
Medium-Space Algorithms for Inverse BWT ?

Juha Kärkkäinen1 and Simon J. Puglisi2

1 Department of Computer Science, University of Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 School of Computer Science and Information Technology,
Royal Melbourne Institute of Technology, Australia

simon.puglisi@rmit.edu.au

Abstract. The Burrows–Wheeler transform is a powerful tool for data
compression and has been the focus of intense research in the last decade.
Little attention, however, has been paid to the inverse transform, even
though it is a bottleneck in decompression. We introduce three new in-
version algorithms with improved performance in a wide range of the
space-time spectrum, as confirmed by both theoretical analysis and ex-
perimental comparison.

1 Introduction

The Burrows–Wheeler transform (BWT) [2, 1] is an invertible transformation of
a text that has a central role in some of the best data compression methods.
The transform itself performs no compression — the result is just a permutation
of the text — but the transformed text is easier to compress using simple and
fast methods [15]. Much effort has gone into developing efficient algorithms for
the forward transform, largely owing to its close relation to constructing the
suffix array [17] and compressed text indexes [16]. The less studied problem of
inverting the transform is the subject of this paper.

The inverse transform is a bottleneck in decompression and thus needs to be
fast, particularly in applications requiring frequent decompression such as on-
the-fly disk compression. The space requirement is also an issue: a typical, fast
implementation requires 5 times the space of the text. As already proposed in
the original paper [2], the text can be broken into smaller blocks, each of which is
compressed separately. However, a large block size is preferable because it allows
better compression (see e.g. [4]). Furthermore, the block size is determined during
the forward transform, possibly on a machine with more memory or using a space
efficient algorithm (e.g. [11]), and the inverse transform is impossible unless a
sufficiently space-efficient algorithm is available.

The key operation in the inversion is a rank query:

rank(j) ≡
∣∣{i | i < j and L[i] = L[j]}

∣∣ ,
? This work is supported by the Academy of Finland grant 118653 (ALGODAN) and

by the Australian Research Council.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14913982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where L is the transformed text. A single scan of L is sufficient to answer all
distinct rank queries in the sequential order, but during the inversion they are
needed in a different order. By tabulating the answers, we obtain a simple, linear
time inversion algorithm, already described in [2]. There are a few variations
but all of them need at least n log n bits of space for the tabulated answers or
something equivalent. We call these large-space algorithms.

Space-efficient data structures for rank queries are widely used with com-
pressed text indexes [16], but the query needed there is of a more general form:

rank(c, j) ≡
∣∣{i | i < j and L[i] = c}

∣∣ .
We call this the general rank query as opposed to the special rank query needed in
inverse BWT algorithms. Obviously, any data structure for general rank queries
can be used for special rank queries, so using the techniques from compressed
text indexes, we obtain space-efficient algorithms for inverse BWT. Many of
these algorithms need at most n log σ + o(n log σ) bits of space, where σ is the
size of the alphabet. This is only slightly more than needed for the text itself —
and sometimes even less by way of compression — but this comes at a significant
cost in query time, especially in practice. We call these small-space algorithms.

The focus of this paper is on medium-space algorithms that are between
large-space and small-space algorithms with respect to both time and space
complexity. The key characteristic of medium-space algorithms is the tabulation
of partial answers to all special rank queries.

Related work. Seward [19] describes several large-space BWT inversion algo-
rithms, among them the original algorithm from [2], and compares them exper-
imentally. One of the algorithms, mergedTL, is the fastest known algorithm in
practice. Seward also has two algorithms in the small-space category, but they
are not competitive either in theory or in practice.

The only previous medium-space algorithm we are aware of is by Lauther
and Lukovszki [13]. They also propose two small-space algorithms and provide
experimental results for two of their algorithms. They identify the central role
of the special rank query but not its relation to the general rank query.

Ferragina, Gagie and Manzini [3] have recently described an external memory
algorithm for the inversion. It is, however, rather complicated and unlikely to be
competitive except when external memory algorithms are the only option.

There is a large body of research on space-efficient data structures for (gen-
eral) rank queries in the area of compressed text indexes and succinct data
structures. The theoretically best results on BWT inversion achievable using
those techniques are reported at the bottom of Table 1.

Our contribution. We introduce three new medium-space algorithms for BWT
inversion, offering improved space–time tradeoffs, including the most space-
efficient linear-time algorithm for large alphabets. The time and space com-
plexities are shown in Table 1. The table also shows our improved analysis of
the only previous medium-space algorithm in [13]. Experimental results show
that the favorable tradeoff properties extend to practice too.

Table 1: Time and space complexities of BWT inversion algorithms. The sections corre-
spond to large-, medium- and small-space algorithms. The space complexities exclude
the space for input, output and O(σ logn)-bit data structures.

space (bits/symbol) time per symbol comment

dlogne+ dlog σe O(1) mergeTL in [19]
dlogne O(log σ) indexF in [19]

log dlogne+ log σ + dlog σe O(1) [13]
1 + log b+ dlog σe O(log(n/b)

−H0 + bσ/n)
this paper
dlogne ≤ b ≤ n/σ

2 + log
(
dlogne+ 3dlog σe

)
+ log σ + 2 log logn

logn

O(1) this paper

1 + log b+ log σ O(log(n/b)− log σ) this paper
2(1 + dlogne) ≤ b ≤ n/σ

dlog σe+ (σ logn)/b O(b) [13]

dlog σe+ σ
b1

(
log b1 + logn

b2

)
O(b1 + b2) [13]

Hk +O
(

log σ log logn
logn

+ σk+1 logn
n

)
O(1 + log σ

log logn
) [5, 14]

log σ +O(log σ
log log σ

) O(log log σ) [6]

Perhaps of independent interest is the identification of the special rank query
as an operation of interest, separate from the general rank query. The separate
nature is illustrated by the fact that extending the techniques used by the large-
and medium-space algorithms to general rank queries would blow up the space
by factor σ, which is usually too much. We note that, besides inverse BWT, the
locate and display procedures over BWT-based compressed indexes (see [16])
perform repeated special rank queries.

2 Preliminaries

Let S = S[0..n] = S[0]S[1] . . . S[n] be a string of n + 1 symbols or characters.
The first n characters of S are drawn from an ordered alphabet Σ, and the
final character S[n] is a special “end of string” symbol, $, distinct from and
lexicographically smaller than all the other symbols. We assume that the symbols
in Σ are encoded with the integers {0, 1, .., σ − 1} in an order preserving way.

For any i ∈ 0..n, the string S[i..n]S[0..i− 1] is a rotation of S. LetM be the
(n + 1) × (n + 1) matrix whose rows are all the rotations of S in lexicographic
order. Let F be the first and L the last column of M, both taken to be strings
of length n + 1. The string L is the Burrows–Wheeler transform of S. An
example is given in Fig. 1. Note that F and L are permutations of S.

For a string X, integers j, r ∈ {0, . . . , |X| − 1} and a symbol c, define the
following functions:

accessX(j) ≡ X[j]
rankX(j) ≡

∣∣{i | i < j and X[i] = X[j]}
∣∣

F L
$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

0
0
1
0
0
1
2

L rankLF
$
A
A
A
B
N
N

A
N
N
B
$
A
A

Fig. 1: BWT matrix M and inverse BWT permutation for text S = BANANA$.

Inverse BWT in forward order
1: construct F by sorting L
2: j ← selectL($, 0)
3: for i← 0 to n do
4: S[i]← c← accessF (j)
5: r ← rankF (j)
6: j ← selectL(c, r)

Inverse BWT in reverse order
1: construct F by sorting L
2: j ← selectL($, 0)
3: for i← n downto 0 do
4: S[i]← c← accessL(j)
5: r ← rankL(j)
6: j ← selectF (c, r)

Fig. 2: Two abstract algorithms for the inverse Burrows–Wheeler transform.

selectX(c, r) ≡
{
j if X[j] = c and rankX(j) = r
undefined if there is no such j

The notation accessX(j) is used instead of X[j] when X might be stored in a
form that does not support trivial character access.

Two abstract inversion algorithms are given in Fig. 2. The first (left-hand
side) algorithm constructs S from the beginning to the end and the second in
the reverse order. Both algorithms follow the same unicyclic permutation but in
different directions. An example of the permutation is shown in Fig. 1. To obtain
concrete algorithms, we need to define the implementation of the operations
access, rank, and select.

3 Basic Large-Space Algorithms

Of the two abstract algorithms in Fig. 2, we will focus on the reverse order
algorithm, as its operations are easier to implement and faster in practice. All
the algorithms mentioned in this paper are based on it.

Another feature shared by all the algorithms is the implementation of selectF
based on the special nature of F . The string F contains the characters of S in
sorted order and all copies of the same symbol are grouped together. For any
symbol c, let C[c] be the position of the first occurrence of c in F . We can
implement selectF as

selectF (c, r) = C[c] + r .

The array C can be easily computed by scanning L.

The difference between various algorithms is the implementation of accessL
and rankL. We will describe next the algorithm from the seminal paper by
Burrows and Wheeler [2]. They store L explicitly, making accessL trivial. The
values rankL(j) are stored in a table R[0..n], which can be computed by scanning
L while keeping account of the number of occurrences of each symbol.

The algorithm runs in linear time and needs n(dlog ne + dlog σe) + (σ +
O(1))dlog ne bits of space. It would be very fast in practice, but for cache misses.
In the main loop, the sequence of accesses to L and R is essentially random with a
high likelihood of a cache miss for each access. Seward [19] describes an optimized
version that replaces the arrays L and R with a single array LR that stores
both values. This can reduce the number of cache misses to a half, leading to a
significant improvement in speed. This algorithm, which we call Algorithm LR
(mergeTL in [19]), is the fastest known algorithm for BWT inversion. It is also
the starting point for our medium-space algorithms.

4 Basic Medium-Space Algorithms

In this section we describe two simple medium-space algorithms. One of them is
by Lauther and Lukovszki [13] and one is new.

Both algorithms modify Algorithm LR by storing only partial information
about ranks in R (i.e., in the R-fields of the array LR). Every position j ∈
{0, . . . , n} is associated with a nearby reference point ref(j) ∈ {0, . . . , n}, and

R[j] = rankL(j)− rankL(L[j], ref(j)) .

Now we can compute a rank query as rankL(j) = rankL(L[j], ref(j)) +R[j]. The
difference between the two algorithms is the choice of reference points and the
computation of rankL(L[j], ref(j)).

4.1 Algorithm LR-B

The first algorithm is by Lauther and Lukovszki [13]. We provide an improved
analysis.

Divide R into d(n+ 1)/be blocks of size b. Every position in a block is asso-
ciated with the same reference point, which is the center of the block. In other
words, the reference points are the positions b/2, b+ b/2, 2b+ b/2, As a small
twist to the basic scheme, if j is in the first half of a block, i.e., if j < ref(j), we
set

R[j] = rankL(L[j], ref(j))− rankL(j)− 1 .

Otherwise, i.e., if j ≥ ref(j), we use the basic scheme and set

R[j] = rankL(j)− rankL(L[j], ref(j)) .

Now all the values in R are in the range [0, b/2 − 1] and can be stored using
dlog be−1 bits. The ranks at the reference points are stored in a two-dimensional
array Rref, i.e., for all c ∈ Σ and j ∈ {0, . . . , d(n+ 1)/be − 1},

Rref[c, j] = rankL(c, b/2 + jb) .

We need at most σ(n/b+ 1)dlog ne bits for the array Rref.
The following theorem summarizes the properties of the algorithm. All proofs

are omitted here due to lack of space and are provided in the full paper.

Theorem 1. Setting b = 2k for k = blog(σdlog ne)c, Algorithm LR-B computes
the inverse Burrows-Wheeler transform in O(n) time using at most

n(log dlog ne+ log σ + dlog σe) +O(σdlog ne)

bits of space.

4.2 Algorithm LR-I

In our new algorithm, reference points are separate for each symbol of the al-
phabet. For a symbol c, the reference points are at every bth occurrence of c, i.e.,
at positions selectL(c, 0), selectL(c, b), selectL(c, 2b), A position j is assigned
to the closest preceding reference point for the symbol L[j], i.e.,

ref(j) = selectL(L[j], bbrankL(j)/bc) .

The array R is as in the basic scheme, i.e., R[j] = rankL(j)− rankL(L[j], ref(j)),
and we need dlog be bits for each entry. The reference points for a symbol c
are stored in an array Ic, i.e., Ic[i] = selectL(c, ib). The arrays Ic, c ∈ Σ, can
be seen as sparse inverted lists for the symbols. The total space for them is
ndlog ne/b+O(σ log n) bits. To compute rankL(j), we binary search IL[j] to find
i such that IL[j][i] ≤ j < IL[j][i+ 1], and then rankL(j) = ib+R[j].

Unlike LR-B, Algorithm LR-I offers a space-time tradeoff as shown by the
following result.

Theorem 2. Let b = 2k for an integral k. If k = blog dlog nec, the space re-
quirement of Algorithm LR-I is at most

n(1 + log dlog ne+ dlog σe) +O(σ log n) .

For blog dlog nec < k ≤ log(n/σ), the space requirement is at most

n(1 + k + dlog σe) +O(σ log n) .

The time complexity is O(n(log(n/b)−H0)+ bσ), where H0 ≤ log σ is the zeroth
order empirical entropy of S (see Section 5).

5 Variable-Length Encoding

In this section, we show how to improve the algorithms of the previous section
using variable-length encoding.

For a string X, let ΣX be the set of symbols occurring in X, let |Xc| be
the number of occurrences of a symbol c in X, and let fX(c) = |Xc|/|X| be the
frequency of c. The zeroth order empirical entropy of X is

H0(X) =
∑
c∈ΣX

fX(c) log(1/fX(c)) .

A canonical prefix code [18] for X is characterized by a non-decreasing se-
quence ` = (`1, . . . , `|ΣX |) of positive, integral code lengths satisfying Kraft’s
inequality:

∑|ΣX |
i=1 2−`i ≤ 1. The code lengths are assigned to symbols in de-

creasing order of symbol frequency; let `(c) denote the code length of a symbol
c. There exists an assignment of binary code words code(c) of `(c) bits to each
symbol c so that, for every c, c′ ∈ ΣX with fX(c) < fX(c′),

– code(c) is not a prefix of code(c′) (the code is prefix-free), and
– code(c) is lexicographically smaller than code(c′) (the code is canonical).

Let `(X) be the encoded length of X for a code `:

`(X) =
m−1∑
i=0

`(X[i]) = m
∑
c∈ΣX

fX(c)`(c) .

For any prefix code, `(X) ≥ mH0(X). The equality is achieved with the frac-
tional lengths `(c) = log(1/fX(c)). The Huffman code [9] is known to be the
optimal code with integral lengths. However, for our purposes, we need a code
where the code length of every symbol is close to the fractional optimum, which
the Huffman code does not guarantee [12]. Furthermore, with one of our algo-
rithms (VRL-I, Section 5.2), we have a strict upper limit h on the code lengths.
We will be using the length-limited rounded code ˆ̀h

X with

ˆ̀h
X(c) = dh− log(fX(c)(2h − σX) + 1)e ,

for any integer h ≥ dlog σXe. When there is no upper limit, the code is ˆ̀
X = ˆ̀∞

X

with ˆ̀
X(c) = dlog(1/fX(c))e. The properties of the code are established in the

following lemma.

Lemma 1. The code lengths ˆ̀h
X define a valid prefix code for X with ˆ̀(c) ≤ h

for all c ∈ Σ. Furthermore, for all c ∈ Σ,

ˆ̀h
X(c) < log(1/fX(c)) + log(2h/(2h − σX)) + 1 ,

and if log(1/fX(c)) ≥ h, then ˆ̀h
X(c) = h.

5.1 Algorithm VLR-B

As with LR-B, we divide the array LR into blocks of size b. The reference point for
all positions in a block is now the beginning of the block (instead of the center).

Let B be a block. We encode the L-fields in B with the unlimited rounded code
ˆ̀
B , and the R-fields using dlog |Bc|e bits for a symbol c. The combined length

of the two fields for a symbol c is

dlog(1/fB(c))e+ dlog |Bc|e = dlog(b/|Bc|)e+ dlog |Bc|e ≤ dlog be+ 1 .

Thus we need n(dlog be+ 1) bits for the whole LR array.
For each block B, we have a table V with an entry for each symbol c in ΣB

containing three fields

– The e-field has dlog be+ 1 bits with code(c) in the beginning and the rest of
the field filled with zeros.

– The s-field contains the original code for c using dlog σe bits.
– The r-field is the rank of the symbol c at the reference point, i.e., at the

beginning of the block in dlog ne bits.

The table V is ordered by the e-field. Given LR[j], we find the entry in V [i] such
that V [i].e ≤ LR[j] < V [i+ 1].e. We obtain the symbol L[j] from V [i].s and its
rank at the reference point from V [i].r. The rank relative to the reference point
is LR[j]− V [i].e. Thus rankL(j) = V [i].r + (LR[j]− V [i].e).

To speed up the search in V , there is another table U [0..2q − 1], 0 ≤ q ≤
dlog be+ 1. The entries of U represent the bitstrings of length q. The entry for a
bitstring Q contains a pointer to the first position in V with a code beginning
with Q. If a code is shorter than q, say ˆ̀

B(c) < q, all bitstrings beginning with
code(c) point to V [c]. We need dlog σe bits for each pointer.

Using U we can short-cut to a good starting point for the search in V . The
search itself can be done linearly, and we still obtain a linear-time algorithm as
shown by the following theorem.

Theorem 3. Setting q = blog σc and b = 2k for k = blog(σ(dlog ne+ 3dlog σe))c,
Algorithm VLR-B computes the inverse Burrows-Wheeler transform in O(n) time
using at most

n

(
2 + log(σ) + log

(
dlog ne+ 3dlog σe

)
+

2 log log n
log n

)
+O(σ log n)

bits of space.

5.2 Algorithm VLR-I

Our final algorithm is a modification of Algorithm LR-I to use variable-length
fields in the LR array. Each entry in the LR array is h > log σ bits. The L-
fields use the length-limited rounded code ˆ̀h

L, leaving h − ˆ̀h
L(c) bits for the

R field. Thus the reference points are placed at every b(c)th occurrence for
b(c) = 2h−ˆ̀h

L(c). The decoding of the LR entries is done as in Algorithm VLR-B.
Otherwise the algorithm works as LR-I. The properties are summarized in the
following theorem.

Theorem 4. Let hmin = b1 + log d1 + log ne+ log σc. When h = hmin, the
space requirement of Algorithm VLR-I is at most

n(2 + log d1 + log ne+ log σ) +O(σ log n)

bits. For h > hmin, the space requirement is at most

n(h+ 1) +O(σ log n)

bits. The time complexity is O(n(max(1, log n− h)).

6 Experimental Results

For testing we used the files listed in Table 23. All tests were conducted on a 3.0
GHz Intel Xeon CPU with 4Gb main memory and 1024K L2 Cache. The machine
had no other significant CPU tasks running. The operating system was Fedora
Linux running kernel 2.6.9. The compiler was g++ (gcc version 4.1.1) executed
with the -O3 option. The times given are the minima of three runs and were
recorded with the standard C getrusage function. The memory requirements
are sums of the sizes of all data structures as reported by the sizeof function.

The focus of the experiments is on the four algorithms described in Sec-
tions 4 and 5, but for comparison we also implemented two large-space algo-
rithms by Seward [19] and two simple small-space algorithms, one by Lauther
and Lukovszki [13] and one based on the wavelet tree [7], which is a commonly
used rank data structure with compressed text indexes [16]. We optimized the
wavelet tree implementation for special rank queries and used the method of Vi-
gna [21] (the fastest we know) for bitvector rank queries. For canonical prefix
coding, we use the techniques of Turpin and Moffat [20]4 instead of the technique
of Sect. 5.1. In all medium- and small-space algorithms, we use σ = |ΣS | (see
Table 2), which affects arrays of size σ, the height dlog σe of the wavelet tree,
and the size dlog σe of the L-field in the LR array for Algorithms LR-B and LR-I.
The algorithms and their parameter settings are summarized in Table 3.

The time and space requirements during BWT inversion are shown in Fig. 3.
The times do not include reading the input or writing the output. The input
3 Available from http://pizzachili.dcc.uchile.cl/.
4 Originally downloaded from http://ww2.cs.mu.oz.au/~alistair/mr_coder/.

Table 2: Data sets used for empirical tests. For each type of data (dna, xml, english,
protein) a 100Mb file was used.

Data set name σ H0 mean LCP

xml 97 5.23 44
dna 16 1.98 31
english 239 4.53 2,221
protein 27 4.20 166

Table 3: Algorithms and their parameter settings. Underlined parameter values indi-
cate that the implementation is optimized for the byte or word alignment provided by
those parameters values.

Alg. Description

LR Algorithm LR (Sect. 3) = mergedTL in [19] with 32-bit integers
IF indexF in [19] with 32-bit integers

LR-B k ∈ 5 + blog σc, . . . , 17, 25
VLR-B k ∈ 10, . . . , 24
LR-I k + dlog σe ∈ 14, 16, 24, 32
VLR-I h ∈ 12, 14, 16, 24, 32

LL The simple small-space algorithm in [13]
Blocksizes are powers of two in [max(32, σ) . . .min(2048, 40σ)]

WT A simple algorithm using wavelet tree for rank queries (see text)

and output are held in memory during the computation but are excluded from
space requirements when the algorithm accesses them only sequentially.

All the medium-space algorithms display a fairly smooth space-time tradeoff
curve, even the constant-time algorithms with no theoretical tradeoff. This is
explained by cache effects. As the LR array (which always dominates the space)
gets bigger, the other data structures get smaller and start to fit in the cache.

At the fast end of the space-time tradeoff, LR-B matches the speed of the
fastest known algorithm, LR, in less memory. Note that this parameter setting
(k = 25) was not implemented or even suggested by Lauther and Lukovszki [13].
The middle area is dominated by the algorithms VLR-B and VLR-I using variable-
length encoding. They reduce the space by a factor of 2–3 compared with LR
without slowing down by more than a factor of two. The results for the small
end are mixed, and anyway should be considered incomplete, since there are
many possibilities for improving the small-space algorithms.

7 Concluding Remarks

We have introduced three new algorithms for the BWT inversion and demon-
strated, theoretically and experimentally, that they improve the state of the
art, particularly in the middle area of the space-time tradeoff spectrum. We are
continuing our research by focusing on the extremes of the spectrum.

At the small end, the two-level version of the small-space algorithm by Lau-
ther and Lukovszki [13], and advanced techniques from compressed text indexes
such as Huffman-shaped wavelet trees [8] and implicit compression boosting [14]
appear promising approaches.

At the large end, we are experimenting with an algorithm that reduces cache
misses by taking advantage of repetitions in the text. Another interesting avenue
for future work is exploiting properties of modern processors such as parallelism
and out-of-order execution [10].

0 2 4 6

Memory (bytes/symbol)

0.0

0.5

1.0

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

XML 100MB

0 2 4 6

Memory (bytes/symbol)

0.0

0.2

0.4

0.6

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

DNA 100MB
LR

IF

LR-B

VLR-B

LL

LR-I

VLR-I

WT/2

0 2 4 6

Memory (bytes/symbol)

0.0

0.5

1.0

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

ENGLISH 100MB

0 2 4 6

Memory (bytes/symbol)

0.0

0.2

0.4

0.6

0.8

T
im

e
(s

ec
on

ds
/m

eg
ab

yt
e)

PROTEIN 100MB

Fig. 3: Time-memory tradeoff for various inversion algorithms. For clarity, the time
shown for WT is half of the actual time, which would be far outside the graph.

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer (2008)

2. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, Palo Alto, California (1994)

3. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compres-
sion in external memory. In: Proc. 9th Latin American Theoretical Informatics
Symposium. Volume 6034 of LNCS. Springer (2010) 697–710

4. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. 3rd ACM
International Conference on Web Search and Data Mining, ACM (2010) 391–400

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Algorithms 3 (2007) Article 20

6. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets:
a tool for text indexing. In: Proc. 17th ACM-SIAM Symposium on Discrete Algo-
rithms, ACM (2006) 368–373

7. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, SIAM (2003) 841–850

8. Grossi, R., Gupta, A., Vitter, J.S.: When indexing equals compression: experi-
ments with compressing suffix arrays and applications. In: Proc. 15th ACM-SIAM
Symposium on Discrete Algorithms, SIAM (2004) 636–645

9. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the I.R.E. 40 (1952) 1098–1101

10. Kärkkäinen, J., Rantala, T.: Engineering radix sort for strings. In: Proc. 15th
Symposium on String Processing and Information Retrieval. Volume 5280 of LNCS.
Springer (2008) 3–14

11. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoretical
Computer Science 387 (2007) 249–257

12. Katona, G.O.H., Nemetz, T.O.H.: Huffman codes and self-information. IEEE
Transactions on Information Theory IT-22 (1976) 337–340

13. Lauther, U., Lukovszki, T.: Space efficient algorithms for the Burrows-Wheeler
backtransformation. In: Proc. 13th Annual European Symposium on Algorithms.
Volume 3669 of LNCS. Springer (2005) 293–304

14. Mäkinen, V., Navarro, G.: Implicit compression boosting with applications to
self-indexing. In: Proc. 14th International Symposium on String Processing and
Information Retrieval. Volume 4726 of LNCS. Springer (2007) 229–241

15. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the ACM
48 (2001) 407–430

16. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys
39 (2007) Article 2

17. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39 (2007) 1–31

18. Schwartz, E.S., Kallick, B.: Generating a canonical prefix encoding. Communica-
tions of the ACM 7 (1964) 166–169

19. Seward, J.: Space-time tradeoffs in the inverse B-W transform. In Storer, J.,
Cohn, M., eds.: Proc. IEEE Data Compression Conference, IEEE Computer Soci-
ety (2001) 439–448

20. Turpin, A., Moffat, A.: Housekeeping for prefix coding. IEEE Transactions on
Communications 48 (2000) 622–628

21. Vigna, S.: Broadword implementation of rank/select queries. In McGeoch, C.C.,
ed.: Proc. 7th International Workshop on Experimental Algorithms. Volume 5038
of LNCS. Springer (2008) 154–168

