretment in AA and ANA rats affects the striatal dopamine mechanisms in a 

similar manner. However, AA rats already begin to show sensitisation to the 

effect of cocaine on mesolimbic dopamine after only 4-days treatment with 

cocaine, with such sensitisation not observed in ANA rats. This sensitisation 

of mesolimbic dopamine may not only render AA rats more susceptible to 

alcohol, but also to other drugs of abuse, and might explain the findings that 

AA rats are more susceptible to psychomotor sensitisation than ANA rats. 

Furthermore, the sensitisation of locomotor activity after repeated drug 

treatment was clearly associated with sensitisation of mesolimbic dopamine 

release in AA rats repeatedly treated with cocaine but not when they were 

treated repeatedly with morphine. Thus, in this respect, the effects of cocaine 

and morphine seem to differ, suggesting a non-dopaminergic component in 

morphine-induced behavioural sensitisation. 

3. Both morphine and cocaine induced more rotational behaviour in AA than in 

ANA rats during 4-days of repeated treatment, suggesting that these drugs 

induce stronger activation of brain dopaminergic mechanisms in AA than in 

ANA rats. Neither drug induced significant sensitisation in rotational 
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behaviour during the 4-day drug treatment in rats of either line. However, in a 

challenge session 8 days after repeated morphine treatment, morphine induced 

sensitisation in AA but not in ANA rats, signifying that in AA rats a 

withdrawal period of several days is needed for the expression of sensitisation 

of striatal dopaminergic mechanisms, and yet this sensitisation is not seen in 

ANA rats. 
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