
Department of Food and Environmental Hygiene
Faculty of Veterinary Medicine

University of Helsinki
Finland

Molecular epidemiology of yadA-positive

Yersinia enterocolitica

Maria Fredriksson-Ahomaa

ACADEMIC DISSERTATION

To be presented with the permission of the Faculty of Veterinary Medicine of
the University of Helsinki, for public examination in Auditorium Maximum,

Hämeentie 57, Helsinki, on June 8th 2001, at 12 noon.

Helsinki 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14914544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Yliopistopaino
Helsinki 2001
ISBN 952-91-3465-7
ISBN 951-45-9988-8 (pdf)



CONTENTS

ACKNOWLEDGEMENTS ....................................................................................................... 1
ABBREVIATIONS.................................................................................................................... 2
ABSTRACT............................................................................................................................... 3
LIST OF ORIGINAL PUBLICATIONS ................................................................................... 5
1. INTRODUCTION............................................................................................................... 6
2. REVIEW OF THE LITERATURE ..................................................................................... 8

2.1. Yersinia enterocolitica .................................................................................................. 8
2.1.1. Classification.......................................................................................................... 8
2.1.2. Pathogenicity.......................................................................................................... 9
2.1.3. Factors affecting growth....................................................................................... 12

2.2. Isolation and identification of pathogenic Y. enterocolitica from foods and
environmental samples................................................................................................ 14

2.2.1. Isolation................................................................................................................ 14
2.2.2. Identification ........................................................................................................ 17
2.2.3. Confirmation of pathogenicity ............................................................................. 17

2.3. Detection of pathogenic Y. enterocolitica in foods and environmental samples
with DNA-based methods........................................................................................... 19

2.4. Characterisation of Y. enterocolitica........................................................................... 21
2.4.1. Phenotyping.......................................................................................................... 21
2.4.2. Genotyping ........................................................................................................... 23

2.5. Prevalence of  Y. enterocolitica .................................................................................. 26
2.5.1. In animals ............................................................................................................. 26
2.5.2. At farm level......................................................................................................... 27
2.5.3. In pig slaughterhouses .......................................................................................... 28
2.5.4. In foods and drinking water ................................................................................. 29
2.5.5. At retail level ........................................................................................................ 31
2.5.6. In the environment ............................................................................................... 32
2.5.7. In man................................................................................................................... 32

2.6. Y. enterocolitica infections ......................................................................................... 33
2.6.1. In animals ............................................................................................................. 33
2.6.2. In humans ............................................................................................................. 34
2.6.3. Pathogenesis ......................................................................................................... 35

2.7. Foodborne outbreaks................................................................................................... 36
2.8. Possible transmission routes of sporadic Y. enterocolitica infections ........................ 36

3. AIMS OF THE STUDY .................................................................................................... 38
4. MATERIALS AND METHODS ...................................................................................... 39

4.1. Samples (I-IV) ............................................................................................................ 39
4.2. Strains of Y. enterocolitica 4/O:3 (V) ......................................................................... 39
4.3. Sample preparation (I-IV)........................................................................................... 40
4.4. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment with PCR (I-III) ................................................ 40
4.5. Isolation of Y. enterocolitica from samples of pig origin and from the pig

slaughterhouse environment (I-IV)............................................................................. 42
4.6. Bio- and serotyping of Y. enterocolitica isolates (I-V)............................................... 43
4.7. Detection of yadA gene in Y. enterocolitica isolates with PCR (I-V)......................... 43
4.8. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V) ................................................... 44

4.8.1. DNA isolation (I, II, IV, V).................................................................................. 44



4.8.2. Macrorestriction analysis with PFGE (I, II, IV, V).............................................. 44
4.8.3. Ribotyping (IV) .................................................................................................... 45
4.8.4. Discrimination index (IV-V)................................................................................ 45

5. RESULTS.......................................................................................................................... 46
5.1. Prevalence of yadA-positive Y. enterocolitica in pig tonsils, on carcasses and

offals, and in the slaughterhouse environment (I-II)................................................... 46
5.2. Prevalence of yadA-positive Y. enterocolitica in pig tongues and minced meat at

retail level (III) ............................................................................................................ 47
5.3. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment using PCR (I-III)............................................... 47
5.4. Isolation of yadA-positive Y. enterocolitica from samples of pig origin and from

the pig slaughterhouse environment (I-III) ................................................................. 48
5.5. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V) ................................................... 49
5.6. Distribution of different genotypes of Y. enterocolitica 4/O:3 strains isolated from

slaughterhouses (I, II, V) ............................................................................................ 51
5.7. Sources of sporadic Y. enterocolitica 4/O:3 infections (V) ........................................ 52

6. DISCUSSION.................................................................................................................... 54
6.1. Prevalence of yadA-positive Y. enterocolitica in pig tonsils, on carcasses and

offals, and in the slaughterhouse environment (I-II)................................................... 54
6.2. Prevalence of yadA-positive Y. enterocolitica in retail pig tongues and minced

meat (III) ..................................................................................................................... 55
6.3. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment using PCR (I-III)............................................... 56
6.4. Isolation of yadA-positive Y. enterocolitica from samples of pig origin and from

the pig slaughterhouse environment (I-III) ................................................................. 57
6.5. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V) ................................................... 58
6.6. Distribution of different genotypes of Y. enterocolitica 4/O:3 strains in pig

slaughterhouses (I, II, V) ............................................................................................ 59
6.7. Sources of sporadic Y. enterocolitica 4/O:3 infections (V) ........................................ 61

7. CONCLUSIONS ............................................................................................................... 62
8. REFERENCES .................................................................................................................. 64



- 1 -

ACKNOWLEDGEMENTS

This study was carried out at the Department of Food and Environmental Hygiene, Faculty of

Veterinary Medicine, University of Helsinki during 1995-1999.

I am deeply grateful to:

My supervisor Professor Hannu Korkeala, DVM, PhD, the head of the Department of Food and

Environmental Hygiene, who introduced me the world of science, who supported and guided, and

who encouraged me to complete this work with his incredible optimism.

Professor Marja-Liisa Hänninen, DVM, PhD, who was always willing to share her vast knowledge

with me. As a mother of three children, she understood that it was not always easy to combine work

and family life.

Docent Kaisa Granfors, PhD and Senior Lecturer Stan Fenwick, DVM, PhD for reviewing my

thesis, and Carol Pelli, HonBSc, for editing the English of my manuscripts and summary.

All the people at our Department, especially Johanna Björkroth, Sebastian Hielm, Eija Hyytiä-Trees

and Katri Jalava, who guided me in the field of molecular biology; Tiina Autio, who inspired me to

talk about genes during our numerous lunches; Ulrike Lyhs, who saw me through the difficulties

with her sophisticated humour; Sirkku Ekström, who contributed enormously by typing thousands

of Yersinia isolates; and Johanna Seppälä, who helped me with all manner of practical things.

My husband Pekka and children Kaarin and Eerik, who still love me after this most selfish of

projects.



- 2 -

ABBREVIATIONS

Ail, attachment invasion locus
BOS, bile-oxalate-sorbose broth
CIN, cefsulodin-irgasan-novobiocin agar plate
DI, discrimination index
ESP, EDTA-sodium lauroyl sarcosine buffer with proteinase-K
Inv, invasin
ITC, irgasan-ticarcillin-potassium chlorate broth
LPS, lipopolysaccharide
MAC, MacConkey agar plate
MRB, modified Rappaport broth
PCR, polymerase chain reaction
PFGE, pulsed-field gel electrophoresis
PBS, phosphate-buffer saline broth
PBSSB, phosphate-buffer saline broth with sorbitol and bile salts
PIV, Tris-NaCl buffer
PYZ, pyrazinamidase
pYV, plasmid for Yersinia virulence
RAPD, randomly amplified polymorphic DNA
REAC, restriction endonuclease analysis of the chromosome
REAP, restriction endonuclease analysis of the plasmid
SEL, selenite broth
SSDC, salmonella-shigella-sodium deoxycholate-calcium chloride agar plate
TAE, Tris-Acetate with EDTA
TBE, Tris-Borate with EDTA
TE, Tris-EDTA buffer
TSB, tryptic soya broth
YadA, Yersinia adhesin A
YER, yeast extract-rosebengal broth
Yop, Yersinia outer membrane protein
Ysc, Yop secretion
Yst, Yersinia heat stable enterotoxin



- 3 -

ABSTRACT

While the epidemiology of pathogenic Yersinia enterocolitica remains obscure, some indirect

evidence indicates that foods, particularly pork products, are important sources of human infections.

However, considerable difficulties are associated with the isolation of Y. enterocolitica from foods.

Most methods require time-consuming enrichment steps and are unable to differentiate pathogenic

isolates from non-pathogenic ones. The purpose of this work was to study the prevalence of yadA-

positive Y. enterocolitica in pigs, foods and the environment using the polymerase chain reaction

(PCR) and culture methods, and to characterise the isolates with phenotypic and genotypic methods

to obtain further information on the epidemiology of pathogenic Y. enterocolitica.

The prevalence of yadA-positive Y. enterocolitica was studied in pig tonsils, tongues and minced

meat, on carcasses and offals, and in the pig slaughterhouse environment with the PCR and culture

methods. The mean prevalence of yadA-positive Y. enterocolitica was 37% in pig tonsils when

samples from 9 slaughterhouses were studied. This microbe was recovered from all

slaughterhouses, with prevalence varying from 13 to 45%. The prevalence of yadA-positive Y.

enterocolitica was 21% on pig carcasses. The highest detection rates of 38, 86 and 63% were

obtained for livers, kidneys and hearts, respectively. Y. enterocolitica harbouring the yadA was also

frequently detected in different environmental sites of the pig slaughterhouse. At retail level, the

highest prevalence of 98% was obtained for pig tongues, with a detection rate of 25% for minced

meat samples.

The prevalence of yadA-positive Y. enterocolitica was higher with the PCR than with the culture

method. However, some false-negative results were obtained when tonsils and tongues were

examined. Although food samples are known to contain inhibitory substances for PCR, thus far no

method is available to overcome this problem. The nested-PCR method used targeted the yadA gene

located on the virulence plasmid. YadA, encoded by the yadA gene, is an outer membrane protein,

which is essential for pathogenesis.

Bioserotype 4/O:3 was the only yadA-positive type isolated. It is a common bioserotype isolated in

human infections globally, including Finland. Most of the isolates of bioserotype 4/O:3 harboured

the yadA, which was detected rapidly and conveniently with PCR. Y. enterocolitica was isolated

with the culture method, including overnight enrichment, selective enrichment and cold enrichment.

The majority of the yadA-positive isolates were recovered after selective enrichment. All isolates of
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bioserotype 4/O:3 were characterised with pulsed-field gel electrophoresis (PFGE). This method

was shown to be efficient for characterisation of isolates belonging to bioserotype 4/O:3 with a high

discriminatory power when NotI, ApaI and XhoI enzymes were used. Ribotyping with HindII,

EcoRI, SalI, BglI and NciI enzymes was also tested but using this method the isolates of

bioserotype 4/O:3 could not efficiently be subtyped.

Distribution of different genotypes of Y. enterocolitica 4/O:3 isolates recovered from pig

slaughterhouses was studied with PFGE. The most common genotypes found in the pig tonsils were

widely distributed amongst the slaughterhouses. These genotypes were also found on pig offals

(livers, kidneys, hearts, ears) and carcasses, and in the environment. Of these strains, 64% were

indistinguishable from tonsil strains when characterised with NotI, ApaI and XhoI enzymes,

supporting the hypothesis that pig tonsils are a major source of contamination in pig

slaughterhouses. Several genotypes obtained from the tonsils were shown to be identical with

genotypes found on edible offals (tongues, hearts, kidneys) at retail level, demonstrating a possible

transmission route from slaughterhouses to retail shops.

Sources of human sporadic Y. enterocolitica 4/O:3 infections were studied by comparison of 212

human and 334 non-human strains. When characterised with NotI, ApaI and XhoI enzymes, 80% of

human strains were indistinguishable from strains of pig origin, indicating that the main source of

human infections is pigs. In all, 71% of the human strains were indistinguishable from strains

isolated from pig tongues, livers, kidneys and hearts, suggesting that pig offals contaminated with

Y. enterocolitica 4/O:3 are an important transmission vehicle of this bacterium from pigs to man. To

reduce human infections, removal of the pig head, containing the highly contaminated tonsils and

tongue should be made mandatory.
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1. INTRODUCTION

The genus Yersinia comprises three pathogenic species: Y. enterocolitica, Y. pseudotuberculosis

and Y. pestis (Bercovier and Mollaret 1984). Y. enterocolitica is highly heterogeneous and can be

divided into several bioserotypes, only a few of which are known to associate with human disease

(Robins-Browne 1997). Y.  enterocolitica bioserotype 4/O:3 is the most common cause of human

yersiniosis globally (Bottone 1999), including Finland (Kontiainen et al. 1994). Annual incidence

rates of reported Y. enterocolitica infections in Finland have varied from 564 to 873 cases per 5

million persons during 1995-1999 (Anonymous 2000). The infectious rate may, however, be much

higher since only the most serious cases are registered. Gastro-intestinal yersiniosis is the most

frequently encountered form of Y. enterocolitica, occurring commonly in infants and young

children (Bottone 1997). Sometimes post-infections, more specifically extra-intestinal sequelae,

such as reactive arthritis and erythema nodosum, will occur in elderly children and adults. Yersinia-

triggered reactive arthritis often occurs in Nordic countries, where HLA-B27 and bioserotype 4/O:3

are especially prevalent (Sievers et al. 1972; Bottone 1999).

The epidemiology of Y. enterocolitica infections is complex and poorly understood. Most cases of

yersiniosis occur sporadically without an apparent source (Kapperud 1991; Bottone 1999; Smego et

al. 1999). Yersinia is thought to be a significant foodborne pathogen, even though pathogenic

isolates have seldom been recovered from foods (de Boer 1995). While pigs have been shown to be

a major reservoir for human pathogenic strains of bioserotype 4/O:3 (Andersen et al. 1991;

Kapperud 1991; de Boer 1995), the transmission route from pigs to humans remains unproven.

Indirect evidence suggests that food, particularly pork, is an important link between the swine

reservoir and human infections. In case-control studies, a correlation has been demonstrated

between the consumption of raw or under-cooked pork and the prevalence of yersiniosis (Tauxe et

al. 1987; Ostroff et al. 1994; Satterthwaite et al. 1999). However, no cases of human yersiniosis

have yet been reported where pork products were clearly identified as the source of infection.

Difficulties associated with the isolation of Y. enterocolitica from foods stem from the high number

of background flora in the food samples. Direct isolation, even on selective media, is seldom

successful and time-consuming enrichment steps are needed. No single procedure is currently

available which will recover all pathogenic serotypes (de Boer 1992). The low isolation rates of

pathogenic Y. enterocolitica in food samples may be due to limited sensitivity of culture methods

(Nesbakken et al. 1991a). Using DNA-based methods, including PCR and DNA colony
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hybridisation, foodborne pathogens can be detected more rapidly and with greater sensitivity and

specificity (Jagow and Hill 1986; Hill 1996).

Although Y. enterocolitica is a ubiquitous micro-organism, the majority of isolates recovered from

foods are non-pathogenic, and thus, it is important to determine the pathogenic significance of

isolates (Kapperud 1991; de Boer 1995). This can be done with several phenotypic tests, but these

are time-consuming and not always reliable (Kwaga and Iversen 1992). PCR and DNA colony

hybridisation assays have been used to verify the pathogenicity of Y. enterocolitica isolates rapidly

and with specificity (Kapperud et al. 1990a; Wren and Tabaqchali 1990; Bhaduri et al. 1997). These

methods are based on specific segments of the virulence plasmid that have known virulence

functions such as yadA and virF genes. The virulence plasmid is essential for Y. enterocolitica to

survive and multiply in lymphoid tissues (Cornelis et al. 1998).

Until recently, the relatedness of Y. enterocolitica isolates has been determined solely by testing for

phenotypic markers using bio- and serotyping. Nevertheless, genotyping of Y. enterocolitica has

made great strides in the last decades, and several different DNA-based methods have been used to

characterise Y. enterocolitica strains (Nesbakken et al. 1987; Andersen and Saunders 1990;

Kapperud et al. 1990b; Blumberg et al. 1991; Iteman et al. 1991). However, the high similarity

between strains and the predominating genotypes of bioserotype 4/O:3 have limited the benefit of

these methods in epidemiological studies. Thus many factors relating to the epidemiology of Y.

enterocolitica, such as the sources and transmission routes of Yersinia infections, remain obscure.
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2. REVIEW OF THE LITERATURE

2.1. Yersinia enterocolitica

2.1.1. Classification

The species name Yersinia enterocolitica was proposed by Frederiksen (1964). Y. enterocolitica is

included in the genus Yersinia, which is classified into the family Enterobacteriaceae, a group of

gram-negative, oxidase-negative and facultatively anaerobic bacteria. All bacteria belonging to the

genus Yersinia are catalase-positive, non-spore-forming rods or coccobacilli of 0.5-0.8 x 1-3 µm in

size (Bercovier and Mollaret 1984). This genus presently consists of 11 species, three of which can

cause disease in humans and animals: Y. enterocolitica, Y. pseudotuberculosis and Y. pestis

(Bercovier and Mollaret 1984; Bercovier et al. 1984b; Aleksic et al. 1987; Wauters et al. 1988b).

They are invasive pathogenic bacteria, which have a common capacity to resist non-specific

immune response and are lymphotrophic (Cornelis et al. 1998). These three pathogenic species

differ considerably in invasiveness; while Y. enterocolitica and Y. pseudotuberculosis can cross the

gastro-intestinal mucosa to infect underlying tissue, Y. pestis is injected into the body by an insect

bite, and thus, does not have to penetrate any body surface on its own (Cornelis et al. 1998).

Strains belonging to Y. enterocolitica are urease-positive and can be differentiated from other

Yersinia strains with a positive result for fermentation of sucrose, and negative reactions for

rhamnose and melibiose fermentation (Bercovier et al. 1980). Y. enterocolitica is more active

biochemically at 25°C than at 37°C, giving, for example, a positive Voges-Proskauer test only at

the lower temperature (Bercovier and Mollaret 1984). Most of the strains are motile at 25°C but

non-motile at 37°C, except strains belonging to biotype 4, which display a rather weak motility at

any temperature (Niléhn 1969b). Y. enterocolitica is heterogeneous in its biochemical and antigenic

properties (Bercovier et al. 1980). Most Y. enterocolitica strains associating with human disease

belong to the following bioserotypes: 1B/O:8; 2/O:5,27; 2/O:9; 3/O:3 and 4/O:3. These

bioserotypes have been shown to have different geographical distributions. Strains that are largely

responsible for human yersiniosis in Europe, Japan, Canada and USA belong to bioserotype 4/O:3

(Bottone 1999). Bioserotype 3/O:3 has been recovered in Japan (Fukushima et al. 1984c) and China

(Zheng and Xie 1996), bioserotype 2/O:9 mostly in Europe, and bioserotype 2/O:5,27 is more

widely distributed. Strains of bioserotype 1B/O:8 are mostly limited to the USA, but have

sporadically appeared in France, Italy and Japan as well (Ostroff 1995). Biotype 1A is considered to

be non-pathogenic, however, isolates of this biotype have constituted a sizeable fraction of isolates
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from patients with gastro-enteritis (Burnens et al. 1996). Neubauer et al. (2000a,b) have

demonstrated based on the different DNA-DNA hybridisation values and the 16S rRNA gene

sequences that Y. enterocolitica should be divided into two subspecies, with one subspecies

consisting of strains of biotype 1B, and the other of the remaining strains.

2.1.2. Pathogenicity

Plasmid-encoded virulence factors

All fully virulent Y. enterocolitica strains carry an approximately 70-kb plasmid (Vesikari et al.

1981; Heesemann et al. 1983; Skurnik et al. 1983), termed pYV (plasmid for Yersinia virulence),

which is required for full expression of virulence (Portnoy and Martinez 1985). Virulence plasmids

of pathogenic Yersinia are closely related to each other, sharing functional similarities and a high

degree of DNA homology (Heesemann et al. 1983). The presence of pYV enables Y. enterocolitica

to survive and multiply in lymphoid tissues of their host (Cornelis et al. 1998). This pYV codes for

an outer membrane protein YadA (Yersinia adhesin A), a set of secreted proteins called Yops

(Yersinia outer membrane protein), and their secretion apparatus called Ysc (Yop secretion).

The yadA codes for the major outer membrane protein YadA (Lachica et al. 1984; Skurnik and

Wolf-Watz 1989), which forms a fibrillar matrix on the surface of Y. enterocolitica (Kapperud et al.

1987) and is only expressed at 37°C (Portnoy and Martinez 1985). YadA plays a protective role in

Y. enterocolitica, with several different functions (Table 1).

Table 1. Role of YadA protein in the virulence of Yersinia enterocolitica.

Functions of YadA protein Reference

Serum resistance Heesemann et al. 1983
Surface hydrophobicity Lachica and Zink 1984
Autoagglutination Skurnik et al. 1984
Adhesion to epithelial cells Heesemann and Grüter 1987
Expression of fibrils on the surface Kapperud et al. 1987
Haemagglutination Kapperud et al. 1987
Binding to intestinal brush border membranes Paerregaard et al. 1991
Resistance to killing by polymorphonuclear leukocytes Ruckdeschel et al. 1996
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One major role of YadA is to protect Y. enterocolitica against killing by polymorphonuclear

leukocytes. Although the mechanism is unknown, YadA has been suggested to act by binding to

eukaryotic cells, and in doing so, allow delivery of the Yops, thus preventing phagocytosis

(Ruckdeschel et al. 1996).

The yop genes located on the pYV code for at least 14 Yops (Cheng and Schneewind 1999), which

were originally described as Yersinia outer membrane proteins because they were detected in the

outer membrane fraction of bacterial extracts (Portnoy et al. 1981). Today, they are considered

secreted proteins (Michelis et al. 1990), which imbue Y. enterocolitica with the capacity to resist

non-specific immune response (Cornelis 1998). Yops protect Yersinia from the macrophage by

destroying its phagocytic and signalling capacities, and finally, inducing apoptosis. With the type III

secretion system (Ysc), extracellularly located Yersinia that are in close contact with the eukaryotic

cell deliver toxic bacterial proteins (Yops) into the cytosol of the target cell (Cheng and Schneewind

1999; Tardy et al. 1999). Genes specifying the type III machinery (ysc) are also located on the pYV.

The yop and ysc genes are temperature- and calcium-regulated, being expressed maximally at 37°C

in response to the presence of a low calcium concentration (Cornelis 1998). All Yersinia strains

carrying the virulence plasmid exhibit a phenotype known as low-calcium response because it

manifests only when pYV-bearing strains are grown at 37°C in media containing a low

concentration of Ca2+ (Portnoy et al. 1984; Heesemann et al. 1986). This growth restriction

phenomenon is associated with the massive production of Yops (Cornelis et al. 1998).

Chromosome-encoded virulence factors

Chromosome-encoded factors are also needed for pathogenicity. Virulence functions have

demonstrated to be transferable with the virulence plasmid only to the plasmid-cured strains derived

from virulent parenteral strains (Heesemann and Laufs 1983; Heesemann et al. 1984).

Adherence to and invasion of epithelial layers require at least two chromosomal genes, inv

(invasion) and ail (attachment invasion locus) (Miller and Falkow 1988). The inv codes for Inv, an

outer membrane protein, which appears to play a vital role in promoting entry into epithelial cells of

the ileum during the initial stage of infection (Pepe et al. 1995). This gene is found in all Yersinia

spp., however, non-pathogenic strains lack functional inv homologous sequences (Pierson and

Falkow 1990). Although the Inv protein is maximally synthesised at temperatures below 28°C,

under acidic conditions, the Inv protein is equally well produced at 37°C (Pepe et al. 1995). The ail,

in turn, codes for the surface protein Ail, which is produced at 37°C (Miller et al. 1990). In contrast
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to the inv, the ail is only found in Y. enterocolitica bioserotypes associated with disease (Miller et

al. 1989).

The heat-stable enterotoxin (Yst) of Y. enterocolitica is chromosomally mediated (Delor et al.

1990). This enterotoxin is produced by most clinical isolates and is detectable in broth culture

supernatant by the infant mouse test (Pai and Mors 1978). The role of enterotoxin in the

pathogenesis of Y. enterocolitica infection is unclear. Non-pathogenic strains of Y. enterocolitica

and strains of related species have been found to produce Yst using the infant mouse model (Kwaga

and Iversen 1992), and the yst gene has been detected in strains of biotype 1A, Y. kristensenii and Y.

intermedia (Delor et al. 1990; Kwaga et al. 1992). Absence of enterotoxin production in vitro at

temperatures exceeding 30°C suggests that this toxin is not produced in the intestinal lumen.

However, it has been demonstrated with isogenic Yst+ and Yst- strains in young rabbits that, at

least in this model, Yst was responsible for diarrhoea (Cornelis 1994).

Lipopolysaccharide (LPS) is a major surface component of the outer membrane of gram-negative

bacteria. In Yersinia, the genes directing the biosynthesis of LPS are chromosomally located. LPS is

a complex molecule composed of three main parts: lipid A, oligosaccharide core and O-side chain

(O-antigen). LPS of Y. enterocolitica O:3 has a unique structure in which the outer core forms a

branch (Skurnik and Zhang 1996). The lipid A part is believed to be responsible for endotoxin

activity and to play a central role in sepsis and septic shock due to gram-negative bacteria. Skurnik

et al. (1999) have suggested that the outer core provides resistance against defence mechanisms,

most probably those involving bactericidal peptides. Serotypes of Y. enterocolitica are mainly

determined by the variability of O-antigen (Wauters et al. 1991). While the O-antigen is required

for full virulence, its role has yet to be clarified (Skurnik and Zhang 1996). A total absence of O-

antigen in Y. enterocolitica O:3 has been shown to reduce virulence in the infected mouse model

(Skurnik et al. 1996).

Urease is produced by all clinical isolates of Y. enterocolitica and is encoded by the urease gene

complex (ure) on the chromosome (de Koning-Ward et al. 1994). This enzyme hydrolyses urea to

form carbonic acid and ammonia, leading to an increase in pH. Urease activity may contribute to

the virulence of Y. enterocolitica by conferring acid tolerance and thereby enhancing bacterial

survival in the stomach and other acidic environments (de Koning-Ward and Robins-Browne 1995).

The decrease in virulence after intragastric inoculation of Y. enterocolitica O:3 urease-negative

mutant indicates that the main role of urease is during the initial stage of the bacterial infection,

when the bacteria reach the stomach (Gripenberg-Lerche et al. 2000).
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Iron is an essential micronutrient for almost all bacteria, including Y. enterocolitica. A variety of

alternative pathways have been elucidated for the uptake and utilisation of iron by Yersinia

(Koornhof et al. 1999). To capture iron, strains of bioserotype 1B/O:8 synthesise an iron-chelating

molecule, designated yersiniabactin. The yersiniabactin biosynthesis and transport genes are

clustered within a region of the chromosome referred to as high-pathogenic islands (Rakin et al.

1999). The less virulent strains of other bioserotypes, including bioserotype 4/O:3, are able to bind

and internalise a number of exogenously produced siderophores such as ferrioxamine and

ferrichrome (Koornhof et al. 1999).

Virulence in animal models

Strains that carry the virulence plasmid can be divided into two groups based on relative virulence

in animal models (Schiemann 1989). The first group consists of serotypes O:8, O:13 and O:21.

These strains produce lethal infections in adult mice or gerbils with low doses by the intraperitoneal

route or higher oral doses, and are capable of inducing conjunctivitis in guinea pigs (Aulisio et al.

1983). The second group comprises serotypes O:3, O:5,27 and O:9. These strains will produce fatal

infection in suckling mice, but not in adult mice, unless the animals are overloaded with iron or

have received an iron chelator (Bakour et al. 1985). Strains in this second group are not lethal for

gerbils and induce only a mild and transitory conjunctivitis in guinea pigs (Aulisio et al. 1983).

Strains of both groups will colonise the intestine of mice and be excreted for extended periods

following oral infection (Bakour et al. 1985).

2.1.3. Factors affecting growth

Y. enterocolitica, as a psychrotrophic bacterium, has the ability to replicate at temperatures between

0 and 44°C. The doubling time at the optimum growth temperature (approximately 28 to 30°C) is

around 34 min (Schiemann 1989). Although Y. enterocolitica can grow at temperatures as low as

0°C, the organism grows much more slowly as temperatures drop below 5°C (Goverde et al. 1994;

Harrison et al. 2000). It has been shown that the number of Y. enterocolitica on pork can reach log 9

cfu per cm2 after 5 days at 10°C (Nissen et al. 2001). Goverde et al. (1994) demonstrated that pYV-

positive strains grow slower than pYV-negative ones at 30-35°C and 1-10°C. Yersinia withstands

freezing and can survive in frozen foods for extended periods even after repeated freezing and
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thawing, but it is susceptible to heat and is destroyed by pasteurisation at 71.8°C for 18 s (Toora et

al. 1992).

Y. enterocolitica is able to grow over a pH range from approximately 4 to 10, with an optimum pH

of around 7.6 (Robins-Browne 1997). Yersinia can survive alkaline conditions better than other

gram-negative bacteria (Aulisio et al. 1980). However, since few foods have an alkaline pH, this

high pH tolerance is relatively unimportant. The bacterium’s tolerance of acidic conditions, on the

other hand, is of great significance. Survival of the high acidity of some foods and the passage

through the stomach suggests that Y. enterocolitica is relatively acid-resistant. Although the

mechanism of acid tolerance is unknown, it may be due to the activity of urease, which catabolises

urea to release ammonia, which in turn elevates the cytoplasmic pH (de Koning-Ward and Robins-

Browne 1995). Tolerance of Y. enterocolitica to acid depends on the acidulent used, the

environmental temperature, the composition of the medium, and the growth phase of the bacteria

(Brocklehurst and Lund 1990). Acetic acid has been shown to be a more effective inhibitor than

either lactic or citric acid (Brocklehurst and Lund 1990).

Y. enterocolitica is a facultatively anaerobic bacterium that can grow in anaerobic conditions. This

bacterium can also grow well in modified atmospheres at 8°C (Harrison et al. 2000), but with

higher levels of CO2, the length of lag phase will increase and growth will be slower (Pin et al.

2000). Y. enterocolitica has been shown to grow well on meat when packaged in vacuum or in

modified atmosphere and stored at 5°C (Doherty et al. 1995, Bodnaruk and Draughon 1998), even

in the presence of high background flora (Barakat and Harris 1999; Bredholt et al. 1999). Nissen et

al. (2001) demonstrated that Y. enterocolitica can grow well on both decontaminated and untreated

pork when packaged in vacuum and stored at 10°C. However, the growth of serotype O:3 in raw

minced meat has been found to be inhibited by natural microflora of the meat in some studies

(Fukushima and Gomyoda 1986; Kleinlein and Untermann 1990).

Y. enterocolitica can tolerate salt (NaCl) at concentrations of up to 5% (Stern et al. 1980, Robins-

Browne 1997). The inhibition caused by NaCl is strongly dependent on storage temperature. Brine

concentration of 4.5% inhibits growth of Y. enterocolitica completely at 2°C and only partly at 5°C

(Nielsen and Zeuthen 1985). Y. enterocolitica can tolerate both sodium nitrate and nitrite of up to 20

mg/ml for 48 h in vitro (de Giusti and de Vito 1992). However, a nitrite concentration of only 80

mg/kg has been reported to inhibit the growth of Y. enterocolitica in fermented sausages (Asplund

et al. 1993).
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2.2. Isolation and identification of pathogenic Y. enterocolitica from foods and

environmental samples

2.2.1. Isolation

The source of Y. enterocolitica may markedly affect the methods of isolation. To find pathogenic

isolates from food and environmental sources is generally more difficult than to find them from

stools of infected individuals. During acute gastro-enteritis or with organ abscesses, pathogenic Y.

enterocolitica is often the dominant bacteria and can easily be isolated by direct plating on

conventional enteric media (Ahvonen 1972a). Because of the high number of background flora and

the low number of pathogenic strains of Yersinia in food and environmental samples, direct

isolation even on selective media is seldom successful. To increase the number of Yersinia strains in

these samples, enrichment in liquid media prior to isolation on solid media is required (de Boer

1992). Several different methods are available for isolation of Y. enterocolitica from food and

environmental samples (Table 2).

Table 2. Isolation methods of Yersinia enterocolitica most commonly used for food samples.

Pre-enrichment Selective
enrichment

Selective agar
plate

Serotypes
recovered

Reference

PBSSBa: 4°C, 3-4
weeks

MACb: 25°C, 48 h
CINc: 30°C, 24 h

All
All

Mehlman et al. 1978,
NCFA 1996

PBSd/ PBSSB: 25°C,
1-3 days

CIN: 30°C, 24 h All Doyle and Hugdahl 1983,
ISO 1994

SELe: 22°C, 3 days MAC: 25°C, 48 h O:3, O:8 Lee et al. 1980

PBSSB: 4°C, 8 days MRBf: 22°C, 4 days CIN: 30°C, 24 h O:3, O:9 Schiemann 1982, NCFA 1996

YERg: 4°C, 9 days BOSh: 22°C, 5 days CIN: 30°C, 24 h O:3, O:8 Schiemann 1982

TSBi: 22°C, 1 day BOS: 22°C, 7 days CIN: 30°C, 24 h O:3, O:8 Schiemann 1983a

ITCj: 25°C, 2 days SSDCk: 30°C, 24 h O:3 Wauters et al. 1988a, ISO 1994

a PBSSB, phosphate-buffer saline broth with sorbitol and bile salts.
b MAC, MacConkey agar plate.
c CIN, cefsulodin-irgasan-novobiocin agar plate.
d PBS, phosphate-buffer saline broth.
e SEL, selenite broth.
f MRB, modified Rappaport broth.
g YER, yeast extract-rosebengal broth.
h BOS, bile-oxalate-sorbose broth.
i TSB, tryptic soya broth.
j ITC, irgasan-ticarcillin-potassium chlorate broth.
k SSDC, salmonella-shigella-sodium deoxycholate-calcium chloride agar plate.
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Cold enrichment

The psychrotrophic nature of Y. enterocolitica is unusual among enteric bacteria, and consequently,

enrichment in different solutions at 4°C for prolonged periods has been used for isolation of

Yersinia spp. (Eiss 1975). Cold enrichment in phosphate-buffered solution (PBS) has been widely

used for clinical, food and environmental samples (Oosterom 1979; Pai et al. 1979; Kontiainen et al.

1994; Funk et al. 1998; Letellier et al. 1999). To increase sensitivity, sorbitol (1%) and bile salts

(0.15%) have been added to PBS. This PBSSB has frequently been used in isolation methods,

especially for foods (Mehlman et al. 1978; Schiemann 1982; Harmon et al. 1983; Logue et al. 1996;

NCFA 1996). In addition, nutritionally richer media, such as tryptic soya broth (TSB), have been

reported to yield better results, particularly when food and environmental samples are studied (Van

Pee and Stragier 1979).

One major disadvantage encountered with cold enrichment is the long incubation period, typically

21 days, which is unacceptable for quality assurance of foods. Doyle and Hugdahl (1983) have

shown that incubation in PBS for 1-3 days at 25°C is as efficient as enrichment at 4°C for some

weeks. Another problem with cold enrichment is the presence of other psychrotrophic bacteria in

foods, which also multiply during the enrichment. By treating cold enrichments with potassium

hydroxide (KOH), the background flora can be reduced, making selection of yersinia colonies

easier (Schiemann 1983b). This alkali treatment was developed by Aulisio et al. (1980) after they

observed that Yersinia spp. are more tolerant of alkali solutions than many other gram-negative

bacteria.

Selective enrichment

Several selective media for isolation of Y. enterocolitica at higher temperatures have been

developed (Wauters 1973; Lee et al. 1980; Schiemann 1982; Wauters et al. 1988a; Toora et al.

1994), with different antimicrobial agents being used as selective supplements in these media.

Wauters (1973) formulated a modified Rappaport broth (MRB) containing magnesium chloride,

malachite green and carbenicillin, in which the sample was incubated at 25°C for 2-4 days. Later,

Wauters et al. (1988a) developed an enrichment broth derived from the modified Rappaport base,

supplemented with irgasan, ticarcillin and potassium chlorate (ITC). Both media have been shown

to be efficient for recovery of strains of bioserotype 4/O:3, but inhibitory for strains of bioserotype

2/O:5,27 and 1B/O:8 (Oosterom 1979; Wauters et al. 1988a; Kwaga et al. 1990; De Boer and

Nouws 1991). Schiemann (1982) developed a bile-oxalate-sorbose (BOS) medium for the isolation
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of Y. enterocolitica, particularly for strains belonging to bioserotype 1B/O:8. Pre-enrichment in

low-selectivity medium prior to selective enrichment in MRB (Harmon et al. 1983; NCFA 1996) or

BOS (Schiemann 1983a; Walker and Gilmour 1986; Wauters et al. 1988a; Cox and Bailey 1990)

has also been used for isolation of Y. enterocolitica from foods.

Selective agar plates

Several different selective agar plating media have been used for isolation of Y. enterocolitica.

Initially, plating media, such as MacConkey (MAC) agar, deoxycholate citrate (DC) agar and

Salmonella-Shigella (SS) agar, developed for other enteropathogens were used (Niléhn 1969a). On

these media, Y. enterocolitica strains grow well but slowly and are easily overgrown by other

enteric bacteria because of the low selectivity. Of the traditional enteric media, the most widely

used is MAC agar (Doyle and Hugdahl 1983; Fukushima 1985; Sierra et al. 1995; Bhaduri et al.

1997). Both modifying existing enteric media and development of entirely new media have

achieved improvements in selectivity. SS-agar was made more selective for Y. enterocolitica by

addition of sodium deoxycholate and CaCl2  (Wauters 1973; Wauters et al. 1988a). Used in

combination with ITC enrichment, recovery of strains of bioserotype 4/O:3 is good (Wauters et al.

1988a). This agar is widely used because of its high selectivity and commercial availability (ISO

1994). However, differentiation of Yersinia from competing organisms, such as Morganella,

Proteus, Serratia and Aeromonas, can be difficult. Cefsulodin-irgasan-novobiocin (CIN) agar is one

of the media developed for isolation of Y. enterocolitica (Schiemann 1979). In several comparative

studies, CIN agar was found to be the most selective plating medium for Yersinia spp. (Head et al.

1982; Harmon et al. 1983; Schiemann 1983a; Walker and Gilmour 1986; Cox and Bailey 1990).

Organisms capable of fermenting mannitol, like Yersinia, produce red “bull's eye” colonies on CIN

agar. Only Citrobacter freundii, Enterobacter agglomerans and species of Aeromonas and

Klebsiella produce similar colony morphology (Devenish and Schiemann 1981; Harmon et al.

1983). Two other selective agars, BABY4  (Bercovier et al. 1984a) and VYE (Fukushima 1987),

have been developed for isolation of Y. enterocolitica strains, but CIN agar is the most generally

accepted because of its high selectivity and the high confirmation rate of presumptive isolates.

Moreover, the commercial availability of this medium makes it convenient to use.
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2.2.2. Identification

Devenish and Schiemann (1981) determined the minimum number of biochemical tests required for

identifying Yersinia amongst bacteria growing and presenting similar colony morphology on CIN

agar; two tests, Kligler iron and Christensen’s urea tests, were sufficient. Y. enterocolitica can be

identified with biochemical tests such as fermentation of sucrose, rhamnose and melibiose

(Schiemann 1989). Commercial rapid identification tests provide suitable alternatives to the

conventional tube tests (Cox and Mercuri 1978; Manafi and Holzhammer 1994; Varettas et al.

1995; Neubauer et al. 1998; Linde et al. 1999). The API 20E system, widely used for identification

of presumptive Yersinia isolates, has been shown to be accurate in identifying of Y. enterocolitica

(Archer et al. 1987; Sharma et al. 1990; Neubauer et al. 1998). This kit system has a positive

identification rate of 93% for Y. enterocolitica incubated at 28°C instead of 37°C (Archer et al.

1987). In the study by Sharma et al. (1990), identification of Y. enterocolitica biotypes 3, 4 and 5

was excellent, with a positive predictive value of 99% when the strips were incubated at 28°C for

18-24 h. All pathogenic Y. enterocolitica strains were correctly identified with API 20E by

Neubauer et al. (1998). Y. enterocolitica isolates have also been identified with PCR targeting the

16S rRNA gene combined with sequencing (Neubauer et al. 2000a).

2.2.3. Confirmation of pathogenicity

Y. enterocolitica is a ubiquitous micro-organism and, although the majority of isolates recovered

from non-human sources are non-pathogenic, thus having no clinical significance, it is important to

assess the pathogenicity of isolates (Kapperud 1991).

Animal tests

The pathogenicity of Y. enterocolitica can been studied by animal tests such as the guinea pig

conjunctivitis model (Sereny test) (Sereny 1955), suckling mouse assay, mouse intraperitoneal

challenge, and mouse diarrhoea and splenic infection following oral challenge (Aulisio et al. 1983;

Bakour et al. 1985). However, because animal testing tends to be costly and is subject to increasing

public opposition, it has largely been replaced by in vitro tests.
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Phenotypic tests

A number of phenotypic characteristics associated with the virulence plasmid have been described

(Gemski et al. 1980; Heesemann et al. 1983; Lachica and Zink 1984; Skurnik et al. 1984; Skurnik

1985). Calcium dependence, measured by growth restriction on magnesium oxalate agar (Gemski et

al. 1980; Bhaduri et al. 1990), autoagglutination at 35-37°C (Skurnik et al. 1984), uptake of Congo

red (Prpic et al. 1983; Riley and Toma 1989) and crystal violet (Bhaduri et al. 1987) are the most

popular indirect markers for identifying pathogenic strains of Y. enterocolitica. The pyrazinamidase

(PYZ) test (Kandolo and Wauters 1985) and the tissue culture invasiveness assay (Lee et al. 1977)

are proven indicators of potentially pathogenic isolates (Noble et al. 1987; Miller et al. 1989;

Farmer III et al. 1992). However, both of these tests measures functions that are chromosomally

mediated, and thus, cannot replace pathogenicity tests, since they are only correlated with the ability

of the strain to harbour the plasmid, and not to the presence of the plasmid itself. No single

phenotypic virulence-associated characteristic has been shown to be a reliable indicator of

pathogenicity (Noble et al. 1987; Kwaga and Iversen 1992).

Genotypic tests

Because animal tests are less desirable and phenotypic tests are time-consuming and not always

reliable, a number of rapid and specific DNA hybridisation tests for identifying pathogenic bacteria

have been developed (Hill and Keasler 1991). These methods are based on specific segments of

DNA that have known virulence functions. Several DNA colony hybridisation assays have been

used to verify the pathogenicity of Y. enterocolitica isolates (Miller et al. 1989; Robins-Browne et

al. 1989; Delor et al. 1990; Kapperud et al. 1990a; Ibrahim et al. 1992a).

Pathogenicity of bacteria can be determined rapidly with polymerase chain reaction (PCR). In this

method, DNA sequences are specifically amplified with oligonucleotide primers to give over 106 -

fold amplification of the selected region within a few hours (Saiki et al. 1988). In addition to speed,

amplification of the target DNA with PCR offers maximum sensitivity and specificity (Kwaga et al.

1992). Numerous PCR methods (Wren and Tabaqchali 1990; Fenwick and Murray 1991; Nakajima

et al. 1992; Rasmussen et al. 1994b; Ibrahim et al. 1997) have been developed to confirm

pathogenicity of Y. enterocolitica isolates.

Genotypic markers for pathogenicity of Y. enterocolitica include both plasmid and chromosomal

loci. When the full pathogenicity of Yersinia is being determined, the plasmid-encoded virulence
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determinant, as the target for PCR or colony hybridisation, must be selected (Kapperud et al. 1990a;

Wren and Tabaqchali 1990; 1993, Bhaduri et al. 1997). The diagnostic value of the primers or

probes that target plasmid-encoded sequences has been questioned because accidental loss of the

plasmid during isolation yields false-negative results (Fenwick and Murray 1991; Blais and

Philippe 1995).

2.3. Detection of pathogenic Y. enterocolitica in foods and environmental samples

with DNA-based methods

The majority of Y. enterocolitica isolates recovered from food and environmental samples are non-

pathogenic with culture methods. Several investigations have been undertaken to develop rapid and

reliable methods for detection of pathogenic Yersinia directly from natural samples such as clinical,

food and environmental samples.

DNA colony hybridisation

Several DNA colony hybridisation assays with gene probes targeting virulence-related DNA

sequences of Y. enterocolitica have also been developed for biological samples (Jagow and Hill

1986; Miliotis et al. 1989; Nesbakken et al. 1991a; Goverde et al. 1993; Durisin et al. 1997;

Weagant et al. 1999). Colony hybridisation does not require isolation of pure cultures, and it

enables rapid detection and enumeration of all pathogenic bioserotypes. High background flora

does, however, reduce the efficiency of hybridisation because target cells grow insufficiently in the

presence of competing microflora (Durisin et al. 1997). Despite this, Nesbakken et al. (1991a)

found that the prevalence of pathogenic Y. enterocolitica in Norwegian pork products was

substantially higher with the colony hybridisation method than with the culture method.
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Polymerase chain reaction (PCR)

Using PCR, pathogenic bacteria can be detected from natural samples rapidly and with high

specificity and sensitivity (Candrian 1995; Olsen et al. 1995; Hill 1996; Scheu et al. 1998). Several

methods have been developed to detect Y. enterocolitica in clinical, food and environmental

samples (Table 3).

Table 3. PCR methods developed for detection of Yersinia enterocolitica in clinical, food and

environmental samples.

Sample Gene region Sample
preparation prior
to PCR

Detection system Detection
limit

Reference

Blood virF , ail Pre-enrichment +
proteinase K
treatment

PCR, agarose gel 50 cfu/ml Feng et al. 1992

Faeces yst DNA purification PCR, agarose gel 103 cfu/g Ibrahim et al. 1992b
Food,
water

yadA Pre-enrichment +
IMSa + proteinase
K treatment

Nested PCR,
agarose gel/
colorimetric detection

2 cfu/g Kapperud et al. 1993

Faeces,
tonsils

inv Pre-enrichment +
IMS + proteinase
K treatment

PCR, agarose gel/
fluorescent detection

40-400 cfu/g Rasmussen et al. 1995

Water ail Pre-enrichment +
DNA purification

A two-step PCR,
polyacrylamide gel

60 cfu/ml Sandery et al. 1996

Tonsils virF, ail Pre-enrichment +
NaOH treatment

Nested PCR, agarose gel Natural
samples

Thisted Lambertz et al.
1996

Faeces virF, ail, yst DNA purification Multiplex PCR, agarose gel 5-10 cfu/ml Harnett et al. 1996
Food yst Pre-enrichment +

TritonX-100
treatment

PCR, agarose gel 40 cfu/g Wang et al. 1997

Food virF, ail DNA purification Multiplex PCR, agarose gel 102 cfu/g Nilsson et al. 1998
Tissue,
faeces

16S rRNA DNA purification Seminested PCR,
fluorescent hybridisation

102 cfu/ml Trebesius et al. 1998

Water,
sewage

yadA Pre-enrichment +
proteinase K
treatment

Nested PCR, agarose gel 8-17
cfu/100ml

Waage et al. 1999

Milk yst DNA purification Multiplex and seminested
PCR

10-240
cfu/ml

Özbas et al. 2000

Food,
faeces

ail Pre-enrichment +
DNA purification

TaqMan assay
(Fluorogenic PCR)

< 1 cfu/g Jourdan et al. 2000

Blood 16S rRNA DNA purification TaqMan assay 6 cfu/200µl Sen 2000
Food yst Pre-enrichment +

DNA purification
TaqMan assay 103 cfu/g Vishnubhatla et al.

2000

a IMS, immunomagnetic separation.
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PCR have some disadvantages (Harris and Griffiths 1992), one of the most serious being the high

sensitivity of the technique. Small concentrations of contaminating DNA may result from cross-

contamination, reagents or accumulation of PCR products in the laboratory by repeated

amplification of the same target sequences. To minimise contamination, laboratories must take

specific precautions such as the use of disposable material, separate sets of pipettes only for PCR

and analysis of amplification products in an area separate from that where reagents and samples are

prepared. Another drawback of PCR is its inability to distinguish between viable and non-viable

cells. However, this problem can be overcome with a short pre-enrichment step before PCR is

carried out. A further disadvantage is that many materials, such as food, faeces and blood, contain

substances inhibitory to PCR (Rossen et al. 1992; Lantz et al. 1994). Removal of such inhibitors is

important. However, sample preparation must remain fairly simple. The short enrichment culture

procedure without DNA isolation is one of the best approaches because it is easy to perform and

gives a high sensitivity. In addition, enrichment culture procedures are helpful in distinguishing live

cells from dead cells (Lantz et al. 1994). However, Lantz et al. (1999) have demonstrated that high

concentrations of target bacteria will inhibit PCR when an enrichment step has been used. The

presence of large amounts of other bacteria has also been shown to inhibit the PCR reaction (Rossen

at al. 1992). Inhibition caused by high bacterial concentration can be avoided by a 100-fold dilution

of the enrichment culture (Lantz et al. 1999).

2.4. Characterisation of Y. enterocolitica

In epidemiological studies, differentiation of species into types is necessary to ascertain the

prevalence of pathogenic types in a particular region as well as to identify reservoirs of infection,

transmission vehicles and routes. To differentiate Y. enterocolitica strains, both phenotyping and

genotyping has been used.

2.4.1. Phenotyping

Biotyping

Biotyping has been extensively used because Y. enterocolitica comprises a biochemically

heterogenous group of bacteria (Bercovier et al. 1980). The biotyping scheme proposed by Wauters

et al. (1987) has been widely adopted and is based on the following reactions: tween-esterase

activity, indole production, acid from salicin, trehalose and xylose, nitrate reduction, ß-
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galactosidase (ONPG) activity, Voges-Proskauer reaction, proline peptidase activity, esculin

hydrolysis and pyrazinamidase activity. With these reactions Y. enterocolitica is divided into six

different biotypes: 1A, 1B, 2-5. Biotype 1A consists of non-pathogenic strains, and biotype 1B and

2-5 include strains that are associated with disease in man and animals. The most widespread strains

of Y. enterocolitica belong to biotype 4.

Serotyping

Strains of Y. enterocolitica can also be subdivided on the basis of serotypes, with this being the

most commonly used typing method for Yersinia. Serotyping is mostly based on LPS surface O

antigen, and more seldom on H (flagellar) or K (fimbriae) antigens. Since the initial description of

Winblad (1967) of eight O antigens, the list has been extended to 76 (Wauters et al. 1991). Aléksic

and Bockemühl (1984) have proposed a revised and simplified typing scheme, which includes 20

antigenic factors for Y. enterocolitica alone. Serotype O:3 is most frequently isolated from humans

globally. Other serotypes obtained from humans include serotype O:9 and O:5,27, particularly in

Europe, and serotype O:8 in the USA. However, several O antigens, including O:3, O:8 and O:9,

have been found in both pathogenic and non-pathogenic strains (Aleksic 1995). An accurate

biochemical characterisation is needed before or after serological typing to allow for correct

assessment of the relevance of strains especially from foods and the environment, since related

species and biotype 1A strains are widely distributed in these samples (Wauters et al. 1991; Hoorfar

and Holmvig 1999).

Phage typing

Two schemes (Swedish and French) are used for phage typing of Y. enterocolitica (Schiemann

1989). Of these, the French scheme has been used more often and recognises 12 phage types: I-X

(including IXa-c). The Swedish scheme recognises seven phages (A1, A2, B1, B2, C32, C61, E1)

and is used less frequently. Neither of these schemes has produced a large number of distinct

epidemiological types because many strains fall into the same phage types. Strains of bioserotype

4/O:3 and phage type VIII predominate in Europe and Japan (Kapperud 1991), whereas phage type

IXb has been isolated in Canada (Toma and Deidrick 1975) and in the USA (Doyle et al. 1981).

Baker and Farmer III (1982) have developed a set of 24 phages, which offers a marked

improvement for differentiation. Because of the need to maintain stocks of biologically active

phages and control strains, phage typing is available at only a few laboratories.
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2.4.2. Genotyping

Restriction endonuclease analysis of the plasmid (REAP)

Plasmid analysis, the first bacterial typing tool, has been used for differentiating bacterial strains

(Farber 1996). Plasmids are isolated from each isolate and then separated electrophoretically in an

agarose gel to determine their number and size. Pathogenic strains of Y. enterocolitica contain only

one virulence plasmid of about 70 kb (Vesikari et al. 1981; Heesemann et al. 1983; Skurnik et al.

1983). To increase discriminatory power, the isolated plasmid is cut with different frequent-cutting

restriction enzymes (Heesemann et al. 1983; Nesbakken et al. 1987; Kwaga and Iversen 1993).

Restriction endonuclease analysis of the plasmid (REAP) yields specific patterns for each

bioserotype. However, within bioserotype 4/O:3, the diversity of the REAP patterns is limited

(Table 4).

Table 4: Different typing methods using restriction enzymes for characterisation of Yersinia

enterocolitica bioserotype 4/O:3.

Typing method Enzymes used No. of
strains

No. of
types

Dominating types
(No. of strains)

Reference

EcoRI, BamHI,
HindIII, XbaI

18 2 I (6) , II (12) Pulkkinen et al. 1986

EcoRI, BamHI 89 1 Nesbakken et al. 1987

Restriction
endonuclease analysis
of the plasmid

EcoRI, BamHI 30 3 I (27) Kapperud et al. 1990b
EcoRI, BamHI,
HindIII

18 2 I (17) Kwaga and Iversen 1993

EcoRI, BamHI 9 1 Iteman et al. 1996
EcoRI, BamHI 15 1 Fukushima et al. 1997

Restriction
endonuclease analysis
of the chromosome

HaeIII 30 2 I (29) Kapperud et al. 1990b

Ribotyping AvaI, NciI 37 5 I (23), II (9) Andersen and Saunders 1990
NciI 53 4 I (33), II (18) Blumberg et al. 1991
EcoRI, EcoRV 20 1 Iteman et al. 1996
HindIII, BglI, SalI,
NciI

77 11 I (37) Mendoza et al. 1996

HindIII, BglI 56 11 I (39) Lobato et al. 1998

NotI, XbaI 28 15 I (12) Buchrieser et al. 1994Pulsed-field gel
electrophoresis NotI, XbaI, SpeI 20 11 I (10) Najdenski et al. 1994

NotI 51 3 I (36), III (14) Saken et al. 1994
NotI, XbaI 106 24 I (38), II (38) Asplund et al. 1998
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Restriction endonuclease analysis of the chromosome (REAC)

Chromosomal DNA restriction analysis was the first of the chromosomal DNA-based typing

schemes. In this method, endonucleases with relatively frequent restriction sites are used to cut the

DNA, thereby generating hundreds of fragments ranging from 0.5 to 50 kb in size (Maslow et al.

1993). A major limitation of this technique is the difficulty in interpreting complex profiles, which

consist of hundreds of bands that may be unresolved and overlapping. Kapperud et al. (1990b) have

used REAC to study polymorphism in restriction fragment patterns among Y. enterocolitica isolates

belonging to different bioserotypes. A total of 22 distinct REAC patterns were distinguished among

the 72 Yersinia strains examined, and the patterns varied clearly between bioserotypes. Some

variation occurred among strains within the same bioserotype, but strains of bioserotype 4/O:3 were

homogeneous (Table 4).

Ribotyping

To avoid problems associated with complex REAC patterns, probes, which hybridise to specific

DNA sequences, are used. Ribotyping refers to the use of nucleic acid probes to recognise

ribosomal genes, which are present in all bacteria (Farber 1996). In practice, chromosomal DNA is

isolated and a frequent-cutting enzyme is used to cut the DNA into small fragments. Fragments are

separated by electrophoresis through an agarose gel. The separated DNA fragments are transferred

from the agarose to either a nitrocellulose or nylon membrane by Southern blotting (Southern

1975). Probing is usually done with labelled probes containing E. coli 23S, 16S and 5S rRNA

sequences. After probing, fragments containing a ribosomal gene will be highlighted, creating a

fingerprint pattern containing approximately 1 to 15 bands that can be compared easily among

isolates.

Ribotyping has been used to characterise Y. enterocolitica isolates in several studies (Andersen and

Saunders 1990; Blumberg et al. 1991; Iteman et al. 1996; Mendoza et al. 1996; Lobato et al. 1998;

Fukushima et al. 1998). A close relationship has been found between the ribotypes and bioserotypes

of Y. enterocolitica isolates. Although variation between ribotypes exists among isolates belonging

to the same bioserotype, genetic diversity is limited among isolates of bioserotype 4/O:3 (Table 4).
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Pulsed-field gel electrophoresis (PFGE) typing

Pulsed-field gel electrophoresis is a variation of agarose gel electrophoresis that permits analysis of

large fragments of bacterial DNA. For PFGE, bacterial isolates grown either in broth or on solid

media are combined with molten agarose and poured into small moulds. The embedded bacteria are

then subjected to in situ detergent-enzyme lysis and digestion with an infrequently cutting

restriction enzyme. The digested bacterial plugs, containing the whole genome, are inserted into an

agarose gel and subjected to electrophoresis in an apparatus in which the polarity of the current is

changed at predetermined intervals. The pulsed field allows clear separation of large molecular

length DNA fragments, ranging from 10 kb to 800 kb. PFGE provides a highly reproducible

restriction profile, which typically shows distinct, well-resolved fragments representing the entire

bacterial genome in a single gel (Logonne 1993). Because of the high discriminatory power, and

good intra- and interlaboratory reproducibility, PFGE is still one of the best methods available when

compared with the newer typing methods (Olive and Bean 1999).

A number of studies have been conducted to characterise Y. enterocolitica with PFGE (Iteman et al.

1991; Buchrieser et al. 1994; Najdenski et al. 1994; Saken et al. 1994; Hosaka et al. 1997). Iteman

et al. (1996) compared PFGE with ribotyping and REAP, and found PFGE to be the most suitable

technique for epidemiological tracing of Y. enterocolitica. PFGE allows subtyping of strains

belonging to same bioserotype (Buchrieser et al. 1994; Najdenski et al. 1994; Saken et al. 1994).

Najdenski et al. (1994) showed that the pulsotype resembles the biotype more closely than the

serotype and that the genome of Y. enterocolitica is stable in vitro. The global homogeneity of the

pulsotypes among strains of bioserotype 4O:3 has been shown to be high (Najdenski et al. 1994;

Saken et al. 1994; Asplund et al. 1998). Although strains of bioserotype 4/O:3 can be subdivided

into several pulsotypes, most strains fall into one or two dominating pulsotypes, decreasing the

discriminatory power of PFGE (Table 4).

Randomly amplified polymorphic DNA (RAPD)

Randomly amplified polymorphic DNA (RAPD) assay, also referred to as arbitrary primed PCR, is

a variation of the PCR technique employing a single short (typically 10 base pairs) primer that is

not targeted to amplify any specific bacterial sequence. The primer hybridises at multiple random

chromosomal locations and initiates DNA synthesis at low annealing temperatures. The resulting

PCR products present a variety of different-sized DNA fragments that are visualised by agarose gel

electrophoresis (Farber 1996). RAPD is a very simple and quick method, but its reproducibility is
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low and standardisation of the technique is difficult (Olive and Bean 1999). Some studies have

characterised Y. enterocolitica isolates with RAPD (Rasmussen et al. 1994a; Odinot et al. 1995;

Leal et al. 1999). This method allows discrimination between Y. enterocolitica isolates belonging to

different bioserotypes and, also in some cases, between isolates belonging to the same bioserotype

(Odinot et al. 1995; Leal et al. 1999).

2.5. Prevalence of  Y. enterocolitica

2.5.1. In animals

Animals have long been suspected of being reservoirs for Y. enterocolitica, and hence, sources of

human infections. Numerous studies have been carried out to isolate Y. enterocolitica from a variety

of animals (Hurvell 1981), including wild animals (Ahvonen et al. 1973; Kaneko et al. 1978;

Kaneko and Hashimoto 1981; Kato et al. 1985; Shayegani et al. 1986; Kaneuchi et al. 1989;

Iannibelli et al. 1991; Cork et al. 1995; Suzuki et al. 1995; Wuthe et al. 1995; Sulakvelidze et al.

1996) and farm animals (Ahvonen et al. 1973; Szita et al. 1980: Fukushima et al. 1983b;

Christensen 1987b; Fantasia et al. 1993; Busato et al. 1999) (Table 5). However, most of the strains

isolated from animal sources differ both biochemically and serologically from strains isolated from

man with yersiniosis. Human pathogenic strains of Y. enterocolitica typically have only been

isolated from slaughtered pigs. The highest prevalence of Y. enterocolitica belonging to

bioserotypes associated with human yersiniosis has been obtained in pig tonsils, with bioserotype

4/O:3 being the most common. Experimental infection of pigs has shown that Y. enterocolitica

remains longer (Nielsen et al. 1996; Thibodeau et al. 1999), and the number of isolates is higher

(Shiozawa et al. 1991) in tonsils than in faeces.

Pet animals, such as cats and dogs, have been suspected of being reservoirs for human infections

with Y. enterocolitica, because of their close contact with humans (Schiemann 1989). However,

strains of Y. enterocolitica 4/O:3 have only occasionally been isolated from dogs and cats (Ahvonen

et al. 1973; Yanagawa et al. 1978; Pedersen and Winblad 1979; Szita et al. 1980; Fukushima et al.

1984b; Fantasia et al. 1985; Christensen 1987b; Fredriksson-Ahomaa et al. 1999). These strains

have mostly been isolated from apparently healthy dogs (Fukushima et al. 1984b; Fantasia et al.

1985; Fredriksson-Ahomaa et al. 1999). Dogs can asymptomatically carry Y. enterocolitica in the

pharynx and excrete the organism in faeces for several weeks after infection (Fenwick et al. 1994).
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Table 5. Prevalence of Yersinia enterocolitica belonging to pathogenic bioserotypes in pig oral

cavity and faeces using culture methods.

Sample Prevalence % of different pathogenic bioserotypes
(No. of positive samples)

Country ReferenceNo. of
samples

4/O:3 3/O:3 2/O:9 2/O:5,27 1B/O:8

Faeces 544 3 (15a) 1 (5 a) Canada Toma and Deidrick 1975
Throat 282 30 (84a) Denmark Pedersen 1979
Faeces 399 4 (17a) Denmark Pedersen and Winblad

1979
Tonsils 480 8 (36) 2 (9) German Weber and Knapp 1981a
Faeces 1206 3 (32) 0.1 (1) Weber and Knapp 1981b
Faeces 1300 0.2 (2) UK Hunter and Huges 1983
Tonsils 461 32 (146) 0.2 (1) Norway Nesbakken and Kapperud

1985
Tonsils 40 10 (4) Netherlands De Boer et al. 1986
Tonsils 400 37 (149) Denmark Christensen 1987b
Faeces 110 5 (6) Spain Gurgui Ferrer et al. 1987
Faeces 1458 25 (360) Denmark Andersen 1988
Tonsils 54 61 (33) Belgium Wauters et al. 1988a
Throat 1200 4 (43) 4 (43) 0.1 (1) Japan Fukushima et al.
Faeces 1200 4 (45) 4 (43) 0.1 (1) 1989
Faeces 200 13 (25) 1 (2) Canada Mafu et al. 1989
Tonsils 481 36 (175) Finland Asplund et al. 1990
Tonsils 120 26 (31a) 1 (1a) Finland Merilahti-Palo et al. 1991
Tonsils 86 38 (33) 3 (3) Netherlands De Boer and Nouws
Faeces 100 16 (16) 1 (1) 1991
Tonsils 202 28 (57a) 7 (15a) Canada Hariharan et al. 1995
Tonsils 106 41 (43) 2 (2) Italy De Giusti et al. 1995
Faeces 510 7 (37) China Zheng and Xie 1996
Tonsils 100 35 (35) Chile Borie et al. 1997
Throat 3375 0.1 (4a) 3 (96a) USA Funk et al. 1998
Faeces 1420 17 (235a) 0.6 (9a) 2 (25a) 0.1 (1a) Canada Letellier et al. 1999
Tonsils 291 22 (63 a) 0.7 (2 a) 0.3 (1 a) Canada Thibodeau et al. 1999
Faeces 291 6 (17)

a Only serotyping done.

2.5.2. At farm level

Y. enterocolitica of bioserotype 4/O:3 has a world-wide distribution in the pig population, but the

prevalence does vary between herds in many countries. This herd-wise distribution has been

demonstrated by culture methods in Denmark, Norway, Finland and Canada (Christensen 1980,

1987b; Nesbakken and Kapperud 1985; Asplund et al. 1990; Andersen et al. 1991; Letellier et al.

1999) and by serological tests in Denmark and Norway (Nielsen and Wegener 1997; Skjerve et al.

1998). By culture method, 18% (Andersen et al. 1991) to 64% (Asplund et al. 1990) of the herds

have been negative for Y. enterocolitica 4/O:3. By contrast, serological investigations have shown

that 70%-90% of the slaughter herds in Denmark and 63% in Norway are infected with serotype
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O:3, and that nearly all finishing pigs in infected herds are seropositive (Nielsen and Wegener 1997;

Skjerve et al. 1998).

The source and mode of Y. enterocolitica infection in pigs is still unclear. This organism has not

been isolated from small breeding pigs, but rather from pigs that have been moved to the first or

second fattening pens. These findings suggest that infected faeces and pen floors are likely the most

important sources of infection (Fukushima et al. 1983a). More intensive farming and production

systems have probably contributed to the high prevalence of pathogenic Y. enterocolitica in pigs.

The prevalence of bioserotype 4/O:3 has been shown to be highest in large pig farms with open

management, where small pigs have been purchased from various pig markets or pig producers

(Christensen 1987b; Skjerve et al. 1998).

The presence of symptomless carriers together with the widespread occurrence of Y. enterocolitica

4/O:3 in herds render control of this bacterium at farm level difficult. Strict slaughter hygiene

remains important in reducing contamination in slaughterhouses (Skjerve et al. 1998).

2.5.3. In pig slaughterhouses

Y. enterocolitica 4/O:3 is a common bacterium in slaughtered pigs (Table 5). Fukushima et al.

(1990) have shown that Y. enterocolitica may be transferred horizontally from infected pigs to other

pigs in the slaughterhouse. Pigs can become contaminated with Yersinia from faeces of infected

pigs and from contaminated floors during transportation to and time spent in slaughterhouses.

Meat inspection procedures may not reveal the presence of Y. enterocolitica, since this infection is

mostly present without any signs of illness or apparent macroscopic lesions. Swine slaughter is an

open process with many opportunities for contamination of the carcass with Y. enterocolitica;

hazard points are difficult, if not impossible, to eliminate (Borch et al. 1996). The most important

contamination points are pig-related, such as the faeces and the pharynx (Borch et al. 1996;

Nesbakken and Skjerve 1996).

Contamination of pig carcasses with Y. enterocolitica has been studied widely (Harmon et al. 1984;

Andersen 1988; Nesbakken 1988; Fukushima et al. 1989; de Boer and Nouws 1991; Nesbakken et

al. 1994; Saide-Albornoz et al. 1995). Nesbakken (1988) investigated the prevalence of Y.

enterocolitica 4/O:3 on cut surfaces of pig carcasses and found the highest contamination rate on
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the cranial incision, i.e. the pharyngeal-tonsillary region. Relatively lower prevalence was found on

the circumanal incision. However, Andersen (1988) obtained the highest recovery rate on the

surface of the medial hind limb, especially when the rectum was loosened manually.

The isolation rate from three sampling sites on the carcass surface varied greatly between manual

and mechanical loosening of the rectum (Andersen 1988). Manual loosening caused the greatest

occurrence of Y. enterocolitica on the carcass surface, whereas use of the bung cutter reduced the

prevalence markedly, particularly when its use was supplemented with carefully enclosing the anus

and rectum in a plastic bag (Andersen 1988). Nesbakken et al. (1994) have demonstrated that by

sealing off the rectum with a plastic bag immediately after it has been freed the spread of Y.

enterocolitica 4/O:3 to pig carcasses can be considerably reduced.

In some studies, pig slaughterhouse environment, equipment and workers have been investigated

for the presence of Y. enterocolitica (Nesbakken 1988; Mafu et al. 1989; Fransen et al. 1996;

Sammarco et al. 1997). Although no pathogenic yersinia was detected on equipment or workers, Y.

enterocolitica 4/O:3 was recovered from the sludge (Fransen et al. 1996), and on the viscera table

and floors (Nesbakken 1988). Isolates of bioserotypes 4/O:3 and 3/O:3 have also been sporadically

recovered from rats in pig slaughterhouses (Kaneko et al. 1978; Zheng and Xie 1996).

2.5.4. In foods and drinking water

Food has often been suggested to be the main source of Y. enterocolitica, even though pathogenic

isolates have seldom been recovered from food samples (de Boer 1995; Ostroff 1995). Raw pork

products have been widely investigated because of the association between Y. enterocolitica 4/O:3

and pigs (Wauters 1979; Schiemann 1980; Harmon et al. 1984; Nesbakken et al. 1985; de Boer et

al. 1986; Asplund et al. 1990; de Boer and Nouws 1991; Tsai and Chen 1991; de Giusti et al. 1995;

Fukushima et al. 1997). The isolation rate of pathogenic bioserotypes of Y. enterocolitica has been

low in raw pork, except for pig tongues; the most common type isolated being bioserotype 4/O:3

(Table 6). No pathogenic isolates of Y. enterocolitica were recovered from 104 pork samples

studied in Finland (Asplund et al. 1990). The prevalence of bioserotype 4/O:3 has been

exceptionally high in both pig tongues and minced meat in Belgium (Wauters et al. 1988a), where

head meat including tonsils has been used for minced meat (Tauxe et al. 1987).
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In a case-control study, Y. enterocolitica 4/O:3 infections have been associated with eating raw or

undercooked pork in the two weeks before onset (Tauxe et al. 1987). In the USA, Y. enterocolitica

4/O:3 infections have been associated with the household preparation of chitterlings (intestines of

pigs, which are a traditional holiday dish in the South), particularly among black children (Lee et al.

1990; Stoddard et al. 1994).

Table 6. Prevalence of pathogenic bioserotypes of Yersinia enterocolitica in raw pork using culture

methods.

Sample Prevalence % of different pathogenic bioserotypes
(No. of positive samples)

Country ReferenceNo. of
samples

4/O:3 3/O:3 2/O:9 2/O:5,27 1B/O:8

Tongue 302 55 (165a) 1 (3a) Belgium Wauters 1979
37 30 (11a) Canada Schiemann 1980
31 6 (2a) 19 (6a) USA Doyle et al. 1981
47 55 (26) Norway Nesbakken 1985
50 18 (9) 22 (11) Japan Shiozawa et al. 1987

125 6 (8) Spain Gurgui Ferrer et al. 1987
29 97 (28) Belgium Wauters et al. 1988a
40 15 (6) 5 (2) Netherlands De Boer and Nouws 1991
55 27 (14) Germany Karib and Seeger 1994
86 2 (2) Italy De Giusti et al. 1995

Porkb 91 1 (1a) 12 (10c) 1 (1a) Canada Schiemann 1980
127 1 (1) Norway Nesbakken et al. 1985

70 13 (9) 19 (13) 4 (3) Japan Shiozawa et al. 1987
267 2 (6) Denmark Christensen 1987b

50 24 (12) Belgium Wauters et al. 1988a
400 1 (3) 0.3 (1) Netherlands De Boer and Nouws 1991

67 1 (1) 12 (8 c) 4 (3) China Tsai and Chen 1991
48 2 (1) 2 (1) Germany Karib and Seeger 1994
40 5 (2) 3 (1) 10 (4) Ireland Logue et al. 1996

1278 2 (26) 3 (38) 1 (14) Japan Fukushima et al. 1997
300 2 (6) Norway Johannessen et al. 2000

a Only serotyping done.
b Other pork products, excluding tongues.
c Serotype O:5.

Beef, lamb, poultry and fish products have also been studied for Y. enterocolitica (Fukushima 1985;

de Boer et al. 1986; Gurgui Ferrer et al. 1987; Cox et al. 1990; Ibrahim and MacRae 1991; Falcao

1991; Hudson et al. 1992; de Boer 1994; Toora et al. 1994; Sierra et al. 1995; Escudero et al. 1996;

Khare et al. 1996; Logue et al. 1996; Velázquez et al. 1996; Fredriksson-Ahomaa et al. 2001b).

Non-pathogenic strains have frequently been isolated from raw beef, lamb, poultry and fish (Cox et

al. 1990; Ibrahim and MacRae 1991; Falcao 1991; de Boer 1994; Sierra et al. 1995; Khare et al.

1996; Velázquez et al. 1996). Bioserotype 4/O:3 has only been recovered a few times from beef

samples and once from a poultry sample (Andersen et al. 1991; Logue et al. 1996; Fukushima et al.
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1997). In these cases, cross-contamination from raw pork products to beef and chicken products has

probably occurred during processing, packaging or handling since strains of Y. enterocolitica 4/O:3

have thus far never been recovered from cattle or poultry.

Milk (de Boer et al. 1986; Walker and Gilmour 1986; Christensen 1987b; Hughes 1987; Ibrahim

and MacRae 1991; Larkin et al. 1991; Rea et al. 1992) and plant products (de Boer et al. 1986;

Gurgui Ferrer et al. 1987; Tassinari et al. 1994; Toora et al. 1994; de Boer 1995; Beuchat 1996;

Odumeru et al. 1997; Szabo et al. 2000; Fredriksson-Ahomaa et al. 2001b) have been extensively

examined because outbreaks of yersiniosis have been linked to the consumption of these

contaminated products (Cover and Aber 1989). While non-pathogenic Y. enterocolitica has

frequently been recovered from raw milk and vegetables, pathogenic Yersinia has not been isolated

from vegetables and only once from raw milk. In this case, pigs were the most likely source of the

serotype O:8 contamination (Ackers et al. 2000).

Drinking water has been relatively widely investigated (Christensen 1980; Stengel 1986;

Schiemann 1990; Gönül and Karapinar 1991; Brennhovd et al. 1992). In these studies, water has

been shown to be a significant reservoir for non-pathogenic Y. enterocolitica. However, in

epidemiological studies, untreated drinking water has been reported to be a risk factor for sporadic

Y. enterocolitica infections in Norway (Ostroff et al. 1994; Saebø et al. 1994). Despite this, drinking

water has only been identified as the source of infection in a few episodes (Cover and Aber 1989;

Schiemann 1990). In two outbreaks involving a small number of individuals, serotype O:3 has been

isolated from drinking water (Christensen 1979, Thompson and Gravel 1986). More recently,

Karapinar and Gönül (1991) have demonstrated that Y. enterocolitica O:3 is able to grow in sterile

spring water stored at 4°C.

2.5.5.  At retail level

Several studies have been conducted to isolate pathogenic Y. enterocolitica from foods, especially

from pork, at retail level (Wauters 1979; Schiemann 1980; Nesbakken et al. 1985; de Boer et al.

1986; Asplund et al. 1990; Tsai and Chen 1991; Khare et al. 1996; Logue et al. 1996; Fukushima et

al. 1997; Szabo et al. 2000). However, Y. enterocolitica 4/O:3 isolates have seldom been recovered

from foods, except for pig tongues (Wauters 1979; Schiemann 1980). Only a few studies have been

carried out to find pathogenic Y. enterocolitica in the retail shop environments (Christensen 1987a;

Hudson and Mott 1993). Christensen (1987a) found Y. enterocolitica 4/O:3 in 15 out of 159 shops
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examined. The highest contamination rate occured in small-scale ‘family-type’ butcher shops, and

the lowest in large-scale butcher shops and supermarkets. Cross-contamination from a contaminated

environment to foods not undergoing heat treatment prior to consumption may occur. As a

psychrotrophic organism, Y. enterocolitica can grow along the cold-chain, of which the cold-rooms

in retail shops are an important part.

2.5.6. In the environment

Most of the Y. enterocolitica isolates recovered from environmental samples, including fodder, soil,

foliage, surface water, sewage water and sludge, have been non-pathogenic (Christensen 1980,

1987b; de Boer et al. 1986; Berzero et al. 1991; Cork et al. 1995; Fransen et al. 1996; Sulakvelidze

et al. 1996). Strains of bioserotype 4/O:3 have occasionally been isolated from sewage water

(Christensen 1987b), but not from other sources. Sandery et al. (1996) and Waage et al. (1999) have

shown with PCR that pathogenic strains of Y. enterocolitica can exist in environmental waters.

Terzieva and McFeters (1991) demonstrated that a significant portion of serotype O:3 isolates could

persist in culturable state for weeks in surface water at 6 and 16°C. However, Chao et al. (1988) and

Tashiro et al. (1991) have shown that Y. enterocolitica, including serotype O:3, cannot survive in

natural river water over long periods, especially at 20°C.

2.5.7. In man

Y. enterocolitica has been isolated from humans on all continents (Bottone 1999). Bioserotype

4/O:3 is the most common type of Y. enterocolitica recovered from humans with diarrhoea (Bissett

et al. 1990; Gonzalez Hevia et al. 1990; Bucci et al. 1991; Kontiainen et al. 1994; Munk Petersen et

al. 1996; Stolk-Engelaar and Hoogkamp-Korstanje 1996). The highest incidence of enteritis caused

by this type has been found in young children (Stolk-Engelaar and Hoogkamp-Korstanje 1996).

However, Morris et al. (1991) have also isolated strains of bioserotype 4/O:3 at a high rate from

asymptomatic children. Annual incidence rates of reported Y. enterocolitica infections in Finland

have varied between 564 and 873 cases per 5 million persons during 1995-1999 (Anonymous

2000). The infection rate is probably much higher since only the most serious cases are registered.

The prevalence of Y. enterocolitica O:3/O:9 specific antibodies was relatively high in Finland (19%

and 31% by enzyme immunoassay and immunoblotting, respectively) and in Germany (33%, 43%)

when healthy blood donors were studied (Mäki-Ikola et al. 1997). This may indicate a high amount

of subclinical Yersinia infections in the healthy population.
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2.6. Y. enterocolitica infections

2.6.1. In animals

Several reports have been presented on isolation of Y. enterocolitica strains from a variety of

animals, but descriptions of observed clinical manifestations or patho-anatomical changes are sparse

(Hurvell 1981; Schiemann 1989). Sporadic, small outbreaks of enteritis caused by Y. enterocolitica

have been reported in chinchillas, hares, sheep and goats (Hurvell 1981; Slee and Skilbeck 1992;

Gill 1996). However, both biochemical and serological patterns deviated from those of human

strains.

Strains of bioserotype 4/O:3 have frequently been isolated from pigs (Table 3). In most cases, this

bacterium has been isolated from seemingly healthy pigs with sampling carried out in connection

with normal slaughter. However, samples have also been collected from animals with clinical

symptoms (Hurvell 1981; Zheng 1987). Zheng (1987) recovered strains of serotype O:3 and O:9

from 48% of pigs, all of which had diarrhoea. Strains of bioserotype 4/O:3 have been isolated from

dogs, especially puppies, and cats with diarrhoea, suggesting that this microbe may play a role in

the infection (Ahvonen et al. 1973; Fantasia et al. 1993).

Pigs have been experimentally infected with bioserotype 4/O:3 in several studies (Fukushima et al.

1984a; Robins-Browne et al. 1985; Schiemann 1988; Shu et al. 1995; Nielsen et al. 1996; Najdenski

et al. 1998; Thibodeau et al. 1999). The clinical response to infection in caesarean-derived piglets

has ranged from a subclinical or mild illness to death after an incubation period of two days

(Robins-Browne et al. 1985). Strains of Y. enterocolitica 4/O:3 have been shown to cause gastro-

enteritis in new-born, colostrum-deprived piglets (Shu et al. 1995), whereas full-term colostrum-fed

piglets seem to be quite resistant to infection (Schiemann 1988). In colostrum-fed piglets,

colonisation was typically restricted to the throat and intestinal tract without development of serious

illness (Schiemann 1988). Fattening pigs have been shown to excrete high numbers of Y.

enterocolitica 4/O:3 in faeces for several weeks after infection mostly without any symptoms

(Fukushima et al. 1984a; Nielsen et al. 1996). However, Thibodeau et al. (1999) demonstrated that

the faecal shedding stops soon after ingestion of bacteria and only tonsillar infection occurs.
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2.6.2. In humans

Y. enterocolitica can cause gastro-intestinal symptoms ranging from mild self-limited diarrhoea to

acute mesenteric lymphadenitis evoking appendicitis (Ahvonen 1972b). Sometimes focal disease,

such as pharyngitis, cellulitis, subcutaneous abscess, pneumonia and meningitis, may occur without

gastro-intestinal illness (Tacket et al. 1983; Rose et al. 1987; Cover and Aber 1989; Bin-Sagheer et

al. 1997). The incubation period of Y. enterocolitica enterocolitis ranges from 1 to 11 days. The

minimal infective dose for humans has not been determined. Symptoms of enterocolitis typically

persist for 5 to 14 days, but they may occasionally last for several months. The duration of the

excretion of the organism in stool has been reported to range from 14 to 97 days (Cover and Aber

1989). The clinical manifestations of infection depend on factors such as the age and physiological

state of the host and the pathogenic properties of the particular strain (Cover and Aber 1989).

Most commonly, Y. enterocolitica infections occur in young children (Stolk-Engelaar and

Hoogkamp-Korstanje 1996). In patients under 5 years of age, yersiniosis presents as diarrhoea,

often with low-grade fever and sometimes with abdominal pain (Hoogkamp-Korstanje and Stolk-

Engelaar 1995). The symptoms can even be so faint and short-lived that yersiniosis is not

diagnosed, despite faecal carriage (Olsovsky et al. 1975; van Ossel and Wauters 1990). In older

children and young adults, acute yersiniosis can be present as a pseudo-appendicular syndrome,

which is frequently confused with appendicitis (Stoddard et al. 1994). Sepsis is a rare complication

of Y. enterocolitica infection, except in patients who have a predisposing underlying disease

(Kellogg et al. 1995) or are in an iron-overloaded state (Cover and Aber 1989; Hopfner et al. 2001).

Sepsis can also occur during blood transfusion (Mitchell and Brecher 1999).  One source of Y.

enterocolitica -contaminated red blood cell concentrate has been reported to be a blood donor with

asymptomatic bacteremia (Strobel et al. 2000).

Normally, yersiniosis is a self-limited disease, but sometimes long-term sequelae, including reactive

arthritis, erythema nodosum, uveitis, glomerulonephritis and myocarditis, will occur. Post-infection

complications usually develop within one week to one month of initial infection, and these may be

the only obvious clinical manifestation of Yersinia infection (Ahvonen 1972b; Sievers et al. 1972;

Toivanen et al. 1985). Reactive arthritis and erythema nodosum are the most common

complications (Ahvonen 1972b; Sievers et al. 1972; Leirisalo-Repo 1987). Reactive arthritis

associated with urethritis and/or conjunctivitis is often termed Reiter’s disease. Yersinia-triggered

reactive arthritis (Aho et al. 1974; Leirisalo-Repo and Suoranta 1988), Reiter’s disease (Aho et al.

1974) and uveitis (Careless et al. 1997) are strongly associated with the human leukocyte antigen
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HLA-B27. Yersinia-triggered reactive arthritis often occurs in Nordic countries, where HLA-B27

and bioserotype 4/O:3 are especially prevalent (Sievers et al. 1972; Bottone 1999).

2.6.3. Pathogenesis

After ingestion of pathogenic Y. enterocolitica, this organism travels to the terminal ileum and binds

to the intestinal epithelium. Attachment to the intestinal brush border is enhanced through the

plasmid-encoded outer membrane protein YadA, which is optimally expressed at 37°C (Cornelis et

al. 1998). The bacterium penetrates the intestinal mucosa through M cells, specialised cells involved

in intestinal antigen uptake (Autenrieth and Firsching 1996; Vazguez-Torres and Fang 2000).

Attachment and invasion of M cells are mediated by chromosomal determinants, Inv and Ail

proteins, and plasmid determinant YadA (Miller and Falkow 1988; Vazguez-Torres and Fang

2000). After penetration of the intestinal epithelium, Y. enterocolitica colonises Peyer’s patches,

local lymphoid follicles, and can spread via the lymphatic system to other tissues (Bottone 1997).

The ability to survive within the lymphoid follicles and other tissues is associated with the presence

of virulence plasmid, which is essential for the pathogenesis of Yersinia (Visser et al. 1996). The

bacteria provoke an inflammatory response that is responsible for the abdominal pain. The strains

that cause pain severe enough to be confused with appendicitis are the ones that survive and

multiply to the greatest extent in the Peyer’s patches and thus evoke a more intense inflammatory

response. Most infections are localised and self-limiting because the host’s inflammatory response

is usually able to eliminate the invaders (Bottone 1999).

Some patients develop reactive arthritis. The synovial fluid from affected joints of patients with

Yersinia-induced arthritis is culture-negative but contains bacterial antigens, which suggests that

only part of the microbe enters the joint (Granfors et al. 1989; Viitanen et al. 1991). How the

antigens migrate from the mucosal tissue into the joints remains unknown, but mononuclear

phagocytosis has been suggested to be responsible for the dissemination of bacterial antigens and

the initiation of joint inflammation (Wuorela et al. 1999). Most individuals with post-infective

reactive arthritis are positive for human leukocyte antigen HLA-B27 (Aho et al. 1974). In addition,

HLA-B27 -positive individuals have more severe arthritic symptoms and a more prolonged course

than patients who are HLA-B27 -negative. HLA-B27 has also been commonly found in patients

with acute anterior uveitis, irrespective of the presence of underlying spondyloarthropathy (Careless

et al. 1997). Yersinia-induced reactive arthritis is thought to be mediated by the immune system.

Kirveskari et al. (1999) have shown that yersinia infection can down-regulate expression of major
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histocompatibility complex class I molecules in vivo and that down-regulation is predominant in

patients with the HLA-B27 genotype. However, the exact mechanism of the effect of HLA-B27 in

the pathogenesis of reactive arthritis remains open.

2.7. Foodborne outbreaks

Foodborne outbreaks of Y. enterocolitica bioserotype 4/O:3 are uncommon, although it is

theoretically possible for this bacterium to contaminate and then grow in many types of refrigerated

foods (Kapperud 1991). In Japan and Czechoslovakia, some large outbreaks have been documented

(Olsovsky et al. 1975; Kapperud 1991). In all cases, Y. enterocolitica serotype O:3 was the

causative agent, but the source of  infections went undetected. In the USA, one outbreak of serotype

O:3, which was implicated with chitterlings (a dish made from pig intestine), has been reported

(Lee et al. 1990). In addition, six major outbreaks of other serotypes have occurred in the USA; five

of these were caused by serotype O:8. The outbreaks were associated with chocolate milk (Black et

al. 1978), powdered milk and chow mein (Shayegani et al. 1983), tofu (Tacket et al. 1985), bean

sprouts (Cover and Aber 1989) and pasteurised milk (Ackers et al. 2000). A rarer serotype, O:13,

has caused an outbreak where pasteurised milk was the common source (Tacket et al. 1984).

However, most Y. enterocolitica 4/O:3 infections are sporadic (Robins-Browne 1997). Due to the

long incubation time and the predominance of cases going undiagnosed until 2-3 weeks after the

infection as arthritic symptoms, the route of infection has failed to be traced in most cases.

2.8. Possible transmission routes of sporadic Y. enterocolitica infections

Pigs are considered to be the main source of human Y. enterocolitica 4/O:3 infections, even though

a definite connection between isolates from pigs and human infections has still to be established.

Elevated serum antibody concentrations have been found among people involved in swine breeding

or pork production, suggesting a direct transmission of this bacterium from pigs to humans. In

Finland, slaughterhouse workers and pig farmers were observed to have elevated antibody levels to

Y. enterocolitica O:3 twice as frequently as grain- or berry farmers (Seuri and Granfors 1992) or

randomly selected blood donors (Merilahti-Palo et al. 1991). Similar differences have also been

discovered between people involved in swine slaughtering practices and office personnel in Norway

(Nesbakken et al. 1991b). A close genetic relationship between pig isolates and human isolates has

been shown by REAP (Nesbakken et al. 1987), REAC (Kapperud et al. 1990b), ribotyping

(Andersen and Saunders 1990) and PFGE (Asplund et al. 1998).
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Pet animals have also been suspected of being sources for human infections because of their close

contact with humans (Schiemann 1989). However, direct transmission from pets to humans has yet

to be proven.

The most common transmission route of pathogenic Y. enterocolitica is thought to be faecal-oral via

contaminated food (Schiemann 1989; Smego et al. 1999), although pathogenic isolates have seldom

been recovered from food samples (de Boer 1995; Ostroff 1995). Y. enterocolitica 4/O:3 infection

has been associated with consumption of raw or undercooked pork and untreated water in case-

control studies (Tauxe et al. 1987; Ostroff et al. 1994; Satterthwaite et al. 1999).

Direct person-to-person contact has not been demonstrated, but Lee et al. (1990) reported Y.

enterocolitica O:3 infections in infants who were probably exposed to infection by their caretakers.

Indirect person-to-person transmission has apparently occurred in several instances by transfusion

of blood products (Mitchell and Brecher 1999). In these cases, the most likely source of Yersinia

has been blood donors with subclinical bacteremia (Feng et al. 1992).



- 38 -

3. AIMS OF THE STUDY

The objectives of this thesis were to investigate the prevalence of pathogenic Y. enterocolitica in

samples of pig origin and the distribution of pathogenic Y. enterocolitica in the slaughterhouse

environment, and to characterise the recovered isolates to obtain further information on the

epidemiology of this bacterium. The specific aims were as follows:

1. to determine the prevalence of yadA-positive Y. enterocolitica in pig tonsils, on carcasses

and offals, and in the slaughterhouse environment (I, II),

2. to determine the prevalence of yadA-positive Y. enterocolitica in pig tongues and minced

meat samples from retail shops (III),

3. to evaluate the use of the PCR method in the detection of yadA-positive Y. enterocolitica in

pig tonsils, carcasses, pork and environmental samples (I-III),

4. to improve the use of the PFGE method in characterisation of Y. enterocolitica 4/O:3, and to

compare this method with ribotyping (IV),

5. to study the distribution of different genotypes of Y. enterocolitica 4/O:3 strains isolated in

pig slaughterhouses using PFGE (I, II, V), and

6. to study the sources of sporadic Y. enterocolitica 4/O:3 infections using PFGE (V).
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4. MATERIALS AND METHODS

4.1. Samples (I-IV)

Tonsil samples (185) were collected in study I from nine slaughterhouses located in various parts of

Finland during May and June 1995. In study II, 292 samples were collected from one pig

slaughterhouse in December 1997 and January 1998. Of these 292 samples, 131 were surface

samples from pig carcasses and pig offals, 89 were surface samples from different sites of the

environment and 72 were air samples. In study III, 51 pig tongues and 255 minced meat samples

(containing minced pork) were purchased from 40 retail shops in the Helsinki area during the period

extending from February to July 1996. In study IV, 40 pig tongues were purchased from 7 retail

shops in the Helsinki area in October and November of 1996.

Surface samples in study II were collected by swabbing the surface with a 7.5 x 7.5 cm gauze-

covered cotton-wool pad moistened with 10 ml of TSB (trypticase soya broth, Difco, Detroit, MI,

USA). The swabbed area consisted of the split surface of the cranial and abdominal incision and the

shoulder from half of the carcass. The entire surface of the offal (heart, liver, kidney or ear) was

swabbed, so that one sample contained five swabbed surfaces. The environmental surface samples

from different sites (a brisket saw, a splitting saw, hooks, knives, knife sheaths, a refrigerator,

floors, meat containers, handrails, meat-cutting tables, aprons, hands, a computer keyboard and the

handle of a coffeemaker used by slaughterhouse workers) were taken by swabbing an area

approximately 15 x 15 cm with a moistened 7.5 x 7.5 cm gauze-covered cotton-wool pad. Air

samples in study II were collected using a sedimentation method where open cefsulodin-irgasan-

novobiocin (CIN) agar plates (Yersinia Selective Agar Base, Oxoid, Basingstoke, UK) and

MacConkey agar plates (Difco) were exposed for 4 h at nine different sites: bleeding, eviscerating,

meat-inspection, offal-harvesting, weighing, trimming, head-cutting and chilling areas.

4.2. Strains of Y. enterocolitica 4/O:3 (V)

Strains used in study V were isolated from different sources in the period between 1995-99 (V,

Table 1). The human strains were isolated in 1995-99 from patients with diarrhoea from different

parts of Finland. Tonsil strains were isolated from slaughterhouses A to I in 1995 (I). Faeces strains

were isolated from slaughterhouses D in 1997 and G in 1996. Carcass strains were recovered from

slaughterhouses G and I in 1997, and from slaughterhouses J in 1997-98 (II) and H in 1998. Heart,
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kidney and liver strains were recovered from slaughterhouses J in 1997-98  (II) and H in 1998, and

from retail shops in the Porvoo area in 1998. Tongue and minced meat strains were recovered from

retail shops in the Helsinki area in 1996 (III, IV) and in the Porvoo area in 1998. Strains from the

slaughterhouse environment were isolated from different sources in slaughterhouses G in 1997, I

and J (II) in 1997-98 and H in 1998. Pet strains were isolated from dog faeces in 1998-99 and cat

faeces in 1998.

4.3. Sample preparation (I-IV)

In study I, a 10-g tonsil sample was homogenised in 90 ml TSB for 1 min in a Stomacher Lab

Blender (Seward Medical, London, UK). In study II, a cotton-wool pad, premoistened with 10 ml of

TSB, was transferred to 90 ml of TSB and shaken vigorously. In study III, a tissue sample of a pig

tongue surface was obtained by cutting pieces from the upper surface of the tongue. A 25-g sample

of the tongue tissue or a minced meat sample was homogenised in 225 ml TSB for 1 min in the

stomacher blender. In study IV, from each tongue, nine subsamples intended for quantitative

analysis were taken: 3x10 g, 3x1 g, 3x0.1 g, and placed in 90 ml (10-g sample) or in 10 ml (1-g and

0.1-g sample) of TSB. In all of these studies, samples were enriched in TSB at 22oC for 16-18 h,

and following overnight enrichment, studied with both the PCR and culture methods.

4.4. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment with PCR (I-III)

The yadA-positive Y. enterocolitica was detected from TSB-homogenates with the nested-PCR

method of Kapperud et al. (1993), with modifications as described in studies I and III. Briefly, 100

µl of TSB overnight enrichment (Fig. 1) was centrifuged and the pellet was resuspended in 50 µl of

1x PCR buffer (Finnzymes, Espoo, Finland) containing 0.2 mg of proteinase K (Finnzymes)/ml.

After incubation at 37oC for 1 h, the suspension was boiled for 10 min. After centrifugation, 25 µl

of the supernatant was used as a template in the first PCR step, and 2 µl of the first PCR product

was used as template in the second PCR step. Two sets of oligonucleotide primers (Pharmacia

Biotech, Vantaa, Finland), based on the nucleotide sequences of the yadA (I, Table 1; III, Table 1),

were used for PCR amplification, which was performed in a 16-well PTC-150 thermal cycler (MJ

Research, Watertown, MA, USA). The sample volume was 50 µl and contained 1 U of Dynazyme

DNA polymerase (Finnzymes), 200 µM of each dNTP and 0.1 µM of each primer. Plasmid-positive
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Y. enterocolitica 4/O:3 as positive control and water instead of template as negative control were

included in each analysis. The size of the amplified second PCR product (about 530 bp) was

determined in 0.7% agarose gel by comparison with the DNA molecular weight marker VI

(Boehringer Mannheim, Mannheim, Germany) (III, Fig. 1).

              Overnight enrichment
              22oC, 16-18 h

                                                 4°C, 4 days

                    4°C, 21 days
        

              Selective
              enrichment
              25oC, 4 days

             Identification (Table 7)

              Pathogenicity

Figure 1. Detection and isolation of yadA-positive Yersinia enterocolitica.

Homogenate of the sample:

25 g + 225 ml TSB or

10 ml + 90 ml TSB

TSB (1:10)

CIN agar plate: 30°C, 18-20 h
4 typical colonies of red ‘bull’s eye’ appearance
(< 1 mm ) were streaked onto a blood agar plate.

1. Urea test: 30°C, 18-24 h
2. Api 20E from urea-positive

isolates: 25°C, 18-20 h

1. Biotyping (Table 8)
2. Serotyping
3. PCR: yadA

 MRB
(1:100)

PCR
detection:
yadA
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4.5. Isolation of Y. enterocolitica from samples of pig origin and from the pig

slaughterhouse environment (I-IV)

Y. enterocolitica was isolated with the culture method, which included overnight enrichment,

selective enrichment and cold enrichment (Fig. 1). Every sample was initially enriched in TSB at

22oC for 16-18 h and then further enriched at 4oC for 4 days, after which 100 µl of this enrichment

was inoculated into 10 ml of modified Rappaport broth (MRB) (Wauters 1973) and incubated at

25oC for 4 days. The TSB-homogenates were also enriched at 4oC for 21 days. Subculture on

selective CIN agar plates (Oxoid) was done after every enrichment step according to the method of

the Nordic Committee on Food Analysis (1996). One to four suspect colonies of typical ´bull´s eye´

appearance on the CIN agar plates were streaked onto blood agar plates to create a pure culture.

One colony from pure culture was inoculated onto a urea agar slant (Difco) and incubated for 1 day

at 30oC. The isolates showing urea hydrolysis were further identified using the API 20E system

(BioMérieux, Marcy l’Etoile, France) and incubated at 25oC for 18-20 h. Y. enterocolitica isolates

were identified on the basis of Voges-Proskauer and citrate tests, and acid production reactions to

sorbitol, melibiose, sucrose and rhamnose (Table 7). For the temperature-dependent Voges-

Proskauer test, the API 20E system was incubated at 25°C instead of 37°C, which is the correct

temperature according to the manufacturer’s instructions.

Table 7. Biochemical differentiation of urea-positive Yersinia species after incubation at 25°C for

18-20 h.

Reaction

Species Voges-
Proskauer

Citrate Sorbitol Rhamnose Sucrose Melibiose

Y. enterocolitica +/- - + - + -
Y. pseudotuberculosis - - - +/- - +/-
Y. frederiksenii + +/- + + + -
Y. intermedia + + + + + +
Y. kristensenii - - + - - -
Y. aldovae + +/- + + - -
Y. rhodei - +/- + - + +/-
Y. mollaretii - - + - + -
Y. bercovieri - - + - + -
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Y. enterocolitica was isolated from the air using sedimentation on CIN and MAC agar plates. The

plates were incubated at 30oC for 18-20 h. Lactose-negative colonies on MAC agar plates were

streaked onto CIN agar plates, and all colonies of typical appearance on these CIN agar plates were

identified.

4.6. Bio- and serotyping of Y. enterocolitica isolates (I-V)

All Y. enterocolitica isolates were biotyped according to the revised scheme of Wauters et al.

(1987). Subdivision into 6 biotypes (1A, 1B, 2, 3, 4 and 5) was based on the following reactions:

pyrazinamidase activity, esculin hydrolysis, salicin acidification, tween-esterase activity, indole

production, xylose acidification and nitrate reduction (Table 8).

Table 8. Biochemical tests used for biotyping Yersinia enterocolitica.

Biotype reactions after incubation at 25°C for 48 h

Test 1A 1B 2 3 4 5

Pyrazinamidase a + - - - - -
Esculin hydrolysis + - - - - -
Salicin (acid production) + - - - - -
Tween-esterase + + - - - -
Indole production + + + - - -
Xylose (acid production) + + + + - -
Nitrate reduction + + + + + +

a According to Kandolo and Wauters (1985).

In all studies, serotyping of Y. enterocolitica was carried out with slide agglutination using

commercial antisera O:3, O:5, O:8 and O:9 (Denka Seiken, Tokyo, Japan).

4.7. Detection of yadA gene in Y. enterocolitica isolates with PCR (I-V)

The pathogenicity of Y. enterocolitica isolates was confirmed with PCR targeting the yadA on the

pYV (Fig. 1). Four small (< 1 mm) colonies from pure culture were boiled in 100 µl of water for 10

min, and 2 µl of this boiled bacteria suspension was used as a template in PCR (Kapperud et al.

1993). PCR was carried out as described in Section 4.4.
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4.8. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V)

4.8.1. DNA isolation (I, II, IV, V)

DNA extraction was performed according to Maslow et al. (1993), with the modifications as

described by Björkroth et al. (1996) (I, II) and Autio et al. (1999) (IV-V). Briefly, a single colony

grown on blood agar was inoculated into 5 ml TSB and incubated overnight at room temperature.

The cells in late log phase (18 h) were harvested from 2 ml of TSB. The cells were washed once in

5 ml of cold PIV (10 mM Tris [pH 7.5], 1 M NaCl) and then resuspended in 750 µl of cold PIV. Of

this cell suspension 0.5 ml was mixed with an equal amount of 2% (w/v) low melting temperature

agarose (InCert agarose; FMC Bioproducts, Rockland, ME, USA) and cast in GelSyringe

dispensers (New England Biolabs, Beverly, Mass., USA). The plugs were lysed for 3 h (IV-V) or

overnight (I, II) in about 2.5 ml of lysis solution (6 mM Tris [pH 7.5], 1 M NaCl, 100 mM EDTA

[pH 7.5], 0.5% Brij-58, 0.2% sodium deoxycholate, 0.5% sodium lauroyl sarcosine, 20 µg/ml

RNase, 1 mg/ml lysozyme) at 37oC with gentle shaking. The isolation was completed with a single

2-h (IV-V) or 2 overnight (I, II) ESP (0.5 M EDTA [pH 8.0], 10% sodium lauroyl sarcosine, 100

µg/ml proteinase K) washes at 50oC. The plugs were placed in fresh ESP solution and stored at 4°C

until restriction enzyme digestion was performed.

4.8.2. Macrorestriction analysis with PFGE (I, II, IV, V)

Plugs were washed once with TE buffer (10 mM Tris-HCl, 1 mM EDTA) before proteinase K was

inactivated with phenylmethylsulfonyl fluoride. Plugs were further washed two times with TE

buffer before restriction endonuclease digestion was performed according to the manufacturer’s

instructions. In studies I and II, two rare-cutting restriction enzymes, NotI and XbaI (New England

Biolabs), were used. In study IV, NotI, ApaI, XbaI, XhoI and SpeI were selected for restriction

enzyme digestion after a pilot study where 35 enzymes (ApaI, AscI, AvrII, BamHI, BclI, BglI, BglII,

BssHII, BstEII, ClaI, CeuI, EagI, FseI, KasI, KpnI, MluI, NaeI, NciI, NheI, NruI, PacI, PmeI, PstI,

PvuII, RsrII, SacI, SacII, SalI, SfiI, SmaI, SpeI, SspI, XbaI, XhoI and XmaI) were tested. In study V,

NotI, ApaI and XhoI were used. All samples were electrophoresed using a Gene Navigator system

(Pharmacia, Uppsala, Sweden) with a hexagonal electrode through a 1% (w/v) agarose gel (SeaKem

Gold; FMC Bioproducts) in a 0.5 x TBE buffer (Amresco, Solon, OH, USA) at 12oC and 200 V.

Switching times from 1 to 15 s over 18 h for XbaI, XhoI and AscI, from 1 to 18 s over 20 h for NotI

and SpeI, and from 1 to 20 s over 20 h for ApaI were used. Low-Range, Mid-Range I and Lambda
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Ladder PFG markers (New England Biolabs) were used for fragment size determination. The gels

were stained for 30 min in 1 litre of running buffer containing 50 µl of ethidium bromide (10

mg/ml) and destained in running buffer until appropriate contrast was obtained for standard

photography and/or digital imaging with an Alpha Imager 2000 documentation system (Alpha

Innotech, San Leandro, CA, USA). The banding patterns were interpreted visually. Isolates were

considered to be different when a one-band difference between fragments over 70 kb was observed.

4.8.3. Ribotyping (IV)

A 1-mm thick agarose-embedded slice of DNA was cleaved with HindII, EcoRI, SalI, BglI and NciI

as recommended by the manufacturer. The digested DNA was run in a 0.8% agarose gel overnight

at 25 V in TAE buffer (Amresco). Digoxigenin (DIG)-labelled lamda HindIII digest (Molecular

weight marker II: Boehringer Mannheim) was used as a size marker. The cDNA probe was

prepared from Escherichia coli 16S and 23S rRNA (Boehringer Mannheim) by reverse transcription

(Promega, Madison, WI, USA) (Blumberg et al. 1991). Southern transfer and hybridisation were

performed according to Björkroth and Korkeala (1996).

4.8.4. Discrimination index (IV-V)

The discriminatory power of PFGE with the combinations of NotI, ApaI, XbaI, XhoI and SpeI

enzymes in study IV, and NotI, ApaI and XhoI enzymes in study V was calculated with Simpson’s

index of diversity (Hunter and Gaston 1988). The index estimates the probability of two strains

sampled from the test population being placed into different typing groups. The discrimination

index (DI) is given by the following equation:

                                       s
DI = 1 – 1 / N ( N – 1 ) ∑ nj ( nj – 1 ),

              j=1

where N is the total number of strains, s is the total number  of types described , and nj is the

number of strains belonging to jth type.
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5. RESULTS

5.1. Prevalence of yadA-positive Y. enterocolitica in pig tonsils, on carcasses and

offals, and in the slaughterhouse environment (I-II)

Prevalence of yadA-positive Y. enterocolitica was studied in samples from pig tonsils, carcasses,

offals and the slaughterhouse environment (I, II) with both the PCR and culture methods (Table 9).

The mean prevalence of yadA-positive Y. enterocolitica in pig tonsils was 37%. The yadA-positive

Y. enterocolitica was detected in all nine slaughterhouses, with prevalence varying from 13% to

45% (I, Table 2). The prevalence of yadA-positive Y. enterocolitica was higher on hearts, livers and

kidneys than on carcasses (Table 9).

Table 9. Prevalence of yadA-positive Yersinia enterocolitica in pig tonsils, on carcasses and offals,

and in the slaughterhouse environment in Finland.

Origin of
samples

No. of
samples

No. of PCR-
positive
samples

No. of culture-
positive
samples

No. of PCR- or
culture-positive
samples

Prevalence
%

Tonsils 185 52 48 68 37
Carcasses 80 17 5 17 21
Ears 17 4 2 4 24
Livers 13 5 4 5 38
Kidneys 13 11 9 11 85
Hearts 8 5 4 5 63
Environment 89 12 4 12 13

Pathogenic yersinia was also detected in the slaughterhouse environment from different sites,

including the brisket saw, the hook from which the pluck set (heart, lungs, oesophagus, trachea,

diaphragm, liver, kidneys, and tongue with tonsils) hung, the knife used for evisceration, the floor in

the eviscerating and the weighing area, the meat-cutting table, the aprons used by trimming

workers, the computer keyboard used in the meat inspection area, the handle of the coffeemaker

used by slaughterhouse workers, and the air in the bleeding area (II, Table 2).
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5.2. Prevalence of yadA-positive Y. enterocolitica in pig tongues and minced meat

at retail level (III)

Prevalence of pathogenic Y. enterocolitica was studied in pig tongues and minced meat samples

from retail shops with both the PCR and culture methods (III). At the retail level, prevalence of

yadA-positive Y. enterocolitica was extremely high in pig tongues (Table 10).

Table 10. Prevalence of yadA-positive Yersinia enterocolitica in pig tongues and in minced meat at

retail level in Finland.

Origin of
samples

No. of
samples

No. of PCR-
positive
samples

No. of culture-
positive
samples

No. of PCR- or
culture-positive
samples

Prevalence
%

Tongues 51 47 40 50 98
Minced meat 255 63 4 63 25

5.3. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment using PCR (I-III)

In studies I-III, all samples, except for air samples in study II, were investigated with nested-PCR

from overnight enrichments (Fig. 1). After the second PCR step, a 530-bp product, which was

recognised as a predominant band in agarose gel, was produced (III, Fig. 1). More positive samples

were yielded by PCR than by the culture method, especially when minced meat samples were

studied (Table 10). Some false-negative (culture-positive and PCR-negative) results were obtained

when tonsils and tongues were studied (Table 11).
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Table 11. Detection of yadA-positive Yersinia enterocolitica with the PCR and culture methods.

Samples Culture-positive samples Culture-negative samples

PCR-positive samples 32 20Tonsils
(185)a PCR-negative samples 16 117

PCR-positive samples 24 18Carcasses and offals
(131) PCR-negative samples 0 89

PCR-positive samples 4 8Environment
(89) PCR-negative samples 0 77

PCR-positive samples 37 10Tongues
(51) PCR-negative samples 3 1

PCR-positive samples 4 59Minced meat
(255) PCR-negative samples 0 192

a Total number of samples.

5.4. Isolation of yadA-positive Y. enterocolitica from samples of pig origin and from

the pig slaughterhouse environment (I-III)

Y. enterocolitica was isolated with the culture method, which included overnight enrichment,

selective enrichment and cold enrichment (Fig. 1). In all studies (I-III), selective enrichment was the

most productive. Overnight and cold enrichments were useful only when tonsils were studied.

Prevalence of yadA-positive Y. enterocolitica in tonsils and on edible offals (tongues, hearts, livers

and kidneys) was high even with the culture method (Tables 9 and 10). However, prevalence was

lower with the culture method than with PCR, especially when minced meat samples were studied

(Table 10). Bioserotype 4/O:3 was the only pathogenic type found. The yadA was not detected in all

isolates, but most isolates of bioserotype 4/O:3 were yadA-positive (Table 12).

Table 12. Detection of yadA in isolates of Yersinia enterocolitica 4/O:3 recovered from different

sources.

Origin of samples No. of isolates No. of yadA-positive isolates No. of yadA-negative isolates

Pig tonsils (I) 61 (61)a 48 (48) 13 (13)
Pig carcasses (II) 18 (5) 16 (5) 2 (1)
Pig offals (II) 69 (19) 61 (19) 8 (4)
Environment (II) 26 (7) 22 (6) 4 (1)
Minced meatb (III) 5 (5) 4 (4) 1 (1)
Pig tongues (III) 92 (42) 80 (40) 12 (9)
Pig tongues (IV) 128 (33) 114 (33) 14 (5)
Human strains (V) 334 (249) 310 (225) 24 (24)
Non-human strains (V) 212 (212) 195 (205) 7 (7)

a Number of samples.
b Containing pork.



- 49 -

Two out of four air samples from the bleeding area were positive for yadA-positive Y. enterocolitica

on CIN agar plates when the sedimentation method was used. A total of eight isolates of

bioserotype 4/O:3 were recovered, seven of which carried the yadA.

5.5. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V)

PFGE with NotI and XbaI enzymes was used to characterise the isolates of Y. enterocolitica 4/O:3

in studies I and II. All isolates were easily typed with these enzymes. Interpretation of PFGE

patterns was at times challenging because of the large amount of fragments very closely spaced

together, but in general, the profiles were simple to interpret. A fragment of about 40 kb was

observed in the PFGE patterns of yadA-positive isolates, but not in those of yadA-negative isolates

produced by NotI enzyme (I, Fig. 1; IV, Fig. 1; V, Fig. 1). Although the profiles were not identical,

most displayed only minor deviations (Fig. 2).
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A total of 28 different genotypes (termed pulsotypes in studies I and II) for 61 tonsil isolates (I) and

9 genotypes for 113 isolates from a pig slaughterhouse (II) were obtained by combining the various

NotI and XbaI profiles (Table 13). Two predominating genotypes, NA1/XA1 and NB1/XB1, were

obtained.

Table 13. Genotypes obtained in studies I and II with NotI and XbaI enzymes.

Genotype Sources (No. of samples)

NotI XbaI Pulsotypea

Total
no. of
strains

NA1 XA1 1a 39 Tonsils (20), carcass (3), ear (2), liver (2), kidney (5), heart
(2), brisket saw (1), knife (1), hook (1), air (2)

NA1 XA2 1b 1 Tonsils (1)
NA1 XA3 1c 1 Tonsils (1)
NA1 XA4 1d 2 Tonsils (2)
NA1 XA5 1e 1 Tonsils (1)
NA2 XA6 2f 1 Tonsils (1)
NA3 XA1 3a 1 Tonsils (1)
NA4 XA1 1a, 21a 5 Tonsils (1), liver (2), kidney (1), computer keyboard (1)
NA15 XA2 22b 1 Computer keyboard (1)
NA27 XA1 1a 1 Tonsils (1)
NB1 XB1 4g 16 Tonsils (12), kidney (1), computer keyboard (1), air (2)
NB2 XB2 5h 1 Tonsils (1)
NB3 XB1 6g 3 Tonsils (2), heart (1)
NB4 XB3 7i 1 Tonsils (1)
NB5 XB5 8k 1 Tonsils (1)
NB5 XB12 8s 4 Liver (1), kidney (3)
NB6 XB1 9g 1 Tonsils (1)
NB7 XB6 10l 1 Tonsils (1)
NB8 XB7 11m 1 Tonsils (1)
NB9 XB1 12g 1 Heart (1)
NB9 XB4 12j 1 Tonsils (1)
NB9 XB8 20n, 12r 3 Tonsils (1), carcass (2)
NB10 XB1 13g 1 Tonsils (1)
NB11 XB8 14n 1 Tonsils (1)
NB11 XB9 14o 1 Tonsils (1)
NB12 XB8 15n 1 Tonsils (1)
NB13 XB1 16g 1 Tonsils (2)
NB14 XB1 17g 1 Tonsils (1)
NB15 XB10 18p 1 Tonsils (1)
NB16 XB11 19q 3 Tonsils (1), kidney (2)
NB26 XB8 4n 1 Tonsils (1)

a Labelled in studies I and II.
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In study IV, the efficiency of PFGE for differentiation of isolates of bioserotype 4/O:3 was

evaluated. A total of 128 isolates recovered from 33 retail pig tongues were characterised with  NotI

enzyme. ApaI, XbaI, XhoI and SpeI enzymes were selected to further differentiate the isolates of the

predominating NotI profiles, NA1 and NB1, because they gave the best resolution after a pilot study

where 35 enzymes (ApaI, AscI, AvrII, BamHI, BclI, BglI, BglII, BssHII, BstEII, ClaI, CeuI, EagI,

FseI, KasI, KpnI, MluI, NaeI, NciI, NheI, NruI, PacI, PmeI, PstI, PvuII, RsrII, SacI, SacII, SalI, SfiI,

SmaI, SpeI, SspI, XbaI, XhoI and XmaI) were tested (IV, Table 1). The isolates were easily typed

with these four enzymes. The discrimination index increased from 74% to 93%, and the number of

different genotypes increased from 15 to 30 when the isolates of the predominant types with NotI

were further characterised with ApaI and XhoI.

Two genomic groups, A and B, were obtained on the basis of a group-specific fragment in the

restriction patterns of NotI, ApaI, XhoI, XbaI and SpeI enzymes (IV, Fig.1-3). To confirm this

grouping, 15 isolates of different NotI profiles were characterised using ribotyping with 5 enzymes

(EcoRI, NciI, HindIII, BglI and SalI) in study IV. No genomic groups were found with ribotyping.

The ribotypes of isolates of different groups were identical with EcoRI and NciI enzymes, and very

similar to HindIII, BglI and SalI enzymes, indicating that the genomic groups obtained with PFGE

were genetically closely related.

5.6. Distribution of different genotypes of Y. enterocolitica 4/O:3 strains isolated

from slaughterhouses (I, II, V)

The most common genotypes, NA1/XA1 and NB1/XB1, were found in 33% and 20% of the tonsils,

respectively, and these genotypes were widely distributed amongst the slaughterhouses.  Genotype

NA1/XA1 was also found on pig carcasses, offals (ears, livers, kidneys, hearts), the brisket saw, the

hook from which the pluck set (heart, lungs, oesophagus, trachea, diaphragm, liver, kidneys, and

tongue with tonsils) hung, the knife used for evisceration and from the air (Table 13). Genotype

NB1/XB1 was also recovered on kidneys, on the computer keyboard and in the air. The genotype

NA4/XA1, which was also isolated from tonsils, was detected on livers, kidneys and the computer

keyboard. Other types found in tonsils, NB3/XB1, NB9/XB8 and NB16/XB11, were recovered

from hearts, carcasses and kidneys, respectively. More than two different genotypes were observed

in samples from livers, kidneys, hearts and the computer keyboard.
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In study V, 61 (64%) out of 95 strains found in pig slaughterhouses from carcasses, offals and the

environment were indistinguishable from tonsil strains when characterised with NotI, ApaI and

XhoI enzymes (Table 14).

Table 14. Distribution of different genotypes of tonsil strains in pig slaughterhouses.

Sources contaminated with strains of indistiguishable genotypes
from tonsil strainsPFGE patterns

obtained by NotI,
ApaI and XhoI

No. of
tonsil
samples Samples from pig origin

(No. of samples)
Samples from environment
(No. of samples)

NA1/AA1/HA3 2 Heart (1), liver (1), kidney (1) Conveyor belt (1)
NA1/AA2/HA2 4 Heart (1)
NA1/AA2/HA3 8 Carcass (19), heart (2), liver (3),

kidney (4),
Brisket saw (1), sludge (1),
air (1)

NA3/AA15/HA3 1 Heart (1)
NA4/AA2/HA3 1 Carcass (1), heart (1), liver (1), Computer keyboard (1)
NA27/AA18/HA2 1 Carcass (1)
NB1/AB1/HB1 8 Carcass (1), kidney (3), Computer keyboard (1),

conveyor belt (1), air (1)
NB2/AB15/HB1 1 Carcass (1), heart (1), liver (4),

kidney (1)
NB9/AB14/HB1 1 Carcass (4)
NB26/AB14/HB1 1 Heart (1)

5.7. Sources of sporadic Y. enterocolitica 4/O:3 infections (V)

A total of 64 different PFGE profiles were obtained when 546 strains of Y. enterocolitica 4/O:3

were characterised with NotI enzyme. The discrimination index was 0.80. Altogether 194 (92%) out

of 212 human strains were indistinguishable from 140 (86%) out of 163 strains from

slaughterhouses, 140 (85%) out of 164 strains from retail outlets and all 7 strains from pet animals.

These 481 strains belonging to 22 genotypes were further characterised with ApaI and XhoI

enzymes. The number of different genotypes increased from 64 to 126, and the discrimination index

rose from 0.80 to 0.94 when identical human and non-human strains with NotI were further

characterised with ApaI and XhoI.

Genotypes commonly found in human Y. enterocolitica 4/O:3 infections were recovered from many

sources of pig origin in slaughterhouses and retail shops. Altogether 114 (54%) out of 212 human

strains were indistinguishable from tonsil strains when characterised with NotI, ApaI and XhoI
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enzymes. A total of 75 (35%) and 110 (52%) strains found in human infections were

indistinguishable from strains recovered in pig slaughterhouses on carcasses and edible offals

(heart, liver, kidneys), respectively. In addition, 140 (66%) and 66 (31%) human strains were

indistinguishable from strains from retail shops isolated on pig offals (tongues, kidneys and hearts)

and in pork, respectively. Two common genotypes, NA1/AA2/HA3 and NB1/AB1/HB1, were also

isolated from a cat and a dog, respectively. In all, 151 (71%) human strains were indistinguishable

from strains isolated from pig tongues, hearts, livers and kidneys.
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6. DISCUSSION

6.1. Prevalence of yadA-positive Y. enterocolitica in pig tonsils, on carcasses and

offals, and in the slaughterhouse environment (I-II)

Y. enterocolitica harbouring the yadA was found to be common in Finnish pig tonsils and was

detected in all 9 slaughterhouses. Ten years ago, 4 out of 7 slaughterhouses were negative for

pathogenic Y. enterocolitica (Asplund et al. 1988). In our study, the prevalence varied significantly

between slaughterhouses, which may be due to different prevalences of infected herds in different

areas (I). Herd-wise distribution has been demonstrated by culture methods (Christensen 1980,

1987b; Nesbakken and Kapperud 1985) and by use of serological tests (Nielsen and Wegener 1997;

Skjerve et al. 1998) in Denmark and Norway. Prevalence of Y. enterocolitica 4/O:3 has been shown

to be highest in large pig farms, where piglets have been purchased from various pig markets or pig

producers (Christensen 1987b; Skjerve et al. 1998). The prevalence of pathogenic yersinia in herds

and between herds in Finland has yet to be examined.

The prevalence of yadA-positive Y. enterocolitica on pig carcasses was moderately high (21%)

using PCR (II). The isolation rate of bioserotype 4/O:3 was only 6%, which is lower than in other

Nordic countries. In the last studies performed in the Nordic countries before the use of the plastic

bag technique, the isolation rate of bioserotype 4/O:3 was 17%, 12% and 8% in Denmark, Norway

and Sweden, respectively (Andersen 1988, Nesbakken et al. 1994). The prevalence of yadA-positive

Y. enterocolitica was high on livers, kidneys and hearts with both the PCR and culture methods.

The high contamination rate may be due to cross-contamination from tonsils to offals during

slaughter. The spread of yersinia from tonsils to edible offals is unavoidable when tonsils are

removed along with the pluck set (heart, lungs, oesophagus, trachea, diaphragm, liver, kidneys and

tongue) and hung together on a hook.

The yadA-positive Y. enterocolitica was detected from many different environmental sources in the

pig slaughterhouse with PCR (II), indicating the vast contamination of the pig slaughterhouse

environment with pathogenic yersinia. This is the first time, to our knowledge, that pathogenic

yersinia has been detected in a slaughterhouse environment to this extent. Y. enterocolitica 4/O:3

was isolated from several sources: the brisket saw, the hook from which the pluck set hangs, the

knife used for evisceration, the computer keyboard used in the meat-inspection area and the air in

the bleeding area. In previous studies, Y. enterocolitica 4/O:3 has been isolated in pig
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slaughterhouses only from floors and the viscera table (Nesbakken 1988), or from sludge samples

(Fransen et al. 1996). As far as we are aware, this is the first time that pathogenic yersinia has been

isolated from the air.

6.2. Prevalence of yadA-positive Y. enterocolitica in retail pig tongues and minced

meat (III)

Prevalence of yadA-positive Y. enterocolitica at retail level was studied in pig tongues and minced

meat. The prevalence in pig tongues was high with both PCR and culture methods. One reason for

the contamination rate of 98% may be the slaughtering process, where the tonsils are removed in

conjunction with the tongue. It is impossible to avoid the spread of pathogenic yersinia from the

tonsils to the tongue when they hang together on a hook in the slaughterhouse. Cross-contamination

from tongue to tongue may occur in the slaughterhouse and later at retail level.

The isolation rate of bioserotype 4/O:3 was 82%. While several studies have isolated Y.

enterocolitica from pig tongues in slaughterhouses and at retail level, only in Belgium has the

prevalence of bioserotype 4/O:3 in pig tongues been as high (Wauters et al. 1988a). It is possible

that in some countries tongues have received scald treatment, which has decreased the amount of

heat-sensitive bacteria, such as Yersinia in the tongues (Harmon et al. 1984). Scald treatment should

be obligatory immediately after removal of the tongue to decrease further contamination in the

slaughterhouse and at retail level.

The prevalence of yadA-positive Y. enterocolitica in minced meat was moderately high (25%) with

PCR. In Norway, using the same PCR method as in our studies, pathogenic Y. enterocolitica was

detected in 15% and 17% of pork samples in slaughterhouses and retail shops, respectively

(Johannessen et al. 2000). The isolation rate of Y. enterocolitica 4/O:3 in minced meat was 2% in

our study, which it is in accordance with previous studies (Nesbakken et al. 1985; Christensen

1987a; de Boer and Nouws 1991; Tsai and Chen 1991; Karib and Seeger 1994; Loguet et al. 1996;

Fukushima et al. 1997; Johannessen et al. 2000). Belgium is an exception; there, bioserotype 4/O:3

was isolated from 24% of minced meat samples (Wauters et al. 1988a). One reason for this high

prevalence might be the use of head meat and tonsillar tissue in minced meat (Tauxe et al. 1987).
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6.3. Detection of yadA-positive Y. enterocolitica in samples of pig origin and from

the pig slaughterhouse environment using PCR (I-III)

The prevalence of pathogenic Y. enterocolitica was higher with PCR than with the culture method

(I-III), indicating the higher sensitivity of the former for naturally contaminated samples. These

results are comparable with the study in Norway, where pathogenic Y. enterocolitica was detected

in 17% and 2% of pork samples with the PCR and culture methods, respectively (Johannessen et al.

2000). Thisted Lambertz et al. (1996) compared the capacity of these two methods to detect Y.

enterocolitica in naturally contaminated pig tonsils and found the PCR method to be more rapid,

sensitive and specific. However, Rasmussen et al. (1995) have shown that a pre-enrichment step is

needed before PCR to increase sensitivity when naturally contaminated samples are studied. A pre-

enrichment step in a non-selective medium overnight at room temperature was used in our studies

prior to PCR to increase sensitivity and also to ensure viability of the target cells.

Some samples were PCR-negative but culture-positive when tonsils and tongues were studied (I,

III). Failure of the PCR method to detect all culture-positive pork samples was also reported by

Johannessen et al. (2000). One reason for the false-negative results may be the high level of

pathogenic Y. enterocolitica in these samples. Lantz et al. (1999) have demonstrated that high

concentrations of target bacteria will inhibit PCR reaction. The presence of large amounts of other

bacteria has also been shown to inhibit the PCR (Rossen et al. 1992). Another reason for false-

negative results is inhibitory factors present in food samples (Rossen et al. 1992; Lantz et al. 1994).

An easy method for overcoming this problem has not yet been discovered (Scheu et al. 1998). We

used a fairly simple sample preparation including a pre-enrichment step, two centrifugation steps

and a proteinase-K treatment step according to Kapperud et al. (1993). A dilution step after the

enrichment step may have decreased the number of false-negative results. In addition, it would be

beneficial to include an internal standard for monitoring possible false-negative results caused by

inhibitory substances in the food sample (Thisted Lambertz et al. 1998). The possibility that the

plasmid may be lost occasionally during the overnight enrichment step can not be excluded.

However, Kapperud et al. (1993) have shown that no false-negative results were obtained after

overnight enrichment of food samples seeded with low numbers of plasmid-positive Y.

enterocolitica cells.

The PCR method presented by Kapperud et al. (1993) was used in our studies because it was

developed specifically for food samples and the sample preparation was sufficiently simple for

examining larger numbers of food samples. The PCR method is a nested system. An important
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advantage conferred by the two-step PCR detection procedure with two nested primer pairs is its

high specificity (Kapperud et al. 1993). The four primers have been selected on the basis of

sequence analysis of the yadA in Yersinia spp. (Skurnik and Wolf-Watz 1989), such that they only

target the yadA of Y. enterocolitica. The nested PCR may also increase sensitivity, since the

inhibitory substances are diluted during the second PCR step, where only 1/25 of the reaction

mixture of the first step is transferred to the second reaction mixture. This method has been shown

to be capable of detecting low numbers of pathogenic Y. enterocolitica also in water samples

containing high numbers of background organisms (Waage et al. 1999). The virulence plasmid has

been chosen as the method’s target because it is required by Y. enterocolitica to induce disease

(Cornelis et al. 1998).

6.4. Isolation of yadA-positive Y. enterocolitica from samples of pig origin and from

the pig slaughterhouse environment (I-III)

The highest prevalence of yadA-positive Y. enterocolitica was obtained after selective enrichment.

Even after selective enrichment, pathogenic isolates were overgrown by other bacteria on selective

agar plates, especially when minced meat samples were examined. Ineffective isolation methods are

the most important reason for low prevalence rates of pathogenic Y. enterocolitica in foods. In

addition, the isolation of the bacterium from food and environmental samples is time-consuming.

Thus, more rapid and sensitive isolation methods are needed.

All Y. enterocolitica isolates were biotyped and belonged either to biotype 1A or 4.  All biotype 4

isolates were of serotype O:3, which is the most common type found in human infections world-

wide (Bottone 1999). Other serotypes, such as O:5,27 and O:9, have sporadically been isolated from

humans in Finland (Kontiainen et al. 1994). However, pigs do not appear to be the reservoir for

these types in Finland.

The pathogenicity of Y. enterocolitica isolates was studied with PCR targeting the yadA. This

method proved to be a rapid and convenient method for confirming pathogenicity. Due to the

instability of the virulence plasmid at 37°C, the isolates were not exposed to temperatures above

30°C to avoid the possibility of losing the plasmid. Most of the isolates harboured the virulence

plasmid, giving a positive result with PCR. However, the isolation rate of pathogenic Y.

enterocolitica would have been overestimated if the pathogenicity of the isolates was not

confirmed. In study I, the isolation rate of all bioserotype 4/O:3 isolates and only yadA-positive
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isolates in pig tonsils was 33% and 26%, respectively. Prevalence has reported to decrease from 26

to 11% and from 32 to 15% in Finland and Norway, respectively, after pathogenicity of tonsil

strains was verified using an autoagglutination test (Nesbakken and Kapperud 1985; Merilahti-Palo

et al. 1991). The isolation rate of bioserotype 4/O:3 in pig tongues was 82% when both yadA-

positive and yadA-negative isolates were counted, and 78% when only yadA-positive isolates were

counted (III). In Norway, the prevalence of pathogenic Y. enterocolitica 4/O:3 in tongues decreased

from 55% to 11% when only isolates with positive autoagglutination reaction were counted.

Overall, comparison of different prevalence studies is difficult, particularly if pathogenicity is not

confirmed.

6.5. Genotyping of Y. enterocolitica 4/O:3 (I, II, IV, V)

A wide variety of DNA-based techniques have been used in the study of the molecular

epidemiology of Y. enterocolitica, with PFGE being one of the most suitable techniques for

subtyping Y. enterocolitica 4/O:3 isolates. NotI and XbaI enzymes were used in our studies (I, II),

since these enzymes have given good resolution for all Y. enterocolitica serotypes tested (Iteman et

al. 1991; Buchrieser et al. 1994; Najdenski et al. 1994; Saken et al. 1994). The isolates were

subdivided into several NotI and XbaI profiles, with the majority belonging to two predominant

genotypes. Most of the PFGE patterns displayed only minor deviations, indicating a rather limited

genetic variation among Y. enterocolitica 4/O:3 isolates, in accordance with Buchrieser et al.

(1994).

Altogether 35 enzymes were tested in order to select endonucleases capable of subdividing the

isolates belonging to the predominating NotI profiles (IV). We also tried to find an enzyme that

would produce a smaller number of resolvable macrorestriction fragments suitable for isolate

comparison. No ideal rare-cutting enzyme was found. ApaI, XhoI, XbaI and SpeI enzymes,

producing the best banding patterns without smearing or partial digestion, were used for further

testing. While these enzymes had the best resolution, the number of small fragments was high and

many fragments were very closely spaced together, occasionally making interpretation challenging.

ApaI and XhoI enzymes were shown to be the most efficient in differentiating between isolates with

identical NotI profiles, thus increasing the discriminatory power of the PFGE method (IV).

All isolates of bioserotype 4/O:3 were easily typed with NotI, ApaI and XhoI enzymes, and no

variations in PFGE patterns from the same isolate could be detected with these enzymes (IV, V).
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The isolates were considered different when even a one-band difference was noted, because the

genetic variation within Y. enterocolitica 4/O:3 has been demonstrated to be limited (Buchrieser et

al. 1994; Saken at al. 1994; Asplund et al. 1998), the genotypes have shown to be stable in vitro

(Najdenski et al. 1994), and the same band difference rule has been used to differentiate Y.

enterocolitica isolates in previous PFGE studies (Buchrieser et al. 1994; Najdenski et al. 1994;

Saken at al. 1994; Iteman et al. 1996; Asplund et al. 1998). The plasmid did not interfere with the

PFGE patterns produced when only fragments exceeding 70 kb were used for isolate discrimination.

However, a fragment of about 40 kb was observed in the PFGE patterns of yadA-positive isolates,

but not in the PFGE patterns of yadA-negative isolates produced by NotI enzyme. Najdenski et al.

(1994) have demonstrated that NotI cleaves the pYV into three fragments, the largest of which is

about 48 kb. NotI enzyme was used as a screening enzyme because the banding patterns were clear

with no smearing or partial digestion. In addition, the presence of the virulence plasmid could easily

be confirmed from the NotI patterns, and no other enzyme that would produce a smaller number of

resolvable macrorestriction fragments was found. It was also the enzyme that has been used in all

previous studies (Iteman et al. 1991; Buchrieser et al. 1994; Najdenski et al. 1994; Saken et al.

1994; Iteman et al. 1996; Asplund et al. 1998).

6.6. Distribution of different genotypes of Y. enterocolitica 4/O:3 strains in pig

slaughterhouses (I, II, V)

The most common genotypes, NA1/XA1 and NB1/XB1, which were found in pig tonsils, were

widely distributed amongst the slaughterhouses and may have been derived from a common source

(I). However, in each slaughterhouse, different genotypes were recognised and no predominant

genotype was found in most of the slaughterhouses (I). The two prevailing genotypes found in pig

tonsils were also found on pig offals (livers, kidneys, hearts, ears) and carcasses, and in the

slaughterhouse environment, indicating that the tonsils are an important contamination source in the

pig slaughterhouse (II). The spread of this bacterium from the tonsils to the liver, heart and kidneys

is unavoidable when the tonsils are removed in conjunction with the pluck set (heart, lungs,

oesophagus, trachea, diaphragm, liver, kidneys and tongue) and then hung on a hook. Several

genotypes obtained from the tonsils were shown to be indistinguishable from the genotypes found

in tongues (V). The tongue is easily contaminated when it hangs together with the tonsils.

The NA1/XA1 genotype was also found on carcasses, the hook from which the pluck set hung, the

brisket saw and the knife used for evisceration. The highly contaminated tonsils will spread
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pathogenic yersinia to carcasses, tools and machines during the slaughter process. Identical

genotypes were found on the computer keyboard in the meat-inspection area and on livers and

kidneys, which reinforces the assumption that meat inspectors spread pathogenic yersinia from

offals with their hands. Two different genotypes were found in the air, and the same types were also

recovered from other sites in the slaughterhouse, indicating that airborne contamination may occur

during slaughter.

In study V, 61 (64%) out of 95 strains found in pig slaughterhouses from carcasses, offals and the

environment were indistinguishable from the tonsil strains when characterised with NotI, ApaI and

XhoI enzymes, lending further support to our hypothesis that tonsils are the main source of

contamination in pig slaughterhouses. The isolation rate of Y. enterocolitica has been shown to be

higher in tonsillary than in faecal samples (de Boer and Nouws 1991; Thibodeau et al. 1999). Likely

reasons for this are that infected pigs carry Y. enterocolitica for a longer time (Nielsen et al. 1996,

Thibodeau et al. 1999) and the number of Y. enterocolitica isolates is higher (Shiozawa et al. 1991)

in tonsils than in faeces. However, faeces is another important contamination source of pathogenic

Y. enterocolitica in pig slaughterhouses. Pathogenic yersinia will spread from the intestines to the

carcass, mainly during the loosening of the rectum. The spread of Y. enterocolitica 4/O:3 from

faeces to carcasses can be considerably reduced by sealing off the rectum with a plastic bag

immediately after it has been freed (Andersen 1988, Nesbakken et al. 1994). This method is

commonly used in Denmark, Norway and Sweden. (Borch et al. 1996).

Pathogenic yersinia will easily spread from contaminated tonsils and faeces to other sources. The

meat-inspection procedure will not necessarily reveal the presence of Y. enterocolitica since this

infection is mostly present without any signs of illness or apparent macroscopic lesions. Swine

slaughter, being an open process, offers many opportunities for cross-contamination. The only way

to prevent the spread of pathogenic yersinia from pig tonsils to other sources is to modify the

European Union legislation (64/433/EEC), to mandate that the head, containing the tonsils and

tongue be removed prior to evisceration and that inspection of the head, tonsils and tongue occur in

a separate room. Moreover, to decrease the spread of pathogenic yersinia via faeces, the plastic bag

technique is recommended.
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6.7. Sources of sporadic Y. enterocolitica 4/O:3 infections (V)

The main source of sporadic human Y. enterocolitica 4/O:3 infections in Finland seems to be  the

pig. A total of 80% of human strains were indistinguishable from strains of pig origin when 212

human strains isolated from Y. enterocolitica 4/O:3 infections were compared with 334 non-human

strains. In all, 39 genotypes found in human infections were found in different sources of pig origin.

Pig offals contaminated with Y. enterocolitica 4/O:3 were revealed to be an important transmission

vehicle of this bacterium from pigs to man, since 71% of the human strains were indistinguishable

from strains isolated from pig tongues, livers, kidneys and hearts. Pathogenic Y. enterocolitica

spreads from pig slaughterhouses to retail level via contaminated offals. Cross-contamination from

offals to other sources occurs directly or indirectly via equipment and food handlers at retail shops

and residential kitchens. As a psychrotrophic microbe, Y. enterocolitica is able to multiply along the

cold-chain from the slaughterhouse to the home refrigerator.

Y. enterocolitica 4/O:3 infections have been associated with pork in case-control studies (Tauxe et

al. 1987; Ostroff et al. 1994). Of strains found in sporadic infections, 35% and 31%  were

indistinguishable from strains recovered on pig carcasses and in pork, respectively, which strongly

supports the association between yersiniosis and pork. Raw meat, particularly raw pork, is not eaten

in Finland, except for occasional nibbling on raw minced pork while preparing pork dishes. Cross-

contamination of cooked foods or foods not harbouring Y. enterocolitica is the more probable route

of infection.

Pet animals may be another source of human infections, especially among young children. Two

common genotypes found in human infections were found in a cat and a dog. These same genotypes

were also present in pig tonsils, offals and pork. Pathogenic yersinia can be transmitted from pigs to

dogs and cats via raw pork and offals (Fredriksson-Ahomaa et al. 2001a), which are often fed to

pets, and then from pets to humans via contaminated faeces. Although transmission from pets to

humans has yet to be proven, Fenwick et al. (1994) have shown that dogs can carry Y. enterocolitica

bioserotype 4/O:3 asymptomatically and excrete this organism in the faeces for weeks.
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7. CONCLUSIONS

1. The mean prevalence of yadA-positive Y. enterocolitica in pig tonsils was 37% when samples

from 9 slaughterhouses located in various parts of Finland were examined with both the PCR

and culture methods. In addition, 21% of pig carcasses were contaminated with yadA-positive Y.

enterocolitica. This bacterium was detected on 38, 86 and 63% of livers, kidneys and hearts,

respectively. This high prevalence on edible pig offals likely indicates extensive cross-

contamination from tonsils to offals during slaughter. Y. enterocolitica carrying the yadA gene

was detected from many different environmental sources in the pig slaughterhouse with PCR,

confirming that the pig slaughterhouse environment is contaminated with pathogenic Y.

enterocolitica. All yadA-positive isolates belonged to bioserotype 4/O:3.

2. The prevalence of yadA-positive Y. enterocolitica at retail level was studied in pig tongues and

minced meat using both the PCR and culture methods. The prevalence of pathogenic Y.

enterocolitica in pig tongues was high with both methods. One reason for the prevalence of 98%

may be the slaughtering process, where the tongue is removed together with the tonsils. The

prevalence of yadA-positive Y. enterocolitica in minced meat was moderately high (25%) with

PCR. These results indicate that pig tongues and minced meat are important sources of

pathogenic Y. enterocolitica at retail level. All yadA-positive isolates belonged to bioserotype

4/O:3.

3. The prevalence of pathogenic Y. enterocolitica was clearly higher with PCR than with the

culture method, especially when minced meat samples were studied. In these samples, the

isolation rate was particularly low because of the high background flora on CIN agar plates.

Some tonsil and tongue samples were PCR-negative but culture-positive. False-negative results

are a problem when food samples are studied because there is not yet any easy method for

removing PCR-inhibitory substances from the sample. PCR proved to be a rapid, specific and

convenient method to confirm pathogenicity of Y. enterocolitica 4/O:3 isolates.

4. The PFGE method was shown to be an efficient technique for characterisation of bioserotype

4/O:3 when isolates with the same PFGE pattern with NotI enzyme were further characterised

with ApaI and XhoI. NotI was found to be a good screening enzyme, producing a clear banding

pattern without smearing or partial digestion. The presence of the virulence plasmid is easily

confirmed from the NotI patterns. Y. enterocolitica 4/O:3 isolates were divided into several
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genotypes with NotI, but because of the two main types, isolates with identical NotI profiles

were further characterised with ApaI and XhoI enzymes. All the ribotypes and most of the PFGE

patterns displayed only minor deviations, indicating a limited genetic variation among the

isolates.

5. Distribution of different genotypes of Y. enterocolitica 4/O:3 strains recovered from

slaughterhouses was studied using PFGE. The most common genotypes obtained with NotI and

XbaI enzymes, found in pig tonsils, were widely distributed amongst most of the

slaughterhouses. The same genotypes were recovered from pig offals (livers, kidneys, hearts,

ears), carcasses and the environment. When all strains isolated from slaughterhouses were

further characterised with ApaI and XhoI enzymes, 64% of the strains isolated from carcasses,

offals and the environment were indistinguishable from the tonsil strains, indicating that tonsils

are a major contamination source in slaughterhouses.

6. The main source of sporadic human Y. enterocolitica 4/O:3 infections in Finland seems to be

pigs. A total of 80% of 212 human strains were indistinguishable from strains of pig origin. Pig

offals contaminated with pathogenic Y. enterocolitica 4/O:3 were revealed to be an important

transmission vehicle of human sporadic infections since 71% of the human strains were

indistinguishable from strains isolated from tongues, livers, kidneys and hearts. Pet animals may

also serve as a source of human infections. Pathogenic yersinia can be transmitted from pigs to

dogs and cats via raw pork and offals, and then from dogs and cats to humans via contaminated

faeces.
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