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SUMMARY

Bacterial surface (S) layers are proteinaceous arrays found on the surface of hundreds 
of bacterial species, including several species of lactobacilli. They are composed of 
numerous identical, non-covalently bound subunits, which completely cover the cell 
surface forming a symmetric, porous, lattice-like structure. Several functions for S-layers 
have been found, but no common one probably exists. S-layer proteins have a wide 
application potential in nanobiotechnology as well as in health-related applications such 
as vaccine design.

In this work, the structure and function of the S-layer protein SlpA of Lactobacillus 
brevis ATCC 8287 and the expression of the slpA gene were studied. SlpA was identifi ed 
as a two-domain protein, in which the N-terminal domain is responsible for binding to 
the cell wall and the C-terminal domain for forming the regular polymer. The domain 
organization is thus reversed compared with other hitherto characterized Lactobacillus 
S-layer proteins. Conserved carbohydrate binding motifs were identifi ed in the N-terminal, 
positively charged amino acid sequences of SlpA and fi ve other Lactobacillus brevis 
S-layer proteins. The component in the cell wall interacting with SlpA was shown to be 
something other than teichoic or lipoteichoic acid, in contrast to the cell wall receptors of 
S-layer proteins previously characterized in lactobacilli. The structure of the C-terminal 
self-assembly domain was studied in more detail using cysteine scanning mutagenesis 
and targeted chemical modifi cation. Importantly for the potential future applications of 
SlpA as a display vehicle of foreign peptides, four amino acid segments with high surface 
accessibility in the assembled form of SlpA were detected. The 46 mutated residues 
could be grouped according to their location in the lattice: in the protein interior, on the 
inner surface of the lattice, on the outer surface of the lattice and on the subunit interface 
or the pore region of the lattice.

L. brevis ATCC 8287 very effi ciently adheres to cultured human epithelial cells 
representing the human gut, bladder and blood vessels, while the removal of the S-layer 
abolishes the binding.  This binding was shown to be mediated by SlpA by using fl agellum 
display. Hybrid fl agella carrying fragments from the N-terminal part of SlpA bound to 
epithelial cells and to fi bronectin, while fl agella carrying the C-terminal part were unable 
to bind. The smallest fragment conferring binding to Int 407 cells comprised amino acids 
66-215 in mature SlpA. 

The gene encoding SlpA is preceded by two promoters. By separating them on 
reporter plasmids, both of the promoters were shown to be used in L. brevis in all 
growth phases. More upstream region was needed for the full activity of the upstream 
promoter than for the downstream promoter. The promoter activities seen at the reporter 
enzyme level were also seen at the mRNA level, suggesting transcriptional rather than 
translational regulation of slpA. Three potential regulatory motifs were identifi ed in 
the upstream region of slpA. Both promoters retained their activities under selected 
conditions mimicking the intestinal environment in vitro.
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1. REVIEW OF THE LITERATURE

Introduction1.1 

1.1.1 Structure of the Gram-positive cell wall
The bacterial cell envelope consists of the cytoplasmic membrane and the overlying cell 
wall. The cell walls of Gram-negative and Gram-positive bacteria differ fundamentally 
in several respects: while the cell walls of Gram-negative bacteria are composed of 
a thin peptidoglycan layer covered by the outer membrane, the Gram-positive cell 
wall has no outer membrane and is characterized by a very thick peptidoglycan 
layer and abundant Gram-positive specifi c cell wall carbohydrates. Peptidoglycan is 
composed of glycan strands of variable length with alternating N-acetyl-muramic acid 
and N-acetyl-glucosamine molecules, which are interconnected by short peptides. 
According to the conventional model, this mesh-like structure lies horizontally to the 
cell surface, and in Gram-positive cell walls multiple layers are present, interconnected 
also in the vertical orientation. This mechanically very strong three-dimensional 
network, the basic function of which is to provide protection and maintain the shape 
of the cell, is decorated by other cell wall constituents, including proteins and teichoic 
and lipoteichoic acids, lipoglycans, teichuronic acids and other acidic or neutral 
polysaccharides (Delcour et al., 1999; Navarre & Schneewind, 1999; Ton-That et 
al., 2004; Holst & Müller-Loennies, 2007). In addition, capsular polysaccharides, 

forming a thick outermost 
polysaccharide layer, as well as 
exopolysaccharides are present 
in many Gram-positive species 
(Holst & Müller-Loennies, 
2007). Polyglutamate capsules 
are also sometimes present 
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Figure 1. A schematic picture 
showing the typical constituents 
of the cell envelope of an 
S-layered Gram-positive 
bacterium. The fi gure is not 
drawn to scale.
CM, cytoplasmic membrane; 
PG, peptidoglycan; S, 
S-layer protein; WPS, 
wall polysaccharide; LTA, 
lipoteichoic acid; TA, 
teichoic acid; MP, membrane 
protein. Teichuronic acids, 
lipoglycans and capsular or 
exopolysaccharides are not 
depicted. 
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(Candela & Fouet, 2006). Teichoic acids, teichuronic acids and polysaccharides are 
collectively referred to as secondary cell wall polymers (SCWPs), and teichoic acids 
and teichuronic acids have been called “classical” SCWPs (Schäffer & Messner, 2005). 
Often also the membrane-linked components, lipoglycans, present mostly in high-
GC% Gram-positive bacteria such as bifi dobacteria (Fischer, 1994), and lipoteichoic 
acids have been included in SCWPs (Sara, 2001; Desvaux et al., 2006; Dramsi et al., 
2008). A schematic presentation of the typical Gram-positive cell wall is shown in 
Fig.1.

The proteins anchored to the Gram-positive cell wall have been reviewed 
elsewhere (Desvaux et al., 2006; Scott & Barnett, 2006), and the outermost protein 
layer frequently present in the cell envelope, the surface (S) layer, will be discussed 
in detail in Sections 1.1.2 and 1.2. The most often occurring teichoic acids are 
polyol (usually glycerol or ribitol) phosphate or glycosylpolyol phosphate polymers, 
typically substituted by glucose and/or esterifi ed by alanine and covalently attached 
to the muramic acid molecules of peptidoglycan through a glycosidic linkage unit. 
Lipoteichoic acids essentially differ from teichoic acids only in that they are attached 
to the cytoplasmic membrane via a glycolipid anchor, which is a diacylglycerol 
molecule bound to a di- or trisaccharide. Due to the abundance of phosphate groups, 
both types of molecules are highly negatively charged, the charge being regulated 
by the level of D-alanylation (Delcour et al., 1999; Navarre & Schneewind, 1999; 
Naumova et al., 2001; Holst & Müller-Loennies, 2007). Owing to the covalent linkage 
to peptidoglycan, teichoic and teichuronic acids are sometimes collectively called 
wall teichoic acids. Teichuronic acids are, however, completely different in structure, 
as they are composed of sugar monomers directly linked by glycosidic bonds and 
usually no linkage unit is present (Araki & Ito, 1989; Delcour et al., 1999). They 
are devoid of phosphate groups; instead, in the teichuronic acids studied thus far, the 
negative charges are provided by the carboxyl groups of uronic, usually glucuronic 
or mannosamine uronic, acid residues. Teichuronic acids have been described in 
Bacillus, Micrococcus and Streptomyces species (Hase & Matsushima, 1972; Ward, 
1981; Shashkov et al., 2002), and according to some classifi cations (Sara, 2001), also 
in Geobacillus (Schäffer et al., 1999); in B.  subtilis, they replace teichoic acids under 
phosphate-deprivation conditions (Lang et al., 1982). They are, however, likely to 
occur also in lactobacilli (Delcour et al., 1999), although until now they have not been 
described in lactic acid bacteria.

The “non-classical SCWPs” or “wall polysaccharides” are distinguished from 
capsular polysaccharides, which form an outermost, thick, hydrated shell covalently 
or non-covalently bound to the cell surface, and from exopolysaccharides (slimes), 
which are released to the medium (Delcour et al., 1999; Holst & Müller-Loennies, 
2007). Generally, they include glycosyl phosphate polymers (according to Araki and 
Ito, 1989, however, classifi ed as teichoic acids) and anionic or neutral sugar polymers 
and are covalently attached to peptidoglycan. The sugar polymers are composed of 
repeated sugar units, where the negative charge very often present arises from acidic 
substituents such as sulphate or glycerol-phosphate groups or organic acids (Hancock 
& Poxton, 1988; Schäffer & Messner, 2005). The “non-classical” SCWPs of some 
members of the family Bacillaceae having S-layers have been studied in detail 
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(Schäffer & Messner, 2005). The polysaccharides characterized were acidic or neutral 
heteropolysaccharides composed of 2-15 repeating units with 2-5 sugars in each unit. 
Six different monosaccharide constituents and both linear and branched chains were 
detected, and the polysaccharides could be classifi ed into three groups according to 
the sugar backbone structures. The non-carbohydrate modifi cations decorating the 
sugar backbone were pyruvate, phosphate or acetate.

1.1.2 Surface layer proteins

1.1.2.1 Occurrence, general features and study methods
Surface (S) layers are cell envelope structures ubiquitously found in Gram-positive 
and Gram-negative bacterial species as well as in Archaea (Sara & Sleytr, 2000). 
They form the outermost proteinaceous layer on the cell and are sometimes covered 
only by capsules (Fouet et al., 1999). S-layers are composed of numerous identical 
(glyco)protein subunits, 40-200 kDa in molecular weight, which completely cover the 
cell surface, forming a crystalline, two-dimensional, regular and porous array with 
oblique (p1, p2), square (p4) or hexagonal (p3, p6) symmetry. The subunits of bacterial 
S-layers are held together and attached to the underlying cell surface by non-covalent 
interactions, and they have an intrinsic ability to spontaneously form regular layers 
either in solution or on a solid support after the removal of the disintegrating agent 
(Sara & Sleytr, 2000). The recrystallization of Bacillus sphaericus S-layer protein 
subunits on hydrophobic silicon surfaces has been studied in real time by atomic force 
microscopy; the subunits are initially randomly adsorbed to the surface, assembled 
into small crystalline patches and the number of the patches increases until fi nally a 
monolayer is formed (Györvary et al., 2003). The reassembly of S-layer proteins in 
solution (Teixeira et al., 2009) and on lipid membranes and polyelectrolyte layers has 
also been studied in detail by biophysical methods (Weygand et al., 1999; Weygand 
et al., 2000; Weygand et al., 2002; Delcea et al., 2008). However, the incorporation 
of subunits into the growing S-layer on bacterial cells is largely unexplored. S-layer 
proteins may be modifi ed by phosphorylation or glycosylation (Sara & Sleytr, 2000). 
Glycosylated S-layer proteins are very common among Archaea, but they are also found 
in Gram-positive bacteria and have recently been detected in some Gram-negative 
species. The bacterial S-layer glycan chains characterized to date are O-glycosidically 
linked, linear or branched homo- or heterosaccharides of 50-150 glycoses, organized 
into 15-50 repeating units. The general 1-10 % (wt/wt) degree of glycosylation of 
bacterial S-layer glycoproteins may be dependent on growth conditions (Messner et 
al., 2008).

The primary structures of bacterial S-layer proteins are similar in that they are 
generally rich in acidic, hydrophobic and hydroxyl-containing amino acids, and 
cysteines are very rarely found. The predicted pI values are usually in a weakly acidic 
range. Sequence similarity between S-layer protein genes, if any, is typically found 
only between the S-layer protein genes of closely related species (Boot & Pouwels, 
1996; Sara & Sleytr, 2000). An exception are the so-called SLH (S-layer homology) 
motifs (Lupas et al., 1994), which are, however, not present in all S-layer proteins 
and are found in other proteins as well (see Section 1.1.2.3). Since a universal 
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“signature” for identifying a protein as an S-layer protein is lacking, the unambiguous 
identifi cation of surface-expressed S-layers still relies on transmission electron 
microscopy (TEM) of whole bacterial cells or cell wall fragments. Several electron 
microscopic techniques have been used, of which freeze-etching and freeze-drying 
in combination with heavy metal shadowing are the most feasible for this purpose 
(Schuster et al., 2006); thin sectioning (Jakava-Viljanen et al., 2002; Ventura et al., 
2002) and immunogold-labelling (Vidgren et al., 1992) have been used as well. 
For further structural analysis of S-layer lattices or modifi ed S-layer lattices, other 
microscopical and biophysical methods have been applied, including cryo-electron 
microscopy (Lembcke et al., 1993) and cryo-electron tomography (Trachtenberg 
et al., 2000), cryoelectron microscopy of lipid monolayer crystals (Norville et al., 
2007), scanning force microscopy (SFM) (also known as atomic force microscopy 
(AFM) (Müller et al., 1996; 1999; Scheuring et al., 2002; Györvary et al., 2003; 
Schär-Zammaretti & Ubbink, 2003; Toca-Herrera et al., 2004; Martin-Molina et al., 
2006; Anselmetti et al., 2007; Verbelen et al., 2007; Dupres et al., 2009; Tang et al., 
2009) or its application TREC (topography and recognition imaging) (Tang et al., 
2008), electron microscopy of non-stained S-layer samples combined with electron 
holography (Simon et al., 2004), photoemission (PE) and near-edge X-ray absorption 
fi ne structure (NEXAFS) spectroscopy (Vyalikh et al., 2005; Kade et al., 2007) and 
small-angle X-ray spectroscopy (SAXS) of S-layered bacterial cells or self-assembly 
products (Aichmayer et al., 2006; P. Jääskeläinen, personal communication). 

Secondary structures of S-layer proteins are diffi cult to predict because the 
prediction algorithms are based on the available structures of very dissimilar types of 
proteins. Circular dichroism (CD) measurements have been performed mainly for the 
S-layer proteins of Bacillus species (Sara & Sleytr, 2000; Rüntzler et al., 2004). These 
studies have revealed an α-helix content of approximately 20%, a β-sheet content 
of 40%, and 5-45% aperiodic folding and β-turns in these proteins. The α-helices 
were mostly predicted to reside in the N-terminal parts of the proteins (Sara & Sleytr, 
2000). Elucidation of the tertiary structure of S-layer proteins has been hindered by 
their molecular weights not being in the suitable range (<40 kDa) for nuclear magnetic 
resonance (NMR) studies, and by their low solubility; more specifi cally, their tendency 
to form two-dimensional lattices rather than three-dimensional crystals in solution. 
Therefore, only two structures of bacterial S-layer protein fragments obtained by 
X-ray crystallization have thus far been available (Pavkov et al., 2008; Fagan et al., 
2009). Therefore, physical methods, such as fl uorescence spectroscopy (Rüntzler et 
al., 2004), SAXS (Pavkov et al., 2008; Fagan et al., 2009), combined genetic and 
biochemical approaches, such as cysteine scanning mutagenesis and chemical cross-
linking (Howorka et al., 2000; Kinns & Howorka, 2008), structure prediction by 
the mean force method (Horejs et al., 2008) and electron microscopy (Norville et 
al., 2007) have been applied to gain insight into the three-dimensional structures of 
S-layer proteins. By calculating projection maps from electron micrographs of lipid 
monolayer crystals, structural information down to a resolution of 7 Å has been 
obtained (Norville et al., 2007).
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1.1.2.2 Expression of S-layer protein genes
Many bacterial species have more than one S-layer gene, but not all of them are 
necessarily expressed at the same time: both silent genes, antigenic variation based on 
S-layer gene expression (reviewed by Boot & Pouwels, 1996; Sara & Sleytr, 2000), 
alternative expression of S-layer protein genes in or ex vivo (reviewed by Fouet, 2009), 
sequential expression during growth (Mignot et al., 2004) and, rarely, superimposed 
S-layers (Cerquetti et al., 2000) or S-layers composed of two different S-layer proteins 
(Rothfuss et al., 2006; Fagan et al., 2009; Goh et al., 2009) have been described. 
As S-layer proteins typically account for 10-25% of total cellular protein (Boot & 
Pouwels, 1996; Smit, 2008), the expression of S-layer protein genes and the secretion 
of the proteins must be very effi cient. With the exception of the S-layer proteins of 
Caulobacter crescentus (Awram & Smit, 1998), Serratia marcescens (Kawai et al., 
1998) and Campylobacter fetus (Thompson et al., 1998), which are secreted through 
the ATP-dependent type I machinery, and the S-layer protein of Campylobacter rectus, 
which does not have an N-terminal signal peptide either (Wang et al., 1998), bacterial 
S-layer proteins are secreted by the Sec-dependent, general secretory pathway (Sara 
& Sleytr, 2000). The very effi cient expression of S-layer protein genes is contributed 
by their effi cient promoters, a biased codon usage typical of effi ciently transcribed 
genes and by the long half-lives of S-layer gene transcripts, which, in some cases, may 
be due to their long untranslated leader sequences (Boot & Pouwels, 1996; Boot et 
al., 1996b). Furthermore, many S-layer protein genes are preceded by more than one 
promoter, which may not only increase the transcription effi ciency but also offers a 
way to regulate the S-layer gene expression in response to, for instance, growth stage 
(Adachi et al., 1989) or environmental conditions (Novotny et al., 2008). Chromosomal 
rearrangements cause variation in S-layer gene expression in Campylobacter fetus 
(Dworkin & Blaser, 1996; 1997), Geobacillus stearothermophilus (Egelseer et al., 
2001; Scholz et al., 2001) and lactobacilli (see Section 1.2.2). However, excluding 
the thoroughly studied regulation of the S-layer protein genes of Bacillus anthracis 
(reviewed by Mignot et al., 2004; Fouet, 2009), the modulation of bacterial S-layer 
gene expression by soluble factors is poorly known. Carbon source regulates the 
S-layer protein production in Corynebacterium strains (Soual-Hoebeke et al., 1999), 
and molecular investigations have revealed the presence of a transcriptional activator 
of the S-layer protein gene in this species (Soual-Hoebeke et al., 1999; Hansmeier et 
al., 2006) as well as in Aeromonas salmonicida (Noonan & Trust, 1995). In Thermus 
thermophilus, in addition to transcriptional regulation, translational autoregulation of 
S-layer protein gene expression has been suggested, as the C-terminal fragment of 
the S-layer protein SlpA specifi cally binds to the 5’ UTR of the slpA mRNA in vitro 
(Fernandez-Herrero et al., 1997).  Later, the 5’ UTR of the T. thermophilus S-layer 
protein gene has been shown to be responsible for the growth phase-dependent 
repression of the S-layer protein (Castan et al., 2001). The temperature-regulation 
of sgsE in Geobacillus stearothermophilus NRS 2004/3a has been suggested to 
occur at the transcriptional level (Novotny et al., 2004; Novotny et al., 2008). In 
Clostridium diffi cile, the exposure to high osmolarity or antibiotics increases S-layer 
gene expression, but the mechanism is not known (Deneve et al., 2008).
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1.1.2.3 Cell wall binding and self-assembly regions
According to present knowledge, bacterial S-layer proteins in general have two structural 
and functional regions: a region involved in the attachment of the S-layer subunit to 
the cell envelope and a region involved in S-layer assembly. The S-layer proteins of 
Gram-negative bacteria bind to the O-polysaccharide part of lipopolysaccharides of 
the outer membrane (Griffi ths & Lynch, 1990; Kokka et al., 1990; Walker et al., 1994; 
Ford et al., 2007), and the S-layer protein of the Gram-positive Corynebacterium 
glutamicum, which has an unusual mycolic acid-containing cell wall, binds to the 
hydrophobic layer above the cytoplasmic membrane (Chami et al., 1997; Bayan et 
al., 2003). The Hpi protein of the Gram-positive Deinococcus radiodurans is also in 
contact with the underlying lipid-rich layer of the cell wall, but the contributions of 
Hpi and the additional S-layer protein SlpA to cell wall anchoring of the S-layer are 
not clear (Rothfuss et al., 2006). The known interactions between the S-layer protein 
and the cell wall in Gram-positive bacteria are summarized in Table 1. In many 
Gram-positive bacilli (Mesnage et al., 2000) and in the ancient thermophile Thermus 
thermophilus (Olabarria et al., 1996; Cava et al., 2004), SLH motifs (Lupas et al., 
1994), 55-60 amino acids long and often located in the N-terminal part of the S-layer 
protein, are responsible for the attachment of the subunit proteins to the cell wall. SLH 
motifs are not restricted to S-layer proteins, but are found in hundreds of bacterial 
(Gram-positive and -negative), archaeal, eukaryotic and even viral proteins (http://
pfam.sanger.ac.uk//family/slh, cited Aug 31, 2009). In most of the studied Bacillus, 
Lysinibacillus, Geobacillus and Thermus species, the binding of the SLH motifs of the 
S-layer protein has been shown to occur through a pyruvate-containing polysaccharide 
receptor in the cell wall, while in Clostridium thermocellum F1 the binding of SLH 
motifs to peptidoglycan has been demonstrated.  In S-layers of Gram-positive bacteria 
not having SLH motifs, the attachment to the cell wall has been proposed to be 
mediated by an interaction between basic amino acids in the cell wall binding region 
of the S-layer protein and negatively charged cell wall carbohydrates. For example, 
the cell wall receptors of such S-layers in Geobacillus species characterized so far 
contain mannuronic acid, and teichoic and lipoteichoic acids have been shown to 
be the cell wall receptors of the S-layer proteins of Lactobacillus acidophilus and 
L. crispatus (see Section 1.2.3). However, some cell wall polysaccharides of Gram-
positive bacteria proposed to be involved in S-layer binding have a net neutral charge 
(Steindl et al., 2002; Schäffer & Messner, 2005). In any case, most interactions 
characterized thus far between S-layer proteins and underlying cell wall polymers 
can be considered lectin-like and a degree of specifi city is recognized (Sara & Sleytr, 
2000). At present, structures of secondary cell wall polymers are also available for 
Gram-positive bacteria with structurally and/or genetically uncharacterized S-layer 
proteins (Schäffer et al., 2000; Schäffer & Messner, 2005; Steindl et al., 2005).

Among Gram-positive bacteria, the self-assembly regions of S-layer proteins 
have thus far been investigated in the S-layers of lactobacilli (see Section 1.2.3) 
and in the S-layers of Bacillus anthracis, Lysinibacillus sphaericus and Geobacillus 
stearothermophilus. These studies mainly rely on electron microscopy of recombinant 
S-layer protein fragments, and the self-assembly region has been shown to be located 
centrally or at the C- or N-terminus. The experimentally verifi ed self-assembly regions 
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Table 1. Interactions of S-layer proteins of Gram-positive bacteria with the cell wall.
Strain S-layer 

protein
Interaction 
site in S-layer 
protein

Cell wall 
receptor 

Reference

Bacillus anthracis Sap, 
EA1

N-terminal, 
three SLH 
motifs

Pyruvic acid-
containing 
polysaccharide 

Mesnage et al., 
1999a; 2000 

Lysinibacillus sphaericus 
CCM 2177

SbpA N-terminal, 
three  SLH 
motifs, one 
SLH-like motif

Pyruvic acid-
containing 
polysaccharide

Ilk et al., 1999; 
Huber et al., 2005

Lysinibacillus sphaericus 
C3-41

SlpC N-terminal, 
three SLH 
motifs, third 
essential

Polysaccharide Li et al., 2009

Bacillus thuringiensis ssp. 
galleriae NRRL 4045

SlpA N-terminal, 
three SLH 
motifs

Pyruvic acid-
containing 
polysaccharide 

Mesnage et al., 2001

Geobacillus 
stearothermophilus PV72/
p2

SbsB N-terminal, 
three SLH 
motifs

Pyruvic acid-
containing 
polysaccharide

Ries et al., 1997; 
Sara et al., 1998; 
Mader et al., 2004; 
Rüntzler et al., 2004

Thermus thermophilus 
HB8

SlpA One N-terminal 
SLH motif

Pyruvic acid-
containing 
polysaccharide

Olabarria et al., 
1996; Cava et al., 
2004

Thermoanaerobacterium 
thermosulfurigenes EM1

S-layer 
protein

N-terminal, at 
least one SLH 
motif

Pyruvic acid-
containing 
polysaccharide

Brechtel & Bahl, 
1999; May et al., 
2006

Clostridium thermocellum 
NCIMB 10682

SlpA N-terminal, 
three SLH 
motifs

Not determined Lemaire et al., 1998

Clostridium thermocellum 
F1

Slp1, 
Slp2

C-terminal, 
three SLH 
motifs

Peptidoglycan Zhao et al., 2006

Geobacillus 
stearothermophilus ATCC 
12980

SbsC N-terminal Mannuronic 
acid-containing 
polysaccharide

Egelseer et al., 1998; 
Schäffer et al., 1999; 
Ferner-Ortner et al., 
2007

Geobacillus 
stearothermophilus ATCC 
12980/G+

SbsD N-terminal 
(postulated)

Mannuronic 
acid-containing 
polysaccharide 

Egelseer et al., 2001; 
Schäffer et al., 1999

Geobacillus 
stearothermophilus PV72/
p6

SbsA N-terminal Mannuronic 
acid-containing 
polysaccharide

Egelseer et al., 1998; 
Schäffer et al., 1999

Geobacillus 
stearothermophilus NRS 
2004/3a

SgsE N-terminal 
(based on 
sequence 
similarity)

Mannuronic 
acid-containing 
polysaccharide

Schäffer et al., 1999; 
Schäffer et al., 2002; 
Schäffer et al., 2007

Aneurinibacillus 
thermoaerophilus DSM 
10155

SatB Not known Neutral 
polysaccharide

Steindl et al., 2002; 
Schäffer & Messner, 
2005

Corynebacterium 
glutamicum 

PS2 C-terminal, 
hydrophobic

Mycomembrane 
containing 
mycolic acids 
(suggested)

Chami et al., 1997

Lactobacillus acidophilus 
ATCC 4356

SA C-terminal Teichoic acids Smit & Pouwels, 
2002

Lactobacillus crispatus 
JCM 5810

CbsA C-terminal Teichoic acids Antikainen et al., 
2002
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of S-layer proteins of Gram-positive bacteria are summarized in Table 2.

Table 2. Self-assembly regions in S-layer proteins of Gram-positive bacteria.

Strain S-layer 
protein

Location of crystallization 
region (residues / total 
residues)

Reference

Bacillus anthracis Sap C-terminal (211-814 / 814) Candela et al., 2005
Lysinibacillus 
sphaericus CCM 2177 

SbpA Central (203-1031 /1268)*# Huber et al., 2005

Geobacillus 
stearothermophilus 
PV72/p2

SbsB C-terminal (177-889 / 889) Rüntzler et al., 2004

Geobacillus 
stearothermophilus 
ATCC 12980

SbsC Central (258-920 / 1099)* Jarosch et al., 2001

Lactobacillus 
acidophilus ATCC 4356

SA N-terminal (32-321 / 413) Smit et al., 2001

Lactobacillus crispatus 
JCM 5810

CbsA N-terminal (32-271 / 410) Antikainen et al., 2002

* Signal sequence included in the numbering. 
# Conclusions drawn from separate N- and C-terminal truncations.

1.1.2.4 Functions
Considering the wide occurrence of S-layers in the microbial world, information 
about their functions is still insuffi cient, and no common function for all S-layers 
appears to exist. The functions characterized thus far include the determination and 
maintenance of cell shape, various protective functions and actions as a molecular 
sieve, as a binding site for large molecules or ions and as a mediator of bacterial 
adhesion; the contribution to virulence reported for the S-layers of many pathogens 
may result from many of these functions (Sara & Sleytr, 2000). Furthermore, one 
S-layer protein thus far, SwmA of a marine Synechococcus strain, has been shown 
to be involved in motility (Brahamsha, 1996; McCarren et al., 2005), and for three 
S-layer proteins, those of Clostridium diffi cile,  Bacillus anthracis and Lactobacillus 
acidophilus, a degradative enzymatic function has been demonstrated (Calabi et 
al., 2001; Ahn et al., 2006; Prado Acosta et al., 2008). More specifi cally, S-layers 
may offer protection against mechanical and osmotic stress (Engelhardt, 2007a; b), 
radiation (Kotiranta et al., 1999), changes in the environmental pH (Gilmour et al., 
2000), bacteriophages (Howard & Tipper, 1973), bacterial or eukaryotic microbial 
predators (Koval & Hynes, 1991; Tarao et al., 2009) or enzymes (Lortal et al., 1992). 
They may act as binding sites for exoenzymes (Matuschek et al., 1994; Egelseer et 
al., 1995; Peters et al., 1995; Egelseer et al., 1996), immunoglobulins (Phipps & Kay, 
1988), porphyrins (Kay et al., 1985) or phages (Howard & Tipper, 1973; Ishiguro 
et al., 1984; Fouet, 2009), or catch toxic metals (Pollmann et al., 2006) or calcium 
leading to mineral formation (Schultze-Lam et al., 1992). In pathogenic bacteria, 
S-layers may contribute to virulence by several mechanisms, including adhesion to 
host tissues or cells, antigenic variation, protection from phagocytosis or complement 
(reviewed by Kotiranta et al., 2000; Sara & Sleytr, 2000) or by suppression (Wang et 
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al., 2000) or induction (Ausiello et al., 2006) of cytokine secretion. On the other hand, 
also the S-layer protein of a health-promoting Lactobacillus strain has been shown 
to interact specifi cally with immune cells, regulating their function through cytokine 
induction (Konstantinov et al., 2008).

1.1.2.5 Applications 
Applications of S-layers can be divided into two groups. The fi rst comprises 
applications utilizing (engineered) S-layered bacterial cells, S-layer (fusion) proteins 
or only the expression and/or secretion signals of S-layer protein genes in various 
biological systems, including vaccine development, heterologous protein production 
and surface display. The second group utilizes isolated, usually recombinant S-layer 
proteins for (nano)biotechnological applications. In vaccine development, the high 
antigen amount provided by the S-layer (carrier) as well as the intrinsic adjuvant 
and immunostimulatory properties of the S-layer arrays (Smith et al., 1993) may be 
advantageous (Seegers, 2002; Wells & Mercenier, 2008). As a few examples, S-layer 
protein preparations purifi ed from pathogens have been tested as vaccines in fi sh 
(Lund et al., 2003) or in animal models for AAD (antibiotic-associated diarrhoea) (Ni 
Eidhin et al., 2008), and S-layers chemically coupled with polysaccharide antigens 
have shown potential as therapeutic cancer vaccines or as traditional vaccines in 
animal models (reviewed by Sleytr et al., 1999). S-layer-antigen fusion proteins, 
either on/in bacterial cells or as isolated proteins, have produced humoral responses 
and/or protection against challenge in animals (Mesnage et al., 1999b; Umelo-Njaka 
et al., 2001; Riedmann et al., 2003; Liu et al., 2008), and an S-layer-allergen fusion 
protein has proved effective in modulating the immune response to a more favourable 
one in experiments utilizing immune cells of allergic humans in vitro (Bohle et al., 
2004). As further examples of the fi rst application group, tools for immunoassays 
or for bioremediation have been generated by the display of the immunoglobulin 
binding domain of Protein G (Nomellini et al., 2007) or a hexahistidine tag (Wang 
et al., 2004; Patel et al., 2009), respectively, in the S-layer protein on bacterial cells. 
Further, an immunogenic mycobacterial peptide has been effi ciently produced in a 
biologically active form using S-layer gene expression signals (Salim et al., 1997), and 
a plasmid-based secretion system utilizing the secretion signal of the S-layer protein 
of Caulobacter crescentus has been developed and commercialized (Bingle et al., 
1997a; 2000; Duncan et al., 2005). The second group of applications is largely based 
on the ability of S-layer proteins to spontaneously form periodic, porous structures 
on various supports with identical physicochemical properties on each molecular unit 
down to the nanometer scale, and this application fi eld is expanded further by the use 
of fusion proteins. Several excellent reviews on nanobiotechnological applications 
of S-layer proteins are available (Pum & Sleytr, 1999; Sleytr et al., 1999; Schuster 
et al., 2006; Sleytr et al., 2007; Schuster & Sleytr, 2009). Some of the conventional 
applications in this fi eld include the use of S-layers as ultrafi ltration membranes and 
as matrices for the covalent attachment of molecules (enzymes, antibodies, protein A, 
biotin, avidin, fl uorophores) for use in affi nity membranes, amperometric or optical 
biosensors or solid-phase immunoassays (Pum & Sleytr, 1999; Sleytr et al., 1999; Sleytr 
& Beveridge, 1999; Scheicher et al., 2009). More recently, S-layers proteins have been 
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genetically fused to e.g. enzymes, streptavidin, specifi c antibody fragments, green 
fl uorescent protein (GFP) and a protein A immunoglobulin-binding domain analogue 
(Z domain); these fusion proteins, which retain the ability to recrystallize, may fi nd 
numerous applications varying from biosensors and label-free detection systems to 
blood detoxifi cation (Schuster et al., 2006; Schäffer et al., 2007; Sleytr et al., 2007; 
Tschiggerl et al., 2008). S-layer proteins can also be recrystallized on lipid fi lms and 
liposomes, which causes a remarkable stabilization of these structures. S-liposomes 
have a broad application potential as drug or plasmid delivery and targeting systems 
with a possibility for specifi c receptor-mediated intake. As S-layer-supported lipid 
membranes on porous or solid supports maintain their functionality and allow even 
single membrane protein (pore) recordings, they are valuable tools in drug discovery 
and protein-ligand screening and have potential as membrane biosensors and in the 
development of electronic and optical devices (Schuster et al., 2006; Sleytr et al., 2007; 
Schuster & Sleytr, 2009). S-layers have been used in microlithographic procedures 
in which patterns are formed on S-layers on solid supports by ultraviolet irradiation 
(Pum et al., 1997a;b; Sleytr et al., 1999); the patterned S-layers are currently used as 
resistors in electronics (Pum & Sleytr, 1999). Finally, S-layers have been exploited 
in the formation of regularly arranged nanoparticles for applications in molecular 
electronics and non-linear optics. These applications include wet chemical processes, 
i.e. the formation of nanoparticle superlattices on the S-layers in metal-salt solutions, 
including processes in which the binding nanoparticles are preformed and thus of 
defi ned size, and systems in which S-layers act as etching masks before the deposition 
of the particle-forming metal (Pum & Sleytr, 1999; Sleytr et al., 1999; 2007; Badelt-
Lichtblau et al., 2009). At present, most of the above mentioned applications are, 
however, at the stage of invention and development rather than in commercial use.

1.2. Lactobacilli and their S-layer proteins

Lactic acid bacteria are Gram-positive, non-pathogenic micro-organisms characterized 
by the production of lactic acid as the main end-product of carbohydrate metabolism. 
Besides having a long history of use in food and feed fermentations, lactic acid 
bacteria have aroused interest because of the health benefi cial (probiotic) properties of 
some strains. Probiotic preparations have been shown to be effective in, for example, 
the treatment or prevention of rotavirus or antibiotic associated diarrhea, relief of 
the symptoms of irritable bowel syndrome, treatment of infl ammatory bowel disease 
or pouchitis, prevention and treatment of atopic disease and prevention of recurrent 
urinary tract infections in women (Pham et al., 2008). Other benefi cial effects, 
such as benefi cial infl uences on malignancies, on plasma lipid levels or on lactose 
maldigestion in humans, have also been suggested (Ouwehand et al., 2002; Ljungh 
& Wadström, 2006). Furthermore, lactic acid bacteria are attractive candidates for 
biotechnological health-related applications currently under investigation, such as oral 
vaccination, passive immunization, tolerance induction or the development of strains 
producing pharmaceutically important proteins (enzymes, microbicides, cytokines) in 
vivo (Seegers, 2002; Steidler, 2003; Wells & Mercenier, 2008).
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The genus Lactobacillus forms a large, very heterogeneous group among lactic 
acid bacteria, the one most often used in probiotic preparations. It consists of non-
sporulating, anaerobic or microaerophilic, catalase-negative, fermentative organisms 
with a low G+C percent (32-53%) and complex nutritional requirements. Lactobacilli 
have been isolated from various environments, including plants, foodstuffs, silage 
and sewage, and they have been found in the gastrointestinal and genital tracts of 
humans and animals, where they form part of the normal fl ora (Kandler & Weiss, 
1986; Axelsson, 1998; Hayashi et al., 2005; Felis & Dellaglio, 2007).  According to 
recent culture-independent enumerating methods utilizing either tissues or contents 
of the gastrointestinal canal of humans, they seem, however, to represent a minor 
proportion (0.01-4.9%) of the total microbial fl ora and part of this may comprise 
transients. In contrast, in the human oral cavity, lactobacilli may attain considerable 
populations (Walter, 2008), and in the human female urogenital tract they usually 
dominate the healthy microbiota (Redondo-Lopez et al., 1990; Zhou et al., 2007). 
In animals, lactobacilli are found in the crops (Fuller & Brooker, 1974; Guan et al., 
2003) and ceca (Zhu et al., 2002) of chickens and in the gastrointestinal tracts of 
pigs (Fuller et al., 1978; Pedersen & Tannock, 1989; Pryde et al., 1999; Leser et al., 
2002; Konstantinov et al., 2006), horses (Yuki et al., 2000; Bailey et al., 2003; Al 
Jassim et al., 2005), ruminants (Krause et al., 2003; Collado & Sanz, 2007; Busconi 
et al., 2008) and rodents (Savage et al., 1968; Morotomi et al., 1975; Diaz et al., 
2004; Lesniewska et al., 2006). The Lactobacillus brevis strain ATCC 8287 used in 
this study has originally been isolated from green fermented olives. L. brevis is often 
detected in the oral cavity and faeces of humans (Walter, 2008), and the strain ATCC 
8287 has been shown to survive passage through the human gastrointestinal tract 
(Rönkä et al., 2003).

1.2.1 Occurrence and general properties of Lactobacillus S-layer proteins
In the genus Lactobacillus, S-layers have been found in several, but not all, species. 
In public databases, sequences of S-layer protein genes from strains of L. brevis, L. 
helveticus, L. suntoryeus and organisms of the former L. acidophilus group (Johnson 
et al., 1980), including L. acidophilus, L. crispatus and L. gallinarum, are available. 
Furthermore, the Apf1 and Apf2 proteins of L. gasseri and L. johnsonii of the same 
group, the gene sequences of which are available, have been described as S-layer-
like (Ventura et al., 2002). In addition, strains of L. amylovorus (Boot et al., 1996a), 
L. buchneri (Masuda & Kawata, 1981; 1983), L. kefi r and L. parakefi r (Garrote et 
al., 2004) have been shown to possess an S-layer, although the genes have not been 
sequenced. S-layers have been demonstrated by electron microscopy also on L. 
fermentum and L. delbrueckii subspecies bulgaricus (Kawata et al., 1974; Masuda & 
Kawata, 1983), but the species identifi cation of these strains has subsequently been 
questioned (Boot et al., 1996a), and at present these species can be considered non-
S-layered. Likewise, in an early study, a regular layer was seen on L. casei (Barker & 
Thorne, 1970), but according to Boot et al. (1996b), no S-protein encoding genes are 
present in this species, and the isolate probably would now be reclassifi ed to another 
species. 
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All of the Lactobacillus S-layer proteins characterized thus far are preceded by a 25-30 
amino acid signal peptide indicating secretion through the general secretory pathway. 
The deduced amino acid sequences of mature Lactobacillus S-layer proteins vary 
considerably, the range of identical amino acids varying from 7% to 100% (Åvall-
Jääskeläinen & Palva, 2005), and even the S-layer proteins of the same strain may 
be markedly different in sequence (Jakava-Viljanen et al., 2002; Hagen et al., 2005). 
As in the case of S-layers in general, similarity between the deduced amino acid 
sequences, when present, can be found only between related species, e.g. between 
the S-layer proteins of the former L. acidophilus group organisms and L. helveticus 
(Antikainen et al., 2002; Hagen et al., 2005). However, when the phylogenetic trees 
constructed on the basis of 16S rRNA or tuf  gene sequences of a set of L. acidophilus-
related organisms, including strains of the novel L. suntoryeus species, were compared 
with those constructed on the basis of S-layer protein genes of the same species, the 
novel strains no longer grouped together, indicating strong selective pressure forcing 
the diversifi cation of S-layer protein genes within L. acidophilus-related organisms 
as well (Cachat & Priest, 2005). In a similar analysis, however, the comparison of 
phylogenetic trees based on 22 deduced Lactobacillus S-layer protein sequences and 
16S rRNA sequences of corresponding Lactobacillus species available revealed a 
similar overall clustering of strains (Åvall-Jääskeläinen & Palva, 2005). 

S-layer proteins of lactobacilli differ from S-layer proteins in general in their 
smaller size (25-71 kDa) and a high predicted overall pI value (9.4-10.4). The lattices 
formed by Lactobacillus S-layer proteins characterized thus far are of oblique or 
hexagonal type (Åvall-Jääskeläinen & Palva, 2005). An electron micrograph of the 
S-layer lattice of Lactobacillus brevis is shown in Fig. 2. A glycan structure on a 

Figure 2. The self-assembly product of the recombinant S-layer protein of Lactobacillus brevis 
ATCC 8287 observed by negative staining and transmission electron microscopy. Bar, 100 nm. 
Figure by Ulla Hynönen.
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Lactobacillus S-layer protein has to date been described only for L. buchneri (Messner 
et al., 2008), but glycosylated S-layer proteins have been described also in L. kefi r 
(Mobili et al., 2009a). As mentioned earlier, secondary structure predictions for S-layer 
proteins are of limited value thus far (see Section 1.1).  A prediction performed for the 
amino acid sequences of the unprocessed forms of six Lactobacillus S-layer proteins 
suggested on average 14% α-helices, 39% extended strands and 47% random coil in 
these proteins (Åvall-Jääskeläinen & Palva, 2005). In the S-layer-like proteins Apf1 
and Apf2 of L. gasseri and L. johnsonii, the β-sheet content was predicted to be 26-31% 
and the overall folding of the proteins was suggested to be irregular (Ventura et al., 
2002). Physical measurements revealing secondary structures have been performed 
for a few Lactobacillus species. A Fourier transform infrared (FTIR) spectroscopy 
study performed for the S-layer proteins of L. kefi r and L. brevis indicated α-helix 
contents of 0-21%, β-sheet contents of 23-50% and other structure contents, including 
β-turns and random coil, of 37-63 % in these proteins. Interestingly, the proportions 
of α-helix, β-sheet and other structures in SlpA of L. brevis ATCC 8287 studied in 
this thesis work, were 0%, 50% and 50%, respectively (Mobili et al., 2009b). Atomic 
force microscopy (AFM) studies of the S-layer protein CbsA of L. crispatus and its N- 
and C-terminal fragments suggested the presence of at least four α-helical structures 
of variable sizes, rather than β-sheets, in the N-terminal part of CbsA (Verbelen et al., 
2007). Until now, no three-dimensional structures of Lactobacillus S-layer proteins 
on atomic resolution have been available.

1.2.2 Expression of Lactobacillus S-layer protein genes
The very effi cient synthesis of S-layer proteins in lactobacilli is achieved by several 
means: i) The half lives of the S-layer protein gene transcripts of L. brevis (Kahala 
et al., 1997) and L. acidophilus (Boot et al., 1996b) have been determined to be 
exceptionally long (14 and 15 min, respectively). In the case of L. acidophilus, this is 
supposed to be due to the long 5´ untranslated region (UTR) of the transcript forming a 
stabilizing secondary structure (Boot et al., 1996b), while the 5´ UTR of  L. brevis slpA 
transcript is not exceptionally long (Vidgren et al., 1992). ii) A biased codon usage, 
correlating with effi cient gene expression in lactobacilli (Pouwels & Leunissen, 1994), 
has been observed for the S-layer protein genes of L. brevis (Vidgren et al., 1992) and 
L. acidophilus (Boot et al., 1995) as well as for the S-layer-like protein genes apf1 and 
apf2 of L. gasseri and L. johnsonii (Ventura et al., 2002). iii) The promoters of S-layer 
protein genes are effi cient, even to the extent that they have been used in heterologous 
expression and protein production systems (see Section 1.2.5). In the promoter regions 
of the apf1 and apf2 genes of L. johnsonii encoding S-layer-like proteins, a TG motif 
upstream of the -10 box, responsible for increased transcriptional activity, has been 
identifi ed (Ventura et al., 2002). iv) Two promoters, offering a possibility to enhance 
and/or regulate gene expression, have been identifi ed upstream of the slpA gene of 
L. brevis ATCC 8287 (Vidgren et al., 1992), slpB and slpD of L. brevis ATCC 14869 
(Jakava-Viljanen et al., 2002), slpA of L. acidophilus ATCC 4356 (Boot et al., 1996b) 
and the S-layer-like gene apf1 of L. johnsonii (Ventura et al., 2002). Of these, data 
about the use of the promoters are available for L. brevis ATCC 8287 (Kahala et al., 
1997) and L. johnsonii (Ventura et al., 2002), in which both of the promoters are used, 
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and for L. acidophilus, in which only the downstream promoter is functional under the 
conditions tested (Boot et al., 1996b).

The presence of multiple S-layer protein genes in the same strain is common in 
lactobacilli (Boot et al., 1996a; Hagen et al., 2005). In fact, excluding L. helveticus, for 
all Lactobacillus species with genetically characterized S-layer proteins and sequences 
publicly available, two or more complete S-layer protein genes in the same strain have 
been described. Of these, only the S-layer protein genes slpB and slpD of L. brevis 
ATCC 14869 (Jakava-Viljanen et al., 2002), slpA and slpX of L. acidophilus NCFM 
(or slpB and slpX of the slpA knock-out mutant of L. acidophilus NCFM) (Goh et al., 
2009) as well as the S-layer-like protein genes apf1 and apf2 of L. johnsonii and L. 
gasseri (Ventura et al., 2002) have been shown to be expressed simultaneously. Thus, 
silent S-layer protein genes, under the conditions tested, are common and represented 
by the slpB genes of L. acidophilus ATCC 4356, NCIMB 8607, LMG 11428, LMG 
11469 (Boot et al., 1995) and NCFM (Buck et al., 2005), cbsB of L. crispatus JCM 
5810 (Sillanpää et al., 2000), SlpNB of L. crispatus LMG 12003 (unpublished, 
GenBank AF253044), slpC of L. brevis ATCC 14869 (Jakava-Viljanen et al., 2002), 
by several lgs genes of L. gallinarum (Hagen et al., 2005), and probably also by one 
of the two S-layer protein genes identifi ed in L. amylovorus by hybridization (Boot 
et al., 1996a), although the presence of two identical-sized S-layer proteins on the 
bacterial surface cannot be excluded. According to a preliminary SDS-PAGE analysis 
of seven porcine L. amylovorus isolates, only one isolate was suggested to express 
two S-layer protein genes at the same time, while in the rest only one S-layer protein 
was present (Jakava-Viljanen & Palva, 2007). The genomes of L. gallinarum strains 
have two genes encoding S-layer proteins: a common one and a strain-specifi c one, 
but each strain produces only a single S-layer protein, which is always encoded by 
the strain-specifi c gene (Hagen et al., 2005). In the recently sequenced genome of 
L. brevis ATCC 367 (Makarova et al., 2006), two complete genes and one truncated 
S-layer protein gene have been identifi ed by homology, but nothing is known about 
the expression of these genes.

The mechanism of the differential expression of slp genes has been well 
documented in L. acidophilus 4356, in which an inversion of a chromosomal segment 
leads to the placement of the silent gene in front of the active S-promoter. This event 
seems to be unfavoured under laboratory conditions, as the silent gene is at the 
expression site only in 0.3% of the chromosomes of a broth culture of L. acidophilus 
4356. No conditions favouring the expression of the silent gene have thus far been 
characterized (Boot et al., 1996). A similar chromosomal inversion mechanism has 
subsequently been shown to operate in L. acidophilus NCFM, where the inactivation 
of the S-layer protein gene slpA by homologous recombination leads to the appearance 
of an alternate S-layer protein, SlpB, in the mutant strain NCK1377-CI (Buck et al., 
2005; Konstantinov et al., 2008). 

Information about adaptive changes in Lactobacillus S-layer gene expression, not 
known to involve chromosomal rearrangements, is scarce. In L. brevis ATCC 14869, 
the differential expression of the slpB and slpD genes is related to the oxygen content 
of the growth medium and the growth stage: slpB is expressed irrespective of oxygen 
content and equally in different growth phases, while slpD is predominantly expressed 
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in aerated cultures mainly in the exponential phase. The onset of slpD expression is 
most likely mediated by a soluble, cytoplasmic factor and it was surmised to be part of 
a stress response; a concomitant change in colony morphology, presumably not directly 
linked to the S-layer protein type, was also observed. Neither the nature or mechanism 
of action of the soluble regulator nor the reason for the silence of the slpC gene in this 
strain is known (Jakava-Viljanen & Palva, 2007). Stress-mediated regulation was also 
suggested for the expression of the S-layer protein gene of L. acidophilus NCC2628, 
which was induced when the strain was cultivated under conditions of limited protein 
supply (Schär-Zammaretti et al., 2005). 

Although the S-layer protein genes seem to be essential for lactobacilli, as 
S-layer-negative mutants are diffi cult or impossible to create (Boot et al., 1996; 
Martinez et al., 2000; Buck et al., 2005), and expression of S-layer protein genes thus 
could be anticipated to be constitutive, the examples above indicate that variation and 
regulation at the transcriptional and/or transcriptional level also exists. Recently, genes 
encoding alternative sigma factors have been identifi ed in the sequenced genomes 
of several Lactobacillus species, and numerous potential transcription factor genes 
are also present (Azcarate-Peril et al., 2008). However, currently the transcriptional 
and translational regulation mechanisms of Lactobacillus S-layer protein genes on a 
molecular level are almost totally unexplored.

1.2.3 Cell wall binding and self-assembly regions in Lactobacillus S-layer proteins
Before this thesis work, the two structural regions of S-layer proteins, the region 
involved in the attachment of the S-layer subunit to the cell envelope and the region 
involved in S-layer assembly, were characterized in the S-layer proteins of only two 
Lactobacillus strains: in the SA protein of L. acidophilus ATCC 4356 (Smit et al., 
2001) and in the CbsA protein of L. crispatus JCM 5810 (Antikainen et al., 2002) 
(see also Table 1). Both of these organisms belong to the former L. acidophilus group 
(Johnson et al., 1980), and the amino acid sequences of their S-layer proteins show 
extensive similarity, especially in the C-terminal parts (Smit et al., 2001), suggesting 
a conserved function for the C-terminal region. Extending the alignment to the amino 
acid sequences of eight mature S-layer proteins of L. acidophilus group organisms 
and the closely related L. helveticus (Collins et al., 1991; Felis & Dellaglio, 2007) 
also indicates a remarkable conservation of the C-terminal parts (Antikainen et al., 
2002).

In both SA of L. acidophilus ATCC 4356 (Smit et al., 2001) and CbsA of L. 
crispatus JCM 5810 (Antikainen et al., 2002), the conserved C-terminal part of the 
S-layer protein, approximately 125 amino acids or one-third of the mature amino 
acid sequence, is responsible for binding to the cell envelope, and the more variable 
N-terminal part for the self-assembly of the S-layer protein monomers to a periodic 
S-layer lattice. Both of these proteins have a similar charge distribution with a high 
predicted pI in the C-terminal part rich in lysines.  Overall, the C-terminal parts of 
these proteins consist mainly of hydrophilic amino acid residues and are predicted to 
contain β-strands (Smit et al., 2001; Antikainen et al., 2002). 

Lactobacillus S-layer proteins do not possess SLH domains. Instead, two 
repeated amino acid sequences with homology to the tyrosine/phenylalanine 
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containing carbohydrate-binding motifs of clostridial toxins and streptococcal 
glucosyltransferases (Wren, 1991; von Eichel-Streiber et al., 1992) are present in the 
cell wall binding regions of SA and CbsA, in the C-terminal parts of the silent S-layer 
protein SB of L. acidophilus ATCC 4356 and the S-layer protein of L. helveticus 
CNRZ 892, as well as in non-S-layer proteins of lactic acid bacteria known to be 
associated with the cell envelope or to agglutinate red blood cells (Smit et al., 2001). 
The cell wall receptors for the C-terminal parts of SA and CbsA have been shown to be 
teichoic acids (Antikainen et al., 2002; Smit & Pouwels, 2002), and CbsA  binds also 
to lipoteichoic acids (LTA) isolated from Staphylococcus aureus and Streptococcus 
faecalis, but not to the teichuronic acid/polysaccharide fraction of the cell wall of L. 
crispatus JCM 5810. Based on the lack of amino acid sequence similarity of CbsA 
with other positively charged LTA binding proteins, and binding studies performed 
after the oxidation of carbohydrates in LTA showing no effect on binding, the LTA 
binding of the C-terminal part of CbsA was suggested to be mediated by electrostatic 
interactions involving the lysine residues in the CbsA C-terminal part (Antikainen et 
al., 2002). Participation of such electrostatic interactions was not excluded in the case 
of the cell wall binding of SA either (Smit et al., 2001). For SA, only one of the two 
65 amino acid repeats of the cell wall binding region is necessary for binding, and an 
enhancing role for the other repeat has been suggested (Smit & Pouwels, 2002). In the 
case of CbsA, no further dissection of the C-terminal part for cell wall binding studies 
has been performed.

The self-assembly regions of SA and CbsA have been mapped by studying the 
self-assembly properties of truncated recombinant proteins by transmission electron 
microscopy (Sillanpää et al., 2000; Smit et al., 2001; Antikainen et al., 2002; Smit 
et al., 2002). The fragments comprising the C-terminal two-thirds of SA  (residues 
1-290 in the mature protein) form a lattice with p2 symmetry, identical to that formed 
by SA extracted from L. acidophilus ATCC 4356 cells (Smit et al., 2001). The 
lattice parameters or symmetry type of the lattice formed by full-length recombinant 
CbsA and its N-terminal self-assembly part (residues 32-271 in the mature protein) 
(Antikainen et al., 2002) have not been determined. 

Both SA and CbsA can be viewed as two-domain proteins with an N-terminal 
domain facing the environment and a non- or less-exposed C-terminal domain; in 
SA this view was supported by proteolytic and chemical breakdown experiments 
(Smit et al., 2001). According to insertion and deletion mutagenesis and proteolytic 
studies of SA, the N-terminal self-assembly domain is probably organized into two 
subdomains of approximately 12 and 18 kDa, linked by a surface-exposed loop. The 
very N-terminus of SA is not critical for crystallization and is probably buried inside 
the domain or facing the cell wall or S-layer pore. Conserved regions and regions 
predicted to form secondary structures in SA are necessary for the formation of 
a regular lattice (Smit et al., 2002). The lack of necessity of the very N-terminal 
end and the importance of the conserved regions for self-assembly have also been 
demonstrated for CbsA, where the conserved, valine-rich fl anking regions of the self-
assembly domain (residues 30-32 and 269-273 in mature CbsA) have been shown 
to be especially important for the formation of the S-layer lattice and may have a 
role in directing the formation of a regular polymer: changes in the morphology of 
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the self-assembly products of CbsA fragments are seen accompanying a mutation of 
even a single residue in these conserved border regions as well as with the stepwise 
truncation of the self-assembly region. Although not necessary for self-assembly, the 
C-terminal cell wall binding domain has a stabilizing role in the recrystallization of 
CbsA monomers by allowing a more effi cient sheet formation. The region in CbsA 
responsible for self-assembly also binds collagen (see Section 1.2.4), and the binding 
correlates with the ability of recombinant CbsA fragments to form a regular lattice 
structure (Antikainen et al., 2002).

In addition to the two well-characterized proteins described above, only 
fragmentary data are available about the cell wall binding or self-assembly of other 
Lactobacillus S-layer proteins. In early studies, the cell walls of L. buchneri (Masuda 
& Kawata, 1981) and L. brevis ATCC 8287 (Shimohashi et al., 1976) were shown to 
contain neutral polysaccharides, which were suggested to be involved in the anchoring 
of the S-layer protein to the cell wall through hydrogen bonding (Masuda & Kawata, 
1980; 1981; 1985). In comparison with the well-characterized exopolysaccharides of 
lactic bacteria (De Vuyst & Degeest, 1999; Welman & Maddox, 2003), the cell wall 
polysaccharides of lactobacilli other than teichoic acids are poorly known. The detailed 
structure of a neutral wall polysaccharide of L. casei has been determined (Nagaoka 
et al., 1990), but no precise structures for such polysaccharides of L. buchneri or L. 
brevis strains are available. Regarding organisms related to L. acidophilus, the S-layer 
protein of L. helveticus CNRZ 892 can, based on amino acid sequence similarity, be 
anticipated to be composed of similar functional domains as SA and CbsA, although 
the detailed mechanisms of cell wall binding and, especially, self-assembly are more 
likely to vary.

1.2.4 Functions of Lactobacillus S-layer proteins
Until now, only a couple of functions have been shown or proposed for Lactobacillus 
S-layer proteins. The presence of the S-layer protein decreases the susceptibility of 
L. helveticus ATCC 12046 to mutanolysin (Lortal et al., 1992) and the susceptibility 
of L. acidophilus M92 to gastric and pancreatic juice (Frece et al., 2005), and a role 
as a phage receptor has been suggested for the S-layer protein of L. helveticus CNRZ 
892 (Callegari et al., 1998). The auxiliary S-layer component SlpX of L. acidophilus 
NCFM probably affects the permeability of the S-layer, as the slpX-negative mutant 
is more susceptible to SDS and more resistant to bile than the wild type (Goh et 
al., 2009). Recently, the C-terminal part of the S-layer protein SA of L. acidophilus 
ATCC 4356 was shown to have murein hydrolase (endopeptidase) activity against the 
cell wall of e.g. Salmonella enterica (Prado Acosta et al., 2008), but the biological 
relevance of this fi nding was not investigated. 

The most often proposed function for Lactobacillus S-layers is the mediation of 
bacterial adherence to various targets. In a number of studies, the loss of the S-layer 
protein from the bacterial surface by chemical means (Kos et al., 2003; Garrote 
et al., 2004; Frece et al., 2005; Chen et al., 2007; Jakava-Viljanen & Palva, 2007; 
Tallon et al., 2007) or the covering of the layer by other molecules during prolonged 
cultivation (Schneitz et al., 1993) has been shown to decrease adhesion to different 
targets, but the role of the S-layer protein in adherence in these studies has not been 
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directly demonstrated. The haemagglutinating activity of L. acidophilus JCM 1034 
and the mucin binding activities of related strains were supposed to be linked to their 
S-layer proteins, but the involvement of other guanidine hydrochloride-extractable 
components of the cell wall in this lectin-like activity could not be excluded, and 
no attention was paid to the aggregation of the S-layer proteins possibly causing 
unspecifi c effects (Yamada et al., 1994; Takahashi et al., 1996). Likewise, in the study 
of Golowczyc et al. (2009), where the carbohydrate-dependent co-aggregation of L. 
kefi r with yeast or red blood cells was suggested to be S-layer-mediated, conclusions 
were drawn from the effects of LiCl and SDS treatments of L. kefi r cells, and non-
soluble LiCl extracts of L. kefi r were used in the aggregation assays. The study of 
Uchida et al. (2006), in which the dialysed guanidine hydrochloride extract containing 
the S-layer protein of L. brevis OLL2772 was shown to bind to the human blood group 
A antigen in a surface plasmon resonance assay, can especially be criticized for the 
use of an aggregated solution as an analyte. Inconclusive and indirect evidence of 
S-layer protein binding to epithelial cells is also available from studies where dialysed 
guanidine hydrochloride- or lithium chloride extracts of L. helveticus (Johnson-
Henry et al., 2007) or L. crispatus (Chen et al., 2007), containing aggregates of  the 
S-layer proteins of  the strains, inhibit the binding of pathogenic E. coli or Salmonella 
strains to epithelial cells. In a related study, the lithium chloride-extracted, aggregated 
S-layer protein of a L. kefi r strain was shown to bind to Salmonella cells, and a role 
for the S-layer protein in the inhibition of Caco-2/TC-7 cell association and invasion 
of Salmonella by L. kefi r was suggested (Golowczyc et al., 2007). 

Before this work, the role of a Lactobacillus S-layer protein in bacterial adherence 
had been unequivocally shown in two cases, where recombinant S-layer proteins 
or S-layer-negative mutants had been used (Toba et al., 1995; Buck et al., 2005; 
Konstantinov et al., 2008). First, CbsA of L. crispatus JCM 5810 binds collagen types 
I and IV (Toba et al., 1995; Sillanpää et al., 2000). L. crispatus JCM 5810 cells also 
bind to collagen-rich regions of chicken colon in vitro, while guanidine hydrochloride-
treated cells are unable to bind, suggesting biological relevance for the observed 
collagen binding of CbsA (Sillanpää et al., 2000). The N-terminal amino acids 31-274 
of mature CbsA are needed for collagen binding, and practically the same residues 
(32-271) are needed for the reassembly of CbsA monomers to an S-layer, suggesting 
the dependence of collagen binding on the periodic structure (Sillanpää et al., 2000). 
However, the display of CbsA on the surface of a non-S-layered L. casei strain through 
a PrtP cell wall anchor renders the recombinant cells able to bind collagens, although 
the anchoring system probably does not allow the monomers to form a true S-layer 
(Martinez et al., 2000). In contrast, the recombinant form of the non-expressed SlpB 
protein of L. crispatus JCM 5810 does not bind collagen types I or IV (Sillanpää 
et al., 2000). The second well-characterized adhesive Lactobacillus S-layer protein 
is SlpA on L. acidophilus NCFM cells, which binds to the DC-SIGN receptor on 
human immature dendritic cells, leading to cytokine production and modulation of 
the immune response. The slpA knock-out mutant expressing SlpB is signifi cantly 
reduced in binding to DC-SIGN, and the interaction leads to the induction of different 
cytokines (Konstantinov et al., 2008). A role for SlpA of L. acidophilus NCFM has 
also been demonstrated in binding to Caco-2 cells, as the binding of the knock-out 
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mutant is decreased by 84% compared with the wild type (Buck et al., 2005). The 
region in L. acidophilus SlpA responsible for binding to DC-SIGN or Caco-2 cells 
has not been determined.

While this thesis work was in progress, a direct interaction between the 
chromatographically purifi ed, monomeric form of the S-layer protein SlpA of L. brevis 
ATCC 8287 and soluble fi bronectin or laminin was demonstrated by surface plasmon 
resonance assays. The binding mechanisms to fi bronectin and laminin were found to 
be different and proposed to be mediated by different regions of SlpA (de Leeuw et 
al., 2006). Later, in the study of Khang et al. (2009) SlpA-GFP fusion proteins were 
shown to bind to undifferentiated human HT-29 cells, although appropriate controls 
were lacking and no attention was paid to the solubility of the protein, making the 
specifi city questionable.

In addition to the above-mentioned examples of specifi c binding, the S-layers 
of lactobacilli may have a non-specifi c enhancing effect on binding to surfaces, as 
they are generally hydrophobic (see Section 1.1.2.1)(van der Mei et al., 2003). Some 
Lactobacillus S-layers, but not all, have even been found to change their surface 
hydrophobicity in response to environmental ionic strength, thus possibly offering 
different binding capacities. In the case of the SA protein of L. acidophilus ATCC 
4356, the decrease in hydrophobicity associated with higher environmental ionic 
strength is hypothesized to be due to the shrinkage of the S-layer and the consequent 
partial exposure of the inner, more hydrophilic N-terminal domain (see Section 1.2.3)
(Vadillo-Rodriguez et al., 2004).

1.2.5. Applications of Lactobacillus S-layer proteins
Until now, rather few applications have been developed for the S-layer proteins 
of lactobacilli. The fi eld currently most extensively studied is the construction of 
S-layer fusion proteins for use in immunization in man or animals. Especially, the 
development of live Lactobacillus strains carrying S-layers composed of the hybrid 
proteins on their surface is of interest, as such strains have potential for use as live 
mucosal vaccines. Small model peptides have been displayed in each monomer 
of the S-layer of L. brevis ATCC 8287 (Åvall-Jääskeläinen et al., 2002) and L. 
acidophilus ATCC 4356 (Smit et al., 2002) by homologous recombination. Similarly, 
surface display of green fl uorescent protein (GFP) in the S-layer proteins on chicken 
Lactobacillus isolates has been achieved by utilizing the gene fragment encompassing 
the expression and secretion signals and the region encoding the cell-wall binding 
domain of the S-layer protein of L. crispatus  (Mota et al., 2006). Furthermore, the 
identifi cation of the S-layer protein of L. acidophilus NCFM as the binding ligand for 
the dendritic cell-specifi c antigen DC-SIGN (Konstantinov et al., 2008) makes this 
probiotic strain or its S-layer a very attractive tool for oral vaccine design. A system 
utilizing L. acidophilus NCFM (but not its S-layer) as a carrier for an antigen with a 
small dendritic cell targeting peptide has already been developed (Mohamadzadeh et 
al., 2009). Preliminary experiments have also been performed in the fi eld of passive 
immunization by utilizing the S-layer protein of L. brevis KCTC 3102 (ATCC 8287) as 
a purifi ed, immunoglobulin binding fusion protein to target antibodies to the intestinal 
surfaces of calves in order to prevent neonatal diarrhoea (Khang et al., 2009).
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Another potential application is the use of S-layers or S-layered lactobacilli as 
anti-adhesion agents for the prevention of infectious diseases. The collagen, laminin 
and fi bronectin binding L. crispatus strain JCM 5810 (Toba et al., 1995) and its 
well-characterized collagen adhesin CbsA (see Section 1.2.4) inhibit the binding of 
enterotoxigenic E. coli to a reconstituted basement membrane preparation as well 
as to its main component laminin in vitro (Horie et al., 2002). The observed anti-
adhesive effects of lactobacilli or their surface protein extracts mentioned in Section 
1.2.4., including those of L. crispatus (Chen et al., 2007), L. helveticus (Sherman et 
al., 2005; Johnson-Henry et al., 2007) and L. kefi r (Golowczyc et al., 2007) have been 
presented as useful, probiotic traits, although the extracts used in the inhibition studies 
apparently contained aggregates of the S-layer protein, and thus, the specifi cities of 
the inhibitions were compromised. In addition, the experiments have thus far only 
been performed in vitro, and their application potential in human or animal medicine 
is obscure.

The biochemical modifi cation studies of Lactobacillus S-layer proteins for 
technological applications have recently been initiated, with small molecular probes 
like biotin or FITC conjugated to purifi ed S-layer proteins of L. brevis using amine-
based coupling chemistry. The S-layer protein bioconjugates formed, purifi ed by 
affi nity chromatography, were capable of self-assembling into regular layers, where 
the surface coverage of the conjugated molecules is homogeneous and the density 
controllable. The method offers a way to display several different and high-molecular 
weight molecules at an interface (Sampathkumar & Gilchrist, 2004).

The expression and/or secretion signals of Lactobacillus S-layer protein genes 
have also been utilized in biotechnological applications (Savijoki et al., 1997; Kahala 
& Palva, 1999; Novotny et al., 2005). The signals of the slpA gene of L. brevis ATCC 
8287 have been used in Lactobacillus and Lactococcus hosts for intracellular (Kahala 
& Palva, 1999) and extracellular (Savijoki et al., 1997) protein production. Using slpA 
expression and secretion signals, secretion levels of beta-lactamase up to 80 mg/l have 
been achieved. Differences exist between the recognition effi ciency of the signals 
in different hosts: high-level protein production with slpA signals is achieved in 
Lactococcus lactis and Lactobacillus plantarum and moderate in Lactobacillus gasseri, 
while in Lactobacillus casei the expression signals are not recognized (Savijoki et al., 
1997). On the other hand, the promoter region of Lactobacillus acidophilus ATCC 
4356 S-layer protein gene is highly functional in L. casei (Boot et al., 1996b).
 
1.2.6. Tools to study S-layer structure and function: cysteine scanning mutagenesis 
and bacterial surface display
The typical features of S-layer proteins, the rather large molecular weight and poor 
solubility (see Section 1.1.2.1) pose problems for the structural and adhesion studies 
of also Lactobacillus S-layer proteins, necessitating the use of methods overcoming 
these diffi culties, like cysteine scanning mutagenesis or fl agellar display. 

1.2.6.1. Cysteine scanning mutagenesis and sulfhydryl chemistry
CSM is based on the targeted mutagenesis of selected amino acid residues in the protein 
of interest to cysteines, which are then amenable to chemical modifi cation owing to 
their sulfhydryl groups. The stability and functionality of the mutant proteins generated 
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are fi rst tested. Several application modes can then be used. In chemical reactivity 
scanning, only one residue in each mutant protein is changed, resulting in a series of 
mutant proteins each having a single modifi able residue at a different location. Several 
sulfhydryl-reactive reagents can be used for the modifi cation of these residues, and 
the modifi ed proteins can be distinguished from the unmodifi ed ones by, for instance, 
fl uorescence or a change in molecular weight. The extent of modifi cation is a measure 
of the surface accessibility of the mutated residue. In disulphide-based applications, 
one or a pair of cysteine residues is introduced to the protein, and the engineered 
sulfhydryl groups at different locations in the generated pool of mutant proteins are 
allowed to react with each other. The presence of disulphide bonds is detected based 
on migration in a polyacrylamide gel, and the observed contacts between pairs of 
positions elucidate the tertiary or quaternary structure of the protein (Bass et al., 
2007). Disulphide mapping as a method of investigating the proximity of two residues 
in a protein is thus based on the same principle as chemical cross-linking, also used in 
structural and interaction studies (Kluger & Alagic, 2004; Sinz, 2006), although the 
distance constraints between the reacting residues may be different. A limitation of 
CSM is that the wild-type protein is not allowed to contain cysteines, but in S-layer 
proteins this does not generally pose a problem, as cysteines in bacterial S-layer 
proteins are usually absent (see Section 1.1.2.1). Major advantages of the method are 
that it can be applied to an entire protein or to a specifi c domain or subdomain, and it 
can be carried out in the native environment of the protein, e.g. in a lipid bilayer or a 
multiprotein complex, making it a method of choice for many proteins inaccessible 
to high-resolution methods like X-ray crystallography. Furthermore, it is a versatile 
system that is able to map out secondary, tertiary and quaternary structures, analyse 
conformational changes and structure-function relationships and reveal thermal 
motions within a protein structure by a method called disulphide trapping (Frillingos et 
al., 1998; Bass et al., 2007). However, CSM-based methods are all rather laborious.

CSM has been widely used in the study of membrane proteins and large 
heteromeric multiprotein complexes of both bacterial and eukaryotic proteins (Bass 
et al., 2007). Especially, the structure and function of bacteriorhodopsin (Altenbach 
et al., 1990), microbial pore-forming toxins (Merzlyak et al., 2005; Iacovache et al., 
2006; Girard et al., 2008), microbial transporters of drugs, antibiotics, nutrients or 
ions (Sobczak & Lolkema, 2005; Hassan et al., 2006; Kuwabara et al., 2006; Xu 
et al., 2006; Greene et al., 2007; Papakostas et al., 2008; Wang et al., 2008) and 
microbial membrane components involved in environmental sensing (Goldberg et al., 
2008), chemo- and aerotaxis (Winston et al., 2005; Bass et al., 2007; Taylor et al., 
2007) and protein secretion (Mori et al., 2004) have been studied by CSM. Before this 
thesis work, the only CSM study of a bacterial S-layer protein had been performed 
with the SbsB protein of Geobacillus stearothermophilus PV72/p2. In that work, 
the spatial locations of 75 residues out of 920 were studied, and 23 of them were 
found to be located on the surface of SbsB monomers (Howorka et al., 2000; Kinns & 
Howorka, 2008). In a subsequent study, these selected mutant proteins with surface-
accessible cysteines were analysed by chemical cross-linking to fi nd the residues 
located at the protein/protein interface or on the inner surface of the S-layer  lattice. 
Specifi c modifi ed sites were also found to be subject to intramolecular cross-linking, 
indicating conformational changes upon self-assembly (Kinns & Howorka, 2008).
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1.2.6.2 Flagellar display
Bacterial surface display means the presentation of foreign peptides on the bacterial 
surface, usually through recombinant DNA technology. Both Gram-positive and Gram-
negative bacterial species have been used as display hosts (Samuelson et al., 2002). 
In Gram-positive bacteria, the most common anchoring mechanism of the foreign 
peptide to the cell envelope is a covalent linkage to peptidoglycan through the LPXTG 
sequence of the foreign peptide, but other anchoring peptide sequences derived from 
Gram-positive bacteria (e.g. SLH domains, AcmA repeats) and transmembrane and 
lipoprotein membrane anchors have also been used (reviewed by Sillanpää, 2001; 
Samuelson et al., 2002; Lee et al., 2003). Studies aiming at the utilization of whole 
S-layer proteins (Smit et al., 2002; Åvall-Jääskeläinen et al., 2002; Mota et al., 
2006) (see Section 1.2.5), spores (reviewed by Kim & Schumann, 2009) or fl agella 
(Crampton et al., 2007) of Gram-positive bacteria as display vehicles have also been 
initiated. In Gram-negative bacteria, surface display is based on S-layer proteins 
(Bingle et al., 1997b; Nomellini et al., 2007), outer membrane proteins (OMPs) or 
OMP-lipoprotein fusions (reviewed by Georgiou et al., 1997; Lång, 2000; Samuelson 
et al., 2002), outer membrane proteins modifi ed by circular permutation (Rice et 
al., 2006), autotransporters (reviewed by Jose, 2006; Jose & Meyer, 2007), secreted 
proteins (Kornacker & Pugsley, 1990), purifi ed intracellular structures like bacterial 
magnetic particles (BMPs)(reviewed by Wu et al., 2008) or surface organelles, i.e. 
fi mbriae (reviewed by Klemm & Schembri, 2000), fl agella (reviewed by Westerlund-
Wikström, 2000) or other fi laments (Crepin et al., 2005). Bacterial surface display 
techniques not involving gene fusions have also been developed for both Gram-
positive and Gram-negative bacteria (Sadamoto et al., 2004; Tanaka et al., 2004; 
Bosma et al., 2006).

In the fl agellar display system of Gram-negative bacteria, the sequence encoding 
the foreign peptide is inserted into the fl agellin gene (fl iC) encoding the main subunit of 
the fl agellar fi lament. Methods have been developed for the fl agella of both E. coli and 
Salmonella, the fl agellar structures of which are very similar (see Fig. 3 for a schematic 
presentation). In addition to the helical fi lament consisting of several thousand copies 
of the main subunit FliC, the fl agellum is composed of a pentameric cap protein (FliD) 
at the tip of the fi lament, and the hook (FlgE) and the junction proteins (FlgK, FlgL) 
between the fi lament and the basal body structure, which connects the fi lament to the 
outer membrane (Fernandez & Berenguer, 2000; Westerlund-Wikström, 2000). FliC 
is composed of four domains: two conserved ones, inner and outer, important for the 
polymerization of fl agellins and the stability of the fl agellum, and a variable surface-
exposed region, composed of two domains, responsible for the antigenic variation of 
fl agella (Westerlund-Wikström, 2000; Yonekura et al., 2003; Beatson et al., 2006). 
The variable region is utilized in the fl agellar display system, as it allows the deletion 
of up to 187 residues without a loss of fl agellar integrity or function (Kuwajima, 
1988; Lu et al., 1995). After the replacement of a part of this non-essential sequence 
of fl iC by the desired sequence, the plasmid construct is used to complement a Δfl iC 
host strain, resulting in fl agella composed of only the hybrid fl agellins (Westerlund-
Wikström et al., 1997; Westerlund-Wikström, 2000).

Flagellar display has been used e.g. for the study of adhesive peptides 
(Westerlund-Wikström et al., 1997), for the selection of metal-binding peptides for 
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use as bioadsorbents (Dong et al., 2006) and for vaccination trials (Chauhan et al., 
2005; reviewed by Westerlund-Wikström, 2000; Ben-Yedidia & Arnon, 2005). An 
application utilizing FliC- thioredoxin fusions, with random peptides displayed in the 
thioredoxin part of the fusion, has also been developed as an alternative to phage display 
(Lu et al., 1995). Peptides up to 302 amino acids have been successfully expressed 
using fl agellar display (Westerlund-Wikström et al., 1997). A limitation of the method 
is that the type III system used for the secretion of fl agellins bypasses the periplasmic 
space, where disulphide bonds are formed (Macnab, 2004), and thus, disulphide bonds 
cannot be formed in the peptide to be displayed. In the case of S-layer proteins this, 
however, does not usually pose a problem (see Section 1.1.2.1). Flagellar display 
has several signifi cant advantages. Hybrid fl agella can be used either attached to the 
bacterial cell or in purifi ed form, and purifi cation is easily accomplished on a large 
scale (Westerlund-Wikström, 2000). In vaccine design, the presence of the antigenic 
epitope as multiple copies, the possible adjuvant  effects of other accompanying 
bacterial components and the capacity of the conserved regions of fl agellin to interact 
with TLR5 leading to immunostimulation (Eaves-Pyles et al., 2001; Hayashi et al., 
2001) are advantageous (Seegers, 2002; Wells & Mercenier, 2008). The fl agellin part 
in antigen-fl agellin fusion proteins has been shown to induce APC (antigen presenting 
cell) maturation, cytokine secretion and the development of strong and specifi c 
immune responses towards the antigen (Cuadros et al., 2004). Flagellins have also been 
demonstrated to have a probiotic effect by inducing the synthesis of an antimicrobial 
peptide in epithelial cells (Ogushi et al., 2001; Schlee et al., 2007). The multivalency 
of the hybrid fl agella facilitates their use also in diagnostics and as tools to identify and 
isolate adhesins and their receptors (Westerlund-Wikström, 2000). Further versatility 
is provided by the possibility to present two or more epitopes simultaneously on the 
same fl agellar fi lament by utilizing FliD as well as FliC as fusion partners for the 
foreign peptides (Tanskanen et al., 2000; Majander et al., 2005).

Figure 3. Schematic presentation of (A) the fl agellar fi lament and (B) the cross-section of a 
Salmonella fl agellar fi lament. C1 and C2, conserved domains; V, variable region composed 
of two domains. This fi gure is a reprint from Westerlund-Wikström (2000), with permission 
granted by Elsevier.
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1.2.7    Non-S-layer adhesive surface proteins of lactobacilli
Despite some contradictory opinions about the importance of Lactobacillus adherence 
for persistence in the human gastrointestinal tract (Walter, 2008), the conventional 
view is that a good adherence capacity of a strain to mucus or epithelial cells promotes 
its colonization or residence time in the gut. As such, this is usually also considered 
a desirable trait for a probiotic organism, as it may facilitate pathogen exclusion, 
immune modulation and epithelium protection effects possibly exerted by the strain 
(Lebeer et al., 2008). Adhesion of lactobacilli has mostly been studied by in vitro 
experiments using immortalized cell lines, isolated epithelial cells or tissue fragments, 
purifi ed proteins or other components of the extracellular matrix, and mucus or mucus 
components as binding targets. Red blood cell, yeast cell and platelet agglutination 
assays have also been used. The molecular mechanisms mediating the adherence 
remain rather poorly known. A role for carbohydrates on the bacterial surface in 
adherence has been proposed in many studies, but only the binding of one non-protein 
molecule, LTA, to epithelial cells has been directly demonstrated (Chan et al., 1985) as 
well as suggested by inhibition studies (Granato et al., 1999; Kapczynski et al., 2000). 
Although not completely excluding the involvement of bacterial carbohydrates, in 
many cases Lactobacillus surface proteins seem to mediate adherence.

Considering the large number of studies, in which protein-mediated adhesion 
of lactobacilli to various targets, based on the effect of protease treatment, has been 
described, relatively few adhesive surface proteins have been functionally and 
genetically characterized. On the other hand, in August 2009, 16 complete chromosome 
sequences representing 12 Lactobacillus species were publicly available, and these and 
ongoing sequencing projects of Lactobacillus genomes are continuously providing 
sequence homology-based information about genes potentially involved in adhesion. 
For example, the genome of L. plantarum WCFS1 is predicted to encode 12 adhesive 
proteins with domains with affi nity to mucus, collagen, fi bronectin or chitin (Boekhorst 
et al., 2006b), and the genome of L. gasseri ATCC 33323, according to an in silico 
analysis, encodes as many as 14 proteins with mucus-binding domains as well as 
proteins with similarity to bacterial adhesins binding to fi bronectin, human epithelial 
cells or saliva (Azcarate-Peril et al., 2008). In this section, however, the emphasis will 
be on genetically and functionally well-characterized adhesive Lactobacillus surface 
proteins.

The role of Lactobacillus S-layer proteins as adhesins has been discussed in 
Section 1.2.4. Grouping of the rest of the adhesive proteins according to species or 
binding target is diffi cult since strains of the same species, or even a single strain, 
may carry different adhesive proteins and several targets may have been identifi ed 
for the same adhesin. In the following, adhesins with amino acid sequence similarity 
are presented as groups and an approximate chronological order of identifi cation is 
followed. A summary of Lactobacillus non-S-layer adhesins is presented in Table 3.

The fi rst Lactobacillus adhesin characterized at a genetic level was the collagen-
binding protein CnBP of L. reuteri NCIB 11951, which shares amino acid sequence 
similarity with the solute binding components of bacterial ABC transporters (Aleljung 
et al., 1994; Roos et al., 1996). A homologue of CnBP in L. reuteri 104R, with 94% 
amino acid identity (Miyoshi et al., 2006), was originally characterized as a mucus-
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adhesion-promoting protein (MAPP) (Rojas et al., 2002), but was subsequently found 
to bind to Caco-2 cells as well, and was named MapA (Miyoshi et al., 2006). Another 
homologue of CnBP, with approximately 90% amino acid sequence identity, present 
as the major constituent of the LiCl extract of L. fermentum BR11, was initially defi ned 
as a basic surface protein (BspA) (Turner et al., 1997). It was later shown to be an 
L-cystine binding protein in an ABC transporter system (Turner et al., 1999; Hung et 
al., 2005), necessary for oxidative defence (Hung et al., 2003), and the designation 
CyuC was suggested (Hung et al., 2005). For BspA/CyuC, no role in bacterial adhesion 
has thus far been demonstrated, although it cannot be ruled out, as many bacterial 
adhesins are multifunctional (Kukkonen & Korhonen, 2004; Leon-Kempis Mdel et 
al., 2006; Antikainen et al., 2007a; Sanchez et al., 2008) and numerous potential 
binding targets exist. A third homologue of CnBP (or CnBP itself, deduced from the 
20 identical N-terminal amino acids), referred to originally as p29, is present in the 
pool of secreted biosurfactants of L. fermentum RC-14 and has anti-adhesive activity 
towards E. faecalis (Heinemann et al., 2000). The same protein has subsequently been 
shown by SELDI-TOF (surface-enhanced laser desorption/ionization-time of fl ight) 
analysis to bind collagen types III and VI, and its gene has been cloned (Howard et 
al., 2000), although no report about the gene sequence is available. Recently, in L. 
reuteri JCM 1081, an HT-29 cell- and mucin-binding homolog of CnBP has been 
identifi ed (Wang et al., 2008), and an ABC transporter component, which binds to pig 
mucus and mucin, has been detected on the surface of L. fermentum BCS87 (Macias-
Rodriguez et al., 2009).  

Table 3. Genetically and functionally characterized non-S-layer adhesive surface 
proteins of lactobacilli. FnBp, fi bronectin-binding protein; MBp, mucin-binding 
protein.

Adhesin Organism Binding target Reference
CnBP L. reuteri NCIB 11951 Collagen Aleljung et al., 1994; 

Roos et al., 1996 
MAPP/MapA L. reuteri 104R Mucus, Caco-2 cells Rojas et al., 2002; 

Miyoshi et al., 2006
32-Mmubp L. fermentum BCS87 Mucus, mucin Macias-Rodriguez et 

al., 2009
Mub L. reuteri 1063 Mucus Roos & Jonsson, 2002
LBA 1392 (MBp 
homologue)

L. acidophilus NCFM Caco-2 cells Buck et al., 2005

Msa L. plantarum WCFS1 Mannosides Adlerberth et al., 1996; 
Pretzer et al., 2005

Lsp L. reuteri 100-23 Mouse forestomach 
epithelium

Walter et al., 2005

LspA L. salivarius UCC118 Caco-2, HT-29 cells van Pijkeren et al., 2006
LBA 1148 (FnBp 
homologue)

L. acidophilus NCFM Caco-2 cells Buck et al., 2005

EF-Tu L. johnsonii NCC533 Caco-2, HT-29 cells, 
mucin

Granato et al., 2004

GroEL L. johnsonii NCC533 HT-29 cells, mucin Bergonzelli et al., 2006
Eno L. crispatus ST1 Laminin, collagen Antikainen et al., 2007a
Eno1-3 L. johnsonii F133 Laminin Antikainen et al., 2007a
EnoA1 L. plantarum LM3 Fibronectin Castaldo et al., 2009
GAPDH L. plantarum LA318 Mucin Kinoshita et al., 2008b
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The mucus-binding protein Mub of L. reuteri 1063 is one of the largest bacterial 
surface proteins (3269 amino acids, 358 kDa) and the fi rst Lactobacillus adhesin shown 
to have a LPXTG cell wall anchoring motif. Its 14 so-called Mub-repeats, 200 amino 
acids each, are responsible for the binding of the protein to the carbohydrate structures 
in pig and hen mucus. Two types of repeats can be distinguished, with slightly different 
patterns of inhibition of binding by carbohydrates, but both repeat types are important 
for adhesion (Roos & Jonsson, 2002). Based on colony hybridization, the mub gene is 
frequently present in pig intestinal Lactobacillus isolates closely related to L. reuteri, 
L. fermentum and L. pontis, and these strains have been suggested to constitute a new 
species, L. mucosae (Roos et al., 2000). 

Several Mub-like proteins in lactobacilli have been functionally characterized. In 
L. fermentum BR11, a vaginal isolate of a guinea pig, a large Mub-like protein (Mlp) 
has been identifi ed with 10 repeat sequences and 21% overall amino acid sequence 
identity with Mub of L. reuteri, but the protein does not bind to pig gastric mucin 
(Turner et al., 2003). A Mub homologue, LBA 1392, with 24% overall amino acid 
sequence identity has been identifi ed in L. acidophilus NCFM, where it has been shown 
by knock-out mutation of the gene to be involved in adherence to Caco-2 cells (Buck 
et al., 2005). A Mub-repeat-carrying protein in L. plantarum was initially identifi ed as 
a mannose-specifi c adhesin capable of agglutinating yeast cells and binding to HT-29 
cells (Adlerberth et al., 1996). When the whole genome sequence of L. plantarum had 
become available (Kleerebezem et al., 2003), the corresponding gene was identifi ed 
and cloned, designated msa, and shown by knock-out mutation and complementation 
to be responsible for the yeast cell agglutination phenotype of L. plantarum. However, 
in addition to Mub-repeats, Msa has a domain with similarity to a ConA-like lectin 
(Pretzer et al., 2005). In the in situ pig small intestinal segment perfusion model, Msa 
has been shown to contribute to adherence to porcine jejunal epithelium and to induce 
host responses (Gross et al., 2008). The large surface protein (Lsp) of L. reuteri 100-
23, which has a role in the adherence of the strain to mouse forestomach epithelium in 
vivo and an effect on the colonization dynamics in mice, has 83% nucleotide sequence 
identity with a Mub-domain-carrying protein of L. johnsonii (Walter et al., 2005), 
and thus, probably has Mub-repeats, although a detailed analysis of the sequence of 
Lsp has not been presented. However, in the homologous protein in L. johnsonii, 
other domains with predicted adhesive properties are also present. The Mub-repeat-
containing protein LspA of L. salivarius UCC 118 mediates adherence to HT-29 and 
Caco-2 cells, as shown by an isogenic LspA negative mutant strain (van Pijkeren 
et al., 2006). With the appearance of the whole genome sequences of lactobacilli, 
several copies of mub-homologous genes have been identifi ed in L. gasseri (fourteen), 
L. johnsonii (nine), L. plantarum (four), L. acidophilus (twelve) and L. brevis, L. 
fermentum and L. reuteri (two in each) (Boekhorst et al., 2006a; Azcarate-Peril et 
al., 2008). Interestingly, one truncated mub-repeat-containing gene is present in the 
plasmid carried by L. reuteri ATCC 55730, raising the question of lateral transfer of 
mub genes in lactobacilli (Bath et al., 2005). The presence of a potential adhesin gene 
in a Lactobacillus plasmid has been confi rmed by others as well (Desmond et al., 
2005). 
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The only functionally characterized Lactobacillus adhesive protein with the procaryotic 
fi bronectin-binding domain is present in L. acidophilus NCFM. The inactivation of the 
gene encoding this protein (LBA 1148) results in a marked decrease in the adherence 
of L. acidophilus NCFM to Caco-2 cells (Buck et al., 2005), but the binding of the 
strain to fi bronectin has not been studied. 

One group of Lactobacillus adhesive surface proteins consists of those with a 
previously characterized cytoplasmic function (so called moonlighting or anchorless 
multifunctional proteins (Sanchez et al., 2008)). The L. johnsonii proteins EF-Tu, a 
guanosine-nucleotide binding protein participating in protein synthesis, and GroEL, a 
stress-induced chaperonin (heat shock protein), are both present on the bacterial surface 
non-covalently bound in addition to their known cytoplasmic locations, and have a 
pH-dependent adhesive function. EF-Tu binds to Caco-2 cells, to non-differentiated 
HT29 cells from the human colon and to mucins purifi ed from HT29-MTX cells or 
from the human colon at low pH, while GroEL has been reported to bind to non-
differentiated HT29 cells and to mucins purifi ed from HT29-MTX cells under the 
same conditions (Granato et al., 2004; Bergonzelli et al., 2006). The binding of EF-Tu 
to mucus or cells has been proposed to have a role in gut homeostasis (Granato et al., 
2004), but for the binding of GroEL a minor role has been suggested; instead, it may 
exert its action by specifi cally aggregating Helicobacter pylori cells after its liberation 
from deceased L. johnsonii cells in the acidic stomach (Bergonzelli et al., 2006). 
Another example of a cytoplasmic protein acting as an adhesin on lactobacilli is the 
glycolytic enzyme enolase, present on the surface of L. johnsonii F133, L. crispatus 
ST1 and L. plantarum LM3. L. johnsonii and L. crispatus enolases bind to laminin 
and/or collagen in vitro, and also bind and activate plasminogen, the precursor of the 
proteolytic enzyme plasmin present in plasma and extracellular fl uids (Antikainen 
et al., 2007a), while the EnoA1 of L. plantarum binds fi bronectin (Castaldo et al., 
2009). Variable laminin/collagen binding and plasminogen activation effi ciencies are 
observed in individual enolases of lactobacilli; in L. johnsonii F133, for instance, three 
enolase genes are present, of which eno2 is silent under standard laboratory conditions 
(Antikainen et al., 2007a). The enolase of L. crispatus binds electrostatically to LTA 
and is released from the surface of the bacterium at neutral or basic pH, above its 
isoelectric point (Antikainen et al., 2007b). The cell surface-bound form of another 
glycolytic enzyme, GAPDH, has been identifi ed as a mucus binding adhesin on L. 
plantarum (Kinoshita et al., 2008b), and a putative receptor polysaccharide structure 
has been determined (Kinoshita et al., 2008a).

A very distinct group of adhesins in lactobacilli are fi mbriae (pili). Fimbriae are 
common and well-characterized adhesive organelles in Gram-negative bacteria, but 
only recently have they been thoroughly studied in Gram-positive bacteria. After the 
initial observation of fi mbriae on Corynebacterium renale by electron microscopy 
(Yanagawa et al., 1968), fi mbriae have been identifi ed in several other Gram-
positive species, including Actinomyces, Ruminococcus, Enterococcus, Clostridium, 
Mycobacterium and several species of Streptococcus. A peculiar feature of 
Gram-positive fi mbriae characterized thus far is that they are covalently linked 
to peptidoglycan and their main subunits also to each other, and the subunits are 
further stabilized by intramolecular covalent bonds (Proft & Baker, 2009). In the 
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pilus assembly process, a pilin-specifi c sortase is involved (Ton-That & Schneewind, 
2003). For a long time, the presence of fi mbriae in lactobacilli was debatable, and, in 
August 2009, unequivocal evidence of their role in adherence is still lacking. In early 
studies, fi mbrium-like protruding structures were detected by electron microscopy 
on the surface of L. fermentum (Barrow et al., 1980) and on several human vaginal 
isolates belonging to species L. rhamnosus, L. acidophilus, L. jensenii, L. casei and 
L. fermentum (McGroarty, 1994), and a role in adherence for these fi mbrium-like 
structures was suggested. Recently, in the completely sequenced chromosome of 
L. johnsonii NCC533, two fi mbrial operons were identifi ed, which possibly encode 
fi mbriae with a glycosylated fi mbrial protein reminiscent of the Fap1 fi mbrial 
adhesin of Streptococcus parasanguis, and fi mbriae were also detected by electron 
microscopy on L. johnsonii cells (Pridmore et al., 2004), but no functional studies of 
these structures on L. johnsonii have been performed. Very recently, in the context of 
creating an exopolysaccharide-negative mutant of the probiotic strain L. rhamnosus 
GG, fi mbrium-like structures were detected by electron microscopy, and the increased 
adhesion to mucus and Caco-2 cells of the mutant was postulated to be due to the 
more effi cient exposure of these structures (Lebeer et al., 2009).

In conclusion, increasing numbers of adhesive Lactobacillus surface proteins are 
being characterized as the combined result of comparative genomics and functional 
studies, and the general view is that in most cases many factors contribute to the 
adherence of a particular strain. The specifi c receptors in epithelial cells or mucus 
are mostly uncharacterized to date. Furthermore, excluding the report of Lsp of L. 
reuteri 100-23 (Walter et al., 2005) and that of Msa of L. plantarum (Gross et al., 
2008), studies on the biological role of Lactobacillus adhesive proteins in vivo have 
not yet been performed. In the future, more adhesive S-layer proteins will potentially 
be discovered.
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2. AIMS OF THE STUDY

As food-grade organisms able to survive, persist and potentially exert health-promoting 
effects in the gastrointestinal tract, lactobacilli have aroused interest as possible 
carriers of oral vaccine antigens or other medically important molecules. In addition, 
the S-layer structure carried by several Lactobacillus species offers an effective means 
of expressing foreign peptides as multiple copies in an ordered manner on the bacterial 
surface. The goal of this study was to provide comprehensive knowledge about the 
structure and function of SlpA of L. brevis and about the expression of its gene in 
order to develop SlpA-based tools for live mucosal vaccines or other health-related 
applications in man or animals as well as for nanobiotechnology.

Specifi c aims were as follows:
I To specify the role of the S-layer protein in the adherence of L. brevis ATCC 

8287 to human epithelial cell lines and fi bronectin
II To identify and characterize the domains responsible for self-assembly and cell 

wall binding in the S-layer protein of L. brevis ATCC 8287
III To perform a detailed mapping of individual residues in SlpA to gain further 

insight into the structure of SlpA and the S-layer formed 
IV To study the function of the two consecutive promoters of the slpA gene
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3. MATERIALS AND METHODS

The bacterial strains, cell lines and plasmids used in Studies I-IV are listed in Table 4. 
The methods are described in detail in the original articles and summarized in Table 
5.

Table 4. Bacterial strains, plasmids and cell lines used in Studies I-IV

Strain, plasmid or cell 
line

Origin / relevant 
property

Study Reference or source

Bacterial strains
Lactobacillus brevis 
ATCC 8287

Green olives I, II, III, IV ATCC

Lactobacillus 
acidophilus ATCC 4356

Human pharynx II ATCC

Lactobacillus helveticus 
53/7

Industrial starter strain IV Valio, Finland

Lactococcus lactis MG 
1363

Plasmid- and prophage-
free derivative of wt S. 
lactis NCDO 712

IV Gasson, 1983

Escherichia coli JT1 E. coli C600 fl iC::Tn10 
fi mA::cat

I Westerlund-Wikström 
et al., 1997

Escherichia coli 
M15(pREP4)

Host for pQE-30 I Stratagene

Escherichia coli DH5αF’ Cloning host for pET-28 
vectors

II Woodcock et al., 1989

Escherichia coli 
BL21(DE3)

Expression host for pET-
28 vectors

II, III Novagen

Escherichia coli XL-1 
Blue

Cloning host in site-
directed mutagenesis

III Stratagene

Plasmids
pFliCH7Δ pBluescript II KS(+) 

with serotype H7 fl iC 
gene with 174 bp 
deletion 

I Westerlund-Wikström 
et al., 1997

pQE-30 Expression vector for 
his-tagged constructs

I Qiagen

pET-28a(+) Expression vector for 
his-tagged constructs

II Novagen

pET-28b(+) Expression vector for 
his-tagged constructs

II Novagen

pKTH5199 pET-28a(+) with slpA 
and N-terminal his-tag

III II

pKTH2121 pGK12 derivative 
pKTH2095 with P1-
P2slpA, SSslpA and bla-tslpA 

IV Savijoki et al., 1997

Cell lines
Intestine 407 Human embryonic 

intestine
I ATCC (CCL6)

Caco-2 Human colon carcinoma, 
differentiatiates to 
enterocyte-like

I ATCC (HTB-37)

EA-hy926 Hybrid cell line with 
characteristics of human 
endothelial cells

I Edgell et al., 1983

T24 Human urinary bladder I ATCC (HTB-4)
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Table 5. Methods used in Studies I-IV

Method Used and 
described in Study

Genetic methods
Cloning to pFliCH7Δ vector I
Cloning to pQE-30 vector I
Cloning to pET-28 vectors II
Cloning to pKTH2121 vector IV
Site-directed mutagenesis III
Isolation of RNA IV
Northern hybridization IV
TRAC IV
DNA sequencing I, II, III, IV
Immunological methods
Western hybridization I
Immunoelectron microscopy I
Immunofl uorescence microscopy I
Adhesion assays with bacteria/fl agella
Adherence of bacterial cells to human cell lines and fi bronectin I
Haemagglutination by bacterial cells I
Adherence of chimeric fl agella to human cell lines and fi bronectin I
Bacterial cell wall-related techniques
FITC-labelling of bacterial cells I
Isolation of cell walls of L. brevis II, III
TCA extraction of cell walls II
Determination of total phosphorous II
Protein assays
Expression and purifi cation of his-tagged peptides I, II, III
Extraction of S-layer proteins I, II
Binding of recombinant S-layer proteins to bacterial cells and cell 
walls

II

Reassembly of recombinant S-layer proteins by dialysis II, III
SDS-PAGE I, II, III, IV
Proteolytic degradation of SlpA II
N-terminal sequencing II
Peptide mapping II
Testing of solvent accessibility of cysteine residues in mutant proteins III
SAXS III
Determination of beta-lactamase activity IV
Determination of aminopeptidase activity IV
Electron microscopy I, II, III
Amino acid and/or nucleotide sequence analyses I, II, III, IV
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4. RESULTS AND DISCUSSION

4.1. Structure and function of SlpA

4.1.1 Adhesive functions (I)
When Study I was initiated, the probiotic effects and potential health-related 
applications of Lactobacillus strains were of special interest, and the adherence to host 
tissues or cells was rather unanimously considered an important feature of a probiotic 
strain. The initial fi nding that the chemical removal of the S-layer protein from the 
surface of L. brevis ATCC 8287 abolishes the binding of the strain to cultured human 
epithelial cells prompted us to examine the role of the S-layer protein in adherence to 
human cells. As the 435-amino-acid S-layer protein of L. brevis ATCC 8287, SlpA, 
was genetically well-characterized (Vidgren et al., 1992), the diffi culties in creating 
S-layer-negative Lactobacillus mutants (Boot et al., 1996; Martinez et al., 2000; Buck 
et al., 2005) and those related to the poor solubility of S-layer proteins were overcome 
by utilizing the previously established fl agellar display system (Westerlund-Wikström 
et al., 1997).

Different regions of the slpA gene were expressed as internal in-frame fusions in 
the variable region of the fl agellin gene of E. coli, and the adhesive properties of the 
resulting chimeric fl agella were examined (Figures 1 and 4 and Table I in I). Chimeric 
fl agella displaying a peptide from the N-terminal part of SlpA (SlpA66-215) bound to 
the same targets as S-layered L. brevis cells, i.e. to human epithelial cells representing 
human gut (Int 407, Caco-2), urinary bladder (T24) and blood vessels (EA-hy926) 
and to the immobilized form of the human extracellular matrix protein fi bronectin. 
Flagella with no inserts and those displaying the C-terminal part of SlpA (SlpA209-417) 
failed to bind, confi rming binding specifi city and delineating the adhesive property to 
the N-terminal part of SlpA. The smallest SlpA fragment binding to Int 407 cells was 
81 amino acids in size and comprised amino acids 66-146 in the mature SlpA protein. 
Neither bacterial cells nor fl agella agglutinated human erythrocytes.

The binding of L. brevis cells to Int 407 cells could not be inhibited either by 
chimeric fl agella or by antibodies from an antiserum raised against whole SlpA or from 
an antiserum raised against the histidine-tagged N-terminal binding peptide his-SlpA66-

215. To explain the lack of inhibition by antibodies and to the verify the location of the 
SlpA inserts in the chimeric fl agella, the immunological reactivities of the chimeric 
fl agella, of the N-terminal peptide his-SlpA66-215 and of whole L. brevis cells with the 
two antisera were tested using Western hybridization, immunoelectron microscopy or 
immunofl uorescence microscopy (Figures 1 and 2 in I). These experiments led to two 
major conclusions. First, as the anti-peptide antiserum failed to recognize its antigen 
on whole L. brevis cells in an immunofl uorescence assay, the region encompassing 
residues 66-215 of SlpA was demonstrated to be poorly accessible to antibodies in the 
polymerized S-layer.  Second, the reactivities of the two antisera with the N-terminal 
part of SlpA were clearly different. The anti-peptide serum was more reactive, as it 
recognized its antigen both from whole SlpA and the chimeric fl agella in Western 
hybridization and from the fl agellar inserts in immunelectron microscopy, while the 
anti-SlpA serum recognized only large N-terminal inserts in the fl agella in Western 
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hybridization and immunoelectron microscopy. This indicates that the N-terminal 
region of SlpA is poorly immunogenic when whole SlpA is used as an immunogen. 
In light of these results, the lack of inhibition by antibodies could be explained by 
the poor accessibility of the binding region to antibodies from the serums and by the 
low amount of binding-site-specifi c antibodies in the anti-SlpA serum. The lack of 
inhibition by chimeric fl agella, in turn, could at least partly be explained by the relatively 
low concentration of fl agella used in the inhibition experiments compared with the 
very effi cient adherence of bacterial cells having the binding epitope as hundreds 
of thousands of copies on their surface. The intriguing immunological fi ndings of 
the location of the binding region in SlpA in a rather non-accessible environment 
lead at this stage of investigation to the hypothesis of the binding site being located 
in a groove or “pocket” in the three-dimensional structure of SlpA not accessible to 
antibodies but still able to bind to the receptor on target cells and fi bronectin. Further 
research has shed more light on the structure and structure-function relationships of 
different regions of SlpA (see Sections 4.1.2-4.1.4).

The binding of SlpA to both epithelial cells and fi bronectin raised the question 
about the role of cell surface fi bronectin as a receptor for SlpA. Fibronectin is a large 
glycoprotein present in plasma and extracellular fl uids, in the extracellular matrix 
and on eukaryotic cells, where it specifi cally binds to a variety of integrin molecules 
(Pankov & Yamada, 2002). It has been demonstrated also in the intestine of humans 
(Korhonen et al., 2000; Groos et al., 2003) and rodents (Quaroni et al., 1978; Laurie 
et al., 1982; Kolachala et al., 2007) and it is produced by cultured human (Nickerson 
et al., 2001; Walia et al., 2004; Kolachala et al., 2007) and rodent intestinal epithelial 
cell lines (Quaroni et al., 1978; Göke et al., 1996). A number of bacterial species 
have fi bronectin binding proteins on their surface mediating attachment or invasion 
to eukaryotic cells either directly or through a bridging mechanism (Joh et al., 1999; 
Monteville et al., 2003; Schwarz-Linek et al., 2004; 2006; Graham et al., 2008). 
Fibronectin binding seems to be rather common also in lactobacilli (Toba et al., 1995; 
Turner et al., 1999; Kapczynski et al., 2000; Sillanpää, 2001; Styriak et al., 2001; 
Lorca et al., 2002; Styriak et al., 2003; Jakava-Viljanen & Palva, 2007; Munoz-
Provencio et al., 2009) but, with the exception of the surface localized enolase of 
L. plantarum (Castaldo et al., 2009) (see section 1.2.7), the binding molecules have 
usually not been characterized. Only one Lactobacillus protein with a predicted 
procaryotic fi bronectin-binding domain and a role in bacterial adherence to Caco-2 
cells has been identifi ed (Buck et al., 2005). As the synthesis of fi bronectin in Caco-2 
cells decreases during differentiation (Levy et al., 1994), and in the study of Buck et al. 
(2005) the binding of fi bronectin of the Lactobacillus strain was not verifi ed, the role 
of fi bronectin in the Caco-2 cell binding of this strain remains obscure. Kapczynski 
et al. (2000) demonstrated that the adherence of Lactobacillus acidophilus to Int 407 
cells correlates with the spatial distribution of fi bronectin on the surface of the cells. 
In the study of Kapczynski et al (2000), the participating Lactobacillus molecule was, 
based on inhibition studies, suggested to be a lipoteichoic acid. The binding of L. 
brevis through SlpA to epithelial cells might also be partially mediated by fi bronectin. 
An interaction between SlpA and fi bronectin was demonstrated by de Leeuw et al. 
(2006) by surface plasmon resonance studies, although soluble fi bronectin with a 
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conformation different from that of the immobilized form was used. Fibronectin has 
4-9% carbohydrate (Pankov & Yamada, 2002), and the carbohydrate chains might 
in principle extend to the shielded N-terminal region of SlpA on bacterial cells. 
Furthermore, indications of carbohydrate binding by an S-layered L. brevis strain and 
its guanidine hydrochloride extractable surface material have been presented (Uchida 
et al., 2006), although aggregates of the S-layer protein were present in the binding 
assay compromising its specifi city. However, Int 407 cells cultivated as monolayers 
express only small amounts of fi bronectin on their surfaces (Nickerson et al., 2001), 
and the binding of the fl agella to fi bronectin was very weak (Fig. 4 in I), while the 
binding of the chimeric fl agella to epithelial cells was effi cient. Such sparse and weak 
interactions are therefore not likely, at least alone, to be responsible for the observed 
very effi cient binding of L. brevis to epithelial cells (Table 1 in I). The principal 
receptor for SlpA in epithelial cells thus remains to be investigated.

The binding of L. brevis to Caco-2 cells was only moderately inhibited by 
the chemical removal of SlpA from L. brevis cells (Table 1 in I), indicating that in 
addition to SlpA, L. brevis ATCC 8287 probably has other adhesive surface molecules 
contributing to adherence. The expression of multiple adhesins is common in bacterial 
pathogens (Holden & Gally, 2004; Wright & Hultgren, 2006; Sillanpää et al., 2008; 
Flanagan et al., 2009; Jakubovics et al., 2009; Nicholson et al., 2009) and is likely 
to occur in commensal bacteria as well. The contribution of other adhesive factors in 
L. brevis adherence to the other cell lines can not be completely excluded either, as 
the extraction by guanidium hydrochloride also removes some other, minor proteins 
from the cell surface (Fig. 2 in I), and the extraction or loss of SlpA may alter the 
conformation and/or functionality of the remaining protein or non-protein components 
of the cell wall.

The molecular mechanism of the binding of SlpA to fi bronectin or epithelial cells 
is currently not known. The demonstration of the binding by fl agellar display indicates 
that the binding is not critically dependent on the presence of a two-dimensional, 
regular S-layer structure, which is not formed in the fl agella. As later shown in Study 
II, most of the fragments conferring binding in the fl agella were unable to form regular 
self-assembly products as recombinant proteins. The lack of necessity of the S-layer 
structure in adherence has also been confi rmed in studies where the N-terminal part 
of SlpA, including the adhesive region (SlpA1-217), displayed on the surface of a 
non-adhesive Lactococcus strain rendered the strain adhesive to Int 407 cells and 
fi bronectin (Åvall-Jääskeläinen et al., 2003). Similarly, the collagen-binding property 
of the S-layer protein CbsA of Lactobacillus crispatus was preserved when the protein 
was displayed on the surface of a non-S-layered, non-adhesive L. casei strain, where 
it does not form a regular lattice structure (Martinez et al., 2000). Surface plasmon 
resonance experiments have shown that SlpA binds soluble fi bronectin with a moderate 
affi nity (Kd, 89.8 nM) and that the binding is inhibited by a serine protease inhibitor, 
benzamidin, while the binding of laminin by SlpA is threefold more effi cient and 
not inhibited by benzamidin, suggesting different mechanisms and possibly different 
regions of SlpA involved (de Leeuw et al., 2006). In the study of de Leeuw et al. 
(2006), the hydrophobicity and, specifi cally, the arginines in the N-terminal region 
of SlpA were suggested to contribute to the inhibition of fi bronectin binding by the 

Results and Discussion



35

polar benzamidine molecule. Not excluding the potential participation of arginine 
molecules in specifi c interactions, the overall hydrophobicity of SlpA is higher in the 
C-terminal than in the N-terminal region (I).
 
4.1.2 Cell wall binding (II)
Several pieces of evidence suggested the existence of a two-domain organization in 
SlpA with an N-terminal cell-wall binding region. Trypsin degradation of SlpA and 
the N-terminal sequencing of the proteolytic fragments revealed a protease-resistant 
C-terminal part of 246 amino acids and a protease-susceptible N-terminal part in SlpA 
(Fig. 3 in II). The same pattern of proteolytic fragments, but at a very low intensity, 
was seen after the trypsin degradation of S-layered L. brevis cells. A comparison of 
the amino acid sequences of SlpA and fi ve other S-layer proteins of L. brevis strains 
revealed that the N-terminal parts were conserved and had a high predicted pI value 
(Fig. 1 in II); also the (C-terminal) cell wall binding domains in the S-layer proteins 
of L. acidophilus ATCC 4356 and L. crispatus JCM5810 are conserved and highly 
positively charged (Smit et al., 2001; Antikainen et al., 2002). Finally, the N-terminal 
cell wall binding region in SlpA was confi rmed by testing the cell wall binding 
capabilities of C- and N-terminally truncated recombinant SlpA proteins, and the fi rst 
145 amino acids of mature SlpA alone were found to be suffi cient for binding to 
isolated cell wall fragments of L. brevis ATCC 8287, while N-terminally truncated 
proteins were unable to bind (Fig. 6 in II).

Conserved carbohydrate binding motifs were identifi ed in the positively charged 
N-terminal regions of six L. brevis S-layer proteins (Fig. 7 in II). These regions share 
similarity with the repeated C-terminal carbohydrate binding sequences detected in 
clostridial toxins, streptococcal glucosyltransferases (Wren, 1991; von Eichel-Streiber 
et al., 1992) and the S-layer proteins of L. acidophilus group organisms (Smit et al., 
2001) (see also Section 1.2.3). These motifs are supposed to play a general role in 
protein-carbohydrate interactions by acting as initial attachment sites between the 
protein and the carbohydrate, enabling the specifi c interactions to occur (von Eichel-
Streiber et al., 1992). They may thus have a role in the observed binding of SlpA to 
the glycosylated extracellular matrix protein fi bronectin or carbohydrate-containing 
epithelial cell receptors (see Section 4.1.1). More likely, however, they contribute 
to the anchoring of SlpA to the cell wall polysaccharides. While the S-layer proteins 
of L. acidophilus ATCC 4356 and L. crispatus JCM5810 bind to teichoic acids, and 
electrostatic interactions were suggested in the binding (Smit et al., 2001; Antikainen 
et al., 2002; Smit & Pouwels, 2002), the cell wall receptor of SlpA was in this study 
shown to be one other than teichoic or lipoteichoic acid: a treatment removing teichoic 
acids had no effect on the ability of the cell walls to bind SlpA, whereas a treatment 
affecting wall polysaccharides had, and lipoteichoic acids were not present in the cell 
wall preparations used in the binding experiments. The results of this study are thus 
in accordance with early studies, in which neutral polysaccharides in the cell walls 
of L. brevis ATCC 8287 were suggested to be involved in the anchoring of the SlpA 
to the cell wall (Shimohashi et al., 1976; Masuda & Kawata, 1980), but the detailed 
structure of this polysaccharide remains to be determined. The location of the cell 
wall binding domain in the N-terminal part of SlpA and the dissimilarity of the cell 

Results and Discussion



36

wall receptor apparently refl ect the phylogenetic non-relatedness of L. brevis and its 
S-layer protein to L. acidophilus group organisms and their S-layer proteins.
 
4.1.3 Self-assembly (II)
The protease resistance of the C-terminal part of SlpA, the variable amino acid 
sequences of the known L. brevis S-layer proteins in this distinct region and the 
localization of the cell wall binding domain in the N-terminal part (see Section 4.1.2) 
suggested an external location and a role in self-assembly for the C-terminal part of 
SlpA. The location of the self-assembly region was confi rmed by transmission electron 
microscopy of the self-assembly products of N-terminally truncated recombinant 
SlpA proteins. In these studies, the protein encompassing amino acids 179-435 in 
mature SlpA was able to form a lattice identical to that formed by wild-type SlpA, 
as recognized by electron microscopy (Fig. 4 in II) and by the determination of 
lattice constants. The removal of 11 residues more from the N-terminus in rSlpA190-435 
prevented lattice formation. Surprisingly, also larger N-terminally truncated proteins 
rSlpA167-435 and rSlpA149-435 were unable to form regular lattices, indicating that the 
extension of the peptide further to the cationic N-terminal region interferes with lattice 
formation when the rest of the protein and the cell wall are not present, probably by 
steric hindrance and/or by preventing the acquisition of the native conformation of 
the peptide.

In conclusion, SlpA was found to be a two-domain protein in which the N-terminal 
domain (residues 1-178), including the cell wall binding region, is shielded from the 
external environment by the protease-resistant C-terminal domain (residues 179-
435), responsible for the self-assembly of the SlpA monomers to a regular layer. SlpA 
thus follows the current view of Gram-positive S-layer proteins having two separate 
functional domains. However, the order of the functional regions is the opposite of the 
other thus far characterized Lactobacillus S-layer proteins. A schematic presentation 
of the structure of SlpA is shown in Fig. 4.
 

Figure 4. A schematic presentation of the functional regions in mature SlpA. The different 
colours of the ten amino acid stretches shown by boxes indicate the level of similarity between 
six L. brevis S-layer proteins: white, 0-20%; dark grey, 61-80% identical or similar amino acids 
in a stretch. Short black bars indicate the regions most accessible in the assembled S-layer, as 
detected by maleimide modifi cation (III). Adapted from Figure 1 of (II) with permission of the 
publisher.
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4.1.4 Locations of individual residues (III)
Considering potential applications of SlpA as a display vehicle of foreign peptides, a 
detailed mapping of the locations of individual residues in the self-assembly region 
of SlpA was performed by cysteine scanning mutagenesis and targeted chemical 
modifi cation. A series of 46 SlpA mutant proteins was generated with 40 of the single, 
novel cysteine residues located in the C-terminal self-assembly region. The abilities 
of the mutant proteins to self-assemble into regular lattices in solution and on cell 
wall fragments was confi rmed by transmission electron microscopy and by SAXS 
combined with cryoelectron microscopy, respectively (Figures 1 and 2 in III). The 
surface accessibility of the mutated residues was studied using two sulfhydryl-reactive 
maleimide reagents of different molecular weights, TMM(PEG)12 and AlexaFluor488-
maleimide. Their reactions with both monomeric proteins in solution and with proteins 
assembled on cell wall fragments were investigated.

Using the combined results of the different experimental settings (Figures 4 
and 5 in III) and previous data about the domain organization of SlpA (Study II), 
the mutated residues were assigned to four groups according to their most probable 
location in the protein monomer and the lattice structure: those on the outer surface 
of the lattice, those in the protein interior, those on the inner surface of the lattice and 
those on the subunit interface/pore region of the lattice (Table 2 in III). The latter two 
groups were characterized by a different extent of modifi cation of the cysteine residue 
in the monomeric and assembled form, and were differentiated from each other on the 
basis of the location of the residues, the “inner surface” group consisting of residues 
of the cell wall binding region and the extreme N-terminal part of the self-assembly 
region. The assignments to the four groups were supported by several facts. The 
groups were clearly distinguishable by the characteristic amino acid compositions of 
the regions surrounding the mutated residues: residues mapped to the outer surface 
were in a more hydrophilic and negatively charged environment than those mapped 
to the protein interior; the surroundings of the residues mapped to the inner surface 
were positively charged, and the environments of the interface/pore group residues 
were distinguishable by the lack of charge (Table 2 in III). The assignments were 
also supported by the sites of predicted, but not observed, trypsin cleavage, most 
of which were located at sites predicted to be in the protein interior or pore region 
(Fig. 6 in III). In addition, the assignments were in agreement with the PredictProtein 
secondary structure prediction of SlpA (Rost et al., 2004), chosen on the basis that it 
most accurately reproduces the secondary structure estimates obtained by physical 
measurements (Mobili et al., 2009b): residues assigned to the outer surface of the 
lattice were mostly located in the predicted loops, residues assigned to protein interior 
within the predicted β-strands and residues assigned to the pore/interface regions 
within both loops and β-strands (Fig. 6 in III).

The mutated residues that were most accessible in the assembled S-layer were 
located in four segments of SlpA spanning amino acids 256-273, 303-316, 335-
349 and 362-372 (Figures 4 and 5 in III). This fi nding is in good accordance with a 
previous study, in which an 11-amino-acid poliovirus VP1 epitope was displayed in 
SlpA (Åvall-Jääskeläinen et al., 2002): of the three insertion sites in the self-assembly 
region of SlpA tested, the epitope was accessible to antibodies when inserted between 
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residues 251 and 252 (near the fi rst surface-accessible segment of Study III) or between 
residues 365 and 366 (within the last surface-accessible segment of Study III). The 
inability of antibodies to recognize the epitope inserted between residues 316 and 317, 
which is an accessible site as measured by maleimide modifi cation in Study III, may 
be due to the altered conformation of the inserted peptide or SlpA at the insertion site, 
or to the possibly different interactions in antibody binding compared with those in a 
cysteine-maleimide reaction. 

Overall, the results of the cysteine scanning mutagenesis study confi rm the two-
domain organization of SlpA. The residues mapped to the outer surface of the layer 
may have potential in further applications, e.g. in the surface display of antigenic or 
other effector molecules in SlpA. Furthermore, as the amino acid sequences of S-layer 
proteins usually fi t poorly the existing algorithms for the prediction of secondary 
structures or solvent accessibilities, the relationships found between the primary 
structure and surface accessibilities of residues in SlpA could prove helpful when 
developing a program for reliably predicting S-layer protein structures.

4.2. Activities of slpA promoters (IV)

The gene encoding SlpA is preceded by two consecutive promoters, P1 and P2 
(Vidgren et al., 1992). Previous studies have indicated that both of these promoters are 
functional during all growth phases in L. brevis ATCC 8287, with signifi cantly more 
transcripts detected from the downstream promoter P2, and the expression of slpA has 
been suggested to be tightly regulated (Kahala et al., 1997). As Lactobacillus S-layer 
proteins are attractive candidates for display vehicles of antigens or other effector 
molecules in humans or animals and the factors affecting the expression of S-layer 
protein genes in lactobacilli are poorly known, a study aiming at the characterization 
of the function of the two promoters in more detail and at the recognition of potential 
cis-acting elements upstream of L. brevis slpA was initiated. The strategy was to 
separate the two promoters from each other on reporter plasmids with different 
parts of their upstream sequences deleted (Fig. 1 in IV), and to measure the enzyme 
activities conferred by the different promoter regions (Fig. 2 in IV). Moreover, 
promoter activities were investigated at the mRNA level (Fig. 3 in IV), effects of 
selected intestinal conditions on promoter activities were evaluated in vitro (Fig. 4 in 
IV) and sequence analyses of the upstream regions of slpA and other Lactobacillus 
S-layer protein genes were performed.

As shown in Fig. 2 in Study IV, in L. lactis, only promoter 1 was recognized, 
and the reporter enzyme activities of the L. lactis strains carrying the smallest region 
upstream of P1, 57 base pairs above the transcription start, were signifi cantly lower 
than the activities of strains carrying larger promoter regions. In L. brevis, both 
promoters were recognized during all growth phases, as expected, and the wild-type 
double promoter was more effi cient than either P1 or P2 alone. However, no difference 
was observed between the effi ciencies of the two promoters, except that the reporter 
enzyme activity of the strain carrying the smallest region upstream of P1 was somewhat 
lower than the very high activities of all of the other strains. This confl icting result 
compared with a previous study (Kahala et al., 1997) is probably attributed to the 
different methods used in these two studies. In the study of Kahala et al. (1997), the 
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slpA mRNAs were quantifi ed from L. brevis by a method based on the hybridization 
of two oligonucleotide probes specifi c for either P1 transcript or both transcripts; this 
method is prone to errors due to possible differences in the binding effi ciencies of 
the two probes and the relatively poor linearity of the immunological digoxigenin-
based detection (unpublished observation). In the present work, two methods, the 
highly reproducible TRAC (transcript analysis with aid of affi nity capture) (Rautio 
et al., 2008) and conventional Northern blotting, were used to quantify reporter gene 
transcripts from L. brevis clones carrying different slpA promoter regions on plasmids. 
Essentially the same pattern of promoter activities seen in the L. brevis clones at a 
reporter enzyme level was also seen at the mRNA level, suggesting regulation of slpA 
expression at the transcriptional rather than at the translational level (Fig. 3 in IV). 
The high activities of the promoters were retained when the recombinant L. brevis 
strains were cultivated under conditions mimicking the intestinal environment (Fig. 4 
in IV). No indications of an effect of the composition of the growth medium on slpA 
gene expression in L. brevis were obtained.

Three of the potential regulatory motifs, originally identifi ed by Wels et al. 
(2006) in the upstream regions of conserved genes in bacilli and lactic acid bacteria, 
were also detected in the upstream, intergenic region of slpA (Fig. 1B in IV). None 
of the three motifs was, however, located in the region missing from the smallest 
P1 promoter construct, and the motifs could thus not directly explain the observed 
patterns of promoter activities. However, a few pieces of evidence suggest that cis-
acting factors may be involved in the regulation of slpA expression in L. brevis ATCC 
8287 under some, as yet unidentifi ed conditions. All of the three potential regulatory 
motifs identifi ed were found also in the genome of L. brevis ATCC 14869 upstream 
of the S-layer protein gene slpB, but not upstream of slpC or slpD of the same strain; 
slpB and slpD are expressed under different conditions, the differential expression 
probably being mediated by a soluble cytoplasmic factor, and slpC is known to be 
silent under laboratory conditions (Jakava-Viljanen et al., 2002). The upstream region 
of slpA is well conserved in a subset of L. brevis strains, as the sequences upstream 
of slpA, slpB and the truncated slpA homologue in L. brevis ATCC 367 are practically 
identical, although the similarity between the coding regions of slpA and slpB is only 
30% (Jakava-Viljanen et al., 2002). Finally, upstream of slpA, an ORF with similarity 
to bacterial genes encoding aminotransferases with helix-turn-helix DNA-binding 
domains (so-called MocR-type GntR-family transcriptional regulators) has been 
identifi ed (unpublished data), though the possible participation of this gene in the 
regulation of slpA expression is currently highly hypothetical. 

In summary, the present information about the function of the two promoters of 
slpA indicates a very effi cient function of both promoters during all growth phases 
in L. brevis, but not in Lactococcus lactis. More upstream sequence is needed for the 
full activity of promoter 1 than for promoter 2 in L. brevis. The possible regulation 
of slpA expression occurs at the transcriptional level, and cis-acting factors are likely 
to participate. The two promoters retain their activities under experimental intestinal 
conditions in vitro, which is advantageous for the potential use of SlpA as a carrier of 
foreign molecules in applications in which bacterial replication in the gastrointestinal 
tract is desired, as in live oral vaccines. 
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5. CONCLUSIONS

In this work, the structure and function of the S-layer protein SlpA of Lactobacillus 
brevis ATCC 8287 and the use of the promoters of its gene were studied. S-layer 
proteins have a wide application potential in nanobiotechnology. As food-grade and 
potentially probiotic organisms, lactobacilli are also excellent candidates for health-
related applications, where their abilities to survive in the gastrointestinal tract could 
be utilized in the design of live oral vaccines, and their S-layer proteins could be 
used as carriers of antigens or other medically important molecules. A comprehensive 
study of bacterial S-layers and their expression is thus warranted.

This work supported the view of Gram-positive S-layer proteins as two-domain 
entities, where one domain is responsible for cell wall binding, and the other for the 
self-assembly of the regular surface layer. The common theme of carbohydrates as the 
binding sites for S-layer proteins in the cell walls of Gram-positive bacteria was also 
supported. In the S-layer protein SlpA of Lactobacillus brevis ATCC 8287, the N-terminal 
domain was found to bind to the cell wall and the C-terminal domain to be responsible 
for self-assembly; the domains were thus in a reversed order compared with the other 
thus far characterized Lactobacillus S-layer proteins, those of two phylogenetically 
distant, L. acidophilus-related species (Smit et al., 2001; Antikainen et al., 2002). Also 
the binding mechanism of SlpA to the cell wall independently of teichoic acids was 
found to be unique among the Lactobacillus S-layer proteins examined to date. The 
structures of the polysaccharides in the cell wall of L. brevis ATCC 8287 are currently 
being investigated. As at the moment only three Lactobacillus S-layer proteins have 
been structurally and functionally thoroughly studied, different types of structure-
function relationships and cell wall binding mechanisms will presumably be revealed 
as more Lactobacillus S-layer proteins are characterized. Biophysical methods are 
increasingly utilized in the structural studies of S-layers, and together with computer 
modelling-based methods will probably allow for more high-resolution structures of 
bacterial S-layer proteins, which currently are scarce owing to diffi culties in obtaining 
high-quality crystals for X-ray crystallography. To investigate the S-layer formed by 
SlpA in detail, comparative SAXS studies of the SlpA lattice on bacterial cells and of 
SlpA reassembled in solution and on different biological surfaces have already been 
performed (P. Jääskeläinen, personal communication). Also the solution structure of 
the C-terminal part of SlpA has been determined by SAXS (Serimaa et al., 2009), and 
attempts to crystallize parts of SlpA are under way. SlpA of L. brevis ATCC 8287 is 
currently the only structurally and functionally characterized S-layer protein with a 
demonstrated fi bronectin-binding function. Further studies are needed to determine 
the biological importance of the epithelial cell and fi bronectin binding functions of 
SlpA, and the elucidation of the structure of SlpA at high resolution would be helpful 
in understanding the intriguing location of the binding site in the shielded N-terminal 
domain. 

With regard to applications, several fi ndings of this study are important. Surface-
exposed regions in the assembled form of SlpA were determined. Surface display 
utilizing an S-layer protein as a carrier results in the simultaneous expression of the 
foreign peptide as hundreds of thousands of regularly arranged copies on the living 
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cell. Since a clear relationship exists between antigen expression levels and immune 
response (Grangette et al., 2001; Seegers, 2002), and Lactobacillus cells as well as 
surface layer arrays have intrinsic adjuvant properties (Smith et al., 1993; Miettinen 
et al., 1996; Maassen et al., 2000; Seegers, 2002), the identifi ed surface-located 
residues are especially attractive candidates for the insertion of foreign epitopes for 
live vaccine design. In the future, the simultaneous display of immunomodulating 
molecules in the S-layer could be used to further enhance or direct the immune 
response. The fi nal suitability of the sites for each application, however, remains to be 
experimentally determined; studies aiming at the display of an F18 fi mbrial adhesin 
fragment in SlpA are currently in progress. The preservation of high activities of the 
slpA promoters under conditions mimicking the intestinal environment is essential 
in live oral vaccine applications, where bacterial replication in vivo is desired. The 
oral delivery route of vaccines is simple and safe and effi ciently induces mucosal 
immunity, which is ideal for preventing the initial infection of most pathogens (Ryan 
et al., 2001; Seegers, 2002; Wells & Mercenier, 2008). Furthermore, as antigen carrier 
systems can be signifi cantly improved by the co-display of adhesins (Cano et al., 
1999; Liljeqvist et al., 1999), the epithelial cell and fi bronectin binding function of 
the N-terminal part of SlpA could be utilized in the targeted delivery of antigenic 
or other effector molecules. Preliminary experiments have been performed utilizing 
SlpA as a purifi ed immunoglobulin binding fusion protein to target antibodies to the 
intestinal surfaces of calves to prevent neonatal diarrhoea by passive immunization 
(Khang et al., 2009). Fusion partners in recombinant SlpA proteins produced in E. 
coli might further include various therapeutics, such as immunoglobulins, enzymes, 
bacteriocides or anti-adhesive agents, which could prove effective on different mucosal 
surfaces. Considering other biotechnological applications, the identifi ed surface-
located residues could be modifi ed for the immobilization of bacterial cells or the 
S-layer protein, and the fi nding that residues on the inner surface of the SlpA lattice 
are positively charged suggests that immobilization of SlpA on a negatively charged 
support without further modifi cation is possible. Immobilization of bacterial cells or 
S-layers combined with the display of foreign molecules in the S-layer forms the basis 
for the development of different solid-phase reagents, such as biocatalysts, diagnostic 
devices, biosensors and biosorbents; in these applications also the thermostability of 
SlpA (Mobili et al., 2009b) may be advantageous. The results of this study thus form a 
basis for the development of SlpA to become a tool for a wide range of biotechnological 
applications.
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