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Ideal τ tagging with the multivariate data-analysis

toolkit TMVA

A Heikkinen, P Kaitaniemi, V Karimäki, M J Kortelainen,
T Lampén, S Lehti, T Lindén and L Wendland
Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki, Finland

E-mail: aatos.heikkinen@cern.ch

Abstract. The experience on using ROOT package TMVA for multivariate data analysis is
reported for a problem of τ tagging in the framework of heavy charged MSSM Higgs boson
searches at the LHC. We investigate with a generator level analysis how the τ tagging could
be performed in an ideal case, and hadronic τ decays separated from the hadronic jets of QCD
multi-jet background present in LHC experiments. A successful separation of the Higgs signal
from the background requires a rejection factor of 105 or better against the QCD background.
The τ tagging efficiency and background rejection are studied with various MVA classifiers.

1. Introduction
Multivariate analysis methods have become increasingly important in high energy physics. The
rare and subtle signals are hidden within voluminous data, and their analysis can benefit from
multivariate algorithms, since taking full correlations into account can greatly increase the ability
to separate signal from background [1].

The ROOT [2] package TMVA [3] for multivariate data analysis (MVA) was demonstrated
to be applicable to b-tagging in Ref. [4]. In this study, the TMVA package is applied to τ
identification in the heavy charged MSSM Higgs boson decay H± → τ±ντ → hadrons. In
previous studies conducted in the CMS experiment, this channel has been found to provide
an interesting possibility to discover the charged Higgs boson [5], should it exist.

One of the main challenges of finding the heavy charged Higgs boson is, that the cross-section
of the largest background, i.e. QCD multi-jet events, which could fake hadronically decaying τ ’s,
is up to 107 times greater than the signal cross-section at the 14 TeV center of mass collision
energy of the LHC. Since the production of such large Monte Carlo samples is not currently
feasible with full detector simulation, generator level simulation was used to obtain an estimate
for the benefit of the use of multivariate methods to separate the signal and background.

It is estimated that a rejection factor of 105 is needed for a τ identification in order to make
the charged Higgs boson signal visible [5]. Therefore, the performance of the selected MVA
classifiers was evaluated for background rejections of 105 and 106, and some programming was
required to map the study into the TMVA framework and to analyse the Monte Carlo samples.

2. TMVA - Toolkit for Multivariate Data Analysis with ROOT
ROOT-integrated TMVA is a framework for training, testing and performance evaluation of
multivariate classification techniques. TMVA works in transparent factory mode to guarantee
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an unbiased performance comparison between the classifiers, such as:

• Rectangular cut optimisation
• Projective likelihood estimation (PDE approach)
• Multidimensional probability density estimation (PDE - range-search approach, PDERS)
• Multidimensional k-nearest neighbour classifier
• Function discriminant analysis (FDA)
• Predictive learning via rule ensembles (RuleFit)

Main characteristics of different TMVA classifiers are summarised in Table 1.

Table 1. Main characteristics of different TMVA classifiers [3, 6].

Method Pros Cons

Cuts Easy to understand Possibly inefficient
Likelihood methods Fast to train and evaluate Non-linear correlations treated badly
HMatrix, Fisher Very fast and transparent fail if PDFs have same mean,

and if non-linear correlations
PDERS, kNN Handles well complex class boundaries Impractical with more than 10 variables
ANN Very good with non-linear correlations Black box, needs tuning
BDT Very good out-of-the-box performance Needs tuning to avoid overtraining
RuleFit Like BDT but simpler, fast evaluation Often needs some tuning
SVM Good with non-linear problems, Not transparent

insensitive to overtraining
FDA Very good classification if boundary is known Classification boundary function needed

Of the available classifiers, the following MVA methods were selected for evaluating the TMVA
performance:

• Linear discriminant analysis (LDA) based on Fisher discriminants
• Boosted/Bagged decision trees (BDT)
• Support Vector Machine (SVM)
• Artificial neural networks (ANN)

3. Data
The signal was generated with Pythia [7] version 6.4.19 through the process gg → tbH±,
H± → τ±ντ in the maximal mH SUSY scenario [8] with mH± = 217 GeV/c2 and tan β = 30.

The τ leptons were forced to decay hadronically. The decay of the τ leptons was simulated
with the Tauola program [9] version 2.6 to obtain correct polarization for the τ lepton and its
decay products [10]. A total of 105 and 2 × 105 signal events were produced for training and
evaluation of the multivariate analyzers, respectively.

The dominating background for this physics channel is the QCD multi-jet background. This
background was generated with Pythia version 8.108. The transverse momentum of the hadronic
jets was limited to the bin 120 < p̂T < 170 GeV/c, which has been found to be the most difficult
p̂T range [5]. Training and evaluation samples of 5 × 106 and 108 QCD multi-jet events were
produced, respectively. Another independent sample of 5 × 106 events was used as a second
training sample to estimate the bias caused by the training.

The events were generated with p-p collisions at a center of mass energy of 14 TeV. The jets
were reconstructed with the PYCELL-method in a cone of 0.5. For the signal, only the jets
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corresponding to the τ decay, i.e. τ jets, were taken as τ -jet candidates. For the background
events, all jets obtained with PYCELL-methods were taken as τ -jet candidates.

In order to save CPU time and disk space, a set of preselection cuts was applied to the τ -jet
candidates. These are standard cuts, which are used for τ identification [11]. Care was taken,
that the preselection cuts were loose enough in order not to bias the MVA performance. The
following preselections were used:

• jet ET > 100 GeV
• jet |η| < 2.2
• matching of the leading track, i.e. the track with the highest pT, to the jet direction within

a cone of 0.1
• cut on the pT of the leading track, pT > 20 GeV/c

• charged track isolation, where at most one track was allowed in the isolation annulus
between the cones 0.04 and 0.50 around the leading track direction; tracks, which fulfilled
the following criteria were counted:

– η of tracks, |η| < 2.5
– minimum pT of charged tracks, pT > pmin

T = 0.5 GeV/c
– track matching to primary vertex along the beam axis, |IPtrack

z − z| < 2 mm
One or two tracks were allowed in a signal cone size of 0.04 around the leading track.

If at least one of the jets in the generated event fulfilled these conditions, all the jets in the event
were saved. For training and evaluation of the MVA methods, the jets were required to fulfill
ET > 100 GeV, |η| < 2.4. Only the leading track was allowed to be within the signal cone in
order to select the one-prong final state of τ decays, which dominate the hadronic τ decay final
states. In the signal samples, the jet was required to be matched to the τ jet coming from the
H± → τ±ντ decay. The total preselection efficiencies were found to be 17.3 % and 0.7 % for the
signal and background samples used for the evaluation of the MVA methods, respectively.

Most of the generally used variables for the τ identification in the H± → τ±ντ decay [11]
were used as input to the MVA methods. These variables include a cut on the transverse energy
and pseudo-rapidity of the τ -jet candidate, maximum track pT in the isolation annulus between
cones of 0.04 and 0.50 around the leading track direction to impose charged track isolation, the
electromagnetic energy sum in the region between cones of 0.10 and 0.50 around the jet axis, and
matching of the hadronic energy deposition to the leading track momentum to reject electrons.
Furthermore, the Rτ = ptrack/Eτ variable, where Eτ is the reconstructed τ -jet candidate energy
(excluding neutrinos), was used to take advantage of the boost of the τ due to polarization [10].
The variables are summarized in Table 2. Figure 1 shows the distributions of the jet ET and Rτ

variables, which were found to have the best separation power. The input variables were used
without transformations as well as with decorrelation or principal component analysis applied.

4. τ tagging analysis code for TMVA
For τ -tagging it is natural to train and use the MVA methods with jets. However, in order
to obtain results which can be compared with other studies, the evaluation of the methods
should be done with respect to events. An analysis program was therefore developed to train
and evaluate the methods with TMVA in a standard way, and in addition to re-evaluate the
methods with events. This analysis code was made for TMVA distributed with ROOT 5.22.

The event based evaluation algorithm is described in Appendix A Listing 1. The algorithm is
very similar to the evaluation algorithm in TMVA with the exception of bookkeeping of events.
The preselection efficiencies are taken into account, and the signal efficiencies are printed at
background efficiency levels 10−5 and 10−6. Example Listing 2 in Appendix A demonstrates the
output from the analysis program.
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Table 2. Variables used in the analysis.

ID Variable

0 Jet ET

1 Jet η
2 Charged track isolation: no tracks with pT < pmax

T

in isolation annulus of 0.04-0.50
3 Isolation of electromagnetic energy (∆R=0.10 - 0.50)
4 Neutral hadron rejection

(i.e. track p matching to hadronic energy deposition)
5 Rτ = p(leading track) / E(jet)

Figure 1. Example of data used in τ tagging. Distributions of jet ET (left) and Rτ (right)
variables are shown after all preselections.

5. Results
In the following the usage and results of selected TMVA classifiers are presented. The amount
of data used for training varied depending on the classifier, but for testing all available data was
used. The systematic uncertainty was estimated by repeating the full analysis with independent
background data.

5.1. Classifying with Fisher discriminant
The method of Fisher discriminants is a computationally easy method, which determines the
discriminating function analytically in the multivariate space represented by the input variables.
It has been used in analyses of several HEP experiments, for instance in BaBar [12] and Belle [13].

The Fisher method works in a transformed variable space with zero linear correlations, by
distinguishing the mean values of the signal and background distributions. An axis in the
(correlated) hyperspace of the input variables is chosen so that when projecting the output
classes (signal and background) upon this axis, they are pushed as far as possible away from
each other compared to the average mutual distance of events belonging to the same class [14].

Fisher discriminants are optimal for Gaussian distributed variables with linear correlations.
However, when a variable has the same sample mean for signal and background, no
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discrimination is achieved. If the shapes of the distributions are different, a suitable
transformation can then be applied [14].

The Fisher classifier was used as an example of linear discriminant analysis in the case of
ideal τ tagging. The following settings were used:

Fisher H:!V:!Normalise:CreateMVAPdfs:Fisher:NbinsMVAPdf=50:NsmoothMVAPdf=1

The response of TMVA to Fisher classifier is shown in Fig. 2. The signal efficiency was found
to be 3.5±0.1 % at a background rejection of 105. Signal efficiencies are also shown in Table 3
together with other discrimination methods tested.

Figure 2. TMVA response to Fisher discriminant (left) and the output of the SVM classifier
with Gaussian kernel (right).

5.2. Boosted Decision Trees
Recently, the Boosted Decision Trees (BDTs) have been advocated as an alternative to artificial
neural networks for particle identification [15].

The BDT method is based on binary decision trees visualized in Fig. 3. Repeated yes/no
decisions are made on the variable with the best separation power until the subsamples become
small, or until the subsamples are declared as signal or background. The variable phase-space
is hence divided into a large number of hypercubes, which is why BDT is effective for both with
linear and non-linear samples.

In order to make the decision trees robust against statistical fluctuations of the training
sample, boosting, i.e. reweighting, is applied to the training sample. After each reweighting, a
new decision tree is constructed. The boosting thus combines iteratively many weak classifiers
or hypotheses into a single stronger rule called the combined hypothesis [15]. The outcome of a
tested event is carried out by evaluating the decisions of typically hundreds of trees. Overtraining
is countered by pruning nodes with insignificant separation.

The BDT was evaluated with the following setup:

BDT V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nEventsMin=20:
nCuts=20:PruneMethod=CostComplexity:PruneStrength=4.0

Increasing the number of trees was found not to yield significant improvement. Different pruning
strengths were tried out in order to determine a level at which overtraining is tolerable. The
signal efficiency was found to be 7.3±1.3 % at the background rejection of 105. Decorrelation
and principal component analysis were tried out for the input variables, but they were found
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to yield only minimal changes in the signal efficiency. The full training samples were used to
obtain the results.

Figure 3. A visualization of
the yes/no chain of decisions of a
boosted decision tree. Some of the
nodes have been declared as signal
or background.

5.3. Support Vector Machine
The Support Vector Machine (SVM) learning algorithm is a recent addition to MVA methods.
One of the first applications in HEP was the classification problem of signal/background
discrimination in the tt̄ dilepton channel [16].

The SVM maps the input vectors into the feature space through some non-linear mapping.
In this space an optimal hyperplane is constructed and evaluated by a kernel function.

Potential advantages of the SVM method compared to the ANN method include the existence
of only few user chosen parameters, ability to find global minimum, and correspondence to a
linear method which makes the SVM theoretically easy to analyse.

For τ tagging the SVM was trained with a Gaussian kernel with 4×103 signal jets and 3.2×104

background jets. The SVM training time scales as O(n2), where n is the size of the training
sample. Therefore the training sample size was kept small for this method. The Gaussian kernel
has two parameters (Sigma, C) and the optimisation was done in this parameter space with a
grid scan. The training for individual points were run in parallel on a Linux cluster. The best
signal efficiency was found to be 5.6±0.1 % at the background rejection of 105 with the following
parameters:

SVM_Gauss Sigma=0.5:C=17:Tol=0.001:MaxIter=20000:Kernel=Gauss

Figures 2 and 4 demonstrate the TMVA output of the SVM classifier with the Gaussian kernel.

5.4. Neural Networks
An interesting study related to our τ tagging is presented in [18], where an artificial neural
network (ANN) was trained to choose the polarity of τ particles from the decay angles. It was
shown that the τ helicity found by the ANN approximated well the optimal Bayesian classifier.

Of the three Multilayer Perceptrons (MLP) implementations, supported by TMVA,
TMVA::Types::kMLP was selected. Data for 6-15-1 MLP configuration with neurons of sigmoid
type was trained for 103 cycles (see Fig. 5.4) with 104 signal jets and 4 × 104 background jets.
A ROOT TMVA configuration for these settings can be written as follows:
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Figure 4. TMVA plot for parallel coordinates. In this kind of plot each line going through
specific variable, as explained in Table 2, represent one event. Poorly classified background
events with value 0.9–1.0 are selected from the vertical histogram on the left.

NSigTrain=10000:NBkgTrain=40000:SplitMode=Random:NormMode=NumEvents:!V

MLP_v0 H:!V:!Normalise:NeuronType=sigmoid:NCycles=1000:HiddenLayers=N+9,N:
TestRate=5:VarTransform=PCA

In addition to variable transformation log(ET), Principal Component Analysis, PCA, (see
VarTransform=PCA above) was found to improve classification power. In our τ tagging problem
the PCA method simply performs a rotation in the 6-dimensional parameter space to a new
coordinate system whose unit vectors are the eigenvectors of the system.

Convergence of the neural network training and for test data is shown in Fig. 5.4. The signal
efficiency for the MLP discriminator was found to be 6.5±0.1% at the background rejection of
105.

5.5. Summary of results
The performance of the various TMVA discriminators for the ideal τ tagging problem is
summarised in Table 3.

Overall discrimination performance of selected TMVA classifiers are demonstrated with
Receiver Operating Characteristics (ROC) curves in Fig. 6. In order to take the preselection
efficiencies into account, signal efficiency shown in Fig.6 should be multiplied by 0.17 and
correspondingly background efficiency by 0.007. For example, the required 10−5 background
efficiency corresponds to 0.9986 background rejection after preselections.

6. Conclusion
The usage of the TMVA package in ROOT for τ identification in the framework of a charged
Higgs boson study was discussed from the user’s point of view. It was observed, that the TMVA
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Figure 5. Evolution of training and
validation errors of TMVA MLP classifier
during 1000 training cycles.

Table 3. Summary of performance of various TMVA discriminators for the ideal τ tagging
problem.

Discriminator Signal efficiency (%)
for background efficiency
10−5 10−6

Fisher 3.5 ± 0.1 (stat) ± 0.0 (syst) 1.6 ± 0.1 ± 0.1
BDT 7.3 ± 1.3 ± 0.1 2.6 ± 0.8 ± 0.1
SVM 5.6 ± 0.1 ± 0.1 1.7 ± 0.1 ± 0.1
MLP 6.5 ± 0.1 ± 0.2 2.2 ± 0.1 ± 0.2

Figure 6. Overall discrimination performance of selected TMVA classifiers. On the right a
closeup image of background rejection vs. signal efficiency curves is shown.

package has matured since CHEP’07 and it is now fully integrated to ROOT toolkit. It also
provides an interface for adding new classifiers.

Some analysis code was prepared to evaluate the study case in the TMVA framework. The
multivariate data-analysis techniques were found to be promising in τ identification. At 10−5

background efficiency, TMVA classifiers were found to yield signal efficiencies in the range 3.5–
7.3 %. Several methods gave comparable results, which suggests that they are close to the
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Bayesian limit of achievable ideal separation.
Areas where the study can be improved have been identified. One possibility would be to

use more a fundamental set of variables, instead of those chosen in this study, such as the three-
momenta components px, py, pz of the final state particles. This kind of jet analysis based on
neural networks has been shown to simulate a sophisticated jet algorithm k⊥ [19].
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Appendix A. Analysis code for TMVA event evaluation
Analysis code for simulated τ tagging events is demonstrated in Listing 1 and corresponding
example from TMVA run is shown in Listing 2.

Listing 1. Pseudocode for the event evaluation.
TMVA: : Reader r e a d e r
TTree tempTree

f o r t r e e i n [ s i g n a l t e s t t r e e , b a c k g r o u n d t e s t t r e e ] :
output = {}
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f i r s t e n t r y = True
p r e v e n t r y e v e n t = −1
f o r e n t r y i n t r e e :

i f not p a s s p r e s e l e c t i o n ( e n t r y ) :
c on t i nu e

i f e n t r y . e ven t != p r e v e n t r y e v e n t :
i f f i r s t e n t r y :

f i r s t e n t r y = Fa l s e
e l s e :

tempTree . F i l l ( output )
f o r mva i n c l a s s i f i e r s :

output [ mva ] = r e a d e r . EvaluateMVA (mva , e n t r y )
e l s e :

f o r mva i n c l a s s i f i e r s :
# below min/max i s taken depend ing which i s b e t t e r f o r the c l a s s i f i e r i n q u e s t i o n
output [ mva ] = min or max ( output [ mva ] , r e a d e r . EvaluateMVA (mva , e n t r y ) )

p r e v e n t r y e v e n t = en t r y . e ven t
tempTree . F i l l ( output )

f o r e n t r y i n tempTree :
f o r mva i n c l a s s i f i e r s :

f i l l c l a s s i f i e r o u t p u t (mva , e n t r y )
f i l l c l a s s i f i e r e f f i c i e n c y (mva , e n t r y )

f o r mva i n c l a s s i f i e r s :
n o r m a l i z e c l a s s i f i e r e f f i c i e n c i e s (mva)
f o r b i n i n ROC histogram :

cut = f i n d c u t v a l u e (mva , b i n )
b k g e f f = b a c k g r o u n d e f f i c i e n c y (mva , cut )
ROC histogram . SetB inContent ( b in , b k g e f f )

p r i n t c l a s s i f i e r e f f i c i e n c i e s ( )

Listing 2. Example listing showing analysis code for TMVA.
MyEvaluate : Te s t i ng c l a s s i f i e r s i n o r d e r to ob t a i n s i g n a l / background e f f i c i e n c i e s f o r

EVENTS
MyEvaluate : ( not j e t s , which a r e the i npu t to TMVA)
MyEvaluate :
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MyEvaluate : | Events | J e t s
MyEvaluate : | S i g n a l e f f Bkg e f f | S i g n a l e f f Bkg e f f
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MyEvaluate : Generated : 200000 89799840 | N/A N/A
MyEvaluate : Event p r e s e l : 47866 0 .239 1470627 0 .016 | 206079 4345182
MyEvaluate : TMVA p r e s e l : 34660 0 .724 635923 0 .432 | 34660 0 .17 736086 0 .17
MyEvaluate : Tota l p r e s e l : 0 .173 0 .007 |
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MyEvaluate :
MyEvaluate : Thus 1e−5 o v e r a l l bkg even t e f f i c i e n c y c o r r e s pond s to 1 .4 e−03 bkg even t
MyEvaluate : e f f i c i e n c y by TMVA.
MyEvaluate :
MyEvaluate : S i g n a l and bkg even t e f f i c i e n c i e s have been s c a l e d wi th the p r e s e l e c t i o n
MyEvaluate : even t e f f i c i e n c i e s
MyEvaluate : E v a l u a t i o n r e s u l t s ranked by be s t s i g n a l e f f i c i e n c y at 1e−5
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MyEvaluate : MVA S i g n a l even t e f f i c i e n c y at bkg even t e f f i c i e n c y ( e r r o r ) :
MyEvaluate : Methods : @B=1e−6 @B=1e−5 @B=1e−4 @B=1e−3 @B=0.01
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MyEvaluate : SVM Gauss 0 . 5 17 : 0 . 0 166 ( 006 ) 0 .0568(012) 0 .1083(016) 0 .1643(019) 0 .1733(020)
MyEvaluate :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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