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Abstract

Proteomics, the study of the proteome, was first introduced in the 1990s, referring to the 
protein complement expressed by the genome or by the cell or tissue at a certain time. 
Proteomics provides detailed descriptions of the structure and function of biological sys-
tems in different biological conditions. Although proteomics as a field is relatively new, 
many methodologies in proteomics have been under development for decades. Proteome 
analysis is often accomplished by a combination of two-dimensional gel electrophoresis 
(2-DE) and mass spectrometry (MS). Different 2-DE-based methodologies are used for 
protein separation and visualization, whereas protein identifications are performed by 
mass spectrometric methods.  

A proteomic experiment often aims to analyse as many proteins as possible in a 
proteome and thus usually consists of detecting up to several thousands of proteins. 
The separation of proteins and peptides is therefore a key element in proteomic analy-
ses. As 2-DE has been a core component of the work presented here, it is important to 
specifically highlight the advances in gel electrophoretic separation methods, such as 
difference gel electrophoresis (DIGE), which completes traditional 2-DE with superior 
sensitivity, dynamic range and quantitation. The development of MS-based proteomics, 
including the instrumentation and methods for data acquisition, has dramatically en-
hanced the sensitivity and throughput of protein identification. The sensitivity of current 
instruments has now reached levels that allow the identification of virtually any protein 
visible in a 2-DE gel. 

In this thesis, proteomic methods were set up and adapted for baker’s yeast, Saccha-
romyces cerevisiae, the probiotic bacterium Lactobacillus gasseri and for the mastitis 
pathogen Streptococcus uberis. 

Increasing concern about global climate warming has accelerated the development 
of alternative energy sources. Bioethanol production from cellulosic biomass by fermen-
tation with baker’s yeast S. cerevisiae is one of the most studied areas in this field. D-xy-
lose is abundant in the biomass, thus the metabolic engineering of S. cerevisiae for utili-
sation of pentose sugars is of particular interest. In the first part of this thesis, in studies 
I and II, 2-DE separation and mass spectrometric protein identification techniques were 
applied for recombinant xylose-fermenting S. cerevisiae. Yeast proteins were identified 
by peptide mass fingerprinting (PMF) and peptide sequence tag analysis. For PMF, pep-
tides from proteins of interest were analysed by MALDI-TOF MS. Peptide sequence tag 
analysis was carried out by ESI-MS/MS, after sample concentration in nano flow-rate 
liquid chromatography.

In the second part of this work, proteomic methods were applied to investigate stress 
responses of bacteria. In study III, 2-D DIGE was adopted and protein identification 
with PMF was applied to study the overall heat shock response of a probiotic bacterium 
L. gasseri. Probiotics are microbes that are known to confer health benefits in the host. 
The use of food products containing probiotic microorganisms is of increasing economic 
importance and during the manufacturing processes and digestion these microorganisms 
are exposed to technological and digestive stresses. The study of heat shock response of 
L. gasseri revealed, in addition to classical heat shock proteins, an increased abundance 
of four Clp ATPases. Clp ATPases are a family of stress proteins that are known as regu-



lators of several biological processes and virulence factors in a number of pathogenic 
bacteria. We also showed that a functional clpL gene is essential for the development of 
constitutive and induced thermotolerance in L. gasseri. 

In study IV, previously adapted 2-D DIGE and PMF-based protein identification 
methods were applied to investigate the global changes in the proteomes of S. uberis in 
response to mutagenesis-inducing ciprofloxacin challenge, and to elucidate the mecha-
nisms by which resistance to ciprofloxacin is developed. S. uberis is an environmental 
mastitis pathogen and it is known that the fluoroquinolone antibiotic ciprofloxacin in-
duces a mutagenic response in S. uberis. This proteomic study revealed activation of the 
oxidative damage response, reduction in NADH generation and changes in the pool of 
deoxyribonucleotides, potentially providing S. uberis time to stimulate mutagenesis and 
adapt to changes in its environment. 

In proteomic studies, developments and improvements in MS-based techniques 
have revolutionized the identification of proteins. Instrumentation, software and data 
management capabilities enable proteomics to be widely applied in biological research 
as well as in the medical and food industry. However, the identification of the proteins 
present in a sample is only the first step in the process of understanding their functions. 
Thus, a successful model of protein function and regulation pathways in the cell requires 
a broad understanding of protein interaction with other proteins and a comprehensive 
understanding of cellular metabolism. 
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1. Introduction 

Proteomics, the study of a proteome, is the 
systematic and simultaneous study of the 
many and diverse properties of proteins. 
It aims to provide detailed descriptions 
of the structure and function of biological 
systems in different biological conditions. 
A proteome is the entire complement of 
proteins expressed by a genome. Proteome 
analysis is most often accomplished by a 
combination of two-dimensional gel elec-
trophoresis (2-DE) and mass spectrometry 
(MS). With 2-DE the complex and variable 
protein mixture is separated and visualized 
and MS is applied to identify the proteins 
of interest. In this thesis, proteomics is 
used to study yeast metabolism, the stress 
responses of a probiotic bacterium and 
the potential mutagenesis mechanism of a 
pathogenic bacterium.

In 2-DE, proteins are separated in a 
polyacrylamide gel matrix in two dimen-
sions, first according to their isoelectric 
point (charge) and then based on their 
molecular weight. The basis of 2-DE was 
already presented decades ago, but the 
methods for sensitive protein identification 
took time to develop. MS measures the 
molecular masses of charged molecules 
(analytes), which in proteomics are usu-
ally peptides and less frequently charged 
proteins. MS measures the mass-to-charge 
ratios of charged molecules, producing 
mass spectra that essentially provide mass 
information on all of the ionisable compo-
nents in a sample. 

The availability of complete genome 
sequences has made it possible to study the 
expression of all the genes at once, where 
before only one gene could be studied at 
a time. Baker’s yeast, Saccharomyces cer-
evisiae, is one of the simplest eukaryotes 
and an effective model system for under-
standing basic cellular processes (Kumar 

and Snyder 2001). The yeast genome was 
the first eukaryotic genome for which the 
genome sequence was reported (Goffeau 
et al., 1996). Yeast-based functional ge-
nomics and proteomics technologies have 
contributed greatly to our understanding 
of bacterial, yeast and human gene func-
tions (Brown and Botstein 1999, Dolinski 
and Botstein 2005, Hartwell et al., 1999, 
Botstein and Fink 1988). 

Systems biology is the integrated 
study of a functional organism. Instead of 
focusing on individual components, such 
as on genes, proteins and biochemical re-
actions, systems biology focuses on all the 
components and the interactions between 
them. In the future, S. cerevisiae will con-
tinue to have a key role as an important 
model organism in the development of 
many current and future proteomics tech-
nologies and systems biology (Hartwell et 
al., 1999, Ideker et al., 2001).

Due to the global concern about cli-
mate warming, alternatives to petroleum-
derived fuels are being developed, bioeth-
anol being the most common replacement 
product (Gray et al., 2006). Current etha-
nol production processes using crops such 
as sugar cane and corn are well established 
(Torney 2007, Wyman 2007). However, 
cheaper substrates such as lignocelluloses, 
could make bioethanol more competitive 
with fossil fuels (Zaldivar et al., 2001). 
One important requirement for this to hap-
pen is the ability of a micro-organisms 
to efficiently ferment a variety of sugars 
(pentoses and hexoses) and to tolerate 
stressful conditions.  Bioethanol produc-
tion from cellulosic biomass by fermenta-
tion with S. cerevisiae is one of the most 
studied areas (Cardona and Sanchez 2007, 
Chu and Lee 2007, Hahn-Hagerdal et al., 
2007). A significant portion of the hemi-

Introduction
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cellulose fraction of biomass is comprised 
of xylans, making its constituent D-xylose 
the second most abundant sugar in nature. 
Because S. cerevisiae does not naturally 
utilize xylose or other pentose sugars, the 
introduction of an active xylose utilization 
pathway into S. cerevisiae is likely to have 
a major effect on cellular metabolism. 

Probiotics are microbes that are po-
tentially beneficial to the host and food 
products containing probiotic microorgan-
isms are of increasing economic impor-
tance. However, during the manufacturing 
processes and digestion these microorgan-
isms are exposed to technological and di-
gestive stresses, such as bile and digestion 
enzymes (Corcoran et al., 2008). These 
exposures influence the regulated expres-
sion of stress-related proteins, such as ca-

seino lytic proteins (Clps), which are also 
important in various cellular processes 
during normal physiological conditions 
(Frees et al., 2007). Lactobacillus gas-
seri is a probiotic, Gram-positive bacte-
rium, whose recently published genome 
sequence suggests the presence of several 
Clp proteins from the ClpATPase family 
of proteins. ATPases are known to be es-
sential in different stress responses in nu-
merous Gram-positive bacteria function-
ing as proteases and as chaperones (Frees 
et al., 2007).

Streptococcus uberis is an environ-
mental mastitis pathogen (Hill 1988, 
Leigh 1999). Mastitis is the most common 
and costly disease of dairy cows and the 
most common reason for antibiotic treat-
ments. The use of antimicrobials against 

Introduction

Figure 1. Time-line indicating the convergence of different technologies and resources into the 
proteomic process. Advances in mass spectrometry and the generation of large quantities of nu-
cleotide sequence information, combined with computational algorithms that could correlate the 
two, led to emergence of proteomics as a field. The figure is adapted from Patterson & Aebersold 
(2003).
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human and veterinary diseases has been 
extensive during recent decades. Thus, 
pathogenic bacteria are being repeatedly 
exposed to antimicrobials, which is likely 
to induce a variety of survival strategies to 
enhance viability and successful virulence. 
It has been suggested that S. uberis is able 
to adapt to antibiotic treatment (Milne et 
al., 2005), but the mechanisms underly-
ing this adaptive mutagenesis are largely 
unknown. The use of fluoroquinolones, 
such as ciprofloxacin, is gaining wider at-
tention, since exposure to these antibiot-
ics has been shown to increase the genetic 
variation and mutation rate in bacteria 

(Cirz et al., 2006, Cirz and Romesberg 
2006, Lopez et al., 2007).

In this thesis, proteomic methods in-
cluding different forms of 2-DE based 
protein separation and mass spectrometric 
identification techniques are adapted and 
validated. These techniques were used to 
reveal the metabolic responses of recom-
binant xylose-fermenting Saccharomyces 
cerevisiae, the heat-shock response of pro-
biotic bacterium Lactobacillus gasseri and 
provide an overview of the mastitis patho-
gen Streptococcus uberis when exposed to 
the mutagenesis-inducing antibiotic cipro-
floxacin.

Introduction
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Review of the literature

2. Review of the literature 

2.1. Proteomics
 
The term proteome, the protein complement 
expressed by the genome in a cell or tissue 
at a certain time, was first introduced in the 
1990s (Wilkins et al., 1996, Wasinger et 
al., 1995). The proteome differs between 
organisms depending on the genome and 
on external and internal conditions such 
as the physiological state, health, disease, 
drugs and stress. Compared with the 
genome, the complexity of the proteome 
is far greater due to protein processing 
and modification. Proteomics focuses on 
studying the many and diverse properties 
of proteins in order to provide detailed 
descriptions of a variety of biological 
systems (Patterson and Aebersold 2003). 
Although proteomics as a field is relatively 
new, the methodologies in proteomics have 
been under development for decades. 

The proteome is highly dynamic, 
changing constantly with time and 
conditions. In one genome the proteomes 
of different tissues and cell compartments 
differ: for instance, the proteome of 
mitochondria differs from that of the 
proteome of cell surface in the same 
organism. Proteins interact to form 
functional networks which are made 
up of various species of interacting 
molecules. The diversity of the proteome 
is also increased by structural and dynamic 
protein modifications. 

2.1.1. From genomics to bioinformatics

Genomics is the study of an organism’s 
entire genome. Genomics was in practise 
founded in the 1970s, but took off with the 
initiation of genome projects on several 
organisms (NCBI Genome projects, www.

ncbi.nlm.nih.gov). Among others, the 
human genome was announced in 2003 
by the Human Genome Project, which 
was coordinated by the U.S. Department 
of Energy and the National Institutes 
of Health (http://www.ornl.gov/sci/
techresources/Human_Genome/home.
shtml). The knowledge and availability 
of full genomes has created the need 
for functional descriptions of genomes. 
Functional genomics responds to this need 
and describes the dynamic properties of the 
genome, gene transcription and translation 
and gene and protein functions and 
interactions. Comparative genomics, on 
the other hand, focuses on the relationships 
between the genomes of different strains 
or species (Hardison 2003).

Together with the growing number 
of sequenced genomes, new questions are 
being raised about the functional roles of 
genes and proteins and their regulation 
and interaction. Transcriptomics, a 
genome-wide measurement of messenger 
RNA (mRNA) expression levels based 
on DNA microarray technology, is one of 
the tools for understanding the genes and 
pathways involved in different biological 
processes (Gomase and Tagore 2008). 
Although mRNA is not the ultimate 
product of a gene, transcription is the first 
step in gene regulation, and information 
about transcription levels is needed to 
understanding gene regulatory networks. 

Metabolomics is the systematic study 
of metabolites, the low molecular weight 
molecules produced by active, living 
cells under different conditions and times 
in their life cycles (Issaq et al., 2008). 
Unlike proteomics, where the number of 
proteins in a biological system is in the 
thousands, in metabolomics the number of 
metabolites is in the hundreds, but due to 
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their large chemical and physical diversity, 
the analysis of metabolomes requires 
various and focused techniques (Garcia et 
al., 2008).

The challenge of systems biology is 
to integrate proteomic, transcriptomic, 
and metabolomic information. Advances 
in these -omics have led to an explosive 

growth in biological information. To 
efficiently handle all this information, 
there is a requirement for bioinformatics, 
in the form of computerized databases to 
store, organize, and index the data and 
the need for algorithms for analysis of 
biological data. 

Figure 2. The overview of the –omics technologies. Genomics is the comprehensive analysis 
of DNA structure and function. Proteomics involves the systematic study of proteins in order to 
provide a comprehensive view of the structure, function and regulation of biological systems. 
Transcriptomics, the genome-wide expression profiling, is the global study of gene expression 
at the RNA level. Metabolomics is the systematic study of all the metabolites of the biological 
organism, whereas glycomics is the comprehensive study the entire complement of sugars, 
weather free or present in more complex molecules. Lipidomics is the large scale study of non-
water soluble metabolites. Bioinformatics combines all the data achieved above and provides 
algorithms and computational and statistical techniques for the management and analysis of this 
huge amount of data. 
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2.2. Separation methods in 
proteomics 

Proteomic experiments using 2-DE aim 
to visualize a large number of proteins 
in a proteome, which may consist of tens 
of thousands of proteins from different 
types of complex biological samples. 
Thus, the separation of proteins or their 
fragments prior to further analysis is one 
of the key elements in proteomic analysis. 
The separation of proteins on the whole 
protein level is most often performed by 
gel-based electrophoretic or by liquid 
chromatographic methods. Separations 
or fractionations on the peptide level 
can be performed, for instance, by 
chromatographic methods or by peptide 
isoelectric focusing (Cargile et al., 2004a, 
Cargile et al., 2004b, Chick et al., 2008). 

2.2.1. Gel-based separation in  
proteomics 

One-dimensional gel electrophoresis 
(1-DE) is used in resolving relatively 
simple protein mixtures, usually obtained 
after purification of the desired protein 

Figure 3.  The two most common processes for quantitative proteome analysis from the 
cell to the identified protein. At  the top, 2-DE is used to separate and quantify proteins, 
and selected proteins are then identified by MS. At the bottom, LC-MS/MS is used to 
separate proteins from the mixture and quantitation is achieved by labelling peptides 
with stable isotopes. The figure is adapted from Patterson & Aebersold (2003). 

fraction. In 1-DE the proteins are 
separated according to their molecular 
weight (MW). 2-DE has become a 
standard separation method in gel-based 
proteomics, enabling the simultaneous 
separation and visualization of thousands 
of proteins. In 2-DE, proteins are first 
separated according to their isoelectric 
point (pI) by isoelectric focusing (IEF) in a 
pH gradient, after which they are separated 
according to their MW. The principle 
of IEF followed by polyacrylamide 
gel electrophoresis was first published 
in 1969 (Macko and Stegeman 1969)  
and the sample preparation procedures 
developed by Klose and O’Farrell (Klose 
1975, O’Farrell 1975)  made 2-DE truly 
successful.

2-DE is has been successfully used 
for approximately 25 years to study 
the expression changes of proteins by 
comparing 2-DE results from two or 
more cell populations. With 2-DE, semi-
quantitative differences in expression 
can be revealed and the target proteins 
readily identified using MS (Gorg et al., 
2004). Intrinsic gel-to-gel variability may 
lead to system variability, which makes it 

Review of the literature
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Figure 4. The principles of 
proteome analysis by 2-DE 
gels. Proteins extracted from 
the cell are first separated 
according to their pI and 
subsequently according 
to their MW. Protein spot 
patterns from different 
samples are compared and 
quantified and the proteins 
from the spots of interest are 
identified by MS.
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difficult to distinguish between biological 
differences and system variation. 
Moreover, the predominant protein 
staining methods, silver and CBB, have 
a limited dynamic range and compromise 
the quantitative differences between gels. 
Fluorescent stains provided improvements 
in staining methods due to their wider 
dynamic range (Righetti et al., 2004), but 
did not directly enable quantitation. To 
make quantitation by 2-DE more accurate, 
protein reactive cyanine dyes have been 
developed and used to undertake difference 
gel electrophoresis (DIGE) (Unlu 1999, 
Unlu et al., 1997, Marouga et al., 2005). 
These reactive dyes for proteomics were 
initially developed at Carnegie Mellon 
University and then commercialized by 
Amersham, now GE Healthcare. DIGE 
builds on 2-DE by adding a highly 
accurate quantitative dimension, allowing 
multiplexing of samples and the use of 

an internal standard. The proteomes to 
be compared are labelled with different 
dyes, which react with amino groups of 
proteins, essentially with side chains of 
lysine. In minimal labelling, 1-5% of all 
lysine residues are labelled. The dyes have 
different fluorophors, so proteins present 
in one sample can be distinguished from 
the same proteins present in a second 
sample. 

An internal standard is created by 
labelling a pooled mixture of all samples 
with third dye. The differentially labelled 
proteomes are then combined and 
subjected to 2-DE in a single gel. Relative 
quantitation is performed by scanning the 
gels according the absorption and emission 
characteristic of each dye, followed by 
image analysis. Gels are often overstained 
with appropriate stains, such as silver, and 
proteins of interest are then excised from 
the gel and identified by MS. In contrast 
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Figure 5. Chemical structures of  CyDye DIGE fluors for minimal labelling. Structures kindly 
supplied by GE Healthcare.
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with minimal labelling, a set of saturation 
CyDyes is also available, which react 
with the thiols of cysteines of reduced 
proteins. This reaction labels all available 
cysteines of each protein, and it has been 
shown that saturation labelling has a 
5- to 50-fold lower sample requirement 
(Greengauz-Roberts et al., 2005, Shaw et 
al., 2003). DIGE also has the advantage 
of being applicable to samples from 
large organisms, which is not possible 
with metabolic labelling. It is also more 
applicable to proteins that exist in several 
isoforms, because these proteins can be 
separated on a gel, whereas the purely 
peptide-based LC-MS/MS identifies the 
proteins based on peptides alone (Wilkins, 
Appel, Williams and Hochstrasser 2007).

In proteomic studies, 2-DE has 
commonly been used as a separation 
method for whole cellular protein lysates. 
Through the development of proteomic 
analysis there has been pressure towards 
high-throughput automated methods. 

2.2.2. Non-gel-based separation in  
proteomics 

The need for high throughput methodo-
logies has resulted in the development of 
non-gel-based strategies for proteomics. 
The driving force behind the emergence of 
non-gel-based proteomic methods in recent 
years has been the application of liquid 
chromatographic separation, new protein 
chemistries and enrichment methods and 
the development of mass spectrometry 
and software for data analysis. Mass 
spectrometry based quantitation is an 
important addition to quantitation by 2-DE. 
Applications of MS-based technologies 
have several advantages compared to 
2-DE-based ones: they can be automated 
and they combine high resolution and high 
sensitivity in the separation of extremely 

complex peptide mixtures (Kolkman 
et al., 2005). To use the LC-MS/(MS) 
combination in proteome analysis, a form 
of complexity reduction is needed in order 
to detect and analyze as many components 
as possible in the sample (Patterson and 
Aebersold 2003). This is achieved, for 
instance, by combining two orthogonal 
peptide separation methods, such as 
cation exchange and capillary reversed 
phase chromatography, with MS/MS. 
This combination of multidimensional 
chromatography and tandem mass 
spectrometry became known as MudPit, 
which has been applied to identify up to 
tens of thousands of proteins from highly 
complex protein mixtures (Link et al., 
1999, Wolters et al., 2001, Davis et al., 
2001, Washburn et al., 2002, Usaite et 
al., 2008, Lipton et al., 2002, Smith et 
al., 2002). The use of multidimensional 
enrichment and separation techniques in 
proteomic analysis has greatly enhanced 
protein coverage and dynamics, allowing 
many previously undetected low-
abundance proteins to be identified (Roe 
and Griffin 2006).

MS-based quantitative methods 
are essentially an application of stable 
isotope labelling (Leitner and Lindner 
2004, Leitner and Lindner 2006). In 
general, proteins or peptides from one 
biological state are tagged with a reagent 
that has a normal or “light” isotopic 
distribution, such as 1H, 12C, 14N or 16O. In 
parallel, proteins or peptides from another 
biological state are tagged with the 
“heavy” form of the same reagent 2H, 13C, 
15N or 18O (Corthals & Rose in Wilkins, 
Appel, Williams and Hochstrasser 2007). 
Labelled peptides may be subsequently 
enriched to reduce the complexity of the 
mixture of peptides to be analysed.  The 
mass difference between light and heavy 
isotopes separates the two forms of the 
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Figure 7. Incorporation of isotopes into proteins and their use in relative quantitation. A. 
Proteins are labelled metabolically by culturing cells in media that are isotopically enriched (for 
instance, containing 15N salts, or 13C-labelled amino acids) or isotopically depleted. B. Proteins 
are labelled at specific sites with isotopically encoded reagents. C. Proteins are isotopically 
tagged by means of enzyme-catalysed incorporation of 18O from 18O water during proteolysis. 
In each case, labelled proteins or peptides are combined, separated and analysed by MS and/
or MS/MS for the purpose of identifying the proteins contained in the sample and determining 
their relative abundance. The patterns of isotopic mass differences generated by each method are 
indicated schematically. The mass difference of peptide pairs generated by metabolic labelling 
is dependent on the amino acid composition of the peptide and is therefore variable. The mass 
difference generated by enzymatic 18O incorporation is either 2 Da or 4 Da, making quantitation 
difficult. The mass difference generated by chemical tagging is one or multiple times the mass 
difference encoded in the reagent used. The figure is adapted from Aebersold & Mann, 2003.

Review of the literature



11

peptide, which are often doubly or triply 
charged in MS. 

An important breakthrough in the 
relative quantitation of proteins was 
made in 1999, when Aebersold and 
colleagues first described isotope coded 
affinity tagging (ICAT) (Gygi et al., 1999, 
Aebersold et al., 2000). This technique was 
made commercially available in the form 
of an analysis kit by Applied Biosystems 
(Foster City, CA, USA) in 2000. ICAT 
enables the enrichment of proteins and 
peptides prior to quantification by MS 
analysis. The proteins or peptides to be 
compared are labelled at cysteine residues 
with light or heavy, biotin moiety carrying 
tags. The affinity label can be introduced 
either at the protein stage or after the 
digestion step. The labelled samples are 
then mixed, digested if necessary, and 
the cysteine-labelled peptides are purified 
using immobilized biotin-avidin affinity 
chromatography. Peaks corresponding 
to the same labelled peptide from the 
conditions are detected as doublets in 
MS and can be compared. The peak 
areas directly correlate with the relative 
abundances of the proteins in the samples. 

ICAT only separates proteins 
containing cysteines and can be considered 
to cover most proteins, but some classes 
on proteins may nevertheless be discarded. 
Thus, to cover all proteins, the flow-
through from the avidin column should 
be further analysed. On the other hand, 
the avidin column sometimes suffers from 
non-specific binding of peptides without 
cysteines (Moseley 2001). It has been 
pointed out that liquid chromatographic 
separation may occur between the light 
and heavy-forms of ICAT-labelled 
peptides (Zhang et al., 2001), which can 
affect the accuracy of quantitation. The 
original ICAT has been improved with a 
cleavable ICAT reagent (cICAT), which 

is considered to enhance the elution 
characteristics of labelled peptides and 
to provide better quantitation accuracy 
(Hansen et al., 2003, Yu et al., 2004, 
Li et al., 2003). cICAT uses 12C and 13C 
instead 1H and 2H and therefore does not 
cause chromatographic separation of the 
light and heavy forms. It contains a linker 
group that can be cleaved under acidic 
conditions, resulting in smaller group 
attached to the peptide. Several modified 
versions of ICAT have been developed, 
including “solid-phase ICAT” (Zhou et 
al., 2002), which uses isotope-coded tags 
that are immobilized on glass beads and 
“visible-isotope-coded affinity tags”, e.g. 
VICATs (Lu et al., 2004), that allow the 
absolute quantification of protein in a 
mixture. 

iTRAQ, isobaric tag for relative and 
absolute quantification, was introduced in 
2004 (Ross et al., 2004). In this technique, 
an amine-reactive tagging reagent is 
currently available in eight isotope-coded 
variants with identical overall molar mass. 
After labelling, all peptides with the same 
sequence but with different labels are 
indistinguishable during LC separation 
and MS analysis. Upon fragmentation 
on the MS/MS level, detached reporter 
ions create signals in the low mass range 
(m/z 113-119 and m/z 121) and peptide 
backbones remain unmodified and 
generate fragments that are identical in m/z 
for all samples. Fragmented signature ions 
provide quantitative information about the 
peptides from different conditions upon 
integration of the peak areas. As iTRAQ 
reagents are available in eight different 
variants, multiplexing is possible, allowing 
several samples to be simultaneously 
compared and quantified. 

When working with cultured cells, 
stable isotopes can be incorporated by 
using media containing 13C-glucose, 
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15NH3 or 13C-labelled amino acids (Gu et 
al., 2004). SILAC, stable isotope labelling 
by amino acids in cell culture enables the 
in vivo incorporation of isotopic amino 
acids into proteins as they are synthesized 
(Ong et al., 2002, Ong and Mann 2006, 
Blagoev et al., 2003). Protein extracts 
from samples to be compared are mixed in 
the early stage of the experiment, before 
they are subjected to any purification and 
fragmentation steps, after which they are 
enriched and subjected to MS analysis. 
With SILAC, no chemical labelling or 
affinity purification steps are required, 
in contrast to the ICAT-procedure. The 
method is compatible with many cell 
culture conditions and it has been shown 
that the incorporation of labelled amino 
acids is complete and the cells remain 
normal in the presence of labelled media 
(Ong et al., 2002). 

Relative quantitation of proteins can 
also be performed computationally without 
the use of stable isotope labels. This “label-
free” approach uses the linearly increasing 
intensity of the LC-MS ion signal in 
relation to the molecular concentration 
by reproducing LC-MS runs. The most 
important advantage of this technique 
is that it can be used to track changes in 
multiple samples, whereas the use of mass 
tags limits the analysis to at most 8-way 
comparisons. The technique has been 
adopted by various groups and recently 
reviewed (America and Cordewener 2008, 
Mueller et al., 2008).

2.3. Biological mass spectrometry 

Mass spectrometry plays a significant 
role in biological sciences and is applied 
in a wide range of applications. In 
proteomic experiments, MS, including 
the instrumentation and the methods for 
data acquisition and analysis, has now 

reached the level where it is routinely used 
and applied worldwide to solve a wide 
range of biological problems (Aebersold 
and Mann 2003, Yates 2004, Domon and 
Aebersold 2006).

The beginnings of MS date back to the 
early part of the last century. The ability 
to separate molecules based on different 
size and charge was first described in 
1912 by J.J. Thompson, who was a Nobel 
laureate in 1906, for his investigations 
of the conduction of electricity by gases. 
Mass spectrometers consist of three units: 
the ion source, the mass analyzer, which 
separates the ionized analytes according 
to their mass-to-charge (m/z) ratios, and 
the detector, which registers the number 
of ions at each m/z value. MS data are 
recorded as “spectra”, which display ion 
intensity versus the m/z ratio.

Chemical ionization (CI), described 
by M.S.B. Munson and F.H. Field in 
1966 followed by techniques named 
plasma desorption (PD) by R.D. 
MacFarlane and D.F. Torgerson in 1976 
(Macfarlane and Torgerson 1976)  and 
fast atom bombardment (FAB) by M. 
Barber and colleagues in 1981 (Barber 
et al., 1981), were breakthroughs in 
analysing biomolecules by MS. An initial 
experiment by the physicist John Zeleny 
in 1917 preceded the first description 
of electrospray ionization (ESI) by M. 
Dole in 1968 (Dole et al., 1968) . The 
breakthrough of ESI came in 1988 
when J. Fenn reported the identification 
of polypeptides and proteins with a 
combination of ESI and MS (Fenn et al., 
1989). 

Biomolecules are large and polar 
and thus their transfer into the gaseous 
phase presents challenges. In 1985 M. 
Karas and F. Hillenkamp showed, that an 
energy-absorbing matrix could be used 
to volatilize small analyte molecules 
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(Karas and Hillenkamp 1988). For large 
biomolecules a breakthrough was reported 
in 1987, when K. Tanaka presented the 
results of a mass spectrometric analysis of 
an intact protein with soft laser desorption 
(SLD). He showed that a low-energy 
nitrogen laser could be used to generate 
gaseous macromolecules, a technique that 
was further improved in matrix-assisted 
laser-desorption ionization (MALDI) 
by Karas and Hillenkamp (Karas and 
Hillenkamp 1988). Fenn and Tanaka were 
the Nobel laureates in 2002 for their work 
on methods of chemical analysis applied 
to biological macromolecules. 

As mentioned above, ESI and MALDI 
were the ionization techniques that led 
to the success of mass spectrometry in 
life sciences. In proteomic research, four 
types of mass analysers are mainly used: 
time-of flight (TOF), linear and three-
dimensional ion traps, quadrupole and 
Fourier transform ion cyclotron resonance 
(FTICR) (Aebersold and Mann 2003). 
ESI is often coupled to triple quadrupole, 
ion trap, orbitrap or hybrid tandem mass 
spectrometers such as quadrupole time-of-
flight (Q-TOF) instruments and is used to 

generate fragment ion spectra (Morris et 
al., 1996). MALDI is usually coupled to 
TOF analysers that measure the mass of 
intact peptides. As a result of its simplicity, 
high resolution and sensitivity, MALDI-
TOF is still much used to identify proteins 
at the MS level in proteomic experiments. 
For tandem mass spectrometry (MS/MS), 
MALDI ion sources are combined, for 
instance, with quadrupole ion trap MS 
(Krutchinsky et al., 2001)  and TOF/TOF 
instruments (Medzihradszky et al., 2000, 
Loboda et al., 2000). 

2.3.1. MALDI MS

In MALDI the sample is co-crystallized 
with a molar excess of UV-absorbing 
matrix. Ion formation is accomplished by 
directing a pulsed laser beam at sample-
matrix crystals in a high vacuum. The 
energy of the laser excites the matrix, 
causing a proton to be donated to the 
sample molecules, creating charged 
ions. The matrix is a solid material that 
absorbs the laser radiation, resulting in 
the vaporization of the matrix and sample 
embedded to it. Matrices consist of fairly 

Table 1. Commonly used MALDI matrices for analysis of peptides and proteins.

Matrix Molecular 
Structure

Molecular 
Formula

Monoisotopic 
Mass [M+H]+

Reference

α-Cyano-4-hy-
droxycinnamic acid, 
CHCA

C10H7NO3 190.0502 (Beavis et 
al., 1992) 

3,5-dimethoxy-4-
hydroxycinnamic 
acid, Sinapinic acid

C11H12O5 225.0763 (Beavis and 
Chait 1989) 

2,5-dihydroxyben-
zoic acid, DHB

C7H6O4 155.0344 (Stahl et al., 
1991) 
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low molecular weight organic acids 
to allow facile vaporisation, but large 
enough not to evaporate during sample 
preparation (Table 1). The matrix also 
serves to minimize sample damage from 
laser radiation by absorbing most of the 
incident energy. Once a charged ion is 
formed, a high voltage is used to eject 
the analyte from the ion source to the 
detector. MALDI is most often coupled to 
a TOF mass analyzer, in which the flight 
time of the ion from the ion source to the 
detector is measured. This flight time is 
converted into a mass-to-charge ratio, 
determining the molecular weight of the 
ion. MALDI –TOF/(TOF) MS is a widely 
used technique in proteomic research. It 
is considered as easy to use and relatively 
simple to automate for high-throughput 
methodologies. 

2.3.2. ESI MS

Electrospray ionization is a method used 
to produce gaseous ionized molecules 
from a liquid solution. At the end of 
1960s, Dole and his collaborators 
described the idea that spraying a liquid 
containing analyte molecules under an 
electric field might liberate these as ions in 
the gaseous form, and make them suitable 
for mass spectrometry (Dole et al., 1968). 
In ESI, the sample solution is sprayed 
through a conducting capillary and when 
a voltage is applied a fine spray of highly 
charged droplets is formed. Upon solvent 
evaporation the size of the analyte-solvent 
droplet is reduced and the charge density 
on the droplet surface is increased until it 
reaches the point that the surface tension 
can no longer sustain the charge and the 
droplet is ripped apart. This is repeated 
until charged analyte ions are desolvated 
from the droplet into the gaseous phase 
(Fenn et al., 1989). The invention of the 

nanoelectrospray ion source improved the 
sensitivity of analyses by lowering the 
flow rate to the level needed for proteomic 
analysis (Wilm and Mann 1994, Wilm 
and Mann 1996). Typically, flow rates are 
around 200 nl/min. The nanoelectrospray 
tip diameter is 10-50 µm, and it has a 
smaller spraying orifice and generates 
smaller droplets than a conventional 
electrospray. 

2.3.3. LC-MS/(MS)

Liquid chromatography coupled to 
mass spectrometry (LC-MS and LC-
MS/MS) is a widely used and powerful 
technique for the analysis of proteins and 
peptides. Proteomic samples are usually 
complex, even after pre-fractionation 
steps. LC-MS/MS combines efficient 
separation of proteins and peptides by 
LC and their sensitive identification with 
mass spectrometric methods. With LC-
MS/MS, mixtures of peptides can be 
directly analyzed, or the method can be 
used to simplify the protein digest by 
fractionating the sample in LC before 
MS analysis. Certain improvements have 
transformed LC-MS/MS into a routine 
laboratory procedure. The development 
of microscale capillary reversed-phase 
liquid chromatography (capillary LC, 
LC-MS) (Karlsson and Novotny 1988)  
enabled direct coupling of LC into an ESI 
interface.

2.4. Protein identification 
 
The identification of proteins in 
proteomics is almost exclusively 
performed by MS (Aebersold and Mann 
2003). The introduction and development 
of MS methods and computational protein 
analysis techniques have dramatically 
enhanced the sensitivity and throughput 
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of protein identification. The sensitivity 
has reached a level that allows the 
identification of virtually any protein that 
is visible in conventionally stained gels 
(Shen and Smith 2005). The systematic 
sequencing of genomes of different 
organisms has generated massive amounts 
of data now contained in sequence 
databases. The development of algorithms 
and other bioinformatic tools for protein 
identification has been a great advance in 
biological MS (Mann et al., 2001). 

Proteins can be identified by MS using 
different techniques. The first, peptide 
mass fingerprinting (PMF), has been 
the most common and straightforward 
way to identify proteins in proteomic 
experiments. The second, peptide 
fragmentation analysis, utilizes fragment 
ion data (partial amino acid sequence) 
from a peptide together with its molecular 
mass. PMF is most often performed at the 
MS level with MALDI-TOF instruments 
and peptide fragment ion data are derived 
with tandem mass spectrometry (MS/MS) 
with MALDI-TOF/TOF or ESI MS/MS.

2.4.1. Peptide mass fingerprinting 
(PMF)

Mass spectrometry was already used to 
analyze peptides from proteolytic digests 
in the 1980s (Gibson and Biemann 1984), 
but its use for protein identification was 
published in 1993 when five groups 
described its use in the identification of 
gel-separated proteins (Pappin et al., 1993, 
Henzel et al., 1993, Mann et al., 1993, 
Yates et al., 1993, James et al., 1993). 
Peptide mass fingerprinting was rapidly 
adopted in research. In PMF the protein 
is first digested with an endoprotease and 
the molecular masses of these peptides 
are then measured. The obtained set of 

peptide masses is unique for each protein. 
The acquired MS spectra are compared 
using database search algorithms with 
theoretical peptide masses calculated 
from each sequence entry in the database 
(Pappin et al., 1993, Henzel et al., 1993, 
Mann et al., 1993, Yates et al., 1993, 
James et al., 1993). The requirement 
for a successful identification is that the 
protein or its very close homology is 
represented in a sequence database. In the 
identification procedure the overlapping 
masses between measured and calculated 
spectra are compared, leading to similarity 
scores (Palagi et al., 2006). The accuracy 
of measured peptide masses has the 
largest effect on the reliability of results 
by reducing the number of false positives 
(Clauser et al., 1999), so the mass accuracy 
and resolution of the used instrument are 
of great importance. A variety of scoring 
algorithms are available, some of which 
use a simple score based on the number of 
common masses between the experimental 
and theoretical spectra. More sophisticated 
scoring algorithms take into account the 
nonuniform distribution of protein and 
peptide masses in the database.

 
2.4.2. MS/MS analysis

Protein identification with tandem mass 
spectrometry has been widely explored 
in bioinformatics research. Before the 
1980s, when the MS/MS was first used 
for protein sequence analysis, Edman 
degradation was the method of choice for 
amino acid sequencing (Edman 1949). 
De novo peptide sequencing for MS/
MS became possible when computer 
programs were developed to determine 
probable amino acid sequences of a 
peptide by using sequence ion peaks 
obtained by FAB MS (Morris et al., 1981, 
Sakurai et al., 1984). In the 1990s, the 
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number of available protein sequences 
increased rapidly and their use in protein 
identification was described:  MS/MS 
spectra were correlated with theoretical 
peptides (Eng et al., 1994) or fragment ion 
data together with the peptide molecular 
weight were used in error tolerant searches 
(Eng et al., 1994, Mann and Wilm 1994). 
Following 20 years of constant research 
and development, MS/MS is nowadays 
well established as a method for protein 
identification (Hernandez et al., 2006).  

After protein separation the peptides 
from a protein digest are selected and 
subjected to fragmentation in the mass 
spectrometer. Fragmentation of peptides 
can be achieved by post-source decay 
(PSD) during MALDI (Spengler et 
al., 1992b, Spengler et al., 1992a), or 
collision-induced dissociation (CID) in a 
collision cell (Shevchenko et al., 1996b). 
In addition to the peptide mass the tandem 
mass spectrum contains information on the 
peptide mass and structural information 
originating from the peptide sequence. 
Both PSD and CID result dominantly in 
the cleavage of the peptide bond along the 
peptide backbone and generate fragment 
ion ladders either from the N terminus 
(b ions) or the C terminus (y ions) 

(Roepstorff and Fohlman 1984). The mass 
difference between two consecutive b or y 
ions reflects the mass of the corresponding 
amino acid residue. Several approaches 
exist for the identification of proteins 
with MS/MS analysis and they are 
comprehensively reviewed by Hernandez 
and colleagues (Hernandez et al., 2006). 

2.5. Proteomics of baker’s yeast 
Saccharomyces cerevisiae 

Saccharomyces cerevisiae is one of the 
simplest eukaryotes. It is classified as 
a generally recognized as safe (GRAS) 
microorganism by the USA Food and 
Drug Administration. S. cerevisiae is an 
effective eukaryotic model system for 
understanding basic cellular processes due 
to its ease of manipulation and its genetic 
tractability (Suter et al., 2006, Botstein 
and Fink 1988, Cherry et al., 1997). The S. 
cerevisiae genome was the first eukaryotic 
genome to be sequenced  (Goffeau et al., 
1996) and open reading frames (ORFs) of 
S. cerevisiae have all been deleted in order 
to define the functions of all the gene 
products (Giaever et al., 2002, Shoemaker 
et al., 1996). Annotated information and 
the function of the open reading frames 

and their corresponding protein 
products are available through 
several databases, such as the 
Saccharomyces Genome Database 
(SGD, www.yeastgenome.org),  
the Yeast Protein Database (YPD; 
www.proteome.com), the Munich 
Information Center for Protein 
Sequences (MIPS) Comprehensive 
Yeast Genome Database (CYGD; 

Figure 8. Baker’s yeast, 
Saccharomyces cerevisiae. The 
figure is kindly supplied by VTT 
Biotechnology.
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mips.gsf.de/genre/proj/yeast/index.jsp), 
and the Yeast Resource Center (depts.
washington.edu/~yeastrc).

The availability of the S. cerevisiae 
genome has opened up many possibilities 
for biotechnological and biomedical 
research. Several features make this 
organism a useful research vehicle; it has 
a relatively short generation time, methods 
for cultivation under well-controlled 
conditions are available and it is able to 
adapt to different, changing environmental 
conditions such as nutrient limitation, 
suboptimal temperature, osmolarity, 
osmotic pressure and acidity (Gasch et al., 
2000). S. cerevisiae has further established 
its “super model organism” status as 
an ideal platform for the development, 
validation and application of post-genomic 
techniques, such as those used in large-
scale knockout genetics and functional 
genomics studies, and large-scale analysis 
of the yeast transcriptome, proteome and 
metabolome (Barr 2003, Rubin et al., 
2000).

The application of 2-DE to yeast 
proteins has enabled their high resolution 
separation and visualisation and resulted 
in the construction of yeast reference maps 
(Shevchenko et al., 1996a, Maillet et al., 
1996, Boucherie et al., 1996, Norbeck and 
Blomberg 1997, Perrot et al., 2007, Perrot 
et al., 1999, Wildgruber et al., 2002, 
Wildgruber et al., 2000). Maps have been 
presented for sub-proteomes such as the 
yeast mitochondrial proteome (Ohlmeier 
2003) and for other industrially important 
yeast strains, such as ale fermenting (Kobi 
et al., 2004), a wine strain (Trabalzini 
et al., 2003) and a lager brewing strain 
(Joubert et al., 2000, Joubert et al., 2001). 

Due to its wide use in industry 
and biology, S. cerevisiae has to adapt 
to a large variety of environmental 
conditions. To survive in the changing 

environment, yeast cells need to detect 
the availability of nutrients and rapidly 
adapt their metabolism. For baker’s yeast, 
comprehensive transcriptome analyses 
have been performed to study the effects 
of different nutrient conditions (Boer et 
al., 2003, Saldanha et al., 2004, Tai et 
al., 2005). However, the abundance of 
mRNA and protein expression levels do 
not necessarily correlate, so it is essential 
to also examine yeast adaptation and other 
biological processes at the level of the 
proteome. Many 2-DE based experiments 
have been reported with applications 
to yeast  growth under  different 
environmental stimuli. Protein abundance 
levels were analysed from yeast grown 
in chemostat cultures limited for glucose 
or ethanol (Kolkman et al., 2006). This 
study revealed major changes in the 
central carbon metabolism pathways upon 
changing the carbon source. 2-DE has also 
been applied to obtain a global view of 
changes in the S. cerevisiae proteome as 
a function of stimuli in the environment, 
such as cadmium (Vido et al., 2001), 
lithium (Bro et al., 2003), H2O2 (Godon 
et al., 1998), sorbic acid (de Nobel et al., 
2001) and amino acid starvation (Yin et 
al., 2004).

Quantitative proteomic methodologies 
have, in many cases, first been developed 
and validated for S. cerevisiae. Washburn 
et al. applied MudPIT to analyze the 
proteome of yeast and identified a total 
of 1484 proteins (Washburn et al., 
2001, Washburn et al., 2002). MudPIT 
methodology was improved by Wei and 
coworkers (Wei et al., 2005) by adding an 
additional reversed phase column to the 
biphasic column, resulting in an on-line 
3D LC method and identifying a total of 
3109 yeast proteins.

Various groups have applied 
metabolic stable-isotope labelling in yeast 

Review of the literature



18

proteome studies (Washburn et al., 2002, 
Usaite et al., 2008, Flory et al., 2006, 
de Godoy et al., 2006, Zybailov et al., 
2006, Oda et al., 1999). The efficiency of 
2D-DIGE and metabolic stable isotopic 
labelling was compared in a study where 
S. cerevisiae was grown with ammonium 
sulphate labelled with either 14N or stable 
isotope 15N as a nitrogen source (Kolkman 
et al., 2005). Following lysis and protein 
extraction, the protein samples were 
fluorescently labelled using CyDyes. 
Proteins were separated with 2-DE and 
further analyzed by MS. Relative ratios of 
protein abundances between experimental 
conditions were defined using both 
2-D DIGE and metabolic labelling 
techniques. The correlation between 
these two methods for relative protein 
quantification was good: differential 
average ratios were R(met.lab) = 0.98 
R(DIGE) with a correlation coefficient 
r2=0.89. Some differences were noted 
with low intensity spots; they could be 
detected and quantified with 2-D DIGE 
but not with the stable isotope labelling 
approach. In that study, DIGE was stated 
to be more suitable for the analysis of 
proteins with low concentrations and with 
extreme changes in expression. On the 
other hand, a disadvantage of 2-D DIGE 
is clearly that separate methods have to be 
used for quantification (2-D DIGE) and 
identification (MS). 

In proteomics, and in other –omics 
in systems biology, new technologies are 
constantly being developed and validated 
and this is, in many cases, carried out 
using a model system such as yeast. It is 
crucial that this is done with as simple an 
organism as possible, so it is clear that 
future developments in the proteomics 
will also largely benefit from S. cerevisiae 
as a model system. 

2.6. Proteomics of probiotic 
lactobacilli 

 
Intimate interactions between bacteria and 
human or animal cells are increasingly 
studied by proteomics.  Probiotic 
microorganisms that are capable of 
communicating with human or animal 
immune systems are of growing health 
and economic interest (van Belkum 
and Nieuwenhuis 2007, Isolauri 1999, 
Isolauri et al., 2008). Probiotics are 
microorganisms that help maintain the 
natural balance of microbiota in the 
intestine. The premise for a microorganism 
to be classed as a probiotic includes strain 
identification, safety confirmations, clearly 
documented efficacy in clinical studies, 
and detailed consumer information 
such as considerations for the route of 
administration and dose applied (FAO/
WHO, 2002). About 1014 bacteria live in 
symbiosis in and with our body (Reid et 
al., 2003). The most bacteria-rich body 
part is the large intestine, where bacterial 
communities can reach densities of 1012 
per gram of content. Overall, the gut 
microbiota makes a major contribution to 
human health and disease (Guarner and 
Malagelada 2003). Probiotics have a long 
history of use in the diet to modify the 
intestinal microbiota and immune system 
of humans and animals, but the tools to 
evaluate their effect on the heath and well 
being of the host have not been available 
until recently. 

Microbes from many different 
genera are used as probiotics. The main 
organisms used as probiotics belong to the 
genera Lactobacillus and Bifidobacterium. 
The genomes of probiotic bacteria such 
as Lactobacillus johnsonii (Pridmore 
et al., 2004), Lactobacillus plantarum 
(Kleerebezem  e t  al . ,  2003)  and 
Lactobacillus acidophilus (Altermann 
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et al., 2005) have been sequenced. The 
probiotic features are strain-specific, 
but the factors contributing to the health 
promoting properties are largely unknown. 
The use of lactobacilli species as probiotics 
is most probably due to historical reasons. 
They have been present in the human diet 
for centuries through fermented dairy 
products such as cheese and yoghurt. 
Probiotics are available to consumers 
mainly in the form of dietary supplements 
and food and the use of food products 
containing probiotic microorganisms is of 
increasing economic importance. 

The most intensively studied probiotic 
effect is the prevention and reduced 
duration of diarrhoea. Lactobacillus 
rhamnosus and L. reuteri are effective 
against diarrhoea of infants (Rosenfeldt 
et al., 2002, Szajewska and Mrukowicz 
2005). L. acidophilus is reported to 
reduce the incidence of diarrhoea 
during antibiotic treatment (Beausoleil 
et al., 2007). Besides Lactobacilli and 
Bifidobacteria, other genera including 
Escherichia, Enterococcus, Bacillus and 
Saccharomyces are also used and their 
efficacy has been clinically proven (Reid 
et al., 2003).

Proteomic methods are increasingly 
used to study, for example, the changes 
in the bacterial proteomes in different 
growth phases and the bacterial responses 
to different stress conditions. A proteome 
of the potentially probiotic L. plantarum 
WCFS1 strain was investigated in different 
growth phases (Cohen et al., 2006). 2-
DE was used to generate proteome maps 
from mid- and late-log, early and late 
stationary phases of growth. A total of 200 
proteins were identified, and the results 
indicated that each growth phase has its 
own metabolic status. For example, in 
the log-phase, proteins associated with 
metabolic pathways for energy generation 

were specifically present, and in the late-
log phase the synthesis of macromolecules 
was increased (Cohen et al., 2006).

Lactobacillus salivarius subsp. 
salivarius UUC118 is a probiotic 
bacterium isolated from human intestinal 
tissues and has been shown to alleviate the 
symptoms of Crohn’s disease (Venturi et 
al., 1999). The bacterial growth phase and 
the presence of a previously documented 
cell-wall-associated protein were shown 
to be correlated using proteomic and 
enzymatic techniques in L. salivarius 
subsp. salivarius strain (Kelly et al., 2005). 
With 2-DE it was reported that proteins 
increasingly expressed from the lag to log 
to stationary phase were analogous to those 
reported to be associated with the cell-wall 
proteome of the pathogenic bacterium 
Listeria monocytogenes (Schaumburg 
et al., 2004). To act as a probiotic in the 
gastrointestinal tract (GIT), bacteria have 
to adhere to the tract.  In this study it was 
proposed that some valuable effects of 
Lactobacillus salivarius subsp. salivarius 
UUC118 may be due to the mimicking 
of pathogenic adherence to the gut 
epithelium.  

The first proteomic study on the 
probiotic Lactobacillus crispatus aimed 
to reveal the overall changes in metabolic 
pathways caused by aggregation processes 
(Siciliano et al., 2008). An aggregation 
process of L. crispatus M247 was studied 
using a mutant strain that had lost its 
autoaggregation phenotype and its isogenic 
control strain. The results demonstrated an 
overall lower growth rate of L. crispatus 
M247 compared to the mutant strain and 
higher amounts of enzymes involved in 
carbohydrate transport and metabolism 
in the mutant strain. This was probably 
caused by nutrient limitation due to the 
aggregation phenomenon in L. crispatus 
M247 (Siciliano et al., 2008).
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Passage through the GIT exposes 
probiotic bacteria to stress due to the 
lowered pH and bile. The effect of 
lowered pH on protein synthesis by 
Lactobacillus reuteri was investigated 
using 2-DE (Lee et al., 2008) and 40 
consistently and significantly altered 
proteins were identified with PMF. 
General stress responsive proteins and key 
metabolic components from the glycolytic 
and pentose-phosphate pathways were 
identified, indicating the complexity the 
acid stress response of L. reuteri. Survival 
and gene expression of L. reuteri after a 
sudden shift in environmental acidity to 
a pH close to the conditions prevailing 
in the human stomach (Wall et al., 2007) 
and the physiological concentration of 
human bile (Whitehead et al., 2008) were 
investigated in genome-wide analysis 
using microarrays. In both conditions, 
several genes were differentially 
expressed. clpL, an ATPase encoding 
chaperone activity, was selected for an 
insertion mutation analysis and reported 
to contribute to the sensitivity to acid 
stress as well as the ability to survive bile 
exposure (Whitehead et al., 2008). Thus, 
clpL could contribute to the survival of L. 
reuteri in the gastrointestinal tract. The 
effect of pre-adaptation to stress on the 
viability of Lactobacillus rhamnosus was 
examined with proteomics (Prasad et al., 
2003). Exposure of L.rhamnosus cells 
to a sub-lethal salt concentration or heat 
stress considerably improved the storage 
stability of the bacterium, suggesting that 
the ability of L. rhamnosus to withstand 

stressful storage conditions can be 
improved by stress adaptation.

2.7. Proteomics of streptococci 

As with probiotic bacteria, proteomics 
represents an established technology for 

the study of pathogenic bacteria. The 
genus Streptococcus includes bacteria 
that are part of the normal microbiota of 
humans and animals, but some of them 
are also pathogens. Proteomic studies 
can provide better understanding of 
protein production and cell metabolism 
during different biological situations.  
Streptococcus pyogenes is an important 
human pathogen causing infections in 
the upper respiratory tract and on the 
skin epithelium. Many of the associated 
virulence factors are expressed in a growth 
phase-dependent manner (Kreikemeyer et 
al., 2003). Changes in the transcriptome 
and proteome of S. pyogenes cells in the 
exponential and stationary phase have 
been analyzed (Chaussee et al., 2008). 
At the transcript level, the expression 
of 689 genes differed between the two 
growth phases. At the proteome level, 
527 and 403 spots on 2-DE gels were 
detected in the exponential and stationary 
phases of growth, respectively. Changes 
in transcriptome and proteome levels were 
similar, even though transcriptome data 
seemed to be more comprehensive, which 
was most probably due to the sensitivity 
of protein detection. Several growth phase 
associated proteins were detected on the 
proteome level that were not detected on 
the transcriptome level. Streptococcus 
pneumoniae growth phase proteomes 
have been investigated, focusing on 
the transition from the log phase to 
the exponential growth phase (Lee et 
al., 2006). Growth curves and profiled 
protein maps based on growth stages were 
generated and 22 growth-phase-dependent 
proteins were identified. 

Streptococcus mutans is a primary 
etiological agent of human dental caries. 
Its growth from planktonic culture to 
biofilm was studied with traditional 2-DE 
(Svensater et al., 2001, Rathsam et al., 
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2005a) and with 2-D DIGE (Rathsam et 
al., 2005b). The use of 2-D DIGE led to 
a 3-fold increase in the detection and in 
the number of significantly altered protein 
spots on 2-DE gels. The results revealed 
that in a mature biofilm the general 
metabolic proteins were down-regulated, 
indicating a reduction in growth rate. 
Up-regulated proteins were competence 
proteins and proteins involved in glucan 
and cysteine synthesis. This study revealed 
that 2-D DIGE, as a more accurate and 
more reproducible technique, leads 
to a more comprehensive view of the 
phenotypic changes during the planktonic 
to biofilm transition in S. mutans. In 
another study, biofilm development in 
S. pneumoniae was followed by 2-DE 
(Allegrucci et al., 2006). The number 
of detectable spots markedly increased 
between time-points of biofilm formation, 
with most proteins being house-keeping 
and metabolic proteins. An increased 
abundance of proteins with virulence and 
resistance was also noted.

Bacterial surface proteins play 
a significant role in host-pathogen 
interactions and pathogenesis and are 
targets for immune systems (Lindahl et al., 
2005, Lin et al., 2002). Thus, knowledge 
of protein consistency on the bacterial 
surface is important in drug and vaccine 
development. One method for proteomic 
analysis of cell-surface-associated proteins 
includes degradation of the cell wall by 
digestion of the peptidoglycan part with an 
enzyme such as lysozyme. This is followed 
by the release of cell-wall-associated 
proteins, their separation with 2-DE, 
digestion and identification by MS. By 
this approach, surface proteins have been 
analyzed from Streptococcus agalactiae 
(Hughes et al., 2002), S. pyogenes (Cole 
et al., 2005) and S. pneumoniae (Ling et 
al., 2004). However, only a few proteins 

that were predicted to be covalently 
attached to peptidoglycan with cell wall 
anchoring motifs (Marraffini et al., 2006) 
were identified using this technique. This 
may be due to the high hydrophobicity of 
these proteins and resulting challenges in 
the first dimension of 2-DE. Moreover, 
digestion of the cell wall increases the 
susceptibility to cell lysis contamination 
of samples with cytoplasmic proteins. 
To overcome potential difficulties in gel-
based separation, surface proteins can be 
digested directly from the cell surface and 
subsequently identified with LC-MS/MS. 
This “shaving” method has been used in 
proteomic analysis of surface proteins 
from S. pyogenes (Rodriguez-Ortega et al., 
2006, Severin et al., 2007). Together with 
in silico prediction of protein localisation 
(Nakai 2000), this method provides a 
relatively broad view of the organization 
of surface protein identity. 

 Proteomics has been used in studies 
on the environmental stress responses of 
Streptococci. Streptococcus mutans is an 
acidogenic organism generating acidic end 
products from fermentable carbohydrates 
available in the oral cavity. Acidogenity 
and also aciduricity, the ability to survive 
at a low pH, are considered as important 
pathogenicity factors for dental caries. 
The effect of lowered pH on the S. mutans 
proteome has been intensively studied. 
Altogether, 18 proteins were up-regulated 
and 12 down-regulated at an acidic pH 
when 2-DE proteomes grown in pH 7.0 
and pH 5.2 batch culture were compared 
(Wilkins et al., 2002). A total of 27 proteins 
were identified by MS, most of them 
involved in metabolism, sugar transport 
and response processes. The growth 
rate in the acidic medium was reduced 
as were the abundancies of most of the 
identified proteins related to translation. 
Enzymes involved in glycolysis as well 
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general stress proteins, such as DnaK, 
were up-regulated following growth at 
low pH. A combination of steady-state 
continuous culture and medium-range 
IPG strips were applied to compare 
2-DE proteomes of S. mutans grown at 
a steady state in continuous culture at 
pH 7.0 and 5.2 (Len et al., 2004a, Len 
et al., 2004b). Among the differentially 
expressed and identified proteins were 
proteins associated with stress responsive 
pathways, and also five novel findings of 
proteins associated with acid tolerance in 
S. mutans (Len et al., 2004a). Changes in 
the expression of metabolic proteins under 
the same experimental conditions showed 
differential expression of glycolytic 
proteins, alternative acid production and 
amino acid biosynthesis proteins (Len 
et al., 2004b). A significant increase was 
also observed in the abundance of a proton 
translocating F1F0-ATP-ase that extrudes 
H+ from the cell. This observation was 
consistent with previous studies reporting 
an incerase in H+-ATPase in response to 
acidification of the environment of S. 
mutans (Belli and Marquis 1991, Kuhnert 
et al., 2004). These studies support existing 
knowledge of the ability of S. mutans to 
survive at a low pH, tolerate acid stress 
and induce acid tolerance.

 Comparisons of the cellular proteome 
grown of Streptococcus oralis at pH 5.2 
and 7.0 (Wilkins et al., 2002) and the 
surface proteome under similar conditions 
(Wilkins et al., 2003) have also been 
published. S. oralis and Streptococcus 
gordinii are part of the microbial flora 
of dental plaque (Whiley and Beighton 
1998), but when accessing the vascular 
system they are associated with infective 
endocarditis (Douglas et al., 1993). When 
S. gordonii gene expression was examined 
during a pH change from slightly acidic to 
the pH of the blood stream, genes coding 

for surface proteins were differentially 
expressed (Vriesema et al., 2000).

The effect of fluoride exposure on 
cariogenic streptococci was assessed by 
2-DE (Cox et al., 1999). Streptococcus 
pyogenes, a non-cariogenic group A 
streptococcus, was also exposed to fluoride 
(Thongboonkerd et al., 2002). Proteome 
study revealed a total of 60 unique proteins 
and the down-regulation of several 
virulence factors, suggesting that fluoride 
exposure might inhibit S. pyogenes 
virulence factors. During infection, S. 
pyogenes interacts with human plasma 
(Johansson et al., 2005). In a proteome 
study it was revealed that exposure to 
human plasma had a profound influence on 
the S. pyogenes proteome (Johansson et al., 
2005). Altogether, 31 protein spots were 
up-regulated on plasma-exposed bacteria, 
of which 24 were present only in gels 
from plasma-exposed cells. Most of the 
identified proteins were important for cell 
maintenance, metabolism and glycolysis. 
Two surface-associated virulence factors 
were also identified in this study. The 
effect of blood on S. pneumoniae protein 
expression was assessed using 2-DE by 
Bae et al. (2006). Differentially expressed 
proteins were involved in various cellular 
metabolisms, and the results demonstrated 
that S. pyogenes alters its metabolism 
when exposed to blood.

Proteomic studies on different strains 
of streptococci are still in their infancy. 
Experiments are conducted with one 
strain to resolve one problem and with 
another to address a second research 
question. This is most probably due to the 
heterogeneity of this group of bacteria, 
including pathogenic, non-pathogenic and 
strains used in the dairy industry. Thus, the 
methods for proteomic experiments need 
to be validated for each individual strain.  
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Aims of the study

3. Aims of the study 

The general goal of this work was to establish, optimize and exploit proteomic methods 
from protein extraction to protein separation, quantification and identification. Methods 
were adapted for proteomic studies on the eukaryote baker’s yeast Saccharomyces 
cerevisiae, the probiotic bacterium Lactobacillus gasseri and the mastitis pathogen 
Streptococcus uberis.  

 
The specific goals of the present study were:

I) 	 To adapt and evaluate methods for analysing and identifying proteins from baker’s 
yeast, Saccharomyces cerevisiae. The work included optimization of protein 
extraction methods and separation by 2-DE and the establishment of a PMF and a 
nanoLC-MS/MS method for protein identification.

II) 	 To reveal the metabolic responses of recombinant xylose-fermenting Saccharomyces 
cerevisiae with 2-DE, and protein identification with MALDI-TOF PMF and 
nanoLC-MS/MS.

III) 	To adapt proteomic methods, including 2-D DIGE and PMF, to bacterial proteins 
and to use them in the study of the overall heat-shock response and the role of ClpL 
ATPases in the stress response in probiotic Lactobacillus gasseri.

IV) 	To utilize 2-D DIGE and PMF protein identification to reveal the responses of 
the mastitis pathogen Streptococcus uberis to the mutagenesis-inducing antibiotic 
ciprofloxacin.
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4. Materials and methods 

All materials and methods are described in detail in the original publications I-IV.

4.1. Strains and plasmids 

Table 2. Strains and plasmids used in this study
Strain Relevant property or 

genotype(s)
Article Source or Reference

Yeast strain and plasmids
Saccharomyces cerevisiae
H2490 CEN.PK2 derivative (MATα, 

leu2-3/112, ura3-52, trp1-289, 
his3-1, MAL2-8c, SUC2)

I, II (Boles et al., 1996)

YEplac 195 Multicopy plasmid (uracil 
selection)

I, II (Gietz and Sugino 1988) 

YEplac181 Multicopy plasmid (leucine 
selection)

I,II (Gietz and Sugino 1988) 

Bacterial strains and plasmids
Lactobacillus gasseri III
ATCC 33323a neotype, DSM 20243 III ATCC
AS1 ATCC 33323 derivative with 

0.9-kb deletion in clpL
III III

AS2 ATCC 33323 harboring 
plasmid pKTH2095

III III

AS3 AS1 harboring plasmid 
pKTH2095

III III

AS4 AS1 harboring plasmid pAS2 III III
E. coli

M15(pREP4) Cloning host with inducible 
expression

III Qiagen

pTN1 conditionally replicating vector 
for an allelic replacement

III (Neu and Henrich 2003) 

pAS1 pTN1 with 1.1-kb fragment 
containing 0.9 kb in-frame 
deletion in the clpL

III III

pKTH2095 lactobacillar expression vector III (Savijoki et al., 1997)
pAS2 pKTH2095 with 2.4-kb 

fragment containing the clpL 
region

III III

pQE30 IPTG-controlled 
overexpression 

III Qiagen

pKTH5202 pQE30 with 1.1 kb fragment 
encoding HrcA

III III

Streptococcus uberis
aATCC BAA-854 
(0140J)

IV (Hill 1988, Leigh et 
al., 1990, Smith et al., 
2003) 

a ATCC, American Type Culture Collection.

Materials and methods
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Materials and methods

4.2. Sample preparation for 2-DE

4.2.1. Chemostat cultivation

A detailed description of the chemostat 
cultivation of Saccharomyces cerevisiae is 
presented in original publication II.

H 2490 precultures were grown in 
yeast nitrogen base/medium (YNB, Sigma, 
USA) supplemented with 20 g/l glucose. 
Cells were harvested and resuspended 
into 50 ml of cultivation media aiming at 
a starting optical density OD600 = 1 in the 
fermenter cultivation. Both fermentations 
were started as aerobic batch cultures. 
Chemostat cultures were performed on 
either 56 mM (10 g/l) glucose or 17 mM 
(3 g/l) glucose + 180 mM (27 g/l) xylose 
(Pitkanen et al., 2003). The cultures 
were switched to anaerobic chemostat 
conditions after six residence times. 
Samples of 10-20 ml were taken from 
steady-state cultures and at the time points 
of 5, 30 and 60 min after the switch-off of 
the oxygen supply.  

4.2.2. Bacterial cultivations

In studies III and IV the experimental 
set-up was performed for four biological 
repl icate  samples .  In  s tudy III , 
Lactobacillus gasseri cells from four 
independent cultures were heat-stressed 
by cultivating them at 37 °C in MRS to 
an OD600 = 0.25, at which point aliquots 
of cells (5 ml) were further incubated at 
37 °C (4 x control sample) or shifted to 
49 °C for 30 min (4 x stress sample). In 
study IV, Streptococcus uberis cells in 
four independent overnight cultures were 
diluted 1:100 in THY broth and allowed to 
grow at 37 °C until OD600 = 0.2. Cultures 
were then divided into 15 ml aliquots and 
0 µg/ml (control sample), 0.5 µg/ml (=0.5 
x minimum inhibitory concentration, 

MIC) or 1.0 µg/ml ciprofloxacin (=1.0 x 
MIC) (stress samples) was added to the 
cultures, which were allowed to grow 
until OD600 = 0.5. In both III and IV, 
cells were harvested by centrifugation and 
washed with ice-cold Tris-HCl pH 8.0 (+ 
30% EtOH in study IV). Cells were stored 
at -20 °C until they were disrupted. 

4.2.3. Protein extraction for 2-DE

In studies I and II, 5-10 µg dry weight of 
yeast cells were disrupted with glass beads 
(0.5 mm diameter; Biospec Products, 
USA) in a MiniBeadBeater (Biospec 
Products) in 150 µl of a solution of 50 mM 
Hepes, pH 7, 1 mM MgCl2, 0.1 M EDTA 
supplemented with phenylmethylsulphonyl 
fluoride (Sigma, USA) to 1 mM and 
Pepstatin A (Sigma) to a concentration of 
13µM. After cell breakage, 400 µl of lysis 
buffer containing 7 M urea, 2 M thiourea, 
4% CHAPS, 1% Pharmalytes 3-10 and 1% 
dithiothreitol (DTT) was added and the 
mixture was gently shaken for 20 min at 
room temperature and then centrifuged for 
5 min at 13 000 rpm. The supernatant was 
collected and the protein concentration 
of the extract was determined using a 
non-interfering protein assay (Geno 
Technology Inc., USA). Protein extracts 
were stored at -70 °C before 2-DE.

In studies III and IV, bacterial cells 
were disrupted with glass beads in 30 
mM Trizma base in a FastPrep FP120 
homogenizer (Thermo Scientific, USA). 
Proteins were solubilized in 400 μl of 
7 M urea, 2 M thiourea, 4.0% CHAPS 
and 30 mM Trizma base and incubated 
at room temperature for 1 h. The cell 
debris and glass beads were removed by 
centrifugation. Recovered proteins were 
concentrated using a 2-D Clean-Up Kit 
(GE Healthcare, Sweden) and solubilized 
in 50 μl (III) and 20 μl (IV) of 7 M urea, 
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2 M thiourea, 4.0% CHAPS and 30 mM 
Trizma base. Protein extracts were stored 
at -20 °C before 2-DE.
 
4.2.4. Protein labelling

In studies III and IV, samples were 
labelled with CyDye Fluor minimal 
cyanine dyes (GE Healthcare) according 
to the manufacturer’s instructions. Prior 
to labelling the pH of the samples was 
monitored and adjusted to pH 8.5 with 2.0 
M Trizma base. In study III, 12.5 μg of 
protein was labelled with 100 pmol of Cy3 
and 12.5 μg was labelled with Cy5 dye. In 
study IV, two 25 μg protein samples were 
labelled with 200 pmol of Cy3 and Cy5 
dyes, respectively. As an internal standard, 
aliquots from each sample (a total of 12.5 
μg in III and 25 μg in IV) were combined 
and labelled with Cy2 dye. Labelling 
reactions were performed for 30 min on 
ice in the dark, after which 1 μl of 50 mM 
lysine was added to stop the reaction. 
Labelled samples were stored at -20 °C. 

4.3. Two-dimensional gel 
electrophoresis (2-DE)

In studies I and II, S. cerevisiae proteins 
(100 µg in study I and 75 µg in study 
II) were dissolved in 350 µl of IPG strip 
rehydration buffer containing 9 M urea, 
0.5% CHAPS, 0.2% DTT and 0.5% 
Pharmalytes 3-10. Proteins were applied 
to IPG strips pH 3-10 (ImmobilineTM Dry 
Strips, Amersham Pharmacia Biotech AB, 
Sweden) by in-gel rehydration. IEF was 
carried out using an IPGphorTM (Amersham 
Pharmacia Biotech AB) device. Prior to 
the second dimension the IPG strips were 
first equilibrated in a buffer containing 
50 mM Tris-HCl pH 8.8, 6 M urea, 30% 
glycerol, 2% SDS and 1% DTT and then in 
the same buffer where DTT was replaced 
with 4.5% iodoacetamide (IAA) in order 

to alkylate the free sulfhydryl groups 
of the cysteine residues. The second 
dimension, 12% SDS-PAGE, was carried 
out using a Protean® II xi apparatus 
(Bio-Rad) in study I and in a Hoefer 
DALT electrophoresis tank (Amersham 
Pharmacia Biotech AB) in study II. After 
electrophoresis, the gels were fixed in 
30% ethanol and 0.5% acetic acid and then 
silver stained as described in I and II.

In studies III and IV, differentially 
labelled samples were mixed and 
combined with sample buffer containing 7 
M urea, 2 M thiourea, 4.0% CHAPS and 
30 mM Trizma base to a final volume of 
20 μl in study III and 25 μl in study IV. IEF 
in studies III and IV was performed in a 
Protean IEF Cell (Bio-Rad). ReadyStripTM 

IPG Strips (Bio-Rad) were rehydrated 
overnight in a buffer containing 7 M 
urea, 2 M thiourea, 4% CHAPS, 30 mM 
Trizma base, 1% Biolyte 3-10 buffer for 
pH 3-6 and 5-8 strips. Biolyte 7-10 buffer 
was used for pH 7-10 strips. DTT and 
tributylphosphine (TBP) were added to 
50 mM and 4 mM final concentrations, 
respectively. Samples containing 37.5 ug 
of Lactobacillus gasseri proteins in study 
III and 75 ug Streptococcus uberis protein 
in study IV were applied to rehydrated IPG 
strips by anodic cup loading. After IEF the 
strips were equilibrated first in 50 mM 
Tris-HCl pH 6.8, 6 M urea, 2% SDS, 20% 
glycerol and 2% DTT followed by a second 
equilibration step with 2.5% IAA. In study 
III the second dimension SDS-PAGE was 
run in a Criterion Dodeca Cell (Bio-Rad) 
with Criterion Pre Cast gels (8-16%, Bio-
Rad). In study IV the second dimension 
was run in self-made 12% gels on an 
Ettan DALTsix Large Vertical System (GE 
Healthcare). After gel imaging, described 
in the original publications and in section 
4, gels were fixed and stained with silver 
for visualization and spot cutting.

Materials and methods
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4.4. 2-DE image analysis 
 

A detailed description of the image 
analysis parameters is given in the original 
publications. 

In studies I and II, 2-DE gels were 
stained with silver and scanned with a 
GS-710 imaging densitometer (Bio-Rad). 
Raw scans were automatically processed 
by the PDQuest software (Bio-Rad). In 
studies III and IV, 2-DE gels with Cy-
labelled proteins were for each of the 
three dyes imaged immediately after the 
second dimension between low fluorescent 
glass plates with an FLA 5100 scanner 
(Fujifilm Europe GmbH, Germany ). 
Gel images were analyzed using Image 
Master Platinum 6.0 DIGE Software (GE 
Healthcare) in study III and with DeCyder 
5.02 software (GE Healthcare) in study 
IV.

4.5. Protein identification by MS

Protein spots were manually cut out from 
the gels, reduced with DTT and alkylated 
with IAA before digestion with trypsin 
(Sequencin Grade Modified Trypsin, 
Promega Corporation, USA) at 37 °C 
overnight. The generated peptides were 
extracted, pooled and desalted. Peptides 
for MALDI-TOF MS analysis were, after 
desalting, eluted directly onto the MALDI-
target. For LC-MS/MS analysis the peptide 
mixture was desalted, eluted and injected 
directly into an LC (I) or desalted and 
concentrated in a pre-column after which 
it was injected into an LC (II). 

 MALDI-TOF mass spectra of tryptic 
digests were acquired using a Bruker Biflex 
instrument (Bruker Daltonik, Germany) 
equipped with a nitrogen laser operating 
at 337 nm in positive ion reflector mode in 

studies I and II. In studies III and IV, the 
spectra were acquired using an Ultraflex 
II mass spectrometer (Bruker Daltonik). 
For LC-MS/MS analysis in studies I 
and II, reversed-phase chromatography 
was performed on an Ultimate nano-
chromatography apparatus (LC Packings, 
the Netherland). ESI-MS/MS spectra 
were recorded using a Q-TOF hybrid 
mass spectrometer (Micromass Ltd, UK) 
equipped with an orthogonal electrospray 
source (Z-spray) and a modified nano-ES 
interface (LTQ-ADP, New Objective, Inc., 
USA).

 The programs and servers used in 
protein identification with PMF data in 
studies I and II were ProFound (http://
prowl.rockefeller.edu), the PepSea peptide 
map from Protana Inc. and MS-Fit (http://
prospector.ucsf.edu/). For identification 
with sequence tag data, the PepSea 
sequence tag from Protana Inc, ProteinInfo 
(http://prowl.rockefeller.edu) and MS-Tag 
(http://prospector.ucsf.edu/) were used. 
In studies III and IV the spectra were 
interpreted using a local Mascot (Mascot 
2.2.03, Matrix Science, UK) server. 
The searches were performed against 
the Lactobacillus gasseri ATCC 33323 
(Version CP000413.1 GI:116094265) 
database produced by the US Department 
of Energy Joint Genome Institute (http://
www.jgi.doe.gov/) and against the 
Streptococcus uberis 0140J database, the 
sequence data obtained from the S. uberis 
sequencing group at the Sanger Centre 
(ftp://ftp.sanger.ac.uk/pub/pathogens/
su/). The results were blasted against the 
nonredundant protein sequence database 
in NCBI BLAST (http://www.ncbi.nlm.
nih.gov/BLAST/) with a blastp algorithm 
(BLASTP 2.2.17).
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5. Results and discussion 

Methods in proteomics have significantly 
developed over last 15 years. Improvements 
have emerged in sample preparation 
techniques, electrophoretic separation 
methods and protein quantification as 
well as in new mass spectrometers. The 
growing amount of genomic data has also 
facilitated proteomic analyses of a growing 
number of species. In this thesis, gel-
based proteomics have been exclusively 
used. Studies for original publications 
I and II were performed in 1999-2002 
and studies for III and IV during 2006-
2008. For the first two manuscripts, the 
proteomics technology platform was 
established to differentially display and 
subsequently identify the proteins. In the 
following two studies, a new technology 
at that time, DIGE, was applied for two 
different biological systems and proved 
to be superior in quantitation to previous 
studies. The development of proteomic 
methods between these years has been 
quite apparent and this thesis provides an 
interesting viewpoint on the development 
of these methods as well as of microbial 
proteomics. 

5.1. Adaptation and evaluation 
of a method for identifying of S. 
cerevisiae proteins separated by 
2-DE. 

To adapt, develop and validate mass 
spectrometric methods for protein 
identification from metabolic pathways 
in a genetically modified yeast strain, 
MALDI-TOF PMF and LC-MS/MS 
methods were established (I). Spots 
of different intensities, pI values and 
molecular weights were analyzed. The 
aim was to collect data and validate the 
methodologies for future studies. 

At the time of this work, MALDI-
TOF PMF was the most commonly used 
method for protein identification. PMF is a 
rapid method and in many cases produces 
enough information for accurate protein 
identification. In our study a total of 27 
silver stained spots from 2-DE gels were 
subjected to MS analysis. Of these, 21 
were analysed with MALDI-TOF PMF, 
19 of which were successfully identified 
(I, Table 1). Two unidentified spots were 
further analyzed and identified with 
sequence tag analysis by LC-MS/MS. 
As could be expected, the faintest spots 
with an estimated protein amount in the 
low femtomole range produced a weaker 
signal than the intensive ones. LC-MS/MS 
analysis was carried out on 17 of the 27 
spots and all of these were successfully 
identified from acquired sequence 
information (I, Table 2 and Table 3). 

 PMF does not separate peptides 
with similar sequences from each other, 
whereas sequence tag analysis does. As 
an example, one of the analyzed spots was 
identified as phosphoglycerate kinase by 
PMF. It was not identified with a sequence 
tag algorithm, such as PepSea (http://www.
unb.br/cbsp/paginiciais/pepseaseqtag.
htm), but was successfully identified with 
the amino acid sequence search algorithm 
ProteinInfo (http://prowl.rockefeller.edu/
prowl/proteininfo.html), in which the 
peptide molecular weight was not used 
as search parameter. In the database, the 
two last amino acids of this tryptic peptide 
were lysine-lysine [KK], which did not 
match the measured MW of the peptide. 
As was observed from the CID spectrum, 
the amino acid adjacent to the last amino 
acid was in fact arginine [RK], which 
indicates a point mutation (I, Figure 5). 

Results and discussion



29

Results and discussion

The putative biological importance of this 
mutation remains to be studied. 

 Some proteins are observed as 
multiple spots on a 2-DE gel. This is due, 
for instance, to proteolytic processing of 
proteins creating protein fragments with 
different molecular masses and pIs or 
post-translational modifications, which 
also change the chemical character of a 
protein. Pyruvate decarboxylase isozyme 
(Pdc1) was identified in our study from 
one isolated and abundant spot and from 
one spot with a lower MW, potentially 
representing a protein fragment. The 
variability of Pdc1 has previously been 
discussed (Parker et al., 1998), when 
in-depth analysis was performed for 
one of the densest regions in the total 
proteome 2-DE gel of S. cerevisiae. With 
the dimensions pI 5.5-6.5 and MW 35-
65 kDa, 420 proteins were expected to 
be present (Hodges et al., 1998). In that 
particular part of a 2-DE gel, Pdc1 and 
other abundant proteins (Adh1, Eno2 and 
Fba1) were clearly overloaded, so Parker 
et al. (1998) also expected to find peptides 
from these four abundant proteins from 
other protein spots. However, fragments of 
Pdc1 were found from discrete locations 
throughout the gel, from a total of 20 spots. 
The heterogeneity of Pdc1 was explained 
by potential proteolytic heterogeneity and 
residue specific modifications. Moreover, 
the three genes PDC1, PDC5 and PDC6 
are rather homologous and are all expected 
to be found in the part of the gel studied. 
However, Parker et al. (1998) found no 
evidence for Pdc1 and Pdc6 proteins alone, 
although they found several peptides that 
are common to all three of these proteins. 
Pdc1 is reported to appear on gels in 
multiple spots according to the Yeast 
Protein Database (Perrot et al., 1999). 

As a conclusion from I, PMF was in 
most cases accurate enough for protein 

identification. LC-MS/MS, however, 
proved to be even more sensitive and 
provided more accurate data such as 
individual peak characterisation, and was 
very useful when analysing proteins with 
low abundances. When comparing the 
traditional nanospray MS/MS method 
with a combination of nano flow-rate 
LC combined with ESI-MS/MS, the 
latter provides better sensitivity with 
unseparated peptide mixtures. This makes 
it possible to identify proteins from 
amounts not sufficient for identification 
using the traditional nanospray method.  

5.2. Proteome analysis of 
recombinant xylose-fermenting 
S. cerevisiae. 
 
In study II, the platform technology 
established for yeast proteome analysis in 
I was applied in the study of recombinant 
xylose-fermenting yeast. This was done 
by comparing the proteomes in conditions 
in which glucose or xylose was the 
major carbon source. This was the first 
proteome-wide study of xylose-fermenting 
recombinant S. cerevisiae, providing a 
broad insight into the effects of xylose on 
cellular metabolism. 

Because S. cerevisiae does not 
naturally utilize xylose or other pentose 
sugars, the introduction of an active 
xylose utilization pathway into S. 
cerevisiae was likely to have a major 
effect on cellular metabolism. The 
different cofactor preferences of xylose 
reductase and xylitol dehydrogenase are 
believed to disturb the cellular cofactor 
pool during xylose consumption. One 
of the objectives of this study was to 
determine how the redox imbalance 
affects cellular metabolism. Two different 
types of chemostat cultivation both with 
aerobic (20% oxygen) and anaerobic 
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(0% oxygen) phases, were carried out. 
The first cultivation was carried out with 
10 g/l glucose and the second with 3 g/l 
glucose and 27 g/l xylose. The small 
amount of glucose was added to the latter 
feed in order to enable anaerobic growth 
on xylose. The residual glucose on both 
glucose and glucose + xylose cultures was 
zero under both aerobic and anaerobic 
conditions, so cells were under both 
conditions in a glucose derepressed state 
(Meijer et al., 1998, Sierkstra et al., 1992, 
ter Linde et al., 1999). 

Proteins were identified from spots 
showing consistent differences in intensity 
specific to either glucose or xylose as the 
carbon source (II, Table 2 and Figure 2). 
Proteins were identified mainly by PMF 
and when the identity of proteins was 
not established by PMF analysis alone, 
the previously described (I) LC-MS/
MS method was applied. The proteins 
responding to the carbon source could be 
divided into 5 major categories: proteins 
of central carbon metabolism, TCA cycle 
and energy generation proteins, proteins of 
amino acid metabolism, proteins related to 
nucleotide metabolism, heat shock proteins 
and proteins having other functions. 

The most significant changes in 
protein abundance between glucose and 
xylose-grown cells were detected in 
proteins of central carbon metabolism. 
These proteins were glycerol-3-phosphate 
dehydrogenase isoenzyme 1 (Gpd1), 
DL-glyserol-3-phosphate phosphatase 
isoenzyme 1 (Gpp1), enolase 2 (Eno2), 
alcohol dehydrogenase 2 (Adh2) and 
both mitochondrial and cytoplasmic 
acetaldehyde dehydrogenases, Ald4 and 
Ald6, respectively. Changes between 
xylose and glucose were seen in proteins 
related to glycerol metabolism, since the 
NADH-consuming production of glycerol 
has an important role in balancing the 

intracellular redox potential. Both Gpd 
and Gpp are encoded by two isogenes 
in S. cerevisiae. GPD1 and GPP2 are 
osmotically induced, while GPD2 and 
GPP1 are induced under anaerobic 
conditions. In our proteome study, Gpp1 
had strongly elevated levels in anaerobicity 
and it responded more rapidly to the 
switch-off of oxygen in xylose than in 
the glucose culture. Both Gpd1 and Gpp2 
had a lower abundance under oxygen 
depletion. 

Five of six proteins of the TCA cycle 
and energy generation responding to the 
carbon source behaved in a quantitatively 
similar fashion in our culture conditions: 
anaerobic steady-state levels on both 
carbon sources were equal, but clearly 
lower than the corresponding steady-
state aerobic level. Overall, a lower level 
was detected in all xylose samples. The 
abundance of one protein, identified as 
L-lactate cytochrome c oxidoreductase 
cytochrome b2 (Cyb2), was shifted on 
the aerobic xylose, but was otherwise at a 
relatively low and constant level. 

 Heat shock proteins Hsp26 and 
Hsp78 were present at lower levels in 
the anaerobic glucose cultivation and 
somewhat higher levels during the entire 
xylose cultivation, probably suggesting 
that cells relying solely on xylose were 
stressed to some degree. Sse1, a heat shock 
protein belonging to the Hsp70 family, 
was strongly induced in the aerobic xylose 
cultivation, but remained at a very low 
level in the other cultivation steps.

 A total of 12 proteins were identified 
from spots that responded only to the 
change in aerobicity in the two chemostat 
cultures (II, Table 3 and Figure 3). 
Under anaerobic conditions, oxidation 
of intramitochondrial NADH by the 
respiratory chain is stopped. Thus, the 
functioning of the TCA cycle is also 

Results and discussion
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diminished. Mitochondrial glycerol-
3-phosphate dehydrogenase (Gut2), 
mitochondrial manganese superoxide 
dismutase (Sod2), and heat shock proteins 
Stp1 and Sgt2 had a lower abundance 
in the anaerobic cultivations, and the 
20S proteasome subunit (Pre3) could 
not be detected on anaerobic samples at 
all, indicating very strict control of their 
expression during anaerobic conditions. 
The changes detected between aerobic and 
anaerobic conditions are in accordance 
with the transcriptional analysis of aerobic 
and anaerobic chemostat cultures of S. 
cerevisiae (ter Linde et al., 1999). 

Altogether,  26 proteins were 
identified with constant abundance in 
these conditions (II, Table 4). The analysis 
showed that many proteins appeared in the 
gels as more than one spot with essentially 
the same molecular weight but different 
pI and abundances. This may be due to 
post-translational modifications. For all 
these proteins, the relative amounts of the 
different pI forms did not change with the 
culture modifications (Gygi et al., 2000, 
Corthals et al., 2000) (II, Tables 2, 3 and 4, 
Figure 1). Thus, these modifications may 
be considered as insensitive to the changes 
in conditions we applied (glucose/xylose, 
aerobic/anaerobic). We also identified five 
proteins that were novel identifications in 
the proteome of S. cerevisiae.

This study (II) was the first proteome-
wide study of xylose-fermenting S. 
cerevisiae. The research project continued 
with a transcriptomic study (Salusjarvi 
et al., 2006) and with another proteomic 
study, which revealed phosphorylation of 
several proteins with different abundance 
in cells grown on xylose and glucose. In 
the transcriptomic study (Salusjarvi et 
al., 2006) DNA microarrays were used 
to analyze the samples derived from the 
aerobic phase from the same chemostat 

cultures that were studied with 2-DE in 
(II). Both downregulation of the citric-
acid cycle and upregulation of reactions 
balancing the cellular redox state were 
also observed in the transcriptomic study 
and in a metabolic flux study carried out 
earlier (Pitkanen et al., 2003). As a result 
of all these studies, it can be stated that 
xylose seemed also neither a repressive 
nor a derepressive carbon source in S. 
cerevisiae. As xylose fermenting point 
of view, the more efficient utilization of 
xylose will most probably require more 
complex and global changes in cellular 
metabolism.

5.3. 2-D DIGE analysis of Lactobacillus 
gasseri heat shock proteome. 
 
In study III 2D-DIGE was used to 
obtain an overall picture of the cellular 
heat-shock response of Lactobacillus 
gasseri. Our analysis revealed ClpL as 
one of the most highly induced proteins 
in response to heat stress. To study 
the physiological role of ClpL, a clpL 
deletion mutant was created. The clpL 
deletion mutant derivative of L. gasseri 
showed substantially reduced survival at 
a lethal (60 °C) temperature. Moreover, 
the clpL deletion mutant was not able to 
induce the thermotolerance at the same 
temperature. These results demonstrate 
that clpL is essential for both constitutive 
and induced thermotolerance in this 
potentially probiotic strain. DNA-protein 
binding assays (III, Figure 2) revealed that 
clpL is regulated by a different protein 
from the clp gene regulator protein in 
other lactic acid bacteria (Varmanen et al., 
2000). However, the putative biological 
implication of the heterogeneity in clpL 
regulation among LAB remains to be 
determined.
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The 2-D DIGE approach exposed a 
total of 20 spots that were up-regulated 
after 30 min heat shock at 49 °C. The most 
strongly induced proteins were identified 
as general heat shock proteins DnaK 
(4.4-fold induction) and GroEL (3.8-
fold), HflX GTPase (4.4-fold), a pyrimide 
operon attenuation protein (2.5-fold), 
an ATPase of the ABC-type polar amino 
acid transport system (2.1-fold) and ClpL 
ATPase (4.4-fold) (Table 4 in III). The 
relative amounts of Clp proteins, ClpL, 
ClpE, ClpC and ClpE, were increased by 
at least 1.5 fold after heat stress. This most 
likely indicates the importance of Clp 
family proteins under stress conditions. 

HflX and PyrR have not previously 
been identified as heat-inducible before. 
While the HflX family is almost universally 
conserved in all three superkingdoms of 
life (Caldon and March 2003), its role 
in the regulation of cellular functions 
is largely unknown. Heat-shock-related 
induction in our study might indicate that 
HflX is an essential regulator during stress 
in ATCC 3323. The pyrimidine syntesis 
regulator, PyrR, was one of the proteins 
found to be up-regulated after heat shock. 
The 2.5-fold increase in its expression 
could be part of the mechanism by which 
cells slow down their pyrimidine synthesis 
in response to the reduced replication rate 
following heat shock. 

In this thesis, study III was the first in 
which DIGE was used to accurately detect 
abundance changes in 2-DE. Compared to 
traditional 2-DE used in studies I and II, 
2D-DIGE provided an efficient overview 
of the total proteome and a simultaneous 
view of differentially expressed proteins. 
In 2D-DIGE, changes in protein abundance 

can be instantly monitored with different 
colours after a gel scan. The software for 
2D-DIGE analysis reveals information 
about every spot that is differentially 
regulated. In recent years, DIGE has been 
applied in bacterial proteome studies 
on several organisms (Rathsam et al., 
2005b, Rathsam et al., 2005a, Hu et al., 
2003, Hongsthong et al., 2007, Lopez-
Campistrous et al., 2005, Yan et al., 2002, 
Jeamton et al., 2008, Park et al., 2007). 

For study III, the pH range 3-10 was 
divided into three overlapping regions; 3-
6, 5-8 and 7-10, with medium-range IPG 
strips. Such overlapping strips widen the 
area used to display the proteins in the pI 
range, which improves the separation of 
adjacent spots in gels. The narrow-range 
IPGs (nrIPGs), e.g. with one pH unit / 18 
cm, allow the loading of a higher protein 
concentration per pH unit (Corthals et al., 
2000). Thus, proteins are displayed over a 
greater distance with increased resolving 
power. Narrow and overlapping pH 
gradients (4-5, 4.5-5.5, 5-6, 5.5-6.7 and 
6-9) were compared with traditional pH 
3-10 and pH 4-7 strips in a study where 
the aim was to determine the maximum 
number resolvable S. cerevisiae proteins 
(Wildgruber et al., 2000). As expected, the 
number of detected spots was considerably 
higher with narrow pH range strips; a 
total of 2286 protein spots were detected 
compared to 775 spots with traditional 
pH range IPG strips. For our research 
question, division of the pH range 3-10 
into three ranges, instead of using narrow-
range strips, proved to be sufficient and 
we were able to overcome the difficulty 
of resolving and detecting proteins in the 
basic region.

Results and discussion
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5.4. Proteomic profiling of the 
response of mastitis pathogen 
Streptococcus uberis to antibiotic 
ciprofloxacin using 2-D DIGE and 
MALDI-TOF PMF.

In study IV, previously adapted 2-
D DIGE and MALDI-TOF PMF protein 
identification were used to analyse global 
changes in the proteomes of Streptococcus 
uberis ATCC BAA-854 strain in response 
to ciprofloxacin (CF) challenges and 
demonstrated that S. uberis responds to CF 
by controlling the synthesis of enzymes 
with a potential role in the oxidative 
damage response and in nucleotide 
biosynthesis.

 S. uberis is an important environ-
mental mastitis pathogen. Mastitis is the 
most common and costly disease in dairy 
cows and remains a major problem for the 
dairy industry, causing severe economic 
losses resulting partly from decreased 
milk production and partly from increased 
management costs. In the past the biggest 
economic losses were due to contagious 
pathogens such as Streptococcus 
agalactiae and Staphylococcus aureus 
(Erskine et al., 1987, Myllys et al., 1998, 
Pyorala 2002). During recent decades the 
proportion of environmental pathogens 
as mastitis-causing agents has increased 
in many countries (Bradley et al., 2007, 
Dingwell et al., 2004, Kossaibati et al., 
1998, Peeler et al., 2003). Mastitis is the 
most common reason for antimicrobial 
treatment of dairy cows (Grave et al., 
1999, Valde et al., 2004). Altogether, the 
use of antimicrobials against human and 
veterinary diseases has been extensive 
during the last decades. Thus, pathogenic 
bacteria are repeatedly exposed to 
antimicrobials, which is likely to induce 
a variety of survival strategies to enhance 
viability and successful virulence.  

 It is suggested that S. uberis species 
are able to adapt to antibiotic treatments 
(Milne et al., 2005). However, the 
mechanisms underlying this adaptive 
mutagenesis in S. uberis and in other 
Streptococcus species are largely unknown. 
The use of fluoroquinolones, such as 
ciprofloxacin, is coming into greater focus, 
since exposure to these antibiotics has 
been shown to increase genetic variation, 
and promote the evolution of resistance 
by altering metabolism and transiently 
increasing the mutation rate in a growing 
number of Gram-negative and Gram-
positive bacteria (Cirz et al., 2006, Cirz 
and Romesberg 2006, Power and Phillips 
1992, Ysern et al., 1990, Blazquez et al., 
2002, Beaber et al., 2004, Cirz et al., 2005, 
Cirz et al., 2007, Henderson-Begg et al., 
2006, Ubeda et al., 2005, Prudhomme et 
al., 2006).

 In study IV, the proteomes of 
untreated and CF-treated (0.5 or 1.0 
μg/ml) S. uberis cells were compared. 
At a CF concentration of 1.0 µg/ml (1.0 
x minimum inhibitory concentration, 
MIC), 24 spots showed a significant 
change in the level of expression between 
control and CF-treated cells (IV, Table 
2). The spots were identified by MS and 
corresponded to 20 separate proteins. The 
comparison of S. uberis proteomes treated 
with CF at 0.5 MIC to those of untreated 
proteomes revealed seven protein spots 
exhibiting statistically different changes. 
These changes were parallel to but 
somewhat lower than the changes detected 
in the proteomes of S. uberis treated with 
CF at 1.0 MIC. In this study, protein 
identifications revealed two classes of 
proteins that might be involved in S. uberis 
mutation mechanisms and stress responses: 
proteins that are potentially involved 
in the balance of deoxyribonucleotide 
triphosphate (dNTP) pools and proteins 
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that function in maintaining the peroxide 
balance of the cell.

5.4.1. Ciprofloxacin exposure induces an 
oxidative damage in S. uberis.

CF exposure is reported to cause 
oxidative stress in pathogens such as 
S. aureus (Becerra and Albesa 2002). 
In study IV, the F subunit of the alkyl 
hydroperoxide reductase (AhpF) was the 
most up-regulated protein (IV, Table 2). 
In S. pyogenes it is reported to function in 
maintaining the peroxide balance in cell 
by controlling endogenously produced 
peroxide (Brenot et al., 2005). It was 
recently shown that cellular death induced 
by all classes of bactericidal antibiotics 
occurs by promoting the formation of 
harmful hydroxyl radicals (Kohanski et 
al., 2007). Bacteria adapt to the presence 
of hydroxyl radicals and other reactive 
oxygen species (ROS) by increasing the 
expression of detoxification enzymes such 
as superoxide dismutase, catalase, and 
peroxidase in order to reduce the level of 
ROS (Storz and Imlay 1999). Streptococci, 
including S. uberis, do not express catalase 
and therefore they must rely on other 
strategies to adapt to peroxide stress. In 
S. uberis the up-regulation of potential 
detoxification enzymes, such as AhpF, 
may play a role in controlling the peroxide 
level in the cell when the quantity of 
reactive oxygen species is increased by 
ciprofloxacin exposure.  

Nicotinamine adenine dinucleotide 
(NADH) is a reducing agent that carries 
electrons from one cellular reaction to 
another. A reduction in the available 
pool of NADH has been shown to 
increase the survival of E. coli cells after 
fluoroquinolone exposure by decreasing 
the formation of ROS (Jonsson et al., 
2007).  Thus, the enzymes involved in the 

generation of NADH could be potential 
mediators of the response to oxidative 
damage in S. uberis cells. The enzymes 
sorbitol-6-phosphate 2-dehydrogenase, 
fructose-6-phosphate amidotransferase, 
g l y s e r a l d e h y d e - 3 - p h o s p h a t e 
dehydrogenase and phosphoglyserate 
kinase were all down-regulated during CF 
treatment (IV, Table 2). In oral streptococci, 
sorbitol metabolism has also been shown 
to be reduced upon oxidative stress (Iwami 
et al., 2000). Thus, it can be predicted that 
metabolic pathways leading to the reduced 
availability of NAHD and to an increase in 
the synthesis of detoxifying enzymes will 
provide S. uberis with increased resistance 
to oxidative damage.

5.4.2 Enzymes controlling the 
deoxynucleotide pool in S. uberis were 
affected by ciprofloxacin

Aerotolerant anaerobic bacteria, such as 
streptococci, are able to synthesize DNA 
both in the presence and the absence of 
oxygen. This can be achieved by different 
ribonucleotide reductases (RNRs), 
enzymes that provide the building blocks 
for DNA synthesis and repair (Nordlund 
and Reichard 2006). The regulation of 
RNR synthesis has a direct effect on dNTP 
pools (Nordlund and Reichard 2006) and 
the sizes of intracellular dNTP pools are 
highly regulated (Herbig and Helmann 
2001, Reichard 1988). Both balanced 
accumulation and unbalanced dNTP 
pools are known to be mutagenic (Kunz 
et al., 1994). In E. coli, overexpression 
of two aerobic RNRs resulted in roughly 
proportional increase in dNTP pools and 
the rate of spontaneous mutation was 
increased 40-fold (Iwami et al., 2000).

In study IV, CF exposure significantly 
increased the abundance of some proteins 
involved in the dNTP pool. Eight protein 
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spots corresponding to 5 different 
proteins potentially involved in the 
synthesis of dNTPs were up-regulated in 
response to CF challenge; ribonucleoside 
d i p h o s p h a t e  r e d u c t a s e  ( N r d A ) , 
deoxyribose aldolase (DeoC), ribose-
phosphate pyrophosphokinase (Prs), 
adenylosuccinate synthetase (AdsS) and 
inositol-5-monophosphate dehydrogenase 
(ImpDH) abundances were positively 
regulated by 2.2, 1.6, 1.7, 1.5 and 2.0 fold, 
respectively.

The proteomic data from study IV 
suggest that S. uberis copes with oxidative 

damage caused by CF exposure by 
reducing the available pool of NADH. 
This might have forced S. uberis to 
consume dNTPs as an alternative energy 
source, supported by the finding that the 
abundance of deoxyribosephosphate 
aldolase (DeoC) was increased as a 
result of CF challenge (IV, Table 2). This 
enzyme is known to play a role in the 
catabolism of dNTPs arising from dead 
cells (Sgarrella et al., 1997). Thus it gives 
a selective advantage to microorganisms 
with a capability to consume DNA as an 
alternative energy source and may confer 

Figure 9. Northern blot analyses of nrdA (SUB1225), ahpF (SUB1753), prs (SUB0020) and 
deoC (SUB0952) expression in S. uberis ATCC BAA-854 before (lane 1) and 60 min after the 
addition of CF at 0.5 µg/ml (lane 2) and 1.0 µg/ml (lane 3). Bar diagrams show the relative 
mRNA induction ratios calculated by dividing the signal from the RNA sample by the signal from 
the RNA sample at time zero. RNA amounts were corrected after rRNA hybridization (data not 
shown), and results represent the mean values of two independent experiments with standard 
errors. The sizes of mRNAs were estimated according to an RNA molecular weight marker 
(Promega). Detected transcripts are marked by black triangles.
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a growth advantage over other bacteria, 
as evidenced by previous studies on S. 
mutans (Han et al., 2004).

The transcriptome studies on CF-
challenged P. aeruginosa, S. aureus, 
and S. pneumoniae, as well as its FQ-
resistant derivative strain, demonstrated 
the induction of pathways contributing to 
increased mutagenesis after CF exposure 
(Cirz et al., 2006, Cirz et al., 2007, 
Marrer et al., 2006). Other metabolic 
changes associated with CF challenge 
were suggested to provide S. aureus and 
P. aeruginosa time to persist and evolve 
resistance (Cirz et al., 2006, Cirz et al., 
2007).  In the case of S. pneumoniae, the 
acquisition of CF resistance was shown 
to lead to a metabolic state in which the 
error-prone DNA repair pathways are 
altered to correct the potential effects of 
CF (Marrer et al., 2006). On the other 
hand, previous studies on S. uberis 
(Varhimo et al., 2008, Varhimo et al., 
2007) and S. pneumoniae (Henderson-
Begg et al., 2006) suggest a minor role for 
error-prone polymerases in CF-induced 
mutagenesis in Streptococcus. It has been 
shown, that S. uberis employs distinct 

mechanisms for UV- and ciprofloxacin-
induced mutagenesis (Varhimo et al., 
2008). Although ciprofloxacin induces 
the expression of umuC, a gene coding 
for an error-prone polymerase V, umuC is 
not necessary for ciprofloxacin-induced 
mutagenesis in S. uberis. Ciprofloxacin 
does not induce the expression of dnaE 
or dinP, the polymerase subunits of 
other known error prone polymerases, 
implying that alternative, as yet unknown 
mechanisms that contribute to induced 
mutations exist in S. uberis. 

The proteomic analysis and results 
of study IV demonstrate that S. uberis 
responds to CF -exposure by changing 
its metabolism so that it can survive the 
changes in conditions. The results obtained 
here support previous findings reported by 
Varhimo et al. 2008, and show that other, 
as yet unknown mechanisms exist for 
the induction of mutagenesis. RNA-level 
studies (Figure 9. unpublished) based on 
the findings from IV support the results 
obtained here by also showing a clear 
induction of ahpF and nrdA at the RNA 
level.

Results and discussion
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6. Concluding remarks 

Proteomic studies involve diverse 
analytical techniques, data analyses and 
the use of databases for the systematic 
study of the proteome. Proteomics was 
initially considered as the identification 
of proteins from 2-DE gels, but is now 
associated with a great variety of analysis 
techniques covering protein identification, 
characterisation and quantification. 

In this thesis, proteomic methods 
were established and applied to study the 
proteomes of eukaryotic baker’s yeast 
Saccharomyces cerevisiae, the probiotic 
bacterium Lactobacillus gasseri and the 
mastitis pathogen Streptococcus uberis 
under different biological conditions. 
Methods in proteomics, from sample 
preparation to protein identification, have 
developed during the years these studies 
were performed. In the 1990s, protein 
identification methods rapidly developed 
and many sample preparation methods and 
instrumental enhancements took place. For 
example, MALDI-TOF MS in studies I and 
II was an older generation instrument than 
that applied in studies III and IV, which 
were carried out using MALDI-TOF/TOF. 

In the studies forming the first 
part of this thesis (I and II), proteomic 
investigations were carried out on baker’s 
yeast S. cerevisiae. In study I, protein 
separation by 2-DE as well as methods 
for protein identification were established. 
Proteins were identified by MALDI-
TOF PMF and LC-MS/MS sequence tag 
analysis, for which LC with a low flow 
rate was coupled with an ESI-Q-TOF 
instrument. These methods were applied 
and further developed in study II, where 
proteome analysis of recombinant xylose-
fermenting baker’s yeast, S. cerevisiae, 
was performed. In study II the LC was 
further equipped with pre-column for 

sample desalting and concentration, 
which enabled the direct injection of 
peptide digest into the LC without manual 
desalting. Study II was the first proteome-
wide study of recombinant xylose-
fermenting S. cerevisiae, revealing a broad 
insight into the effects of xylose on cellular 
metabolism. 

In the background to studies I and 
II lies increasing concern over global 
climate change and the search for 
alternatives to petroleum-derived fuels. 
Nowadays, bioethanol is the most common 
replacement product (Gray et al., 2006, 
Zaldivar et al., 2001, Nevoigt 2008). 
Bioethanol production from cellulosic 
biomass by fermentation with S. cerevisiae 
is one of the most studied areas in this field 
(Cardona and Sanchez 2007, Chu and Lee 
2007, Hahn-Hagerdal et al., 2007, Zaldivar 
et al., 2005). Xylose is abundant in the 
hemicellulose fraction of the biomass, 
and the utilization of pentose sugars such 
as xylose has been widely studied in S. 
cerevisiae (Chu and Lee 2007, Hahn-
Hagerdal et al., 2007). The research project 
on recombinant xylose-metabolising S. 
cerevisiae continued with a transcriptomic 
(Salusjarvi et al., 2006) and another 
proteomic study (Salusjarvi et al., 2008). 
Together, these revealed numerous changes 
in gene expression, protein abundance and 
post-translational modifications of proteins 
in cells metabolising xylose compared to 
those growing on glucose. This, combined 
with all the other metabolic engineering 
studies on xylose-utilising S. cerevisiae, 
remains a challenging task that will require 
further progress in bioinformatics. 

In the second part of this work, 
2-D DIGE, an advanced quantitative 
electrophoretic protein separation method 
based on traditional 2-DE, was applied to 
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bacterial proteomics. In study III, the heat 
shock response of the probiotic bacterium 
L. gasseri was analysed. Probiotics are of 
growing economic interest as components 
of the consumables available to provide 
health benefits for humans and animals. 
Probiotics and the mechanisms by 
which they exert positive effects on the 
composition of the gut microbiota are 
subjects of intensive research. Proteomic 
methods, among others, have succeeded in 
revealing the stress responses of probiotic 
bacteria, and in the future they will most 
probably also provide new insights into the 
probiotic nature of bacteria.

In study IV, the mastitis pathogen S. 
uberis was challenged with mutagenesis-
inducing antibiotic ciprofloxacin, and the 
changes in proteome were monitored with 
2-D DIGE. An inevitable side effect of the 
use of antibiotics is the emergence and 
spread of resistant bacteria and resistance 
genes. The use of antimicrobials in pet 
animals and animal husbandry is extensive, 
and imposes selective pressure on certain 
bacteria of animal origin. Fluoroquinolones 
are broad-spectrum antibiotics that inhibit 
the replication of DNA and are widely used 
in veterinary medicine. Bacterial resistance 
to fluoroquinolones has unfortunately, been 
reported in various studies (Marrer et al., 
2006, Varhimo et al., 2008, Angelakis et 
al., 2008, Descloux et al., 2008, Gerboc 
et al., 2008, Kim et al., 2008, Maki et al., 
2008). Fluoroquinolone antibiotics are 
sometimes released into the environment 
due to incomplete waste-water treatment 
(Batt et al., 2006) and they appear to be 
quite stable in the environment (Turiel et 
al., 2005). Bacteria and fungi are among 
the first components in ecosystems affected 
by pollutants from waste water and other 
sources. The relatively small size and 
simplicity of the bacterial genome makes 
them particularly attractive models for the 

detection of changes on the proteome level. 
In environmental proteomics (Nesatyy and 
Suter 2007) two of the subjects discussed in 
this thesis, antibiotic resistance and stress 
response of bacteria, meet in a fascinating 
way. Environmental proteomics allows 
the analysis of the interactions between 
environmental and biological factors, such 
as how exposure to antibiotics or other 
chemical agents and physical stress can 
alter the proteome expression patterns 
leading to health effects and disease in 
humans and in animals. 

In proteomic studies,  MS is 
considered as one the core technologies. 
Developments and improvements in MS-
based techniques have revolutionized the 
identification of proteins. Instrumentation, 
software and data management capabilities 
enable proteomics to be widely applied in 
biological research as well as in the medical 
and food industry. Ongoing developments 
in automation and sophisticated data 
acquisition and interpretation will make 
it possible to obtain a greater amount and 
quality of data. Eventually, this could 
enable the study of all protein complexes 
and organelles that can be purified from 
a cell. However, the identification of the 
proteins present in a sample is only the first 
step in the process of understanding their 
functions. Thus, a successful model of 
protein function and regulation pathways 
in the cell requires a broad understanding 
of protein interaction with other proteins 
and a comprehensive understanding of 
cellular metabolism. 

The proteomic methods established, 
developed and applied in this thesis proved 
their strength in visualizing, detecting 
and identifying the proteins of interest. 
Proteomics is a rapidly developing area of 
research and new technologies are being 
developed and validated. The combination 
of proteomics and other -omics data, 
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such as genomics, transcriptomics, 
metabolomics and bioinformatics, will lead 

to a more complete understanding of the 
biology of systems at the molecular level.
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