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ABSTRACT 
 
Fluorescent amplified fragment length polymorphism (fAFLP) analysis was tailored 
for optimal characterization of Listeria monocytogenes and Clostridium botulinum. Of 
the tested combinations, the enzyme coupling HindIII – HpyCH4IV with primer 
combinations Hind-A and Hpy-A, and Hind-C and Hpy-A for L. monocytogenes and 
C. botulinum, respectively, showed evenly distributed banding patterns in the optimal 
size range and detected polymorphism between closely related strains and were thus 
selected for further analysis.  

The suitability of AFLP analysis to type L. monocytogenes, C. botulinum and 
Clostridium perfringens at strain level was evaluated. AFLP proved to be a highly 
reproducible, easy-to-use, relatively fast and highly discriminative approach. In 
addition, all strains were typeable by AFLP, and thus, the method seemed to 
overcome the problem of extracellular DNase production detected in some clostridial 
strains. The discriminatory power of AFLP was shown to equal that of pulsed-field 
gel electrophoresis (PFGE) for L. monocytogenes. By combining the results of AFLP 
and PFGE, the subtype discrimination was further improved. AFLP was shown to be 
a suitable tool also for C. botulinum group identification. 

Since phenotypic identification of Clostridium isolates is laborious, the 
suitability of AFLP for genomic species identification was assessed. The AFLP 
technique was applied to 129 strains representing 24 different Clostridium species. 
AFLP differentiated all species tested, except for Clostridium ramosum and 
Clostridium limosum, which clustered together at the 45% similarity level. 
C. botulinum strains showed wide genetic diversity and were divided into seven 
species-specific clusters, while other species were divided into single species-specific 
clusters or occupied separate positions. AFLP also differentiated between 
L. monocytogenes, Listeria innocua, Listeria ivanovii, Listeria seeligeri, Listeria 
welshimeri and Listeria grayi species. If AFLP profiles of well-defined strains are 
collected in identification libraries, the database can be a valuable additional tool for 
identification of Clostridium and Listeria species. Due to high throughput of samples, 
AFLP proved to be especially suitable for screening large numbers of isolates.  

Contamination routes of L. monocytogenes were traced in a chilled food 
processing plant producing ready-to-eat and ready-to-reheat meals during an 8-year 
period by AFLP. Clearly different contamination statuses were observed in the three 
compartments (I-III) of the plant. Compartment I, which produced cooked meals, was 
heavily contaminated with three persistent AFLP types, whereas compartment II, 
which produced uncooked chilled food, was contaminated with both persistent and 
sporadic AFLP types. The equipment of compartment III was free of contamination. 
Cleaning routines, product type and degree of compartmentalization seemed to have 
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an influence on the contamination status in compartments that produced cooked 
meals. In addition, raw materials were shown to cause product contamination in 
compartment II. Thus, special attention should be paid to quality control of raw 
ingredients when uncooked ready-to-eat meals are produced. In compartment II, 
reconstruction of the production line was demonstrated to reduce prevalence rates of 
L. monocytogenes and to eliminate two persistent AFLP types.  

L. monocytogenes strains causing persistent plant contamination and sporadic 
strains were analysed using AFLP and PFGE. Persistent strains showed 15 genotypes, 
13 of which were specific for persistent strains, whereas sporadic strains were divided 
into 35 genotypes, 33 of which were only associated with sporadic strains. Although 
persistent strains differed from sporadic strains, no specific evolutionary lineage of 
persistent strains was observed.  
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1. INTRODUCTION 

 
In epidemiological studies, techniques that effectively discriminate between 
individual bacterial strains are essential. In outbreak situations, strain typing is needed 
both to distinguish outbreak-associated cases from sporadic cases and to trace the 
vehicle of infection. Similarly, to be able to implement improved foodborne pathogen 
control strategies, the contaminating bacteria must be traced back to their source in 
the food processing plant. Methods based on the phenotypic characteristics of bacteria 
have traditionally been used for this purpose. The drawback of these methods is their 
restricted resolution. In addition, problems with typeability and reproducibility have 
been linked to many phenotyping techniques (Maslow et al. 1993, Olive and Bean 
1999).  

Genotyping offers several advantages compared with conventional 
phenotyping techniques. In theory, since all bacteria have DNA, they should be 
typeable by genotyping methods. Genomic DNA is very stable, thus being unaffected 
by environmental and cultural conditions, which may have an influence on the 
expressed phenotypic characteristics of bacteria. In general, the discriminatory power 
of DNA-based typing methods is also higher than that of phenotyping techniques 
(Farber 1996).  

Numerous methods, including pulsed-field gel electrophoresis (PFGE), 
restriction fragment length polymorphism (RFLP), ribotyping, polymerase chain 
reaction (PCR)-based typing methods, e.g. randomly amplified polymorphic DNA 
(RAPD), DNA microarray typing and sequence-based analysis, e.g. multilocus 
sequence typing (MLST), have been utilized in bacterial genotyping (Farber 1996, 
Power 1996, Borucki et al. 2003a, Meays et al. 2004, Torpdahl et al. 2005). However, 
large variation exists among the different genotyping methods in their discriminatory 
power, reproducibility and ease of standardization (Van Belkum et al. 2001, Meays et 
al. 2004). Combining high discriminatory power and reproducibility with ease of 
performance and speed is also problematic (Lindstedt et al. 2000c). Selecting the most 
suitable genotyping method for different kinds of investigations is therefore 
challenging. Recent developments in molecular techniques necessitate an ongoing 
need to tailor new genotyping methods for optimal characterization of different 
bacterial species and to evaluate their performance and suitability for research 
purposes.  

Listeria monocytogenes and Clostridium botulinum are pathogens that can 
cause the rare but severe foodborne diseases of listeriosis and botulism, respectively 
(Hatheway 1995, Ramaswamy et al. 2007). On the other hand, enterotoxin-producing 
Clostridium perfringens type A is considered to be one of the most important causes 
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of bacterial-origin food poisoning (Brynestad and Granum 2002, Lukinmaa et al. 
2002, Lynch et al. 2006). A better understanding of the epidemiology of 
L. monocytogenes, C. botulinum and C. perfringens is needed to improve control of 
these foodborne pathogens and to enable the production of safe food. For 
epidemiological investigations, efficient genotyping techniques are required.  

Amplified fragment length polymorphism (AFLP) analysis is a PCR-based 
fingerprinting method that was originally developed for typing of plants. The AFLP 
technique involves three steps: 1) genomic DNA is cleaved with two restriction 
enzymes, 2) ligation of restriction site-specific adapters occurs and 3) a subset of 
fragments is amplified by PCR (Vos et al. 1995). The enzyme and primer 
combinations used in the analysis have an effect on the discriminatory power of 
AFLP, and thus, the AFLP protocol needs to be tailored for each bacterial species 
separately. The suitability of the AFLP technique for characterizing C. botulinum, 
C. perfringens and L. monocytogenes has not been sufficiently evaluated. Several 
studies have utilized AFLP to differentiate between bacterial species (Huys et al. 
1996a, Janssen et al. 1996, Duim et al. 2001, On et al. 2003). However, studies 
surveying the potential of the AFLP approach for identification of Clostridium and 
Listeria species have not been conducted.  

Foodborne listeriosis has been linked especially to ready-to-eat food products 
that are refrigeration-stored for longer periods. High incidence rates of 
L. monocytogenes in prepared meals (Nørrung et al. 1999, Uyttendaele et al. 1999) 
and the persistence of L. monocytogenes in chilled food factories that produce ready-
to-eat meals have been reported (Holah et al. 2004). Ready meals are often reheated 
in microwave ovens, which may reheat the food unevenly. Hence, if the meal is 
contaminated with L. monocytogenes, the organism can survive in cold spots and pose 
a health risk for the consumer. However, despite the increased consumption of ready-
to-eat convenience foods and foods requiring minimal preparation time (Gandhi and 
Chikindas 2007), little is known about the contamination routes of L. monocytogenes 
in plants producing ready-to-eat and ready-to-reheat meals. Thus, further research is 
needed to enable production of L. monocytogenes-free ready meals.  
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2. REVIEW OF THE LITERATURE 
 

2.1 Amplified fragment length polymorphism analysis 
 
Amplified fragment length polymorphism (AFLP) analysis was originally patented 
and described by Zabeau and Vos (1993) and Vos et al. (1995). The AFLP technology 
is covered by patents and patent applications owned by Keygene N.V. (Wageningen, 
Netherlands), and therefore, license from Keygene N.V. is needed if the AFLP 
technology is used for commercial purposes. The method was originally developed 
for the typing of crop plants, but it can be used for fingerprinting DNA of any origin, 
including DNA of animals, plants, nematodes, protozoa, fungi and bacteria (Janssen 
et al. 1996, Savelkoul et al. 1999, Blears et al. 2000, Borst et al. 2003, Ball et al. 
2004, Bensch and Åkesson 2005, Mikkonen et al. 2005, Sharma et al. 2006, de Valk 
et al. 2007).  

AFLP has many applications in the field of microbiology. It is nowadays 
widely used for strain typing and classification (Hookey et al. 1999, van der Zwet et 
al. 1999, 2000, Duim et al. 2000, Nair et al. 2000, Zhao et al. 2000, Gebreyes and 
Altier 2002, On et al. 2004, Fearnley et al. 2005, Ryu et al. 2005, Melles et al. 2007), 
and several studies have utilized AFLP in outbreak and epidemiological investigations 
(Speijer et al. 1999, Jonas et al. 2000, Geornaras et al. 2001, Lan and Reeves 2002, 
McLauchlin et al. 2002, Ip et al. 2003, Motiwala et al. 2003, Ruiz et al. 2003, van der 
Zee et al. 2003, Jureen et al. 2004, Melles et al. 2004, Spence et al. 2004, Coque et al. 
2005, Imataki et al. 2006, Johnsen et al. 2006c, Wong et al. 2006). AFLP can also be 
used to track sources, survival and spread of bacterial contamination at farm level, in 
slaughterhouses and in food processing plants (Geornaras et al. 1999, Fonnesbech 
Vogel 2001, Johnsen et al. 2006a, 2006b, Wieland et al. 2006, Wulff et al. 2006, 
Johannessen et al. 2007). In addition, AFLP has been used to study microbial 
diversity in contaminated ecosystems (La Rosa et al. 2006).  

 

2.2 Principles of the AFLP method 
 
AFLP analysis consists of three steps: DNA is digested with restriction enzymes, 
ligation of restriction site-specific adapters occurs and a subset of fragments is 
amplified by PCR (Vos et al. 1995). 

The total genomic DNA is first digested using two restriction enzymes; a 
rare-cutter and a frequent-cutter (Fig. 1). The rare-cutter and frequent-cutter typically
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Figure 1. Schematic representation of fluorescent AFLP analysis using restriction 
enzymes HindIII and HpyCH4IV and primers with one selective nucleotide during 
selective amplification.  
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have six- and four-nucleotide-long recognition sequences, respectively. A commonly 
applied restriction enzyme combination is EcoRI and MseI, but several protocols 
using different enzyme combinations have been developed (Table 1). During 
digestion three kind of DNA fragments are formed (Fig. 1). The majority of the 
fragments are cut by the frequent-cutter at both ends, less fragments are cut by both 
the frequent-cutter and rare-cutter and a only a few fragments are cut by the rare-
cutting restriction enzyme at both ends (Vos et al. 1995).  

After digestion, restriction site-specific double-stranded nucleotide adapters 
(length 10-30 bp) are ligated to the ends of the DNA fragments (Fig. 1) (Vos et al. 
1995, Blears et al. 1998). Adapters are complementary to the sticky end of the 
corresponding restriction site and designed so that the original restriction site is not 
restored after ligation. Therefore, once the adapter is ligated to the DNA fragment,  
digestion by the restriction enzyme is prevented. Formation of fragment-to-fragment 
products is also inhibited since restriction and ligation reactions occur simultaneously 
(Blears et al. 1998, Savelkoul et al. 1999).  

Restriction fragments with specific adapters are amplified in two subsequent 
PCR reactions; preselective and selective PCR (Fig. 1) (Savelkoul et al. 1999). The 
preselective amplification provides an adequate amount of template DNA for 
selective amplification and reduces background smears in the AFLP patterns, 
especially when large genomes are analysed (Vos et al. 1995). The PCR 
amplifications are performed under highly stringent conditions to allow specific 
annealing of primers (Savelkoul et al. 1999). Typically, touch-down PCR is used 
during selective amplification (Vos et al. 1995). AFLP primers are complementary to 
the adapter and the restriction site sequence. In addition, 0-3 selective nucleotides are 
added to the 3’-end of the primer (Aarts et al. 1998, Blears et al. 1998). If nucleotides 
extending beyond the restriction site match the selective nucleotides of the primer, the 
restriction fragment is amplified. The selectivity of the primers is good when one or 
two selective nucleotides are used and acceptable when three selective nucleotides are 
included. However, addition of a fourth nucleotide results in reduced selectivity due 
to increased tolerance of mismatches during amplification (Vos et al. 1995). 

A nearly linear correlation exists between the number of amplified fragments 
and the genome size, and thus, the size of the analysed genome affects the number of 
selective nucleotides used. In theory, addition of one selective nucleotide to the 
primer reduces the number of amplified fragments fourfold. Therefore, the complexity 
of the AFLP pattern can be reduced by addition of selective nucleotides. In general, 
the desired number of amplified fragments ranges from 50 to 100 (Vos et al. 1995). 
Typically, bacterial genome size is relatively small; known genome sizes of bacteria 
vary between 0.6 and 10 Mb (Moran 2002). When bacterial DNA is analysed by 
AFLP, the preselective amplification is often performed using primers without 
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selective nucleotides, and during selective amplification one selective nucleotide is 
added to both primers (Table 1). 

During selective amplification the primer, which spans the rare-cutter 
restriction site, is labelled radioactively (Vos et al. 1995) or fluorescently (Desai et al. 
1998, Koeleman et al. 1998). The labelled primer is totally consumed during PCR 
amplification, and thus, the amount of labelled primer rather than the number of PCR 
cycles serves as a limiting factor in the amplification process. Since an excess of PCR 
cycles is used, AFLP patterns of equal intensity are observed, although the template 
concentration may vary (Vos et al. 1995, van der Wurff et al. 1999). When the 
denatured fragments are electrophoresed on polyacrylamide gels, only the labelled 
fragments are visualized. Labelling also prevents the occurrence of double bands on 
the gels due to unequal mobility of the two strands of the amplified fragments (Vos et 
al. 1995). Alternative AFLP protocols utilizing silver staining (Geornaras et al. 1999, 
Briard et al. 2000, Wang et al. 2004) or chemiluminescent detection of fragments (Lin 
et al. 1999) have also been published.  

At present, mainly fluorescent AFLP (fAFLP) is used (Table 1). In addition 
to the improved occupational safety, fAFLP is fast and easy to perform compared 
with radioactive AFLP (Koeleman et al. 1998, Coenye et al. 1999b). Furthermore, 
fAFLP enables analysis with an automated DNA sequencer, thus allowing accurate 
fragment sizing (±1 bp) if an internal size standard is included in every lane (Desai et 
al. 1998, Arnold et al. 1999b, Antonishyn et al. 2000). If different fluorescent labels 
are used, two samples can also be run simultaneously in the same lane (Antonishyn et 
al. 2000). AFLP analyses using both radioactively and fluorescently labelled primers 
have resulted in comparable clusters following numerical analysis of the profiles 
(Coenye et al. 1999b).  
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2.3 Modifications of the original AFLP method 
 

2.3.1 Single-enzyme AFLP 

 
In single-enzyme AFLP (sAFLP), the DNA is digested using one restriction enzyme 
(Valsangiacomo et al. 1995). Rare-cutter HindIII is commonly chosen (Table 2). 
Following digestion, restriction site-specific adapter is ligated to the fragments and 
PCR amplification using a single unlabelled primer is performed (Valsangiacomo et 
al. 1995). Most established protocols utilize primers having one selective nucleotide 
addition, but longer extensions have also been used (Table 2). Boumedine and 
Rodolakis (1998) applied a combination of seven different primers with three 
additional nucleotides to type Chlamydia psittaci. The resulting AFLP patterns were 
easy to interpret since only a few bands were obtained. However, the drawback of this 
protocol was that seven separate PCR amplifications had to be performed to achieve 
moderate discriminatory power. Another modification of sAFLP was established by 
Giammanco et al. (2007), who combined four primers in a single PCR reaction.  

After PCR amplification, the fragments are separated by conventional 
horizontal gel electrophoresis on agarose gel and stained with ethidium bromide 
(Valsangiacomo et al. 1995, Gibson et al. 1999, De Zoysa and Efstratiou 2000, 
Ripabelli et al. 2000a, McLauchlin et al. 2002, Brett et al. 2005, Jaimes et al. 2006). 
A modification using 6% polyacrylamide gel and ethidium bromide staining has been 
described by Velappen et al. (2001). Fragments in a suitable size range are selected 
for numerical analysis. Typically, fragments smaller than 200-400 bp and larger than 
1300-2000 bp are removed from the analysis (De Zoysa and Efstratiou 2000, 
McLauchlin et al. 2000, Ripabelli et al. 2000b, Champion et al. 2002, Guerra et al. 
2002, Gaafar et al. 2003, Jaimes et al. 2006). The number of analysed fragments 
varies between 3 and 33 (Gibson et al. 1999, De Zoysa and Efstratiou 2000, Ripabelli 
et al. 2000a, 2000b, McLauchlin et al. 2000, 2002, Champion et al. 2002, Boerema et 
al. 2006, Jaimes et al. 2006, Rehm et al. 2007). 

Compared with the original AFLP method, sAFLP generates significantly 
fewer fragments, therefore yielding less genetic information. However, the 
requirement for an automated sequencer may limit the use of fAFLP to reference and 
research laboratories, and therefore, sAFLP may be more widely applicable (Boerema 
et al. 2006). In sAFLP, amplified fragments are detected directly on agarose gel, 
making sAFLP easier to perform than, for example, some protocols of RFLP analysis 
(Valsangiacomo et al. 1995), ribotyping or insertion sequence typing (McLauchlin et 
al. 2000). In addition, sAFLP is easy to perform and the equipment required is 
inexpensive and widely available compared with that needed for PFGE (Ripabelli et 
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al. 2000a, Champion et al. 2002). sAFLP is also less labour-intensive and requires far 
less hands-on time than PFGE (Champion et al. 2002). Moreover, the sAFLP method 
is fast; results can be obtained within 24 h (Velappen et al. 2001, Boerema et al. 
2006). If a limited number of sAFLP profiles is compared, e.g. in an outbreak 
situation, the patterns can be analysed visually (Ripabelli et al. 2000a, Velappen et al. 
2001). However, computer-assisted analysis is needed when comparisons over 
extended time periods are performed (Ripabelli et al. 2000a).  

Jonas et al. (2000) detected sAFLP products of Legionella pneumophila 
strains by using both an automated sequencer and agarose gel electrophoresis. 
Agarose gel electrophoresis gave additional information since fragments of more than 
1000 bp, which could not be detected under the denaturing sequencing gel conditions 
used, were included in the analysis. However, analysis using an automated sequencer 
was convenient, allowed accurate definition of fragment size and was superior in 
detection of smaller fragments. In the same study, the discriminatory power of sAFLP 
was found to be higher than that of arbitrarily primed PCR, whereas PFGE identified 
a larger number of different genotypes than sAFLP. Champion et al. (2002) noted that 
sAFLP was equally discriminatory as PFGE when outbreaks of enteritis caused by 
campylobacters were investigated. PFGE and sAFLP showed similar discrimination 
also in a study of Helicobacter pullorum strains (Gibson et al. 1999). However, with 
19 strains of Salmonella enterica serovar Typhimurium, PFGE identified 19 different 
patterns, while sAFLP generated only eight profiles (Sood et al. 2002). Similarly, in a 
study of Staphylococcus aureus, the discriminatory power of PFGE proved to be 
higher than that of sAFLP (Boerema et al. 2006). The modified sAFLP method using 
a mix of four primers in a single PCR reaction also failed to reach higher 
discriminatory power than PFGE when S. enterica serovar Enteritidis strains were 
genotyped (Giammanco et al. 2007). 



 28

Table 2. Single-enzyme AFLP protocols established for typing of bacteria.  
 
Species Restriction 

enzyme 
Primer(s) useda Reference 

    
Bacillus anthracis,  
Bacillus cereus 

HindIII Hind-A, Hind-C, Hind-
G, Hind-T, Hind-ACb, 
Hind-AG, Hind-AA, 
Hind-AT, Hind-CA, 
Hind-CT, Hind-GA, 
Hind-GT, Hind-TA, 
Hind-TC, Hind-TG, 
Hind-TT 

Velappen et al. 2001 

B. cereus HindIII Hind-Ab, Hind-C, 
Hind-G, Hind-T 

Ripabelli et al. 2000a 

 HindIII Hind-A McLauchlin et al. 2002 

Bacillus mycoides HindIII Hind-CA Velappen et al. 2001 

Bacillus thuringiensis HindIII Hind-CA Velappen et al. 2001 

Campylobacter jejuni HindIII Hind-C Champion et al. 2002 

Chlamydia psittaci MspI Msp-CCT, Msp-CCA, 
Msp-GGT, Msp-CTA, 
Msp-ACT, Msp-CTC, 
Msp-GAA 

Boumedine and Rodolakis 
1998 

Clostridium botulinum HindIII Hind-A, Hind-Cb, 
Hind-G, Hint-T 

Brett et al. 2005 

Clostridium novyi 
 

HindIII 
 
EcoRI 

Hind-A, Hind-C, Hind-
G, Hind-T 
Eco-A, Eco-C, Eco-G, 
Eco-T 

McLauchlin et al. 2002 

Clostridium perfringens HindIII Hind-A, Hind-C, Hind-
Gb, Hind-T 

McLauchlin et al. 2000 

 HindIII Hind-G McLauchlin et al. 2002 

Clostridium spp. HindIII Hind-C Jaimes et al. 2006 

Corynebacterium diphteriae PstI Pst-A, Pst-C,  
Pst-Gb, Pst-T 

De Zoysa and Efstratiou 
2000 

Escherichia coli HindIII Hind-AC Velappen et al. 2001 

Helicobacter pullorum HindIII Hind-A, Hind-Cb, 
Hind-Gb, Hind-T 

Gibson et al. 1999 

Helicobacter pylori HindIII Hind-Ab, Hind-C, 
Hind-G, Hind-T 

Gibson et al. 1998 

Legionella pneumophila PstI Pst-G, Pst-GC, Pst-A, 
Pst-AT 

Valsangiacomo et al. 1995 

 PstiI Pst-G Jonas et al. 2004 

Listeria monocytogenes HindIII Hind-Ab, Hind-C, 
Hind-G, Hind-T 

Ripabelli et al. 2000b 

 EcoRI Eco-0, Eco-A, Eco-C, 
Eco-Gb, Eco-T 

Guerra et al. 2002 

 EcoRI Eco-G Corcoran et al. 2006 
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Table 2. Continued.  
Species Restriction 

enzyme 
Primer(s) useda Reference 

    
Mycobacterium kansasii PstI Pst-GC, Pst-ATTAG Picardeau et al. 1997 

 ApaI Apa-Ab, Apa-Cb, Apa-
G, Apa-Tb 

Gaafar et al. 2003 

Salmonella enterica serovar 
Enteritidis 

HindIII Hind-A, Hind-C, Hind-
G, Hind-Tc 

Giammanco et al. 2007 

Salmonella enterica serovar 
Havana 

PstI Pst-A, Pst-G Reche et al. 2003 

Salmonella enterica serovar 
Typhimurium 

HindIII Hind-A, Hind-Cb, 
Hind-G, Hind-T 

Sood et al. 2002 

Shigella flexneri PstI Pst-Ab, Pst-C, Pst-G, 
Pst-T 

Herrera et al. 2002 

Staphylococcus aureus HindIII Hind-AC Velappen et al. 2001 

 HindIII 
 

Hind-A, Hind, C, Hind-
Gb, Hind-T 

Boerema et al. 2006 

Streptococcus suis HindIII Hind-A, Hind-C, Hind-
Gb, Hind-T 

Rehm et al. 2007 

Yersinia enterocolitica, 
Yersinia pestis,  
Yersinia pseudotuberculosis 

HindIII Hind-AC, Hind-G Velappen et al. 2001 

    
 
a A, C, G or T, selective nucleotide at the 3’ end of the primer; 0, no selective nucleotide 
b Reported to be the most suitable primer for AFLP analysis  
c A mix of four primers used in a single PCR reaction 
 

2.3.2 Other modified AFLP methods 

 
If complete genome sequence of a bacterial strain is available, it can be used to 
predict which DNA fragments are amplified during AFLP analysis. In silico AFLP 
analysis of Escherichia coli showed that 97% of the predicted fragments were 
observed during AFLP analysis (Arnold et al. 1999b). Similarly, all but one of the 61 
predicted fragments were detected when a strain of Campylobacter jejuni was studied 
(Desai et al. 2001a). However, when AFLP was applied for the G+C-rich genome of 
Mycobacterium tuberculosis, many predicted fragments were not observed. Because 
of the rich G+C content, secondary structures may be formed, which may cause 
incomplete digestion or poor amplification of fragments (Sims et al. 2002). The whole 
genome sequence information can also be used to screen for the most suitable 
restriction enzyme and primer combination, thus reducing the number of initial 
experiments needed to find a suitable coupling (Arnold et al. 1999b, Ahmed et al. 
2003, Rombauts et al. 2003, Bikandi et al. 2004, Burtscher et al. 2006). Specific 
software programs have been developed for in silico AFLP analysis, and in addition 
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to the initial experiment design, they can be used for identification of the amplified 
fragments (Rombauts et al. 2003, Bikandi et al. 2004).  

In three-endonuclease AFLP (TE-AFLP), the total genomic DNA is digested 
using one frequent-cutter and two rare-cutter restriction enzymes. Adapters are ligated 
only to ends generated by rare-cutters, and thus, the number of amplified fragments is 
lower than in the original AFLP protocol. The TE-AFLP method is especially suitable 
for the analysis of complex genomes such as plant or insect genomes (van der Wurff 
et al. 2000). A variation of the AFLP technique using one frequent-cutter and two 
rare-cutter enzymes and a mixture of three different primers during amplification has 
also been successfully applied to characterize S. enterica subsp. enterica isolates 
(Lindstedt et al. 2000b). 

Van der Zee et al. (2003) developed a multi-enzyme multiplex-PCR AFLP. 
This method utilizes four different restriction enzymes. After digestion and ligation of 
adapters, two primers are used to amplify fragments, which are then separated by 
agarose gel electrophoresis. The discriminatory power of multi-enzyme multiplex-
PCR AFLP is higher than that of sAFLP, and since an automated sequencer is not 
needed the method is suitable for routine use in clinical microbiology laboratories.  

In single-adapter AFLP, one adapter is ligated to the cohesive ends generated 
by both restriction enzymes, circularizing the DNA fragments (Bootsma et al. 2000, 
Willems et al. 2000b). This method is, however, not widely used.  

The first step of the complementary DNA (cDNA)-AFLP technique involves 
reverse transcription of messenger RNA into double-stranded cDNA. The double-
stranded cDNA is then digested with two restriction enzymes, followed by ligation of 
adapters and PCR amplification steps (Dellagi et al. 2000, Kivioja et al. 2005). The 
resulting amplification products are separated by polyacrylamide gel electrophoresis 
(Dellagi et al. 2000, Breyne et al. 2003). Gene expression profiles can then be 
determined by quantitative analysis of band intensities (Breyne et al. 2003). The 
method also allows identification of differentially expressed genes if amplified cDNA 
products are purified from gels and sequenced (Dellagi et al. 2000). Since cDNA-
AFLP enables expression analysis without the need for prior sequence knowledge, it 
can be used as an alternative to microarrays, especially when genome sequence 
information is limited (Breyne et al. 2003, Reijans et al. 2003).  

AFLP analysis can also be used to identify specific markers, such as species-
specific fragments, which can then be excised from the AFLP gel, reamplified by 
PCR and sequenced (Tamada et al. 2001, Hu et al. 2002, van den Braak et al. 2004, 
van Bergen et al. 2005b). The resulting sequences can be utilized in development of 
PCR-based diagnostic assays, e.g. species-specific PCRs (van Bergen et al. 2005b).  
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2.4 AFLP pattern analysis 
 
Differences in AFLP patterns of different strains arise from insertions or deletions 
within the amplified fragments and from mutations in the restriction sites or in the 
sequences adjacent to the restriction sites and complementary to the selective primer 
extensions (Savelkoul et al. 1999). The choice of a suitable restriction enzyme and 
primer combination is important to achieve a sufficient number of polymorphic bands 
(Valsangiacomo et al. 1995, Lan and Reeves 2002). Typically, the fragment sizes 
included in pattern analysis vary between 50 and 500 bp (Aarts et al. 1999, Heir et al. 
2000, Lindstedt et al. 2000c, On and Harrington 2000, Willems et al. 2000b, Kusiluka 
et al. 2001, Amonsin et al. 2002, Guan et al. 2002, Motiwala et al. 2003, Shaaly et al. 
2005, Torpdahl et al. 2005, Hill et al. 2007).  

There are several ways to perform AFLP pattern analysis. The two most 
commonly used techniques are to calculate percentage similarities between AFLP 
patterns using Dice correlation coefficient (Dice 1945, Hookey et al. 1999, Scott et al. 
2001, Lan and Reeves 2002, Sawabe et al. 2002, Ip et al. 2003, Motiwala et al. 2003, 
Mikasová et al. 2005, Torpdahl et al. 2005) or Pearson product-moment correlation 
coefficient (Pearson 1926, Duim et al. 1999, van Eldere et al. 1999, De Boer et al. 
2000, van der Zwet et al. 2000, Hänninen et al. 2001, Schouls et al. 2003, van der Zee 
et al. 2003, On et al. 2004, van den Berg et al. 2004, Fearnley et al. 2005, Wieland et 
al. 2005, Burtscher et al. 2006, Fang et al. 2006, Kuehni-Boghenbor et al. 2006, 
Keller et al. 2007, Takahashi et al. 2007). Dice correlation coefficient is based on 
band presence or absence, and therefore, band assignment is necessary (De Boer et al. 
2000), whereas Pearson product-moment correlation coefficient measures the whole 
densitometric curve of the gel track without assignment of bands (De Boer et al. 2000, 
van der Zee et al. 2003).  

A drawback of band-based analysis is that the band assignment can be very 
laborious due to complex AFLP patterns (De Boer et al. 2000, Werner et al. 2003). In 
addition, band-based analysis is subject to human interpretation errors, and various 
parameters, such as different technicians, presence of bands that have very similar 
sizes and gel electrophoresis conditions, can affect the outcome (Duim et al. 2000, 
van der Zee et al. 2003, Torpdahl et al. 2005). Potential person-to-person variation 
can make comparison of the results of band-based AFLP analysis between 
laboratories difficult (Torpdahl et al. 2005). On the other hand, the Pearson 
correlation coefficient method is sensitive to differences in background and to lesser 
extent to variations in relative band intensities (De Boer et al. 2000, Huys et al. 2000, 
Werner et al. 2003). Especially if manual sequence equipment and radioactively 
labelled primers are used, standardization of the background intensity can be 
challenging (Coenye et al. 1999b, De Boer et al. 2000). It also is essential to 
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remember that although computer software is partly automated the selected settings 
affect the outcome of both analyses (Gerner-Smidt et al. 1998, De Boer et al. 2000, 
Fry et al. 2000). The settings selected should thus be kept constant throughout the 
study (De Boer et al. 2000).  

Duim et al. (2000) analysed AFLP banding profiles of C. jejuni strains with 
band-based and correlation-based similarity coefficients, and construction of 
dendrograms was performed by the unweighted pair-group method using average 
linkages. Analyses resulted in dendrograms with identical clustering and 
discrimination of strains. Werner et al. (2003), by contrast, found that the level of 
similarities of AFLP profiles of Enterococcus faecium strains and the resulting cluster 
analysis were strongly dependent on the coefficient used for calculating similarities.  
 

2.5 Strengths and weaknesses of AFLP 
 
AFLP can be applied to DNA of any origin and complexity, and no prior knowledge 
about the target DNA is needed (Vos et al. 1995). Furthermore, AFLP analysis 
reflects the total genome of the organism and the amplified fragments originate from 
both variable and conserved DNA sequences (Arnold et al. 1999a, Willems et al. 
2000b). Thus, the method is considered to provide knowledge of the short- and long-
term evolution of bacterial strains (Thompson et al. 2003). The discriminatory power 
of AFLP has been shown to be high in several studies (Table 1). A standard set of 
reagents can be applied to different bacterial species without the need for species-
specific information (Jackson et al. 1999, van der Zwet et al. 2000). However, an 
AFLP protocol providing high discriminatory ability with one bacterial species may 
not necessarily yield good results when applied to another species (Lindstedt et al. 
2000b). The discriminatory power of AFLP can be controlled by selection of the 
restriction enzyme and primer combination used (Desai et al. 1998, Heir et al. 2000, 
Mortimer and Arnold 2001), and it is therefore essential to tailor the protocol for 
optimal characterization of each bacterial species investigated.  

AFLP analysis is relatively insensitive to differences in the concentrations of 
template DNA. Vos et al. (1995) have shown that template concentrations ranging 
1000-fold, from 25 pg to 25 ng, had little effect on AFLP patterns. However, with a 
very low DNA concentration of 2.5 pg, differences in band intensity were observed 
and some bands were absent. Burtscher et al. (2006) found that AFLP profiles were 
stable at DNA concentrations of 0.1-100 ng for digestion. However, concentrations 
varying from 500 to 1500 ng resulted in intensity variations and a loss of longer 
fragments. Similarly, Gzyl et al. (2005) did not find any band variations in the AFLP 
profiles when DNA concentrations of 100–500 ng were used.  
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In contrast to RAPD, which has a low reproducibility (Power et al. 1996), 
AFLP uses highly stringent PCR conditions, and thus, its reproducibility is good. 
Several studies have reported that duplicate experiments resulted in identical AFLP 
patterns (Janssen et al. 1996, Koeleman et al. 1998, Sloos et al. 1998, Grady et al. 
1999, Kokotovic et al. 1999, Antonishyn et al. 2000, Goulding et al. 2000a, 
Pattanayak et al. 2000, Smith et al. 2000, Kusiluka et al. 2001, Scott et al. 2001, Hu 
et al. 2002, Kassama et al. 2002). Many authors have, however, observed small 
variation in peak heights or fragment intensities (Duim et al. 1999, Jackson et al. 
1999, Kokotovic and On 1999, Antonishyn et al. 2000, Sims et al. 2002, On et al. 
2004, Hong et al. 2005). Variations in peak height have not affected the numbers or 
sizes of the PCR products. This variation is due to small differences in lane and 
background intensities or peak heights, which may arise from differences in the 
effectiveness of digestion-ligation or PCR amplification steps (Lindstedt et al. 2000a) 
as well as from minor differences in the amounts of sample loaded onto the gel 
(Ticknor et al. 2001). The degree of similarity of repeated AFLP experiments has 
varied between 84% and 99%, as determined by the Pearson product-moment 
correlation in different studies (Huys et al. 1996a, 2000, Janssen et al. 1997, Sloos et 
al. 1998, Duim et al. 1999, 2004, van Eldere et al. 1999, On and Harrington 2000, 
Willems et al. 2000a, Willems et al. 2000b, Vancanneyt et al. 2002, On et al. 2003, 
2004, Fearnley et al. 2005, Kuehni-Boghenbor et al. 2006, Wieland et al. 2006, Keller 
et al. 2007, Rehm et al. 2007).  

The major challenge of most typing methods, including AFLP analysis, is 
interlaboratory reproducibility (Brisse et al. 2002). Although several authors have 
suggested that AFLP profiles are suitable for electronic transmission for 
interlaboratory comparisons (Desai et al 1998, Duim et al. 1999, Antonishyn et al. 
2000, De Boer et al. 2000, Heir et al. 2000, Mortimer and Arnold 2001, Tamada et al. 
2001, Guan et al. 2002, van den Berg et al. 2004), only a few studies have examined 
this issue. Jones et al. (1997) found that when laboratories gained experience with the 
AFLP method utilizing radioactively labelled primers the AFLP profiles showed 
extremely high reproducibility. Similarly, when sAFLP was used to genotype 
L. pneumophila isolates, the results of the intercentre comparison were promising. 
However, several experimental parameters potentially can affect intercentre 
reproducibility (Fry et al. 2000, 2002). To create databases utilizing results from 
different laboratories, standardized AFLP protocols using identical instrumentation 
and reagents acquired from the same manufacturer must be established. In addition, 
criteria chosen to define the AFLP types must be selected carefully (Fry et al. 2000). 
Due to the wide selection of different automated sequencers currently available for 
AFLP analysis, fAFLP may prove to be difficult to standardize across laboratories.  
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PFGE is often considered to be the gold standard for bacterial typing (Heir et 
al. 2000, Klaassen et al. 2002, Ip et al. 2003, Shaaly et al. 2005). However, several 
studies have shown that the discriminatory power of AFLP is equal or higher than that 
obtained with PFGE (Table 1). AFLP analysis is faster than PFGE analysis, and the 
technique can be partly automated, thus reducing the required hands-on time and 
enabling high throughput of samples (Duim et al. 1999, Grady et al. 1999, Heir et al. 
2000, Lindstedt et al. 2000a, Smith et al. 2000, Scott et al. 2001, Klaassen et al. 
2002). In addition, some automated DNA sequencers allow the use of several 
fluorescent dyes simultaneously, and thus, the efficiency can be increased by running 
different AFLP reactions simultaneously (Heir et al. 2000). At present, the cost of an 
automated DNA sequencer may limit the routine application of AFLP analysis in 
clinical settings (Gaafar et al. 2003). The cost of a single AFLP reaction is, 
nevertheless, estimated to be lower than that of PFGE (Olive and Bean 1999). AFLP 
is also more cost-efficient and easier and faster to perform than MLST (Schouls et al. 
2003).  

AFLP allows more precise sizing of fragments (± 1 bp) than PFGE, and more 
fragments are available for comparison and definition of strain genotype (Desai et al. 
1998, Smith et al. 2000, Tamada et al. 2001). A limited number of PFGE patterns can 
be compared to each other by eye, and computer software is generally required for 
comparison of more complex AFLP patterns (Klaassen et al. 2002, Jureen et al. 
2004). Computer-assisted analysis also facilitates the processing of large numbers of 
samples and may enable transfer of data between different laboratories (De Boer et al. 
2000).  

One of the disadvantages of AFLP is that it is not possible to know whether 
identically sized fragments are derived from the same part of the genome (Gibson et 
al. 1998). In addition, if specific characterization is needed, the fragments must to be 
sequenced after DNA extraction from capillary electrophoresis fractions or gel bands 
(Hu et al. 2002, Rombauts et al. 2003). This can be difficult if fAFLP is used (Portier 
et al. 2006). However, when a whole genome sequence is available, in silico AFLP 
analysis can aid in fragment identification (Rombauts et al. 2003, Bikandi et al. 
2004).  
 

2.6 Use of AFLP in species differentiation  
 

The current consensus for bacterial species determination is based on whole-genome 
DNA-DNA hybridization analysis, with a species comprising strains showing at least 
70% DNA-DNA reassociation and a ∆Tm ≤ 5°C (difference in DNA-DNA hybrid 
melting points) (Wayne et al. 1987). However, this method is not practical for routine 
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use and is difficult to apply to a large number of isolates, and therefore, alternative 
approaches have been developed (Mougel et al. 2002). At present, 16S rRNA gene 
sequence analysis is widely used for species identification (Clarridge III 2004), and an 
international committee has recommended that all species descriptions should involve 
an almost complete 16S rRNA sequence (Stackebrandt et al. 2002). In general, 
organisms showing less than 97% 16S rRNA sequence identity will not give a DNA 
similarity of more than 60% and thus belong to different species (Stackebrandt and 
Goebel 1994). On the other hand, organisms showing over 97% 16S rRNA sequence 
similarity may belong to a single species. However, this is not always the case, and 
the approach is therefore insufficient to guarantee species identification (Fox et al. 
1992, Stackebrandt and Goebel 1994, Vandamme et al. 1996). Recently, an 
international committee has suggested that determination of species can be obtained 
with alternative molecular methods to DNA-DNA hybridization analysis, describing 
also AFLP as a promising method (Stackebrandt et al. 2002).  

The first report evaluating the applicability of AFLP in bacterial taxonomy 
was published in 1996 (Janssen et al. 1996). Since then, AFLP has been used to study 
species-level diversity in several groups of bacteria (Table 3). Huys et al. (1996) 
found a strong overall level of correlation between AFLP fingerprinting data of the 
genus Aeromonas and DNA-DNA hybridization results. Later, AFLP analysis has 
been shown in several studies to reflect well DNA-DNA similarity, e.g. in 
Agrobacterium (Mougel et al. 2002, Portier et al. 2006), Burkholderia (Coenye et al. 
1999b), Ralstonia (Coenye et al. 1999a) and Xanthomonas (Rademaker et al. 2000). 
AFLP can thus be considered a relatively fast and reliable alternative to DNA-DNA 
hybridization studies and especially suitable for screening large number of isolates 
(Rademaker et al. 2000). However, ultimate confirmation should be achieved with 
DNA-DNA hybridization analysis (Janssen et al. 1997). 

Duim et al. (2001) found that AFLP was a suitable tool for identification of 
Campylobacter strains at the species and subspecies levels. However, the AFLP 
dendrogram did not correspond with the phylogenetic relationships derived from 16S 
rRNA sequence comparison. For Ralstonia species, by contrast, the AFLP results 
were in agreement with 16S rRNA sequence analysis (Coenye et al. 1999a), and for 
streptococcal isolates AFLP analysis provided a more definite identification than 16S 
rRNA sequencing (Neeleman et al. 2004). Coenye et al. (1999b) have also shown that 
AFLP is a valuable or even a better alternative than SDS-PAGE of whole-cell 
proteins for distinguishing Burkholderia species.  
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Table 3. Studies that have used AFLP in bacterial species differentiation.  
 
Species References 

Acinetobacter spp.  Janssen et al. 1997, Koeleman et al. 1998, Chang et al. 2005 

Aeromonas spp. Huys et al. 1996a, 1996b 

Agrobacterium spp. Mougel et al. 2002, Portier et al. 2006 

Arcobacter spp.  On et al. 2003 

Bacillus spp.  Keim et al. 1997, Ticknor et al. 2001, Hill et al. 2004 

Bordetella spp. Gzyl et al. 2005 

Brucella spp. Whatmore et al. 2005 

Burkholderia spp. Coenye et al. 1999b, 2001 

Campylobacter spp. On and Harrington 2000, Duim et al. 2001, Wieland et al. 
2005, Keller et al. 2007, Waldenström et al. 2007 

Citrobacter freundii, Enterobacter spp., 
Enterococcus spp., Escherichia coli, 
Klebsiella spp., Morganella morganii, 
Providencia rettgeri, Proteus mirabilis  

Kassama et al. 2002 

Enterococcus spp. Burtscher et al. 2006 

Erwinia spp. Avrova et al. 2002 

Lactobacillus spp.  Torriani et al. 2001 

Mycobacterium spp. Huys et al. 2000 

Mycoplasma spp.  Hong et al. 2005 

Ralstonia spp. Coenye et al. 1999a 

Staphylococcus spp. (coagulase-negative) Taponen et al. 2006, 2007 

Streptococcus spp. Neeleman et al. 2004 

Vibrio spp. Benediktsdóttir et al. 2000, Thompson et al. 2001 

Xanthomonas spp. Rademaker et al. 2000 

Yersinia spp. Kuehni-Boghenbor et al. 2006 

 
 
If a standardized AFLP protocol is used, AFLP data are suitable for creation 

of an identification library (Huys et al. 1996b, Janssen et al. 1997, Chang et al. 2005, 
Hong et al. 2005, Whatmore et al. 2005), which can aid in identifying unknown 
isolates of a particular bacterial genus. Waldenström et al. (2007) successfully utilized 
an AFLP identification library of Campylobacter strains for presumptive 
identification of campylobacteria isolated from wild birds. A polyphasic identification 
approach including 16S RNA sequence analysis and extensive phenotypic 
characterization could then be limited to selected strains.  
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2.7 Genus Listeria 

2.7.1 Classification, characteristics and clinical significance of listeria 

 
Listeria spp. are Gram-positive, non-sporing, facultatively anaerobic rods (Seeliger 
and Jones 1986) that are widely distributed in the environment, including soil, sewage 
and vegetation (Ramaswamy et al. 2007). Type species of the genus is 
L. monocytogenes and the mol% G+C of the DNA varies between 36 and 39 (Seeliger 
and Jones 1986, Glaser et al. 2001). The genus Listeria belongs to the family 
Listeriaceae, the order Bacillales, the class Bacilli and the division Firmicutes and 
contains six species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri 
and L. welshimeri (Euzéby 1997, Vázquez-Boland et al. 2001). Two of the species, 
L. monocytogenes and L. ivanovii, are known to be pathogenic. L. ivanovii mainly 
causes disease in animals, but a few cases have also been reported in humans, whereas 
L. monocytogenes causes listeriosis in both animals and humans (Low and Donachie 
1997, Vázquez-Boland et al. 2001).  

2.7.2 L. monocytogenes and listeriosis 

 
Healthy animals and humans can serve as non-symptomatic carriers of 
L. monocytogenes. However, L. monocytogenes can also cause a severe disease, 
invasive listeriosis, which has a fatality rate as high as 30%. Pregnant women, the 
elderly, newborns and immunocompromised persons are at higher risk of contracting 
invasive listeriosis (Farber and Peterkin 1991, Ramaswamy et al. 2007). Clinical 
manifestations of invasive listeriosis include abortion, stillbirth, sepsis, meningitis and 
meningoencephalitis (Vázquez-Boland et al. 2001, Ramaswamy et al. 2007). In 
otherwise healthy people, L. monocytogenes may cause non-invasive febrile 
gastroenteritis (Riedo et al. 1994, Dalton et al. 1997, Miettinen et al. 1999b, Sim et al. 
2002). In addition, veterinarians and farmers are at higher risk of contracting 
cutaneous listeriosis by direct contact with infected animals (McLauchlin and Low 
1994). Most listeriosis cases are foodborne; vegetables (Schlech et al. 1983, Aureli et 
al. 2000), dairy products (Fleming et al. 1985, Dalton et al. 1997, Lyytikäinen et al. 
2000), ready-to-eat meat products (de Valk et al. 2001, Sim et al. 2002) and seafood 
(Brett et al. 1998, Miettinen et al. 1999b) have been implicated in listeriosis 
outbreaks.  
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2.7.3 L. monocytogenes in the food processing environment 

 
Control of L. monocytogenes in food processing plants is extremely challenging since 
the organism survives and grows at refrigerated temperatures, tolerates high salt 
concentration and low pH and can exist in biofilms on surfaces of the food processing 
plant (Gandhi and Chikindas 2007). Various genotyping methods have been used to 
trace the sources of L. monocytogenes contamination in the food processing industry 
(Destro et al. 1996, Giovannacci et al. 1999, Chasseignaux et al. 2001, Fonnesbech 
Vogel et al. 2001, Berrang et al. 2002, Hu et al. 2006, De Cesare et al. 2007, López et 
al. 2007). Contamination routes of L. monocytogenes have been widely surveyed, 
especially in seafood (Rørvik et al. 1995, Destro et al. 1996, Autio et al. 1999, 
Johansson et al. 1999, Dauphin et al. 2001, Fonnesbech Vogel et al. 2001, Norton et 
al. 2001, Vaz-Velho et al. 2001, Hoffman et al. 2003, Lappi et al. 2004, Thimothe et 
al. 2004, Gudmundsdóttir et al. 2005, 2006, Hu et al. 2006, Nakamura et al. 2006, 
Wulff et al. 2006), dairy (Unnerstad et al. 1996, Miettinen et al. 1999a, Lyytikäinen et 
al. 2000, Wagner et al. 2006, De Cesare et al. 2007), meat (Nesbakken et al. 1996, 
Giovannacci et al. 1999, Autio et al. 2000, Chasseignaux et al. 2001, Lundén et al. 
2003b, Heir et al. 2004, Thévenot et al. 2006a, 2006b, Bērziņš et al. 2007) and 
poultry processing plants (Lawrence and Gilmour 1995, Chasseignaux et al. 2001, 
Berrang et al. 2002, Lundén et al. 2003b, Rørvik et al. 2003, López et al. 2007).  

Since L. monocytogenes is ubiquitous in nature, the initial contamination can 
be introduced to the food processing plant by several routes, including raw materials, 
personnel, transport vehicles, equipment and packaging materials (Lawrence and 
Gilmour 1995, Rørvik et al. 2000, Berrang et al. 2002, Lundén et al. 2002, Hoffman 
et al. 2003, Markkula et al. 2005, Wagner et al. 2006). Due to the inevitable presence 
of L. monocytogenes in the low-risk area where raw materials are handled, it is 
essential to have hygiene barriers that hinder the spread of the organism to areas 
requiring greater hygiene (Berrang et al. 2002, Heir et al. 2004, Gudmundsdóttir et al. 
2006). However, incoming strains do not always contaminate the environment, and, in 
general, the L. monocytogenes population present in raw materials is different from 
the population persisting in the plant environment (Hoffman et al. 2003, Thimothe et 
al. 2004). The environment of the plant is often colonized by a few dominant clones 
(Rørvik et al. 1995, Autio et al. 1999, Giovannacci et al. 1999, Johansson et al. 1999, 
Miettinen et al. 1999a, Dauphin et al. 2001, Fonnesbech Vogel et al. 2001, Norton et 
al. 2001, Martinez et al. 2003, Rørvik et al. 2003, Holah et al. 2004, Wulff et al. 
2006). The persistent strains seem to have characteristics, such as enhanced adherence 
to food contact surfaces, increased biofilm formation and resistance to disinfectants, 
that favour their persistence in the plant (Norwood and Gilmour 1999, Lundén et al. 
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2000, 2003a, Borucki et al. 2003b). Several studies have shown that 
L. monocytogenes can persist in food processing plants for prolonged periods of time, 
even several years, indicating that routine cleaning may fail to eliminate the organism 
(Nesbakken et al. 1996, Unnerstad et al. 1996, Giovannacci et al. 1999, Johansson et 
al. 1999, Miettinen et al. 1999a, Fonnesbech Vogel et al. 2001, Hoffman et al. 2003, 
Martinez et al. 2003, Thimothe et al. 2004, Hu et al. 2006, Wagner et al. 2006, Wulff 
et al. 2006).  

Raw materials may represent the source of finished product contamination 
(Norton 2001, Hoffman 2003, Gudmundsdóttir et al. 2005, Markkula 2005). The role 
of raw materials is particularly important if the preparation process does not involve a 
listericidal heat treatment (Hoffman et al. 2003, López et al. 2007). However, most 
authors agree that the contamination of finished products seems primarily to arise 
from post-processing contamination from the environment (Rørvik et al. 1995, 
Nesbakken et al. 1996, Autio et al. 1999, Johansson et al. 1999, Miettinen et al. 
1999a, Lyytikäinen et al. 2000, Rørvik et al. 2000, Dauphin et al. 2001, Fonnesbech 
Vogel et al. 2001, Lundén et al. 2003b, Thimothe et al. 2004, Nakamura et al. 2006), 
and contamination of the environment has been shown to increase along the 
processing line (Rørvik et al. 2003). Typically, the source of finished product 
contamination has been observed to be processing machines, particularly brining, 
slicing, dicing and packing machines (Autio et al. 1999, Johansson et al. 1999, 
Lyytikäinen et al. 2000, Dauphin et al. 2001, Fonnesbech Vogel et al. 2001, Lundén 
et al. 2002, Nakamura et al. 2006, Bērziņš et al. 2007). However, within a plant, the 
contamination can also be spread by other tools or personnel; L. monocytogenes has 
been recovered from, for instance, the hands, footwear, gloves and aprons of 
employees (Destro et al. 1996, Autio et al. 1999, Dauphin et al. 2001, 
Gudbjörnsdóttir et al. 2004, Thimothe et al. 2004, Gudmundsdóttir et al. 2005). 
Furthermore, job rotation between departments has been shown to be a risk factor 
associated with the isolation of L. monocytogenes from smoked salmon, and thus, the 
role of personnel can become considerably larger when assigned duties are rotated 
(Rørvik et al. 1997). Lundén et al. (2002) have also reported the transfer of persistent 
L. monocytogenes contamination between food processing plants with a dicing 
machine. Therefore, it is important to limit the traffic of staff and equipment to avoid 
cross-contamination between different processing lines, compartments and even food 
processing plants (Rørvik et al. 2000, Lundén et al. 2003b, Thimothe et al. 2004, 
Gudmundsdóttir et al. 2006). To avoid product contamination, efficient cleaning and 
disinfection routines are essential with special attention directed to processing 
machines and other product contact surfaces (Rørvik et al. 2000, Lundén et al. 2002, 
2003b, Thimothe et al. 2004). 
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2.8 Genus Clostridium 

2.8.1 Classification, characteristics and clinical significance of clostridia  

 
The genus Clostridium, proposed by Prazmowski in 1880, belongs to the family 
Clostridiaceae, the order Clostridiales, the class Clostridia and the division 
Firmicutes (Cato et al. 1986, Euzéby 1997). This genus is one of the largest for 
bacteria (Collins et al. 1994), which at present contains 190 validly named species 
(Euzéby 1997). The genus Clostridium is phenotypically extremely heterogeneous, 
warranting a major taxonomic revision (Collins et al. 1994). Clostridia are Gram-
positive, spore-forming, straight or slightly curved rods. Most Clostridium species are 
obligate anaerobes. There is, however, wide variety in oxygen tolerance, and some 
species, such as C. histolyticum and C. tertium, are able to grow in the presence of 
oxygen. Type species C. butyricum has a DNA base composition of 27-28 mol% 
G+C. Although the G+C content of the DNA for other Clostridium species varies 
between 22 and 55 mol% (Cato et al. 1986), most species have a low G+C content 
(Johnson and Francis 1975, Collins et al. 1994). 

Clostridium species are ubiquitous in nature, existing primarily in soil, 
freshwater and marine sediments and the intestinal tract of humans and many animals 
(Goonetilleke and Harris 2004). Although most Clostridium species are harmless 
saprophytes, a few clostridia, the so-called major pathogens, are involved in a variety 
of serious and often fulminant human and animal diseases (Hatheway 1990) (Table 
4). The illnesses caused by major pathogens are mediated by their toxins (Hatheway 
1990). In addition to the major pathogens, severe disease can be caused by C. baratii 
and C. butyricum strains, which are able to produce type E or F botulinum toxin 
(Hatheway 1990, Wang et al. 2000, Barash et al. 2005). Moreover, many Clostridium 
species are opportunistic pathogens and can cause various clinical conditions such as 
soft tissue infections, abscesses, intra-abdominal infections, pleuropulmonary 
infections and bacteraemia (Cato et al. 1986, Lavigne et al. 2003). Recently emerging 
clostridia, which have been considered to be harmless and non-pathogenic, have also 
been implicated in severe human infections (Carlier et al. 2004, 2006, Elsayed and 
Zhang 2004, 2007, Woo et al. 2004, 2005). In addition, many older clostridial 
diseases, which were previously associated mainly with injuries resulting from 
warfare, have re-emerged and caused life-threatening conditions among injecting drug 
users (Brazier et al. 2002).  
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Table 4. Major pathogens of the genus Clostridium. 
 
Species Disease Reference 

C. botulinum Foodborne, infant, wound and adult infectious 
botulism 

Goonetilleke and Harris 2004, 
Lindström and Korkeala 2006 

C. chauvoei Blackleg in cattle and sheep Hatheway 1990 
C. colinum Ulcerative enteritis and necrotizing hepatitis 

in fowl 
Songer 1996 

C. difficile Antibiotic-associated diarrhoea, 
pseudomembranous colitis 

Knoop et al. 1993 

C. haemolyticum Haemoglobinuria in cattle Smith 1952 
C. histolyticum Wound infections, gas gangrene Hatheway 1990, Brazier et al. 

2004  
C. novyi Gas gangrene in humans, necrotic hepatitis in 

sheep 
Hatheway 1990 

C. perfringens Food poisoning, necrotic enteritis, gas 
gangrene, antibiotic-associated diarrhoea in 
humans, gastrointestinal and enterotoxaemic 
diseases in animals 

Rood and Cole 1991, Petit et al. 
1999 

C. piliforme Tyzzer’s disease in animals Van Andel et al. 2000 
C. septicum Gas gangrene, enterocolitis, necrotic myositis, 

necrotic dermatitis 
Smith-Slatas et al. 2006 

C. sordellii Wound and bone infections, bacteraemia, gas 
gangrene and fulminate endometritis in 
humans, enteritis and enterotoxaemia in sheep 
and cattle 

Bitti et al. 1997, Lewis and 
Naylor 1998, Abdulla and Yee 
2000, Sinave et al. 2002 

C. spiroforme Enterotoxaemia in rabbits and laboratory 
rodents 

Borriello and Carman 1983, 
Songer 1996 

C. tetani Tetanus Goonetilleke and Harris 2004 

 

2.8.2 Identification of clostridia  

 
Despite the clinical importance and food hygiene risk of clostridia, reliable, practical 
and fast identification methods are few. Traditionally, the identification of clostridia 
has been based on Gram-staining, morphology, biochemical testing and analysis of 
short-chain fatty acid metabolites of glucose fermentation by gas-liquid 
chromatography (Holdeman et al. 1977). These methods are time-consuming, 
laborious, expensive and sometimes fail to identify clostridia to the species level, and 
thus, are not applicable in many clinical or food microbiology laboratories (Celig and 
Schreckenberger 1991, Sperner et al. 1999a, Song et al. 2002, Elsayed and Zhang 
2004). In addition, some clostridia may be misidentified due to Gram stain variability, 
lack of spores and atypical clostridial colonial morphology (Alexander et al. 1995, 
Lavigne et al. 2003, Elsayed and Zhang 2004). 

Several commercial identification kits for anaerobic bacteria, including API 
AN-Ident, API 20A, ATB 32A, Minitek Anaerobe II, PRAS II, Rapid ID 32 A, RapID 
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ANA II and Vitek ANI, have failed to accurately identify Clostridium species, and 
none of these kits can thus be used as the sole identification method for clostridia 
(Burlage and Ellner 1985, Head and Ratnam 1988, Kitch and Appelbaum 1989, 
Looney et al. 1990, Celig and Schreckenberger 1991, Marler et al. 1991, Alexander et 
al. 1995, Lindström et al. 1999, Sperner et al. 1999a, Lau et al. 2006). Therefore, 
various genotypic identification methods, such as 16S-23S rDNA internal transcribed 
spacer (ITS) polymorphism analysis, PCR-RFLP targeting triosephosphate isomerise 
(tpi) gene and automated ribotyping, have been tested (Broda et al. 2003, Dhalluin et 
al. 2003, Kennet and Stark 2006). However, 16S-23S rDNA ITS polymorphism 
analysis proved to be inadequate for species-level discrimination of psychrophilic and 
psychrotrophic clostridia associated with meat spoilage (Broda et al. 2003), and a 
drawback of the PCR-RFLP targeting tpi gene and automated ribotyping was that 
some species were difficult to definitively identify without supplementary testing 
(Dhalluin et al. 2003, Kennett and Stark 2006). The MicroSeq 500 16S rDNA 
bacterial identification system has proved to be better in identifying clostridia than 
commercial identification kits (Lau et al. 2006). However, the database needs to be 
expanded to also be able to identify rarely occurring clostridia (Woo et al. 2003, 
2006, 2007, Lau et al. 2006). In addition, although 16S rRNA sequence analysis has 
proved to be suitable for differentiation of some Clostridium species and has 
successfully been applied to identify medically important clostridia (Lawson et al. 
1993, Collins et al. 1994, Brazier et al. 2002, Woo et al. 2005, Decousser et al. 2007, 
Fujitani et al. 2007), certain species, such as C. novyi and C. botulinum type C, 
C. ghoni and C. sordellii, as well as proteolytic C. botulinum and C. sporogenes show 
very high 16S rRNA sequence similarity and may thus be difficult to differentiate 
using this method (Hutson et al. 1993, Lawson et al. 1993). In silico analysis of 16S 
rRNA gene sequencing-based methods has also shown that various methods were able 
to identify only 31-55% of the 42 Clostridium species included in the study. Among 
the Clostridium species that 16S rRNA sequences were unable to accurately speciate 
were the clinically important C. botulinum, C. septicum, C. tertium and C. tetani 
(Woo et al. 2007).  

For common or clinically important clostridia, numerous identification 
techniques, such as species-specific PCR tests and techniques for rapid detection of 
species- or type-specific toxins, have been established (Hatheway 1990, Knoop et al. 
1993, Brynestad and Granum 2002, Wilkins and Lyerly 2003, Heikinheimo and 
Korkeala 2005, Lindström and Korkeala 2006). However, the disadvantage of these 
techniques is that a specific test is required for each organism, and therefore, a wide 
selection of methods has to be set up to be able to identify several Clostridium 
species.  
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2.8.3 Clostridia in food 

 
C. botulinum is divided into three groups based on phenotypic characteristics. Group I 
contains type A strains and proteolytic strains of type B and F, group II type E strains 
and non-proteolytic strains of type B and F, and group III type C and D strains 
(Lindström and Korkeala 2006). C. botulinum types A, B, E and F are mainly 
responsible for human botulism (Lynt et al. 1982, Hatheway 1995). Group I strains do 
not grow at temperatures below 10°C, but the spores have high heat resistance, and 
thus, group I strains may cause problems, especially in canning and home 
preservation of vegetables and meat. Group II strains, by contrast, are able to grow at 
3°C, and their spores have lower heat resistance; these strains pose a safety risk 
particularly for refrigerated minimally processed packaged foods of extended 
durability (Lynt et al. 1982, Lindström et al. 2006). Foodborne botulism occurs after 
the ingestion of food containing preformed neurotoxin. Typical symptoms include 
nausea, vomiting, constipation and descending flaccid paralysis, finally resulting in 
failure of the respiratory musculature, which is why the disease is life-threatening if 
left untreated (Hatheway 1995). Often reported vehicles in botulism outbreaks are 
home-canned vegetables, fish or marine mammal products and different meat 
products (Roblot et al. 1994, Hatheway 1995, Boyer et al. 2001).  

C. perfringens is divided into five types (A-E) based on the presence of 
genes encoding the four major lethal toxins (Petit et al. 1999). Enterotoxin-producing 
C. perfringens type A is widely recognized as one of most important causes of food 
poisoning of bacterial origin (Brynestad and Granum 2002, Lukinmaa et al. 2002, 
Lynch et al. 2006). The disease results from the ingestion of food containing large 
numbers of vegetative cells, which can sporulate and produce enterotoxin in the 
gastrointestinal tract (Rood and Cole 1991, Taormina and Dorsa 2004). Typical signs, 
e.g. diarrhoea, nausea and abdominal pain, last about 24 h, and due to the mildness of 
the disease, it is likely to be underreported (Hatheway 1990, Rood and Cole 1991, 
Brynestad and Granum 2002). Most C. perfringens outbreaks are caused by meat 
products, but fish and foods containing peas have also served as vehicles (Brunestad 
and Granum 2002, Taormina and Dorsa 2004, Lahti et al. 2008). Outbreaks typically 
occur in hospitals, restaurants or other food establishments where large amounts of 
food are prepared well in advance of service (Brynestad and Granum 2002). If cooling 
time of the food within the growth range of C. perfringens (15-50°C) is too slow and 
or the food is not sufficiently reheated, the number of organisms increase rapidly 
(Brynestad and Granum 2002, Taormina and Dorsa 2004).  

Several Clostridium species are also challenging for the food processing 
industry due to their food spoilage properties. Various psychrophilic, psychrotrophic 
and mesophilic clostridia can cause deep tissue or “bone taint” spoilage of meat 
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(Boerema et al. 2002) or blown pack spoilage of vacuum-packed chilled meats 
(Collins et al. 1992, Broda et al. 1996, Boerema et al. 2003). In addition, 
C. tyrobutyricum, the causative agent of late blowing in cheese, causes considerable 
economic losses to cheese producers (Dasgupta and Hull 1989, Klijn et al. 1995).  
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3. AIMS OF THE STUDY 
 

The objective of this work was to evaluate the applicability of AFLP in strain typing 
and identification of bacteria, with special attention directed to the foodborne 
pathogens L. monocytogenes, C. botulinum and C. perfringens. Specific aims were as 
follows:  

 

1.  to develop highly discriminative AFLP protocols for optimal 
characterization of L. monocytogenes and C. botulinum group I and II 
strains (I, II), 

 
2.  to assess the reproducibility, ease of performance, typeability and 

discriminatory power of the AFLP approach and to determine the 
suitability of AFLP analysis in typing L. monocytogenes, C. botulinum 
and C. perfringens at the strain level (I-V), 

 
3.  to evaluate the applicability of AFLP analysis in differentiation of Listeria 

and Clostridium species (I, III), 
 
4.  to investigate the contamination routes of L. monocytogenes using AFLP 

analysis in a chilled food processing plant producing ready-to-eat and 
ready-to-reheat foods and to evaluate the effect of different intervention 
methods on the occurrence of L. monocytogenes (IV) and 

 
5.  to examine the genetic similarity of persistent and sporadic 

L. monocytogenes strains using AFLP and PFGE analyses (V). 
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4. MATERIALS AND METHODS 

 

4.1 Bacterial strains (I-III, V) 
 
L. monocytogenes (n=89), L. grayi (n=1), L. innocua (n=3), L. ivanovii (n=2), 
L. seeligeri (n=2) and L. welshimeri (n=3) strains were selected from the culture 
collection of the Department of Food and Environmental Hygiene (I, V). In Study I, 
strains originated from various foods, animals, silage and the food processing 
environment. In addition, strains originating from the American Type Culture 
Collection (Manassas, VA, USA) and the National Collection of Type Cultures 
(London, UK) were included. In Study V, persistent (n=17) and sporadic (n=38) 
L. monocytogenes strains from 11 food processing plants were analysed. Strains were 
selected based on previous PFGE typing data and occurrence of pulsotypes in a plant. 
Strains were considered to be persistent if they were recovered recurrently from both 
the processing equipments and final products over a minimum of one year, whereas 
strains isolated sporadically from raw ingredients, environment or equipment but not 
from final products were considered to be sporadic. 

A total of 173 strains of 24 different Clostridium species from the culture 
collection of the Department of Food and Environmental Hygiene, University of 
Helsinki, Finland; the Department of Medical Microbiology, University of Turku, 
Finland; the Institute of Food Research, Norwich, United Kingdom; and the Finnish 
Food Safety Authority, Kuopio Research Unit, Kuopio, Finland were analysed using 
AFLP (II, III). Strains consisted of type strains and strains originating from clinical, 
environmental and food samples.  

 

4.2 Contamination route study (IV) 
 
A total of 319 L. monocytogenes isolates were obtained as part of a quality control 
programme in a chilled food processing plant. Sampling was carried out during an 
eight-year period (May 1998-July 2006) and was especially targeted to post-heating 
areas, to equipment that is difficult to clean and to sites that had earlier tested positive 
for L. monocytogenes. In general, basic sampling was carried out on each line at least 
weekly. If L. monocytogenes was recovered, additional sampling was performed. 
Samples were collected both during production and after sanitization. Isolates 
originated from raw materials (n=18), equipment (n=193), the processing 
environment (n=77) and products (n=31). Sampling data were obtained from the 
records of the food processing plant.  
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The food processing plant used various raw ingredients, such as meat, fish, 
vegetables, dairy products and flour, in production of chilled ready-to-eat and ready-
to-reheat foods as well as in foods requiring cooking before consumption. The plant 
was divided into three compartments with differing degrees of compartmentalization, 
and a total of eight processing lines (A-H) were used for production (Table 5). The 
cleaning services of the plant were outsourced and job rotation was utilized between 
departments; however, on one production day the assigned duties were only rotated 
within the department.  
 
Table 5. Different compartments, production lines and product types of the plant. 
 

Compartmenta Compartmentalization Production lines Products 
    
I (1998-1999) No 

compartmentalization 
A, B, C, D, E Cooked ready-to-eat and ready-

to-reheat foods 
Uncooked products requiring 
cooking before consumption 

    
I (2000-2006) Raw and post-heat 

treatment areas 
separated 

A, B, C, D, E Cooked ready-to-eat and ready-
to-reheat foods 

    
II No 

compartmentalization 
F Ready-to-eat and ready-to-

reheat foodsb 

    
III Raw and post-heat 

treatment areas 
separated 

G, H Cooked ready-to-reheat foods 

    
 
a Sampling year in parentheses 
b Products composed of cooked and uncooked ingredients. However, the finished 
products were not cooked in the plant. 
 

4.3 AFLP analysis 

4.3.1 DNA isolation of Listeria spp. (I, IV, V) 

 
DNA was extracted according to the method of Pitcher et al. (1989), with slight 
modifications. Briefly, cells were harvested from a 1.5-ml volume of brain heart 
infusion (BHI) broth after incubation at 37°C for 14-16 h and resuspended with 100 
µl of TE (10 mM Tris-HCl, 1 mM EDTA) containing lysozyme 25 mg/ml (Sigma, St. 
Louis, MO, USA), mutanolysin 250 U/ml (Sigma) and RNase 100 µg/ml (Sigma) at 
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37°C for 1.5 h. The cells were lysed by addition of 500 µl of GES reagent (5 M 
guanidium thiocyanate, 100 mM EDTA, 0.5% [vol/vol] sarkosyl), cooled on ice for 5 
min and then mixed with 250 µl of ammonium acetate (7.5 M). After incubation on 
ice for 10 min, chloroform-2-pentanol (24:1[vol/vol]) extraction was performed and 
DNA was precipitated with 2-propanol and washed with 75% (vol/vol) ethanol.  

4.3.2 DNA isolation of Clostridium spp. (II, III) 

 
In Study II, DNA was extracted according to the method of Hyytiä et al. (1999a). In 
Study III, the protocol was modified to enable completion of the extraction within one 
working day. Briefly, strains were cultivated in a trypticase-peptone-glucose-yeast 
medium (Lilly et al. 1971) under anaerobic conditions at the optimal growth 
temperature of each Clostridium species for 14-16 h. The cells were harvested from a 
5-ml volume of overnight culture and lysed in TE (10 mM Tris-HCl, 1 mM EDTA) 
containing 7.9 mg/ml lysozyme (Sigma), 159 IU/ml mutanolysin (Sigma) and 467 
µg/ml RNase (Sigma) at 37°C with gentle shaking for 15 min (C. botulinum group I), 
2 h (C. botulinum group II) or 1 h (other clostridia). To obtain complete lysis, 52 
µg/ml proteinase K (Finnzymes, Espoo, Finland), 0.23 M NaCl, 9.1 mM EDTA and 
0.8% (vol/vol) sodium dodecyl sulphate were added, and, after thorough mixing, the 
mixture was incubated at 60 °C for 1 h with gentle shaking. Phenol-chloroform-
isoamyl alcohol (25.24:1 [vol/vol]) and chloroform-2-pentanol (24:1 [vol/vol]) 
extractions were performed, and the DNA was ethanol (95% [vol/vol]) -precipitated 
and rinsed with 70% ethanol.  

4.3.3 Determination of DNA concentrations (I-V) 

 
DNA was resuspended with 100 µl of sterile, distilled, deionised water, and DNA 
concentrations were measured using a BioPhotometer (Eppendorf, Hamburg, 
Germany). DNA samples were stored at -70°C prior to AFLP analysis.  

4.3.4 Initial testing (I, II) 

 
During initial testing different restriction enzyme combinations and primer couplings 
were screened to find an enzyme-primer combination that generated evenly 
distributed banding patterns and also discriminated between closely related 
L. monocytogenes or C. botulinum strains (Table 6). For initial testing, strains of 
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L. monocytogenes (n=7) and strains of C. botulinum type A (n=3), B (n=2) and E 
(n=4) were selected based on previous PFGE typing data.  
 
Table 6. Different restriction enzyme combinations and number of different primer 
combinations screened during initial testing. 
 

 
Species 

 
Restriction enzyme combination 

 
No. of primer combinations 

C. botulinum ApaI - HpyCH4IV 8 
 EcoRI - HpyCH4IV  2 
 HindIII - HpyCH4IV 12 
 HindIII – MseI 8 

L. monocytogenes ApaI - HpyCH4IV 12 
 ApaI – MseI 12 
 ApaI – TaqI 12 
 EcoRI - HpyCH4IV 12 
 EcoRI – MseI 12 
 EcoRI – TaqI 12 
 HindIII - HpyCH4IV 12 
 HindIII – MseI 12 
 HindIII – TaqI 12 
 

4.3.5 AFLP reaction and electrophoresis (I-V) 

 
The AFLP reactions were carried out essentially as described earlier (Vos et al. 1995, 
Thompson et al. 2001), with a few modifications. Total genomic DNA (400 ng) was 
digested with 15 U HindIII (New England Biolabs, Beverly, MA, USA) and 15 U 
HpyCH4IV (New England Biolabs) in 1X One-Phor-All buffer plus (Amersham 
Biosciences, Buckinghamshire, UK), 5 MM dithiothreitol (DTT) and 0.1 mg/ml 
bovine serum albumin (BSA). Subsequently, restriction site-specific HindIII adapter 
(0.04 µM; Oligomer, Helsinki, Finland) and HpyCH4IV adapter (0.4 µM; Oligomer) 
(I, Table 3) were ligated with 1.1 U T4 DNA ligase (New England Biolabs) in 1 x 
One-Phor-All Buffer Plus (Amersham Biosciences), DTT 5 mM, BSA 0.1 mg/ml and 
ATP 200 µM. Samples were stored at -20°C prior to PCR amplification.  

Restriction fragments with specific adapters were diluted with sterile, 
distilled, deionised water and amplified by preselective PCR (72ºC 2 min, 20 cycles 
[94ºC 20 s, 56ºC 2 min, 72ºC 2 min]) using primers without selective extension in a 
20-µl reaction mixture containing 4 µl of diluted template DNA, 15 µl of 
Amplification Core Mix (Applied Biosystems, Foster City, CA, USA), 25 nM Hind-0 
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primer (Oligomer) and 125 nM Hpy-0 primer (Oligomer) (I, Table 3). Following 
preselective amplification, the samples were diluted with sterile, distilled, deionised 
water. Selective amplification was performed in a 10-µl reaction mixture containing 
1.5 µl of diluted template, 50 nM Hind-A (I, IV, V) or Hind-C primer (II, III) 
(Oligomer), 250 nM Hpy-A primer (Oligomer) (I, Table 3) and 7.5 µl of 
Amplification Core Mix (94ºC 2 min, 1 cycle [94ºC 20 s, 66ºC 30 s, 72ºC 2 min]; 
then the annealing temperature was lowered by 1ºC in each cycle to 56ºC [10 cycles], 
followed by an additional 19 cycles at a 56ºC annealing temperature and a final 
30-min extension at 60ºC). The selective Hind-A and Hind-C primers were either 
IRD800-labelled (I, II, V) or FAM-labelled (III, IV). 

Denatured fragments were electrophoresed either on a 7% denaturing 
polyacrylamide gel in 1X Tris-borate-EDTA buffer on an automatic DNA sequencer 
(Li-COR Global IR2 4200LI-1 Sequencing system; LI-COR, Lincoln, NE, USA) (I, 
II, V) or on POP-4 polymer (Applied Biosystems) on an ABI PRISM 310 Genetic 
Analyzer (Applied Biosystems) in 1 x Genetic Analyzer Buffer with EDTA (Applied 
Biosystems) (III, IV). IRDye800 50- to 700-bp sizing standard (LI-COR) (I, II, V) or 
GeneScan-500 LIZ size standard (Applied Biosystems) (III, IV) was used to enable 
fragment size determination.  

4.3.6 Reproducibility testing (I-V) 

 
Reproducibility of the method was determined by performing independent, repeated 
(duplicate, triplicate, fivefold or sixfold) experiments, including DNA extraction, 
AFLP analysis, electrophoresis and numerical data analysis, with seven 
L. monocytogenes strains (I), 38 C. botulinum strains (II) and 25 strains representing 
different Clostridium species (III). In addition, reproducibility among different data 
sets was assessed by using L. monocytogenes strain ATCC 15313 (I, IV, V) or 
C. botulinum strain K-51 (II, III) as an internal reference, which underwent each step 
of the DNA extraction and AFLP analysis, thereby providing a standard for 
comparison among different data sets. 

 

4.4 In situ DNA isolation and PFGE (I, IV, V) 
 
In situ DNA isolation and PFGE were performed as described by Autio et al. (2002). 
Briefly, strains were cultivated in BHI broth overnight at 37°C. The cells were 
harvested from a 2-ml volume of BHI broth in 5 ml of PIV (10 mM Tris [pH 7.5], 
1 M NaCl), resuspended with PIV and mixed with an equal volume of 2% (wt/vol) 
low melting point agarose (InCert Agarose; FMC Bioproducts, Rockland, ME, USA). 
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GelSyringe dispensers (New England Biolabs) were used to form plugs. The plugs 
were incubated in lysis solution (6 mM Tris [pH 7.5], 1 M NaCl, 100 mM EDTA [pH 
8.0], 0.5% Brij 58 [Sigma, St. Louis, MO, USA], 0.2% deoxycholate, 0.5% sodium 
lauroyl sarcosine, 20 µg/ml RNase, 1 mg/ml lysozyme [Sigma] and 10 U/ml 
mutanolysin [Sigma]) at 37°C with gentle shaking for 3 h. This was followed by a 1-h 
wash with ESP (0.5 M EDTA [pH 8.0], 10% sodium lauroyl sarcosine, 100 µg/ml 
proteinase K [Finnzymes]) at 50°C. After proteolysis, the plugs were washed in TE 
for 1 h, and proteinase K was inactivated using 1 mM Pefablock SC (Roche 
Diagnostics, Mannheim, Germany) at 37°C overnight.  

Agarose-embedded DNA was digested with AscI (New England Biolabs) (I), 
or ApaI (New England Biolabs) and AscI (IV). In Study V, at least two restriction 
enzymes, AscI, and ApaI or SmaI, or both, were used in selection of persistent and 
sporadic strains. Digestions were performed according to the manufacturer’s 
instructions. 

DNA fragments were electrophoresed through 1.0% (wt/vol) agarose gel 
(SeaKem gold; FMC Bioproducts) in 0.5 X TBE buffer (45 mM Tris, 4.5 mM boric 
acid [pH 8.3] and 1 mM sodium EDTA) at 200 V at 14°C with the pulse times 
ramped from 1 s to 15 s for 18 h for SmaI and from 1 s to 35 s for 18 h for ApaI and 
AscI using a Gene Navigator system with a hexagonal electrode (Pharmacia, Uppsala, 
Sweden). Low Range PFG marker (New England Biolabs) was used for fragment size 
determination. The gels were stained with ethidium bromide and digitally 
photographed under UV transillumination with an Alpha Imager 2000 documentation 
system (Alpha Innotech, San Leandro, CA, USA).  

 

4.5 AFLP and PFGE pattern analyses (I-V) 
 
The AFLP and PFGE patterns were analysed using BioNumerics software version 
2.5, 3.0, 4.5 or 4.6 (Applied Maths, Sint-Martens-Latem, Belgium). The similarities 
between normalized AFLP patterns were calculated with the Pearson product-moment 
correlation coefficient, and the similarity analysis of PFGE patterns was performed 
using the Dice coefficient (position tolerance 1%). Clustering and construction of 
dendrograms were performed by using the unweighted pair-group method with 
arithmetic averages.  
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4.6 Discrimination index (I, V) 
 

The discriminatory power of AFLP and PFGE was compared by using Simpson’s 
index of diversity (Hunter and Gaston 1988). The index estimates the probability that 
two unrelated strains sampled from a test population will be placed into different 
typing groups. The discrimination index (D) is given by the following equation:  
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, where N is the total number of strains, s is the total number of types described and nj 
is the number of strains belonging to the jth type. 
 

4.7 Serotyping of L. monocytogenes (I, IV) 
 
Serotyping of L. monocytogenes strains was carried out using commercial Listeria 
antisera in accordance with the manufacturer’s instructions (Denka Seiken, Tokyo, 
Japan). In Study I, all strains were serotyped, whereas in Study IV one to three strains 
from each AFLP type were randomly selected for serotyping.  

 

4.8 PCR analysis of C. botulinum (II) 
 
A previously described multiplex-PCR assay for the simultaneous detection of 
C. botulinum types A, B, E and F (Lindström et al. 2001) or PCR assay for separate 
detection of type A, B and E neurotoxin genes in C. botulinum (Franciosa et al. 1994) 
was applied to confirm the type of each C. botulinum strain.  
 

4.9 Statistical analysis (IV) 
 

Associations between AFLP types and compartments or lines were determined by 
categorical analysis with a Chi-square test or Fisher’s exact test if expected values 
were less than five. 
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5. RESULTS 

 

5.1 Suitable restriction enzyme and primer couplings for AFLP 
analysis (I, II) 

 
Of the different enzyme combinations tested for AFLP analysis of L. monocytogenes 
and C. botulinum, couplings containing HindIII or EcoRI yielded a manageable 
number of bands and evenly distributed banding profiles. Combinations containing 
ApaI, by contrast, generated less than 20 fragments regardless of the primer coupling 
used and were thus deemed unsuitable for AFLP analysis. Based on amplification of 
relatively large numbers of evenly distributed DNA fragments, consistently strong 
signals on gels and detection of polymorphism among closely related strains (based 
on PFGE), selective primer combinations Hind-A and Hpy-A, and Hind-C and Hpy-A 
were selected for further analysis of L. monocytogenes (I) and C. botulinum (II), 
respectively.  

 

5.2 Reproducibility and typeability of AFLP analysis (I-V) 
 
All Listeria and Clostridium strains were typeable by AFLP, and hence, the 
typeability of the method was 100%. In reproducibility testing, the independent 
repeated experiments resulted in identical AFLP banding profiles (I-III). Furthermore, 
the internal reference strains L. monocytogenes ATCC 15313 (I, IV, V) and 
C. botulinum K-51 (II, III) showed identical AFLP banding patterns, measured based 
on fragment sizes, during each separate run. However, small differences were 
detected in lane and background intensities (I, II, V) or in peak heights (III, IV), and 
therefore, the similarity between reference strains varied in different studies, being at 
the lowest 89%. Based on the similarity of internal reference strains, a cut-off value 
for AFLP type definition was determined, i.e. strains showing higher similarity than 
reference strains were considered to be the same AFLP type (I-III, V). In Study IV, 
selection of the cut-off value was based on visual examination of the banding profiles 
of all strains investigated. Visual examination of the banding patterns revealed, 
however, minor fragment differences in strains of six different AFLP types designated 
as identical with the selected cut-off value (I, III, IV).  
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5.3 Characterization of L. monocytogenes by AFLP and PFGE (I, 
IV, V) 

5.3.1 AFLP and PFGE analyses of L. monocytogenes strains (I, IV, V) 

 
Both AFLP and PFGE analyses yielded three genomic groups of L. monocytogenes 
strains (I). Genomic group I consisted of serotypes 1/2a, 1/2c and 3a, while serotypes 
1/2b, 4b, 4c and 7 formed genomic group II. Serotype 4a strain belonged to genomic 
group III. With AFLP, some level of serotype-related subclustering was also observed 
(I, IV). L. monocytogenes strains of genomic groups I and II could be differentiated 
from other Listeria species by the presence of an AFLP fragment of 206 bp (I). In 
addition, a 209-bp fragment could be identified for strains belonging to 
L. monocytogenes genomic groups II and III. Fragments of 149 and 296 bp were 
group-specific to strains of genomic group I. However, a 149-bp fragment was also 
detected in AFLP patterns of L. welshimeri and L. ivanovii. Fragments specific for 
persistent or sporadic strains of L. monocytogenes were not detected by either AFLP 
or PFGE (V).  

5.3.2 Discriminatory power (I, V) 

 
In Study I, L. monocytogenes strains were divided into 29 AFLP types and 29 
pulsotypes, whereas in Study V the corresponding figures were 36 and 46 (Table 7). 
Both AFLP and PFGE were able to further separate types of strains formed by the 
other method. The highest discriminatory power was achieved by combining the 
results of AFLP and PFGE.  
 
Table 7. Discriminatory power of AFLP, PFGE and their combination determined by 
using Simpson’s index of diversity. 
 

Discriminatory power  
 
Study 

 
No. of 
AFLP types 

 
No. of 
pulsotypes

 
No. of 
genotypesa AFLP PFGE Combination 

I 29 29b 31 0.988 0.991 0.995 

V 36 46c 48 0.982 0.993 0.994 

 
a Genotypes obtained by combining AFLP and PFGE typing results. 
b Pulsotype determination based on AscI macrorestriction patterns (MRPs) 
c Pulsotype determination based on AscI, and ApaI and/or SmaI MRPs 
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5.3.3 Characterization of persistent and sporadic L. monocytogenes strains (V) 

 
With AFLP and PFGE, L. monocytogenes strains were divided into two distinct 
clusters, both of which consisted of persistent and sporadic strains. By combining the 
typing results of AFLP and PFGE, a total of 48 different genotypes were observed 
(Table 8). Of these genotypes, 13 and 33 were specific for persistent and sporadic 
strains, respectively, while only two genotypes contained both persistent and sporadic 
strains. Clusters specific for persistent or sporadic strains were not observed. 

 
Table 8. Number of different genotypes of persistent and sporadic L. monocytogenes 
strains obtained using PFGE, AFLP or their combination. 
 
 

Typing method 
Total no. of 
types 

No. of types among 
persistent strains 

No. of types among 
sporadic strains 

PFGE 46 14  35  
AFLP 36 14  28  
Combination 48 15 (13)a 35 (33)b 

 
a Number of types specific for persistent strains in parentheses. 
b Number of types specific for sporadic strains in parentheses. 
 

5.4 Characterization of C. botulinum and C. perfringens by AFLP 
(II, III) 

 
AFLP analysis clearly differentiated between group I (proteolytic; n=33) and group II 
(non-proteolytic; n=37) C. botulinum. The group-specific clusters were linked 
together with a <10% similarity level. Group II was further separated into three 
clusters; two clusters consisted of C. botulinum type E strains, while C. botulinum 
type B and F strains formed the third cluster. Group-specific fragments of 129, 145 
and 336 bp were identified for all C. botulinum group I strains, whereas fragments of 
114 and 315 bp were specific to C. botulinum group II strains. However, no 
C. botulinum species- or type-specific fragments were observed. 

AFLP analysis divided C. perfringens strains (n=37) into two subclusters; 
subcluster 1 consisted of strains of toxin types A, B, C, D and E, while subcluster 2 
contained only strains of toxin type A. With a 93% cut-off value, a total of 29 
different AFLP types were identified. AFLP analysis of isolates originating from the 
same food poisoning outbreak resulted in identical fingerprinting patterns. 
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5.5 Application of AFLP for species identification (I, III) 
 
AFLP distinguished L. monocytogenes from other Listeria species (I); the only 
L. grayi strain included in the study occupied a separate position, and strains of other 
Listeria species were divided into species-specific clusters with less than 33% 
similarity between different species. 

Numerical analysis of AFLP profiles of 24 different Clostridium species 
yielded 21 clusters at the 45% similarity level (III). Thirteen species were separated 
into single species-specific clusters, and eight strains, which were the only 
representatives of the particular species studied, occupied separate positions. In 
addition, C. botulinum strains were divided into seven distinct species-specific 
clusters. AFLP failed, however, to discriminate between C. ramosum and C. limosum 
at the 45% similarity level.  

Group I (proteolytic) C. botulinum strains formed a single cluster, whereas 
group II (non-proteolytic) strains were separated into three clusters; one cluster 
consisted of strains of C. botulinum types B and F, while C. botulinum type E strains 
were divided into two clusters. C. novyi and group III C. botulinum types C and D 
clustered together with a similarity value of 22%. C. novyi and C. botulinum type D 
showed single species-specific clusters, whereas C. botulinum type C strains were 
divided into two clusters. Although AFLP analysis clearly differentiated between 
C. botulinum and C. sporogenes, these species were linked together at a similarity 
value of 22%.  

 

5.6 L. monocytogenes contamination pattern in a food processing 
plant (IV) 

 
Altogether 319 L. monocytogenes isolates were collected during the eight-year 
surveillance. The isolates were divided into four serotypes and 18 different AFLP 
types, five of which were persistent (Table 9). Isolates (n=177) of compartment I 
belonged to three persistent AFLP types. AFLP type A1 persisted throughout the 
eight-year surveillance and clearly predominated; 93% of the isolates of the 
compartment I were type A1. One of the AFLP types, A11, was specific for 
compartment I. Most contaminated lines were A and B, with 99 and 59 isolates 
recovered, respectively. AFLP type A1 was also significantly more common 
(P < 0.05, Fisher’s exact test) in lines A and B than in lines C, D and E. The highest 
number of different AFLP types was detected in compartment II; the isolates (n=92) 
were divided into four persistent and five non-persistent AFLP types. All non-
persistent and two persistent AFLP types were specific for compartment II. In 
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compartment III, only one L. monocytogenes isolate, belonging to AFLP type A1, was 
recovered.  

Raw ingredients and finished products were found to be positive for 
L. monocytogenes 18 and 31 times, respectively. Isolates recovered from raw 
ingredients (grated cheese, sweet pepper, cooked chicken product) belonged to one 
persistent and seven non-persistent AFLP types, whereas three persistent and four 
non-persistent AFLP types were observed in finished products. All products 
containing L. monocytogenes were non-heat-treated and produced in compartment II.  

In compartment II, AFLP type A18 was isolated from both raw ingredients 
(grated cheese) and finished products 13 times during a three-month period. After 
replacement of the cheese supplier, AFLP type A18 was detected only once in a batch 
of grated cheese. This L. monocytogenes-positive batch of cheese was not used for 
production.  
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Table 9. Listeria monocytogenes AFLP types and serotypes recovered from different 
sampling sites. 
 
 

Sampling site 
Total no. of 
isolates 

AFLP 
type  

No. of 
isolates 

 

Serotype 

 

Persistence 

Compartment I 177 A1  165 1/2a Persistent 
  A11 4 1/2a Persistent 
  A14 8 1/2a Persistent 
      
Compartment II 92 A1 8 1/2a Persistent 
  A3 1 1/2a Non-persistent 
  A5 1 1/2c Non-persistent 
  A7 53 1/2a Persistent 
  A8 1 1/2a Non-persistent 
  A9 1 1/2a Non-persistent 
  A10 13 1/2a Persistent 
  A13 1 1/2a Non-persistent 
  A14 13 1/2a Persistent 
      
Compartment III 1 A1 1 1/2a Persistent 
      
Raw materials 18 A4 1 1/2c Non-persistent 
  A6 1 1/2a Non-persistent 
  A7 4 1/2a Persistent 
  A8 1 1/2a Non-persistent 
  A15 1 1/2a Non-persistent 
  A16 1 4b Non-persistent 
  A17 1 1/2b Non-persistent 
  A18 8 4b Non-persistent 
      
Productsa 31 A2 1 1/2a Non-persistent 
  A7 19 1/2a Persistent 
  A10 1 1/2a Persistent 
  A12 1 1/2a Non-persistent 
  A13 1 1/2a Non-persistent 
  A14 2 1/2a Persistent 
  A18 6 4b Non-persistent 
 

a All products containing L. monocytogenes were produced in compartment II. 
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6. DISCUSSION 

 

6.1 Typeability, reproducibility and ease of performance of AFLP 
analysis (I-V) 

 
When a new typing system is evaluated, several criteria, such as typeability, ease of 
interpretation and performance, discriminatory power and reproducibility, must be 
assessed to determine the performance of the technique and its suitability for different 
kinds of research (Maslow et al. 1993, Power 1996). The AFLP approach presented 
here showed excellent performance in terms of typeability: no Listeria and 
Clostridium strains failed to generate AFLP profiles. This makes AFLP an attractive 
genotyping method, especially for clostridia, since some Clostridium strains are 
reported to produce extracellular DNases, which may hamper the use of DNA 
fingerprinting methods such as PFGE (Kristjánsson et al. 1994, Hielm et al. 1998a, 
Hyytiä et al. 1999b, Sperner et al. 1999b, Bidet et al. 2000, Stolle et al. 2001, 
Klaassen et al. 2002, Schalch et al. 2003). With AFLP, good-quality fingerprints were 
obtained for all Clostridium strains, and thus, this technique seemed to overcome the 
problem of DNA degradation. Since DNA degradation and untypeability by PFGE 
have also been reported for other genera, including Escherichia (Izumiya et al. 1997, 
Heir et al. 2000), Mycobacterium (Picardeau et al. 1997), Pseudomonas (Barth and 
Pitt 1995) and Vibrio (Marshall et al. 1999), AFLP may prove to be a more applicable 
fingerprinting method for these species as well. Although nucleases can be rapidly 
inactivated during DNA purification, many DNA isolation methods still degrade 
DNA to fragments of around 50 kbp due to the influence of mechanical shearing 
forces (Boom et al. 1990, Klaassen et al. 2002). However, this degradation is unlikely 
to affect the outcome of AFLP analysis since in AFLP the amplified and analysed 
fragments are of small size, 50-500 bp (Antonishyn et al. 2000, Klaassen et al. 2002).  

In the present study, the independent repeated experiments proved that AFLP 
is a highly reproducible technique. Furthermore, the internal reference samples 
showed 89-95% similarity. This level of reproducibility is in accordance with 
previous studies (Janssen et al. 1997, Sloos et al. 1998, Duim et al. 1999, Huys et al. 
2000, On and Harrington 2000, On et al. 2004, Kuehni-Boghenbor et al. 2006, 
Wieland et al. 2006, Keller et al. 2007). Variance in peak heights or fragment 
intensities is a recognized phenomenon in AFLP analysis (Duim et al. 1999, 
Antonishyn et al. 2000, Sims et al. 2002, On et al. 2004, Hong et al. 2005). The 
clustering level of internal reference strains was therefore used to assign different 
AFLP types. Although using threshold based on reproducibility analysis or on 
knowledge of outbreak strains to define the strain type is common (Duim et al. 1999, 
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Lindstedt et al. 2000c, Gzyl et al. 2005, Siemer et al. 2005, Torpdahl et al. 2005, 
Johnsen et al. 2006c, Kuehni-Boghenbor et al. 2006), it is also generally accepted that 
AFLP profiles with more than 90% identity indicate related isolates, and thus, this 
level of similarity has been used to assign AFLP type (D’Agata et al. 2001, Geornaras 
et al. 2001, Willems et al. 2001, Amonsin et al. 2002, Schouls et al. 2003, Shaaly et 
al. 2005). When either of the above-mentioned approaches is used for AFLP type 
definition, it is also essential to visually check the quality of the AFLP profiles and 
confirm the results of pattern analysis, although the numerical analysis can be partly 
automated (On and Harrington 2000, Fry et al. 2002). In this study, visual 
examination of banding profiles revealed some minor fragment differences in isolates 
of the same AFLP type, and further analysis by PFGE subdivided isolates into distinct 
genotypes, thus stressing the importance of visual examination. Coenye et al. (1999b) 
have shown that visual examination of AFLP profiles is also required when AFLP is 
used for species identification to avoid misidentification of some isolates. 

AFLP was found to be a relatively fast method; the AFLP analysis, including 
numerical data analysis, could be completed within two working days when initiated 
with pure DNA. The AFLP approach was also less labour-intensive than PFGE. Since 
AFLP is a PCR-based technique, which can also be partly automated, it provides high 
throughput and is especially suited for screening large number of isolates, e.g. in 
contamination route studies. However, an automated sequencer and computer 
software for pattern analysis are essential when the fAFLP technique is used, and 
therefore, the method may not be applicable in smaller diagnostic laboratories.  
 

6.2 Discriminatory power of AFLP (I, V) 
 
The discriminatory power of AFLP was compared with that of PFGE, which is 
considered to be the gold standard for molecular fingerprinting of many bacteria, 
including L. monocytogenes (Borucki et al. 2004). In Study I, both AFLP and PFGE 
were highly discriminatory, while in Study V the discriminatory power of PFGE was 
notably higher. However, in the latter study, the PFGE analysis was performed with 
two or three restriction enzymes to maximize the sensitivity of the method. Similarly, 
a combination of two or three different enzyme and primer couplings could also 
substantially add to the discriminatory power of AFLP and improve the value of this 
approach (Grady et al. 1999, Lan and Reeves 2002). High discriminative ability of 
AFLP for characterization of L. monocytogenes has also been reported by Fonnesbech 
Vogel et al. (2004), who found that AFLP showed higher discriminatory power than 
PFGE, RAPD and ribotyping.  
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Although the results of AFLP analysis were in agreement with those 
obtained by PFGE, some strains differentiated by AFLP were regarded as identical by 
PFGE, and vice versa. The highest discriminatory power was achieved by combining 
the results of AFLP and PFGE. This is in accordance with earlier studies, which have 
shown that it is essential to use a combination of different typing approaches when 
maximum type differentiation is needed, e.g. in outbreak investigations (Fonnesbech 
Vogel et al. 2004, Wittwer et al. 2005, Keller et al. 2007). In addition, it is necessary 
to know the overall genetic structure of the natural bacterial population and to take 
into account the epidemiological context to be able to interpret the typing results 
(Speijer et al. 1999, Goulding et al. 2000b, Grundmann et al. 2002). Smith et al. 
(2000) have even suggested that strains showing one- to two-fragment differences can 
be defined as either different strains or assigned to the same AFLP type; the decision 
should be determined in practice by the epidemiological context. It should also be 
borne in mind that each fingerprinting technique has both strengths and weaknesses 
and no single method is sufficient to comprehensively study the genetic relatedness 
among strains. The choice of methods depends on the research question, the genetic 
resolution needed, financial resources, available expertise and the technical facilities 
available (Mueller and Wolfenbarger 1999, Meays et al. 2004).  
 

6.3 Characterization of L. monocytogenes, C. botulinum and 
C. perfringens strains by AFLP (I-V) 

 
The results of the initial testing showed that enzyme combination HindIII and 
HpyCH4IV and primer couplings Hind-A and Hpy-A, and Hind-C and Hpy-A for 
L. monocytogenes and C. botulinum, respectively, generated evenly distributed AFLP 
banding profiles and detected polymorphism among closely related strains. These 
combinations can therefore be recommended for AFLP analysis of L. monocytogenes 
and C. botulinum. 

L. monocytogenes strains were divided into two or three different genogroups 
by both AFLP and PFGE. The AFLP results provide further evidence of the existence 
of three genetic lineages of L. monocytogenes. Three distinct lineages have been 
revealed by sequence analysis of listeriolysin O (hly), invasion-associated protein 
(iap) and flagellin (flaA) genes, ribotyping, virulence-associated gene polymorphism, 
PFGE and microarray data (Rasmussen et al. 1995, Wiedmann et al. 1997, 
Chasseignaux et al. 2001, Zhang et al. 2003, Sauders et al. 2006). In Study V, wide 
genetic diversity was observed among persistent and sporadic L. monocytogenes 
strains. The persistent strains differed from sporadic ones; the genotypes were mainly 
specific to either persistent or sporadic strains, and only two of the 48 genotypes 
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contained both persistent and sporadic strains. However, no specific clusters for 
persistent strains were observed, suggesting that no specific evolutionary lineage of 
persistent strains exists.  

AFLP analysis clearly differentiated between group I (proteolytic) and group 
II (non-proteolytic) C. botulinum strains. Therefore, AFLP proved to be a suitable tool 
for C. botulinum group identification. This finding is in agreement with recent AFLP 
studies by Hill et al. (2007) and Macdonald et al. (2008). Although some type-
specific subclustering was also observed, no type-specific fragments were detected, 
and thus, the AFLP approach was shown to be unsuitable for type determination of 
C. botulinum types A, B and F. However, type E-specific clusters suggest that AFLP 
has potential to define type E of C. botulinum. Similarly, Hill et al. (2007) showed 
that most type E and proteolytic type F strains formed type-specific clusters, whereas 
types A and B were not clearly differentiated by AFLP. Extensive genetic diversity 
detected among group II type E strains is in accordance with earlier studies conducted 
with PFGE (Hielm et al. 1998b, Hyytiä et al. 1999b). In addition, the observed high 
similarity of AFLP profiles of non-proteolytic type B and F strains is supported by a 
later AFLP study (Hill et al. 2007). In group I, less genetic variability was observed 
than in group II. However, AFLP was able to differentiate between group I 
C. botulinum and C. sporogenes, which is considered a non-toxigenic counterpart of 
group I C. botulinum and shows high 16S rRNA sequence homology and DNA 
relatedness with it (Lee and Rieman 1970, Hutson et al. 1993).  

AFLP analysis of unrelated C. perfringens strains resulted in divergent 
fingerprints, whereas identical banding patterns were observed for strains initially 
originating from the same isolate or from the same outbreak, indicating that AFLP is a 
suitable tool for C. perfringens strain characterization. AFLP failed to differentiate 
between various toxinotypes of C. perfringens. However, this finding was expected 
since genes encoding three major toxins of C. perfringens (β, ε and ι) are located on 
plasmids, and loss or acquisition of a plasmid may even account for toxinotype 
change of a strain (Petit et al. 1999). Sawires and Songer (2006) reported the 
existence of strains of two different toxin types in the same clone by multiple-locus 
variable-number tandem repeat analysis, which suggests that the acquisition of 
plasmid-borne major toxin genes is a rather recent event and that C. perfringens 
strains of different toxin types may not have distinct evolutionary histories.  

Although AFLP showed evident potential for strain typing of C. botulinum 
and C. perfringens, a drawback of the present study is that the discriminatory power 
of the AFLP approach was not compared with alternative genotyping procedures. 
Therefore, further research is needed to evaluate the discriminatory ability of AFLP.  



 63

6.4 Evaluation of the suitability of AFLP for species identification 
(I, III) 

 
In Study I, AFLP distinguished all Listeria species tested. The less than 33% 
similarity between different species suggests that AFLP may also serve in Listeria 
species identification. This finding is in agreement with Fonnesbech Vogel et al. 
(2004), who reported that Listeria strains were grouped according to species in a 
study where 96 strains of L. monocytogenes and 9 strains representing six other 
Listeria species were analysed using AFLP.  

When AFLP analysis was applied to 129 strains representing 24 different 
Clostridium species in Study III, AFLP distinguished all species, except C. limosum 
and C. ramosum, at the 45% similarity level. Similar cut-off levels for species 
identification have been used in studies of other bacterial species (Huys et al. 1996a, 
1996b, Koeleman et al. 1998, Chang et al. 2005, Gzyl et al. 2005, Hong et al. 2005, 
Taponen et al. 2007). Strains of the species C. botulinum were divided into seven 
species-specific clusters, while other species were separated into single species-
specific clusters or occupied separate positions. However, the groupings of 
C. botulinum strains using AFLP analysis are in agreement with the phylogenetic 
finding based on 16S rRNA sequencing of three distinct lineages of C. botulinum 
groups I, II and III (Hutson et al. 1993, Hill et al. 2007). The same three groups can 
also be recognized on the basis of phenotypic criteria (Cato et al. 1986), and, in 
general, these groups should be defined as separate species within the genus 
Clostridium (Hutson et al. 1993, Collins and East 1998, Hill et al. 2007).  

The AFLP approach proved to be promising for identifying both Listeria and 
Clostridium species. AFLP is particularly advantageous since it simultaneously allows 
differentiation at the strain level (Duim et al. 2001). Furthermore, if species-specific 
AFLP fragments are observed, they may contain DNA sequences unique to one or a 
very limited number of species. Therefore, isolation and sequencing of such 
fragments may aid in development of species-specific diagnostic tools (Jackson et al. 
1999). However, to obtain reliable species identification, establishing an expandable 
identification library with several AFLP profiles of well-defined strains for each 
species is necessary (Duim 2001, Chang et al. 2005). AFLP analysis of larger 
numbers of strains of C. limosum and C. ramosum may also facilitate differentiation 
between these species since clustering of a single AFLP profile of a species may be 
incorrect (Duim et al. 2001). Further AFLP analysis involving larger numbers of 
strains is therefore warranted to confirm the validity of the technique for genomic 
identification of Listeria and Clostridium species and to assess whether it is a useful 
tool in polyphasic taxonomic studies.  
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6.5 Diversity and persistence of L. monocytogenes in a chilled food 
processing plant analysed by AFLP (IV) 

 
The three compartments of the chilled food processing plant producing ready-to-eat 
and ready-to-reheat foods showed markedly different contamination statuses. Several 
factors either predisposing compartments or lines to persistent contamination or 
protecting them from contamination were identified. In compartment III, strict 
separation of raw and post-heat treatment areas seemed to protect processing lines 
from contamination. In compartment I, by contrast, initial contamination by persistent 
AFLP type A1 may have been introduced to the heavily contaminated compartment 
already in 1998, when an uncooked product was manufactured in line B of the 
compartment. This is in accordance with a previous study, which showed that poor 
compartmentalization both increased and prolonged contamination in a meat 
processing plant (Lundén et al. 2003b). Although raw and post-heat treatment areas of 
compartment I were separated in 2000, the existing L. monocytogenes contamination 
could not be eliminated. In compartment III, the only positive sample was detected on 
a movable container that had been transferred to the compartment without cleaning. 
Thus, to avoid spread of contamination within a plant, it is also necessary to limit the 
movement of personnel and equipment.  

The cooking step seemed to limit the flow of sporadic strains into 
compartments I and III, which produced cooked meals. However, a high level of 
persistent contamination was observed, especially in two lines of compartment I. A 
product type that made mechanical cleaning of the two lines difficult and insufficient 
cleaning routines, such as cleaning of the lines only every other day during the high 
season, seemed to predispose lines A and B to persistent contamination. The three 
most contaminated lines (A, B and F) harboured L. monocytogenes, especially in 
coolers, conveyors and packing machines. This is in agreement with earlier studies, 
which have shown that complex processing lines are more prone to persistent 
contamination and machines with complex structure that hinders efficient cleaning 
favour the persistence of L. monocytogenes (Autio et al. 1999, Johansson et al. 1999, 
Miettinen et al. 1999a, Lyytikäinen et al. 2000, Dauphin et al. 2001, Fonnesbech 
Vogel et al. 2001, Lundén et al. 2002, 2003b, Thévenot et al. 2005, 2006b, 
Gudmundsdóttir et al. 2006, Nakamura et al. 2006, De Cesare et al. 2007). 
Comprehensive cleaning and disinfection practices have been shown to significantly 
reduce the level of L. monocytogenes contamination (Autio et al. 1999, Miettinen et 
al. 1999a, Lundén et al. 2002, Gudmundsdóttir et al. 2006, Nakamura et al. 2006). 
The present study also revealed that extensive reconstruction of the processing line in 
compartment II both reduced prevalence rates of L. monocytogenes and eliminated 
two persistent AFLP types.  
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In compartment III, the use of raw ingredients that rarely contain 
L. monocytogenes likely protected the processing lines from contamination. However, 
the high number of different AFLP types, both persistent and non-persistent, detected 
in compartment II may result from the range of different raw materials, such as 
vegetables, meat products and dairy products, used in preparation of meals. These 
ingredients might harbour L. monocytogenes (Farber and Peterkin 1991, Rudolf and 
Scherer 2001, Aguado et al. 2004, Thévenot et al. 2006b), thus introducing the 
organism to the processing environment and since the process did not include a lethal 
kill step for L. monocytogenes the organism could even be detected in finished 
products. In this study, this kind of contamination of finished products was shown to 
be caused by grated cheese, stressing that more attention should be paid to microbial 
quality control of raw ingredients. In addition, if high-risk raw materials are identified 
they should be heat-treated before use in production.  

The present study showed that L. monocytogenes is able to persist for 
extended periods of time in a plant producing chilled ready-to-eat and ready-to-reheat 
meals. However, since ready meals contain multiple raw ingredients and each product 
has a distinct preparation process, the contamination level may vary significantly 
within a plant. Long-lasting surveillance and the use of efficient genotyping methods, 
such as AFLP, are among the key elements in tracing the sources of contamination, 
thus enabling production of L. monocytogenes-free ready meals.  



 66

7. CONCLUSIONS 
 
1. The AFLP technique was tailored for optimal characterization of 

L. monocytogenes and C. botulinum strains. The enzyme coupling HindIII – 
HpyCH4IV proved to be suitable for both L. monocytogenes and C. botulinum 
strains. Primer combinations Hind-A and Hpy-A, and Hind-C and Hpy-A for 
L. monocytogenes and C. botulinum, respectively, generated uniform distribution 
of DNA fragments and detected polymorphism among closely related strains. 
These combinations are therefore recommended for AFLP analysis of 
L. monocytogenes and C. botulinum.  

 
2. AFLP analysis proved to be a highly reproducible, easy to perform and relatively 

fast method with high throughput. Furthermore, all Listeria and Clostridium 
strains were typeable by AFLP. AFLP showed potential to subtype 
L. monocytogenes, C. botulinum and C. perfringens strains and proved to be 
suitable also for C. botulinum group identification. In addition, when AFLP was 
applied to L. monocytogenes strains, its discriminatory power was shown to equal 
that of PFGE, which is considered the current gold standard for molecular 
fingerprinting of L. monocytogenes. These features make AFLP analysis a useful 
alternative to other genotyping methods in, for example, outbreak investigations 
and contamination route studies. Due to the high throughput of samples, the AFLP 
approach is especially suited for screening large numbers of isolates.  

 
3. AFLP differentiated all Listeria and Clostridium species tested, except for 

C. ramosum and C. limosum, and thus, AFLP analysis was shown to be a 
promising tool for genomic identification of Listeria and Clostridium. AFLP may 
be used as an additional tool in species identification if an expandable 
identification library with several AFLP profiles of well-defined strains for each 
species is established.  

 
4. The three compartments of a chilled food processing plant showed markedly 

different contamination statuses. In processing lines of cooked meals,  insufficient 
cleaning routines, product types hampering the mechanical cleaning of the 
production line and lack of proper compartmentalization predisposed production 
lines to persistent contamination. Uncooked products were also contaminated via 
raw materials; special attention should therefore be paid to continuous quality 
control of raw ingredients when uncooked ready-to-eat foods are produced. 
Reconstruction of a production line both reduced prevalence rates of 
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L. monocytogenes and eliminated two persistent AFLP types. Hence, structural 
adjustments may facilitate the eradication of L. monocytogenes from the food 
processing environment.  

 
5. L. monocytogenes strains causing persistent contamination in food processing 

plants were shown to differ from sporadic strains. However, no specific 
evolutionary lineage of persistent L. monocytogenes strains was observed.  
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