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Abstract

We consider approximate policy evaluation for finite state and action Markov decision pro-
cesses (MDP) with the least squares temporal difference algorithm, LSTD(λ), in an exploration-
enhanced off-policy learning context. We establish for the discounted cost criterion that the
off-policy LSTD(λ) converges almost surely under mild, minimal conditions. We also analyze
other convergence and boundedness properties of the iterates involved in the algorithm. Our
analysis draws on theories of both finite space Markov chains and weak Feller Markov chains
on topological spaces. Our results can be applied to other temporal difference algorithms and
MDP models. As examples, we give a convergence analysis of an off-policy TD(λ) algorithm
and extensions to MDP with compact action and state spaces.
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1 Introduction

We consider approximate policy evaluation for Markov decision processes (MDP) in an exploration-
enhanced learning context, commonly referred to as “off-policy” learning in the terminology of
reinforcement learning. In this context, we employ a certain policy called the “behavior policy” to
adequately explore the state and action spaces, and using the observations of costs and transitions
generated under the behavior policy, we may approximately evaluate any suitable “target policy” of
interest. Off-policy learning differs from “on-policy” learning – the standard policy evaluation, where
the behavior policy always coincides with the policy to be evaluated. The dichotomy between the two
stems from the exploration-exploitation tradeoff in practical model-free/simulation-based methods
for policy search. With their flexibility, methods for off-policy learning form an important part
of the model-free reinforcement learning methodology (Sutton and Barto [SB98]). They have also
been suggested as an important class of importance-sampling based techniques (Glynn and Iglehart
[GI89]) in the broad context of simulation-based methods for large-scale dynamic programming. In
this context, any sampling mechanism may play the role of the behavior policy, inducing system
dynamics that may not be realizable under any policy, for the purpose of efficient policy evaluation.

We focus primarily on finite state and action MDP, and we consider discounted total cost prob-
lems with discount factor α < 1. When the MDP model is unavailable or when simulation is involved,
there are two common approaches to evaluating a stationary target policy: evaluating its costs, and
evaluating its so-called Q-factors, which are expected total discounted costs associated with initial
state-action pairs. In either case, the function to be evaluated can be viewed as the cost function of
the policy on a finite space I = {1, 2, . . . , n}, on which the policy induces a homogeneous Markov
chain, and the goal is to solve a corresponding Bellman equation on I satisfied by the cost function.
The Bellman equation in matrix notation has the form

J = ḡ + αQJ, J ∈ <n, (1)

where ḡ is the vector of expected one-stage costs and Q the transition matrix of the Markov chain
on I associated with the target policy. The cost vector J∗ of the target policy is the unique solution
of the Bellman equation.

Our focus will be on a particular algorithm for policy evaluation with function approximation
and exploration-enhancements, which will be referred to in this paper as the off-policy least squares
temporal difference (LSTD) algorithm. It is a counterpart of the on-policy LSTD algorithm for
policy evaluation (Bradtke and Barto [BB96], Boyan [Boy99]), and it was first given by Bertsekas
and Yu [BY09] in the general context of approximating solutions of linear systems of equations. It
belongs to the family of temporal difference (TD) methods (Sutton [Sut88]; see also the books by
Bertsekas and Tsitsiklis [BT96], Sutton and Barto [SB98], Bertsekas [Ber07], and Meyn [Mey07]).
Beyond the algorithmic level, TD methods share a common approximation framework which involves
multistep Bellman equations and projected equations. In this framework, we consider a projected
version of a multistep Bellman equation parametrized by λ ∈ [0, 1],

J = ΠT (λ)(J), (2)

where T (λ) is a multistep Bellman operator associated with the target policy and parametrized by
λ ∈ [0, 1], whose exact form will be given later, and Π is the projection onto an approximation
subspace {Φr | r ∈ <d} ⊂ <n. The projection here is with respect to a weighted Euclidean norm.
The weights in the projection norm, in the off-policy case that we consider, are the only quantities
related to the behavior policy; they are the steady-state probabilities of the Markov chain induced by
the behavior policy. When the projected equation (2) is well defined, i.e., has a unique solution Φr∗

in the approximation subspace, we use the solution to approximate the cost vector J∗ of the target
policy. There are general approximation error bounds (Yu and Bertsekas [YB10]) and geometric
interpretations of the approximation (Scherrer [Sch10]) in this case. Our interest in this paper,
however, will not be in whether the projected Bellman equation is well defined, but rather in the
approximation of the equation using sampling and the off-policy LSTD(λ) algorithm.
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For any given λ, the projected Bellman equation (2) is equivalent to a low dimensional linear
equation on <d, which may be written as

C̄r + b̄ = 0, r ∈ <d, (3)

where b̄ is a d-dimensional vector and C̄ a d× d matrix. The precise definitions of b̄, C̄ will be given
later. The off-policy LSTD(λ) algorithm that we will analyze constructs a sequence of equations

Ctr + bt = 0, t ≥ 1,

using observations generated under the behavior policy, with the goal of “approaching” in the limit
Eq. (3), the low dimensional representation of (2). The algorithm takes into account the discrep-
ancies between the behavior and the target policies by properly weighting the observations. The
technique is based on importance sampling, which is widely used in dynamic programming and re-
inforcement learning contexts; see e.g., Glynn and Iglehart [GI89], Sutton and Barto [SB98], Precup
et al. [PSD01], (which is one of the first off-policy TD(λ) algorithms), and Ahamed et al. [ABJ06].

The assumptions underlying the off-policy LSTD(λ) algorithm are that every state (in the case of
cost approximation) or state-action pair (in the case of Q-factor approximation) is visited infinitely
often under the behavior policy, and for every state, possible actions of the target policy are also
possible actions of the behavior policy. These are natural, minimal requirements for off-policy
learning. In terms of transition probabilities, the assumptions can be expressed as follows. Let
P = [pij ] be the transition matrix of the Markov chain on I induced by the behavior policy. We
require that this Markov chain is irreducible, and that the transition matrix Q = [qij ] associated
with the target policy is absolutely continuous with respect to P in the sense that

pij = 0 ⇒ qij = 0, i, j ∈ I. (4)

We denote the latter condition by Q ≺ P .

In this paper we analyze the convergence of the off-policy LSTD(λ) algorithm – the convergence
of {(bt, Ct)} to (b̄, C̄) – for all λ ∈ [0, 1] under the general conditions given above. Prior to our work,
the almost sure convergence of the algorithm (i.e., convergence with probability one) in special
cases has been studied. A proof under the additional assumption that λαmax(i,j)

qij

pij
< 1 (with 0/0

treated as 0) is given in Bertsekas and Yu [BY09]. This additional condition is technically convenient
because it guarantees the boundedness of a key sequence in the algorithm (the sequence {Zt} defined
in Section 2 and to be mentioned below), but it is restrictive. It either requires the behavior policy
to be very similar to the target policy, or restricts λ to be close to 0, while the case of a general
value of λ is important in practice. Using a large value of λ can not only improve the quality of
the cost approximation obtained from the projected Bellman equation, but can also avoid potential
pathologies regarding the existence of solution of the equation (as λ approaches 1, ΠT (λ) becomes a
contraction mapping, ensuring the existence of a unique solution).

As the main results of this paper, we establish for all λ ∈ [0, 1], the almost sure convergence of
the sequences {bt}, {Ct}, as well as their convergence in the first mean, under the assumptions of
the irreducibility of P and Q ≺ P . These results imply in particular that the off-policy LSTD(λ)
solution Φrt converges to the solution Φr∗ of the projected Bellman equation (2) almost surely,
whenever Eq. (2) has a unique solution, and if (2) has multiple solutions, any limit point of {Φrt}
is one of them.

On the technical side, the line of our analysis is considerably different from those in the literature
for similar type TD algorithms. In an iterative form, the off-policy LSTD(λ) looks very close to
the on-policy LSTD(λ) counterpart (Bradtke and Barto [BB96], Boyan [Boy99]), and also bears
similarities to the on-policy TD(λ) (Sutton [Sut88], Tsitsiklis and Van Roy [TV97]) and the off-
policy TD(λ) given in Precup et al. [PSD01]. When λ > 0, to facilitate iterative computation,
all the algorithms calculate iteratively an auxiliary sequence of vectors Zt, (sometimes called the
“eligibility traces”), where each Zt is a function of the entire set of past observations up to the
time t. However, in the off-policy case, without restricting the value of λ, the sequence {Zt} is
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not necessarily bounded, and neither does it necessarily have uniformly bounded variances. Indeed,
we will show in the paper that in fairly common situations, {Zt} is almost surely unbounded. It
is also not difficult to construct examples where {Zt} has unbounded variances or unbounded νth
order moments with ν > 1. In the on-policy case, the bounded variance property of {Zt} has been
relied on by the convergence proofs for TD(λ) (Tsitsiklis and Van Roy [TV97]) and LSTD(λ) (Nedić
and Bertsekas [NB03]). The analyses in [NB03, BY09] also use the boundedness of {Zt}, so does
[PSD01], which calculates Zt only for state trajectories of a predetermined finite length. Therefore
for the convergence analysis in the off-policy case with a general value of λ, we do not follow the
approaches in these works, and instead we will relate the off-policy LSTD(λ) iterates to particular
type of Markov chains and resort to the ergodic theory for these chains [MT09, Mey89].

Let us also mention a proof approach from stochastic approximation theory, the mean-o.d.e.
method (see e.g., Kushner and Yin [KY03], Borkar [Bor06, Bor08]). It requires the verification of
conditions that in our case would be tantamount to the almost sure convergence conclusion we want
to establish.

As we will show, the convergence of {bt}, {Ct} in the first mean can be established using argu-
ments based on the ergodicity of the finite space Markov chain {it} on I induced by the behavior
policy. But for proving their almost sure convergence, we did not find such arguments to be suffi-
cient, in contrast with the on-policy LSTD case as analyzed by Meyn [Mey07, Chap. 11.5]. Instead,
we will study the Markov chain {(it, Zt)} on the topological space I ×<d. We will exploit the weak
Feller property of the chain {(it, Zt)}, as well as its other properties, to establish two results: (i) the
Markov chain {(it, Zt)} has a unique invariant probability measure and is ergodic (in the sense of
weak convergence of occupation measures), and (ii) the sequences {bt}, {Ct} converge almost surely
to b̄, C̄, respectively, (and hence the off-policy LSTD(λ) algorithm also converges almost surely).

We note that the study of the almost sure convergence of the off-policy LSTD(λ) is not solely
of theoretic interest. Various TD algorithms other than LSTD(λ) need the same approximations
bt, Ct to build approximating models (e.g., preconditioned TD(λ) in Yao and Liu [YL08]) or fixed
point iterations (e.g., LSPE(λ), see Bertsekas and Yu [BY09]; and scaled versions of LSPE(λ), see
Bertsekas [Ber09]). Therefore in the off-policy case, the asymptotic behavior of these algorithms on
a sample path depends on the mode of convergence of {bt}, {Ct}, and so does the interpretation of
the approximate solutions generated by these algorithms. For algorithms whose convergence relies
on the contraction property of mappings, (for instance, LSPE(λ)), the almost sure convergence of
{bt}, {Ct} on every sample path is critical. Moreover, the mode of convergence of the off-policy
LSTD(λ) is also relevant for understanding the behavior of other off-policy TD algorithms which
use stochastic approximation type iterations to solve projected Bellman equations (3), for instance,
the on-line off-policy TD(λ) algorithm of [BY09], and the off-policy TD(λ) algorithm of [PSD01]
in the case where it uses very long trajectories to update Zt. Although these algorithms do not
directly compute approximations bt, Ct, they implicitly depend on the convergence properties of
{bt}, {Ct}. Thus our results and our line of analysis are useful also for analyzing various off-policy
TD algorithms other than LSTD.

Besides the main results mentioned above, this paper contains some additional results. In par-
ticular, we will combine our convergence results with stochastic approximation theory to prove the
convergence of a constrained version of an on-line off-policy TD(λ) algorithm proposed in [BY09].
We will also extend our results to special cases of MDP with compact state and action spaces.

The paper is organized as follows. We specify notation and definitions in Section 2. We present
our main convergence results for the off-policy LSTD(λ) algorithm in finite space MDP in Section 3.
We then give in Section 4 additional results on the convergence of a constrained off-policy TD(λ)
algorithm and the extension of our analysis to MDP with compact spaces. Finally, we discuss other
applications of our results and future research in Section 5.
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2 Notation and Background

We consider stationary randomized target and behavior policies and the evaluation of a target policy
by using observations of transitions and costs generated under the behavior policy. For notational
simplicity, let I = {1, . . . , n} denote a certain set of state and action pairs, on which it is assumed
that the behavior and the target policies induce Markov chains with transition matrices P and Q,
respectively. Our discussion will be centered on these two chains. Their particular forms differ
slightly for Q-factor approximation and cost approximation (see Examples 2.1, 2.2), and will not
be central to our analysis. Throughout the paper, we use {it} to denote the Markov chain with
transition matrix P , and use i or ī to denote specific states. We assume the following condition on
P and Q, as mentioned in the introduction.

Assumption 2.1. The Markov chain {it} with transition matrix P is irreducible, and Q ≺ P in
the sense of Eq. (4).

By the standard MDP theory (see Bertsekas [Ber05], Puterman [Put94]), the cost function J∗ of
the policy associated with transition matrix Q satisfies the Bellman equation

J = T (J), where T (J) = ḡ + αQJ, ∀J ∈ <n,

and ḡ is the vector of expected one-stage costs under that policy. We define a multistep Bellman
operator parametrized by λ ∈ [0, 1] by

T (λ) = (1− λ)
∞∑

m=0

λmTm+1, λ ∈ [0, 1); T (1)(J) = lim
λ→1

T (λ)(J), ∀J ∈ <n. (5)

(T (0) = T in particular.) It appears in the projected Bellman equation (2), J = ΠT (λ)(J), associated
with the TD(λ) methods.

We approximate J∗ by a vector in a subspace of <n, which has a representation {Φr | r ∈ <d}
for some n × d matrix Φ whose columns span the approximation subspace. While any of such
representations is mathematically equivalent, in practice, often some subspace-determining matrix
Φ is first chosen based on one’s understanding of the problem at hand. Typically Φ need not be
stored because one has access to the function φ which maps i ∈ I to the ith row of Φ. The vectors
φ(i) are often referred to as “features” of states/actions and are treated here as d × 1 vectors, so
Φ can be expressed in terms of φ(i) as Φ′ =

[
φ(1) φ(2) · · · φ(n)

]
, while the components of

the function φ span the approximation subspace. Choosing the “feature-mapping” φ is extremely
important in practice but is beyond the scope of this paper.

We define the projection Π onto the approximation subspace to be with respect to a weighted
Euclidean norm. The weights in the norm are the steady-state probabilities of the Markov chain
with transition matrix P , and are well defined under our irreducibility assumption on P . To derive
a low-dimensional representation of the projected Bellman equation (2) in terms of r, let Ξ denote
the diagonal matrix with the diagonal elements being these steady-state probabilities. Equation (2)
is equivalent to

Φ′ΞΦr = Φ′ΞT (λ)(Φr) = Φ′Ξ
∞∑

m=0

λm(αQ)m
(
ḡ + (1− λ)αQΦr

)
,

and by rearranging terms, it can be written as

C̄r + b̄ = 0, (6)

where b̄ is a d× 1 vector and C̄ a d× d matrix, given by

b̄ = Φ′Ξ
∞∑

m=0

λm(αQ)mḡ, C̄ = Φ′Ξ
∞∑

m=0

λm(αQ)m(αQ− I)Φ. (7)
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The off-policy LSTD(λ) algorithm [BY09, Sec. 5.2] computes iteratively vectors bt and matrices
Ct, using observations generated under the policy associated with transition matrix P . The vec-
tor bt and matrix Ct aim to approximate the quantities b̄ and C̄ (respectively), which define the
projected Bellman equation (6), equivalently (2). To facilitate iterative computation, the algorithm
also computes a third sequence of d-dimensional vectors Zt. These iterates are defined as follows.
Let g(i, j) denote the one-stage cost function of transition from i to j, which relates to the expected
one-stage cost ḡ(i) by ḡ(i) =

∑
j∈I qijg(i, j). With (z0, b0, C0) being the initial condition, for t ≥ 1,

Zt = λα
qit−1it

pit−1it
· Zt−1 + φ(it), (8)

bt = (1− γt)bt−1 + γtZt ·
qitit+1
pitit+1

· g(it, it+1), (9)

Ct = (1− γt)Ct−1 + γtZt

(
α

qitit+1
pitit+1

· φ(it+1)− φ(it)
)′
. (10)

Here {γt} is a stepsize sequence with γt ∈ (0, 1], and typically γt = 1/(t+ 1) in practice. A solution
rt of the equation

Ctr + bt = 0

is used to give Φrt as an approximation of J∗ at time t.1

In the standard on-policy case where P = Q, all the ratios
qit−1it

pit−1it
appearing above in Zt and Ct

become 1, and the algorithm with the typical stepsize γt = 1/(t+ 1) reduces to the on-policy LSTD
algorithm as first given by Bradtke and Barto [BB96] for λ = 0 and Boyan [Boy99] for λ ∈ [0, 1].

We are interested in whether {bt}, {Ct} converge to b̄, C̄ respectively, in some mode (in mean,
with probability one, or in probability). As the two sequences {bt} and {Ct} have the same iterative
structure, we can consider just one sequence in a more general form to simplify notation:

Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′, (11)

with (z0, G0) being the initial condition. The sequence {Gt} specializes to {bt} or {Ct} with partic-
ular choices of the (vector-valued) function ψ(i, j):

Gt =

{
bt if ψ(i, j) = qij

pij
· g(i, j),

Ct if ψ(i, j) = α
qij

pij
· φ(j)− φ(i).

(12)

We will consider stepsize sequences {γt} that satisfy the following condition. Such sequences include
γt = t−ν , ν ∈ (0.5, 1], for example. When conclusions hold for a specific sequence {γt}, such as
γt = 1/t, we will state them explicitly.

Assumption 2.2. The sequence of stepsizes γt is deterministic and eventually nonincreasing, and
satisfies γt ∈ (0, 1],

∑
t γt = ∞,

∑
t γ

2
t <∞.

With this notation, the question of convergence of {bt}, {Ct} amounts to that of the convergence
of {Gt}, in any mode, to the constant vector/matrix

G∗ = Φ′Ξ
( ∞∑

m=0

βmQm
)
Ψ, (13)

where β = λα and the vector/matrix Ψ is given in terms of its rows by

Ψ′ =
[
ψ̄(1) ψ̄(2) · · · ψ̄(n)

]
with ψ̄(i) = E

[
ψ(i0, i1) | i0 = i

]
.

1In this paper we do not discuss the exceptional case where Ctr + bt = 0 does not have a solution. Our focus will
be on the asymptotic properties of the sequence of equations Ctr + bt = 0 themselves, in relation to the projected
Bellman equation, as mentioned in the introduction.
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Here and in what follows E denotes expectation with respect to the distribution of the Markov
chain {it} with transition matrix P . As can be seen, corresponding to the two choices of ψ in the
expression of Gt [Eq. (12)], Ψ = ḡ or (αQ− I)Φ, and G∗ = b̄ or C̄, respectively [cf. Eq. (7)].

Before proceeding to convergence analysis, we provide below specific details relating the above
framework to practical implementations of the algorithm for Q-factor and cost approximations in
the model-free learning context. These details will not be relied on in our analysis.

Example 2.1 (Q-factor approximation). Suppose in the MDP, transition from state s to state ŝ
occurs according to the probability p(ŝ | s, u) when taking an action u that is admissible at s, and
the transition incurs cost c(s, u, ŝ), where c is a function of the transition and action. The Q-factor
of a policy for each initial state and action pair (s, u) is the expected cost of first taking action u
at the state s and then following the policy. For approximating Q-factors of the target policy, we
let I correspond to the set of state-action pairs, and let the chain {it} correspond to the process
{(st, ut)} of states and actions induced by the behavior policy, with it ∼ (st, ut), where “∼” indicates
association. For two state-action pairs i ∼ (s, u), j ∼ (ŝ, û), the probability of transition from i to
j under a policy which takes action û at state ŝ with probability µ(û | ŝ) is naturally given by
p(ŝ | s, u)µ(û | ŝ). The transition matrices P and Q associated with the behavior and target policies
are defined in this way. We can set the one-stage transition costs g(i, j) and the corresponding
expected one-stage costs ḡ(i) to be

g(i, j) = c(s, u, ŝ), ḡ(i) =
∑

ŝ

p(ŝ | s, u) c(s, u, ŝ), i, j ∈ I with i ∼ (s, u), j ∼ (ŝ, û).

By definition both g(i, j) and ḡ(i) do not depend on policies, which is special to the Q-factor
evaluation scenario. Correspondingly, the updates for bt in the off-policy LSTD(λ) algorithm can
be simplified to

bt = (1− γt)bt−1 + γtZtg(it, it+1),

omitting the term
qitit+1
pitit+1

before g(it, it+1) [cf. Eq. (9)]. The resulting sequence {bt} is a special case

of the sequence {Gt} given by Eq. (11) that we will analyze, with the function ψ(i, j) = g(i, j).

In the model-free learning context, it is practically important that the ratios qij

pij
are functionally

independent of the state transition dynamics p(ŝ | s, u) of the MDP; they are equal to the ratios
between the corresponding action probabilities of the target and the behavior policies, as can be seen
from the above model description. Thus the n2 terms qij

pij
need not be stored and can be calculated

on-line in the off-policy LSTD(λ) algorithm. This is a well-known fact and finds use in many existing
simulation-based algorithms for MDP.

Example 2.2 (Cost approximation). Let the MDP be as in the preceding example, and let {(st, ut)}
be the process of states and actions induced by the behavior policy. Suppose we want to approximate
the cost vector of the target policy in the MDP by a vector of the form φ̂(s)′r, where φ̂ maps states
s to d× 1 vectors. Then, given initial (z0, b0, C0), the LSTD(λ) iterates can be defined as

Zt = λα µ(ut−1|st−1)
µo(ut−1|st−1)

· Zt−1 + φ̂(st), (14)

bt = (1− γt)bt−1 + γtZt · µ(ut|st)
µo(ut|st)

· c(st, ut, st+1), (15)

Ct = (1− γt)Ct−1 + γtZt

(
α µ(ut|st)

µo(ut|st)
· φ̂(st+1)− φ̂(st)

)′
, (16)

where µ(· | s) and µo(· | s) denote the conditional probabilities over actions at state s under the
target and behavior policies, respectively, and it is required that µ(· | s) is absolutely continuous
with respect to µo(· | s), i.e., µo(u | s) = 0 ⇒ µ(u | s) = 0. The above iterates can be cast in the
form given by Eqs. (8)-(10) as follows.

We consider the Markov chain {it} with it ∼ (ut−1, st) (where “∼” indicates association and the
choice of u−1 is immaterial). We assume that every state s can be visited infinitely often under the
behavior policy, and we let I be the set of action-state pairs (v, s) such that s is accessible from some
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state s̃ by taking action v under the behavior policy, i.e., µo(v | s̃)p(s | s̃, v) > 0. For any i, j ∈ I with
i ∼ (v, s), j ∼ (u, ŝ), let φ(i) = φ̂(s), and let the cost of transition from i to j be g(i, j) = c(s, u, ŝ).
For the above i, j, the probability of transition from i to j under the target or behavior policy is
µ(u | s)p(ŝ | s, u) or µo(u | s)p(ŝ | s, u), respectively. This defines the transition matrices P and Q.
In particular, it can be seen that qij

pij
= µ(u|s)

µo(u|s) for the above i, j, and
qitit+1
pitit+1

= µ(ut|st)
µo(ut|st)

, (where we

define 0/0 = 0). The off-policy LSTD(λ) algorithm for cost approximation given by Eqs. (14)-(16)
then takes exactly the same form as the algorithm given by Eqs. (8)-(10).

3 Main Results

We analyze the convergence of {Gt} in mean and with probability one. For the former, we will use
properties of the finite space Markov chain {it}, and for the latter, those of the topological space
Markov chain {(it, Zt)}. Along with the convergence results, we will establish an ergodic theorem
for {(it, Zt)}. We start by listing several properties of the iterates {Zt}, which will be either related
to or needed in the subsequent analysis.

Throughout the paper, let ‖ · ‖ denote the norm ‖V ‖ = maxi,j |Vij | for a matrix V , and the
infinity norm ‖V ‖ = maxi |Vi| for a vector V , in particular, ‖V ‖ = |V | for a scalar V . Let “a.s.”
stand for almost surely.

3.1 Some Properties of Iterates

We denote by Lt
` the product of ratios of transition probabilities along a segment of the state

sequence, (i`, i`+1, . . . , it):
Lt

` =
qi`i`+1
pi`i`+1

· qi`+1i`+2
pi`+1i`+2

· · · qit−1it

pit−1it
. (17)

Define Lt
t = 1. We have for ` ≤ `′ ≤ t, L`′

` L
t
`′ = Lt

` and since Q ≺ P under Assumption 2.1,

E[Lt
` | i`] = 1. (18)

Let β = λα. The iterates Zt can be expressed as

Zt = β
qit−1it

pit−1it
· Zt−1 + φ(it) = βLt

t−1 · Zt−1 + φ(it), (19)

and by unfolding the right-hand side,

Zt = βtLt
0z0 +

t−1∑
m=0

βmLt
t−mφ(it−m). (20)

It is shown in Glynn and Iglehart [GI89, Prop. 5] that Lτ
0 can have infinite variance, where τ is

the first entrance time of a certain state. It is also known in this setting that the estimator of the
total cost up to time τ , Lτ

0

∑τ−1
`=0 g(i`, i`+1), can have infinite variance; this is shown by Randhawa

and Juneja [RJ04]. In the infinite-horizon case we consider, using the iterative form (19) of Zt, one
can easily construct examples of Zt having unbounded second moments, or unbounded νth order
moments with ν > 1, as t increases. Furthermore, as we show below (Prop. 3.1), under seemingly
fairly common situations, Zt is almost surely unbounded. Thus even for a finite space MDP, the
case P 6= Q sharply contrasts the standard case where P = Q and {Zt} is bounded by definition.

On the other hand, the iterates Zt exhibit a number of “good” properties indicating that the
process {Zt} is well-behaved for all values of λ. The two properties below will be used in the
convergence analysis of the present and the next sections, where some additional properties of the
process {(it, Zt)} will be discussed.
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Lemma 3.1.

(i) The Markov chain {(it, Zt)} satisfies the drift condition,

E
[
V (it, Zt) | it−1, Zt−1

]
≤ βV (it−1, Zt−1) + c

for the deterministic constant c = maxi ‖φ(i)‖ and non-negative function V (i, z) = ‖z‖.

(ii) For each initial condition z0, suptE‖Zt‖ ≤ max{‖z0‖, c}/(1− β).

Proof. The statement in (i) follows from Eqs. (18) and (19). The statement in (ii) is a consequence
of (i). Alternatively, it can be derived from the expression of Zt in Eq. (20): with c̃ = max{‖z0‖, c},

E‖Zt‖ ≤ c̃ E
[
βtLt

0 +
t−1∑
m=0

βmLt
t−m

]
≤ c̃

∞∑
m=0

βm ≤ c̃/(1− β).

The function V is a stochastic Lyapunov function for the Markov process {(it, Zt)}, and has
powerful implications on its behavior (see [MT09, Mey89]), beyond the property (ii) above, which
will however be sufficient for most of our analysis. The next property will be used to establish,
among others, the uniqueness of the invariant probability measure of the process {(it, Zt)}.

Lemma 3.2. Let {Zt} and {Ẑt} be defined by Eq. (19) with initial conditions z̄ and z̄ + ∆, respec-
tively, and for the same sample path of {it}. Then Zt − Ẑt

a.s.→ 0.

Proof. From Eq. (19) and equivalently, Eq. (20), we have Zt − Ẑt = βtLt
0∆, independent of z̄ for

all t. The sequence of nonnegative scalar random variables Xt = βtLt
0, t ≥ 0 satisfies the recursion

Xt = βLt
t−1Xt−1 with X0 = 1, and by Eq. (18)

E
[
Xt | Ft−1

]
= βXt−1 ≤ Xt−1, t ≥ 1,

where Ft−1 is the σ-field generated by i`, ` ≤ t− 1. Hence {(Xt,Ft)} is a nonnegative supermartin-
gale with EX0 = 1 <∞. By a martingale congergence theorem (see e.g., Breiman [Bre92, Theorem
5.14] and its proof), Xt

a.s.→ X, a non-negative random variable with EX ≤ lim inft→∞EXt. Since
EXt = βt → 0 as t→∞, X = 0 a.s. Hence Xt

a.s.→ 0 and Zt − Ẑt
a.s.→ 0.

We now demonstrate by construction that in seemingly fairly common situations, Zt is almost
surely unbounded. Our construction is based on a consequence of the extended Borel-Cantelli
lemma [Bre92, Problem 5.9, p. 97], given below, (in which “i.o.” stands for “infinitely often,” and
“a.s.” attached to a set-inclusion relation means that the relation holds after excluding a set of
probability zero from the sample space).

Lemma 3.3. Let S be a topological space. For any S-valued process {Xt, t ≥ 0} and Borel-
measurable subsets A,B of S, if for all t,

P (∃`, ` > t,X` ∈ B | Xt, Xt−1, . . . , X0) ≥ δ > 0 on {Xt ∈ A} a.s.,

then
{Xt ∈ A i.o.} ⊂ {Xt ∈ B i.o.} a.s.

We have the following result. Denote by Zt,j and φj(it) the jth elements of the vectors Zt

and φ(it), respectively. Consider a cycle of states {̄i1, ī2, . . . , īm, ī1} ⊂ I with the following three
properties:

(a) it occurs with positive probability: pī1 ī2pī2 ī3 · · · pīm ī1 > 0;

(b) it has an amplifying effect in the sense that βm qī1 ī2
pī1 ī2

qī2 ī3
pī2 ī3

· · · qīmī1
pīmī1

> 1;
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(c) for some j̄, the j̄th elements of φ(̄i1), . . . , φ(̄im) have the same sign and their sum is non-zero:

either φj̄ (̄ik) ≥ 0, ∀k = 1, . . . ,m, with φj̄ (̄ik) > 0 for some k; (21)
or φj̄ (̄ik) ≤ 0, ∀k = 1, . . . ,m, with φj̄ (̄ik) < 0 for some k. (22)

The next proposition shows that if such a cycle exists, then {Zt} is unbounded with probability 1, in
almost all natural problems. The latter qualification relates to a nonrestrictive technical condition in
the proposition and will be discussed after the proof. Simple examples with almost surely unbounded
{Zt} can be obtained by letting z0 and φ(i), i ∈ I, all be nonnegative and constructing a cycle as
above. The phenomenon of unbounded {Zt} can be better understood from the viewpoint of the
ergodic behavior of the Markov process {(it, Zt)}, to be discussed in Section 3.3 (Remark 3.3).

Proposition 3.1. Suppose the Markov chain {it} is irreducible, there exists a cycle of states
{̄i1, ī2, . . . , īm, ī1} possessing properties (a)-(c) above, and j̄ is as in (c). Then there exists a con-
stant ν, which depends on the cycle and is negative (respectively, positive) if Eq. (21) (respectively,
Eq. (22)) holds in (c), and if for some neighborhood O(ν) of ν, P(it = ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1,
then P(supt ‖Zt‖ = ∞) = 1.

Proof. Denote by C the set of states {̄i1, ī2, . . . , īm} in the cycle. By symmetry, it is sufficient to
prove the statement for the case where the cycle satisfies properties (a), (b) and (c) with Eq. (21).

Suppose at time t, it = ī1 and Zt = zt. If the chain {it} goes through the cycle of states during
the time interval [t, t+m], then a direct calculation shows that the value zt+m,j̄ of the j̄th component
of Zt+m would be:

zt+m,j̄ = βmlm0 · zt,j̄ + ε, (23)

where

ε =
m−1∑
k=1

βm−klmk φj̄ (̄ik+1) + φj̄ (̄i1), lmk =
qīk+1 īk+2
pīk+1 īk+2

qīk+2 īk+3
pīk+2 īk+3

· · · qīmī1
pīmī1

, 0 ≤ k ≤ m− 1.

By properties (b) and (c) with Eq. (21), we have ε > 0 and βmlm0 > 1. Consider the sequence {y`}
defined by the recursion

y`+1 = ζy` + ε, ` ≥ 0, where ζ = βmlm0 > 1;

y` corresponds to the value zt+`m,j̄ if during [t, t+ `m] the chain {it} would repeat the cycle ` times
[cf. Eq. (23)]. Since ζ > 1 and ε > 0, simple calculation shows that unless y` = −ε/(ζ − 1) for all
` ≥ 0, |y`| → ∞ as `→∞.

Let ν = −ε/(ζ−1) = −ε/(βmlm0 −1) be the negative constant in the statement of the proposition.
Consider any η > 0 and two positive integers K1,K2 with K1 ≤ K2. Let ` be such that |y`| ≥ K2

for all y0 ∈ [−K1,K1], y0 6∈ (ν − η, ν + η). By property (a) of the cycle and the Markov property of
{it}, whenever it = ī1, conditionally on the history, there is some positive probability δ independent
of t to repeat the cycle ` times. Therefore, applying Lemma 3.3 with Xt = (it, Zt), we have

{it = ī1, Zt,j̄ 6∈ (ν − η, ν + η), ‖Zt‖ ≤ K1 i.o.} ⊂ {‖Zt‖ ≥ K2 i.o.} a.s. (24)

We now prove P
(
supt ‖Zt‖ < ∞

)
= 0. Let us assume P

(
supt ‖Zt‖ < ∞

)
≥ δ > 0 to derive a

contradiction. Define

K1 = inf
K

{
K
∣∣P ( sup

t
‖Zt‖ ≤ K

)
≥ δ/2

}
, E = {sup

t
‖Zt‖ ≤ K1}. (25)

Then K1 < ∞ and P
(
E) ≥ δ/2. Let η > 0 be such that (ν − η, ν + η) ⊂ O(ν), where O(ν) is

the neighborhood of ν in the statement of the proposition. By the assumption of the proposition,
P
(
it = ī1, Zt,j̄ 6∈ (ν − η, ν + η) i.o.

)
= 1, and by the definition of E , this implies

E ⊂ {it = ī1, Zt,j̄ 6∈ (ν − η, ν + η), ‖Zt‖ ≤ K1 i.o.} a.s.
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It then follows from Eq. (24) that for any K2 > K1,

E ⊂ {sup
t
‖Zt‖ ≥ K2} a.s.

Since P(E) ≥ δ/2, this contradicts the definition of E in Eq. (25). Therefore P
(
supt ‖Zt‖ <∞

)
= 0.

This completes the proof.

We remark that the extra technical condition P(it = ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1 in Prop. 3.1 is not
restrictive. The opposite case – that on a set with non-negligible probability, Zt,j̄ eventually always
lies arbitrarily close to ν whenever it = ī1 – seems unlikely to occur except in highly contrived
examples. Thus the proposition shows that in the case of a general value of λ, we cannot claim
directly the boundedness of {Gt}, which is often the first step in convergence proofs, by assuming
the boundedness of {Zt} unrealistically.

On the other hand, although the unboundedness of Zt may sound disquieting, it is γtZt
a.s.→ 0

and not the boundedness of Zt that is necessary for the almost sure convergence of Gt; in other
words, {limt→∞Gt exists} ⊂ {limt→∞ γtZt = 0}. (This can be seen from Eq. (11) and the fact that
limt→∞ γt = 0.) That γtZt

a.s.→ 0 when γt = 1/(t+1) will be implied by the almost sure convergence
of Gt we later establish. For practical implementation, if ‖Zt‖ becomes intolerably large, we can
equivalently iterate γtZt via

γtZt = βLt
t−1 ·

γt

γt−1
· (γt−1Zt−1) + γtφ(it),

instead of iterating Zt directly. Similarly, we can also choose scalars at, t ≥ 1, dynamically to keep
atZt in a desirable range, iterate atZt instead of Zt, and use γt

at
(atZt) in the update of Gt.

Remark 3.1. It can also be shown, using essentially a zero-one law for tail events of Markov chains
(see [Bre92, Theorem 7.43]), that under Assumptions 2.1 and 2.2, for each initial condition (z0, G0),

P
(
sup

t
‖Zt‖ <∞

)
= 1 or 0, P

(
lim

t→∞
γtZt = 0

)
= 1 or 0.

See [Yu10, Prop. 3.1] for details.

3.2 Convergence in Mean

We show now that Gt converges in mean to G∗. This implies that Gt converges in probability to G∗,
and hence that the LSTD(λ) solution rt converges in probability to the solution r∗ of Eq. (6) when
the latter exists and is unique. We state the result in a slightly more general context involving a
Lipschitz continuous function h(z, i, j) in place of zψ(i, j)′, to prepare also for the subsequent almost
sure convergence analysis in Sections 3.3 and 4.1.

Theorem 3.1. Let h(z, i, j) be a vector-valued function on <d × I2 which is Lipschitz continuous
in z with Lipschitz constant Mh, i.e.,

‖h(z, i, j)− h(ẑ, i, j)‖ ≤Mh‖z − ẑ‖, ∀ z, ẑ ∈ <d, i, j ∈ I.

Let
Gh

t = (1− γt)Gh
t−1 + γth(Zt, it, it+1).

Then under Assumptions 2.1 and 2.2, there exists a constant Gh,∗ such that for each initial condition
(z0, G0),

lim
t→∞

E‖Gh
t −Gh,∗‖ = 0.
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Proof. For notational simplicity, we suppress the superscript h in the proof. First, we introduce
another process (Z̃t,T , G̃t,T ) on the same probability space, and apply an LLN for a finite space
irreducible Markov chain to G̃t,T . We then relate (Z̃t,T , G̃t,T ) to (Zt, Gt).

For a positive integer T , define Z̃t,T = Zt for t ≤ T and G̃0,T = G0, and define

Z̃t,T = φ(it) + βLt
t−1φ(it−1) + · · ·+ βTLt

t−Tφ(it−T ), t > T ; (26)

G̃t,T = (1− γt)G̃t−1,T + γth
(
Z̃t,T , it, it+1

)
, t ≥ 1. (27)

Then for t ≤ T , G̃t,T = Gt because Z̃t,T and Zt coincide. By construction {Z̃t,T } and {G̃t,T }
are bounded. This is because maxi ‖φ(i)‖ and L`+τ

` , 0 ≤ τ ≤ T, ` ≥ 0, can be bounded by some
deterministic constant, so supt ‖Z̃t,T ‖ ≤ cT for some deterministic constant cT depending on T .
Consequently, by the Lipschitz property of h and the assumption γt ∈ (0, 1] (Assumption 2.2),
{h
(
Z̃t,T , it, it+1

)
} and {G̃t,T } are also bounded.

The sequence {G̃t,T } converges almost surely to a constant G∗T independent of the initial condi-
tion. This is because for t > T , h(Z̃t,T , it, it+1) can be viewed as a function of the T + 2 consecutive
states Xt = (it−T , it−T+1, . . . , it+1), while under Assumption 2.1, {Xt} is a finite space Markov chain
with a single recurrent class. Thus, an application of the result in stochastic approximation theory
given in Borkar [Bor08, Chap. 6, Theorem 7 and Cor. 8] shows that under the stepsize condition
in Assumption 2.2, with E0 denoting expectation under the stationary distribution of the Markov
chain {it},

G̃t,T
a.s.→ G∗T , where G∗T = E0

[
h(Z̃k,T , ik, ik+1)

]
, ∀k > T. (28)

Clearly, G∗T does not depend on (z0, G0). Since supt ‖G̃t,T ‖ ≤ cT for some deterministic constant
cT , we also have by the Lebesgue bounded convergence theorem

lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥ = 0. (29)

The sequence {G∗T , T ≥ 1} converges to some constant G∗. To see this, consider any T1 < T2.
Using the definition of Z̃t,T and arguing similar to the proof for Lemma 3.1(ii), we have

E0‖Z̃k,T1 − Z̃k,T2‖ ≤ cβT1 , ∀k > T2,

where c = maxi ‖φ(i)‖/(1− β). Therefore, using the definition of G∗T in Eq. (28) and the Lipschitz
property of h, we have for any k > T2,

‖G∗T1
−G∗T2

‖ =
∥∥E0

[
h(Z̃k,T1 , ik, ik+1)− h(Z̃k,T2 , ik, ik+1)

]∥∥
≤MhE0

∥∥Z̃k,T1 − Z̃k,T2

∥∥ ≤ cMhβ
T1 .

This shows that {G∗T } is a Cauchy sequence and therefore converges to some constant G∗.

We now show limt→∞E ‖Gt −G∗‖ = 0. Since for each T ,

lim sup
t→∞

E ‖Gt −G∗‖ ≤ lim sup
t→∞

E
∥∥Gt − G̃t,T

∥∥+ lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥+
∥∥G∗ −G∗T

∥∥, (30)

and by the preceding proof, limt→∞E
∥∥G̃t,T −G∗T

∥∥ = 0 and limT→∞
∥∥G∗ −G∗T

∥∥ = 0, it suffices to
show limT→∞ lim supt→∞E

∥∥Gt− G̃t,T

∥∥ = 0. Using the definition of Z̃t,T and arguing similar to the
proof of Lemma 3.1(ii), we have

‖Zt − Z̃t,T ‖ = 0, t ≤ T ; E‖Zt − Z̃t,T ‖ ≤ cβT , t ≥ T + 1, (31)

where c = max{‖z0‖,maxi ‖φ(i)‖}/(1− β). By the definition of Gt and G̃t,T ,

Gt − G̃t,T = (1− γt)
(
Gt−1 − G̃t−1,T

)
+ γt

(
h(Zt, it, it+1)− h(Z̃t,T , it, it+1)

)
.
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Therefore, using the triangle inequality, the Lipschitz property of h and Eq. (31), we have

E‖Gt − G̃t,T ‖ ≤(1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtE‖h(Zt, it, it+1)− h(Z̃t,T , it, it+1)‖

≤(1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtMhE‖Zt − Z̃t,T ‖

≤(1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtcMhβ
T ,

which implies under the stepsize condition in Assumption 2.2,

lim
T→∞

lim sup
t→∞

E‖Gt − G̃t,T ‖ ≤ lim
T→∞

cMhβ
T = 0.

This completes the proof.

For the case h(z, i, j) = zψ(i, j)′, Gh,∗
T given in Eq. (28) has an explicit expression:

Gh,∗
T = Φ′Ξ

( T∑
m=0

βmQm
)
Ψ,

from which it can be seen that the limit Gh,∗ of {Gh,∗
T } is G∗ given by Eq. (13).

3.3 Almost Sure Convergence

To study the almost sure convergence of {Gt} to G∗, we consider the Markov chain {(it, Zt), t ≥ 0}
on the topological space S = I × <d with product topology (discrete topology on I and usual
topology on <d). We view S also as a metric space (with the usual metric consistent with the
topology). We will establish an ergodic theorem for {(it, Zt)} (Theorem 3.2) and the almost sure
convergence of {Gt} when the stepsize is γt = 1/(t+1) (Theorem 3.3). The latter will imply that the
sequence {Φrt} computed by the off-policy LSTD(λ) algorithm with the same stepsizes converges
almost surely to the solution Φr∗ of the projected Bellman equation (2) when the latter exists and
is unique.

First, we specify some notation and definitions for topological space Markov chains in general.
Let PS denote the transition probability kernel of a Markov chain {Xt} on the state space S, i.e.,

PS = {PS(x,A), x ∈ S,A ∈ B(S)},

where PS(x, ·) is the conditional probability of X1 given X0 = x, and B(S) denotes the Borel σ-field
on S. The k-step transition probability kernel is denoted by P k

S . As an operator, P k
S maps any

bounded Borel-measurable function f : S → < to another such function P k
Sf , given by

P k
Sf(x) =

∫
S

P k
S (x, dy)f(y) = Ex

[
f(Xk)

]
,

where Ex denotes expectation with respect to Px, the probability distribution of {Xt} initialized
with X0 = x.

Let Cb(S) denote the set of bounded continuous functions on S. A Markov chain on S is a weak
Feller chain (or simply, a Feller chain) if for all f ∈ Cb(S), PSf ∈ Cb(S) [MT09, Prop. 6.1.1(i)]. A
Markov chain {Xt} on S is said to be bounded in probability, if for each initial state x and each
ε > 0, there exists a compact subset C ⊂ S such that lim inft→∞Px(Xt ∈ C) ≥ 1− ε.

We now relate {(it, Zt)} to a Feller chain with desirable properties.2

Lemma 3.4. The Markov chain {(it, Zt)} is weak Feller and bounded in probability, therefore has
at least one invariant probability measure.

2A Feller chain is not necessarily ψ-irreducible (for the latter notion, see [MT09]). A simple counterexample in our
case is given by setting φ(i) = 0 for all i.
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Proof. Since Z1 = β
qi0i1
pi0i1

· z0 + φ(i1), Z1 is a function of (z0, i0, i1); denote this function by
Z1(z0, i0, i1). It is continuous in z0 for given (i0, i1). Since the space I is discrete, for any f ∈ Cb(S),
f(i, z) is bounded and continuous in z for each i. It can be seen that

(PSf)(i, z) = E[f(i1, Z1) | i0 = i, Z0 = z] =
∑
j∈I

pijf
(
j, Z1(z, i, j)

)
is also bounded and continuous in z for each i, so PSf ∈ Cb(S) and the chain {(it, Zt)} is weak Feller.
Lemma 3.1 together with Markov’s inequality implies that for each initial condition x = (̄i, z̄) and
some constant cx, Px(‖Zt‖ ≤ K) ≥ 1 − cx/K for all t ≥ 0. Since I is compact, this shows that
the chain {(it, Zt)} is bounded in probability. By [MT09, Prop. 12.1.3], a weak Feller chain that is
bounded in probability has at least one invariant probability measure.

We now show that the invariant probability measure of {(it, Zt)} is unique and the chain is
ergodic. Recall that the occupation probability measures µt, t ≥ 1 of a Markov chain {Xt} on S are
defined by

µt(A) =
1
t

t∑
k=1

1A(Xk), ∀A ∈ B(S),

where 1A denotes the indicator function for a Borel-measurable set A ⊂ S. For an initial condi-
tion x ∈ S, we use {µx,t} to denote the occupation measure sequence, and we note that for any
Borel-measurable function f on S, the expression 1

t

∑t
k=1 f(Xk) is equivalent to

∫
f(y)µx,t(dy), or∫

f dµx,t.

Theorem 3.2. Under Assumption 2.1, the Markov chain {(it, Zt)} has a unique invariant probability
measure π, and for each initial condition x = (i, z), almost surely, the sequence of occupation
measures {µx,t} converges weakly to π.

Proof. Since {(it, Zt)} has an invariant probability measure π, it follows by a strong law of large
numbers for stationary Markov chains (see e.g., discussion preceding [Mey89, Prop. 4.1]) that for
each x = (̄i, z̄) from a set F ⊂ S with full π-measure, almost surely {µx,t} converges weakly to
some probability measure πx on S that is a function of x. (Since {(it, Zt)} is weak Feller, these πx

must also be invariant probability measures [Mey89, Prop. 4.1]; but this fact will not be used in our
proof.)

We show first that corresponding to x = (̄i, z̄) ∈ F , for each x̂ = (̄i, z), almost surely {µx̂,t}
converges weakly to πx, so in particular, πx does not depend on z̄. To this end, consider the
processes {Zt} and {Ẑt} initialized with x and x̂, respectively, and for the same sample path of {it}.
By Lemma 3.2, Zt − Ẑt

a.s.→ 0. Therefore, almost surely, for all bounded and uniformly continuous
functions f on S, limt→∞

(
f(it, Zt)− f(it, Ẑt)

)
= 0, and consequently,

lim
T→∞

1
T

T∑
t=1

(
f(it, Zt)− f(it, Ẑt)

)
= 0.

Since almost surely µx,t → πx weakly, we have almost surely, limT→∞
1
T

∑T
t=1 f(it, Zt) =

∫
f dπx

for all the above f . It then follows that almost surely,

lim
T→∞

1
T

T∑
t=1

f(it, Ẑt) =
∫
f dπx

for all bounded and uniformly continuous functions f , and hence, by [MT09, Prop. D.5.1], almost
surely µx̂,t → πx weakly.
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We now show that πx is the same for all x ∈ F . Suppose this is not true: there exist states
x = (̄i, z̄), x̂ = (̂i, ẑ) ∈ F with πx 6= πx̂. Then, since S is a metric space, by [Dud03, Prop. 11.3.2]
there exists a bounded Lipschitz function h on S such that∫

h dπx 6=
∫
h dπx̂.

For any z, by the weak convergence µ(̄i,z),t → πx and µ(̂i,z),t → πx̂ just proved, we have

lim
t→∞

∫
h dµ(̄i,z),t =

∫
h dπx, P(̄i,z)-a.s.; lim

t→∞

∫
h dµ(̂i,z),t =

∫
h dπx̂, P(̂i,z)-a.s.

Therefore, with the initial distribution being µ̃ = 1
2δ(̄i,z) + 1

2δ(̂i,z), where δx denotes the Dirac
probability measure,

{ ∫
h dµt

}
converges Pµ̃-almost surely to a non-degenerate random variable.

On the other hand, since h is Lipschitz, applying Theorem 3.1 with γt = 1/(t+ 1) and G0 = 0, we
have that under Pµ̃,

{ ∫
h dµt

}
converges in mean to a constant and therefore has a subsequence

converge almost surely to the same constant, a contradiction. Thus πx must be the same for all
x ∈ F ; denote this probability measure by π̃.

We now show π = π̃. Consider any bounded and continuous function f on S. By the strong law
of large numbers for stationary processes (see e.g., [Doo53, Chap. X, Theorem 2.1]),

Eπ

[
lim

t→∞

∫
f dµX0,t

]
= Eπ

[
f(X0)

]
,

while by the preceding proof we have for each x ∈ F , a set with π(F ) = 1, limt→∞
∫
f dµx,t =

∫
f dπ̃,

Px-a.s. Therefore ∫
f dπ̃ = Eπ

[
lim

t→∞

∫
f dµX0,t

]
= Eπ

[
f(X0)

]
=
∫
f dπ.

This shows π = π̃.

Finally, suppose there exists another invariant probability measure π̃. Then, the preceding
conclusions apply also to π̃ and some set F̃ ⊂ S with π̃(F̃ ) = 1. On the other hand, clearly the
marginals of π and π̃ on I must coincide with the unique invariant probability of the irreducible
chain {it}, so using the fact π(F ) = π̃(F̃ ) = 1, we have that for any state ī, there exist z̄, z̃ such
that (̄i, z̄) ∈ F and (̄i, z̃) ∈ F̃ . Then, by the preceding proof, with initial condition x = (̄i, z) for any
z, almost surely, µx,t → π̃ and µx,t → π weakly. Hence π = π̃ and the chain has a unique invariant
probability measure.

Remark 3.2. In the above proof, we used the conclusion of Theorem 3.1 to show that πx is the
same for all x ∈ F . We may avoid this reliance by using alternative arguments at this step for the
finite space MDP case, but the above proof applies readily also to compact space MDP models that
we will consider later. Another entirely different proof based on the theory of e-chains [MT09] can
be found in [Yu10]; however, it is much longer than the one given here.

Remark 3.3. The ergodicity of the chain {(it, Zt)} shown by the preceding theorem gives a clear
explanation to the unboundedness of {Zt} that we observed in Section 3.1, Prop. 3.1: If the total
mass of π does not concentrate on a bounded set of S, then because the sequence of occupation
measures converges weakly to π almost surely, {Zt} must be unbounded with probability 1.

Remark 3.4. The preceding theorem also implies that we can obtain a good approximation of
Gh,∗ by using modified bounded iterates, such as Ĝh

t = (1 − γt)Ĝh
t−1 + γtĥ(Zt, it, it+1), where

γt = 1/(t + 1) and ĥ(Zt, it, it+1) is h(Zt, it, it+1) truncated component-wise to be within [−K,K]
for some sufficiently large K.
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Let Eπ denote expectation with respect to Pπ. To establish the almost sure convergence of {Gt},
we need to show first that Eπ

[
‖Z0ψ(i0, i1)′‖

]
<∞. Here we prove it using the following two facts.

First, Theorem 3.2 implies
1
T

T∑
t=1

P t
S(x, ·) weakly−→ π, ∀x ∈ S. (32)

Second, by Lemma 3.1, for some constant c depending on the initial condition x,

Ex[‖Zt‖] ≤ c, ∀t ≥ 0. (33)

As in the preceding subsection, we state the result in slightly more general terms for all functions
Lipschitz continuous in z, which will be useful later in analyzing the convergence of other TD(λ)
algorithms.

Proposition 3.2. Under Assumption 2.1, for any (vector-valued) function h(z, i, j) on <d×I2 that
is Lipschitz continuous in z, Eπ

[
‖h(Z0, i0, i1)‖

]
<∞.

Proof. By the Lipschitz property of h, ‖h(Z0, i0, i1)‖ ≤ Mh‖Z0‖ + ‖h(0, i0, i1)‖ for some constant
Mh, therefore, to prove the result, it is sufficient to show Eπ[‖Z0‖] < ∞. To this end, consider a
sequence of scalars ak, k ≥ 0 with

a0 = 0, a1 ∈ (0, 1], ak+1 = ak + 1, k ≥ 1. (34)

Define a sequence of disjoint open sets {Ok, k ≥ 0} on the space of z as

Ok = {z | ak < ‖z‖ < ak+1}. (35)

It is then sufficient to show that for any such {ak},
∑∞

k=0 ak+1 · π
(
I ×Ok

)
<∞.3

Fix any initial condition x. Using Eq. (33), we have for all integers K ≥ 0, t ≥ 0,

K∑
k=0

ak+1 ·Px(Zt ∈ Ok) ≤ 1 +
K∑

k=0

ak ·Px(Zt ∈ Ok) ≤ 1 + Ex

[
‖Zt‖

]
≤ c+ 1.

Therefore for all K ≥ 0, T ≥ 0,

1
T

T∑
t=1

K∑
k=0

ak+1 ·Px(Zt ∈ Ok) =
K∑

k=0

ak+1 ·

(
1
T

T∑
t=1

Px(Zt ∈ Ok)

)
≤ c+ 1. (36)

Since by construction Ok and I × Ok are open sets on <d and S, respectively, by Eq. (32) and
[MT09, Theorem D.5.4] we have for all k,

lim inf
T→∞

1
T

T∑
t=1

Px(Zt ∈ Ok) ≥ π
(
I ×Ok

)
.

3This is because we can choose two sequences {a1
k}, {a

2
k} as in (34) with a1

1 = 1, a2
1 = 1/2, for instance, such that

the corresponding open sets O1
k, O

2
k, k ≥ 0 given by (35) together cover the space of z except for the origin. Then

‖Z0‖ ≤ ‖Z0‖
∞X

k=0

`
1O1

k
(Z0) + 1O2

k
(Z0)

´
≤

∞X
k=0

`
a1

k+1 · 1O1
k
(Z0) + a2

k+1 · 1O2
k
(Z0)

´
,

so we can bound Eπ [‖Z0‖] by

Eπ [‖Z0‖] ≤ Eπ

h ∞X
k=0

`
a1

k+1 · 1O1
k
(Z0) + a2

k+1 · 1O2
k
(Z0)

´i
=

∞X
k=0

a1
k+1 · π(I ×O1

k) +
∞X

k=0

a2
k+1 · π(I ×O2

k).
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Combining this with Eq. (36), we have for all K ≥ 0,

K∑
k=0

ak+1 · π
(
I ×Ok

)
≤

K∑
k=0

ak+1 ·

(
lim inf
T→∞

1
T

T∑
t=1

Px(Zt ∈ Ok)

)

≤ lim inf
T→∞

K∑
k=0

ak+1 ·

(
1
T

T∑
t=1

Px(Zt ∈ Ok)

)
≤ c+ 1,

and therefore
∑∞

k=0 ak+1 · π
(
I ×Ok

)
≤ c+ 1. This completes the proof.

Theorem 3.3. Assume the conditions and notation of Theorem 3.1 and let γt = 1/(t + 1). Then,
for each initial condition (z0, Gh

0 ), Gh
t

a.s.→ Gh,∗, where Gh,∗ = Eπ

[
h(Z0, i0, i1)

]
is the constant in

Theorem 3.1.

Proof. For each initial (z0, Gh
0 ), by Theorem 3.1, Gh

t converges in mean to Gh,∗, a constant indepen-
dent of the initial condition. This further implies the convergence of a subsequence Gh

tk

a.s.→ Gh,∗, so
in order to show Gh

t
a.s.→ Gh,∗, it is sufficient to show Gh

t converges alsmost surely. For simplicity, in
the rest of the proof we suppress the superscript h. With γt = 1/(1 + t),

Gt =
1

t+ 1

( t∑
k=1

h(Zk, ik, ik+1) +G0

)
;

it is clear that on a sample path, the convergence of {Gt} is equivalent to that of the sequence
{ 1

t

∑t
k=1 h(Zk, ik, ik+1)}.

By Prop. 3.2, Eπ‖h(Z0, i0, i1)‖ < ∞. Therefore, applying the strong law of large numbers (see
[Doo53, Theorem 2.1] or [MT09, Theorem 17.1.2]) to the stationary Markov process {(it, Zt, it+1)}
under Pπ, we have 1

t

∑t
k=1 h(Zk, ik, ik+1) converges Px-almost surely for each initial x = (̄i, z̄) from

a set F ⊂ S with π(F ) = 1. So Gt converges almost surely for each x ∈ F .

For any initial condition x̂ = (̄i, ẑ) 6∈ F , let x̄ = (̄i, z̄) ∈ F for some z̄ ∈ <d. (Such x̄ exists
because the irreducibility of {it} and π(F ) = 1 imply π({̄i} × <d) > 0.) Consider {(Ẑt, Ĝt)} and
{(Zt, Gt)} corresponding to the two initial conditions x̂ 6∈ F and x̄ ∈ F , respectively, with Ĝ0 = G0,
and for the same path of {it}. By the Lipschitz property of h,

‖Ĝt −Gt‖ =
∥∥∥ 1
t+ 1

t∑
k=1

(
h(Ẑk, ik, ik+1)− h(Zk, ik, ik+1)

)∥∥∥ ≤ Mh

t+ 1

t∑
k=1

‖Ẑk − Zk‖.

Since Ẑt − Zt
a.s.→ 0 by Lemma 3.2, we have Ĝt − Gt

a.s.→ 0; since Gt converges almost surely, so is
Ĝt. Thus {Gt} converges Px-almost surely for each initial condition x = (̄i, z̄) and G0, implying
Gt

a.s.→ G∗ for each initial condition (z0, G0).

Finally, we prove the expression for G∗. By the law of large numbers for stationary processes
(see [Doo53, Theorem 2.1] or [MT09, Theorem 17.1.2]), we have Eπ[limt→∞Gt] = Eπ

[
h(Z0, i0, i1)

]
.

Therefore, G∗ = Eπ[G∗] = Eπ

[
h(Z0, i0, i1)

]
.

Remark 3.5. The conclusion of the above theorem also implies the convergence Gh
t

a.s.→ Gh,∗ for
a stepsize γt that is of order O(1/t) and satisfies γt−γt+1

γt
= O(1/t), (such as γt = c1

c2+t for some
constants c1, c2). This can be shown using Theorems 3.1 and 3.3 together with stochastic approxi-
mation theory [KY03, Chap. 6, Theorem 1.2 and Example 1 of Sec. 6.2]. As yet we do not have a full
answer to the question of whether Gh

t
a.s.→ Gh,∗ for a stepsize sequence that decreases at a rate slower

than 1/t. This question is closely connected to the rate of convergence of 1
t

∑t
k=1 h(Zk, ik, ik+1) to

Gh,∗. In particular, suppose it holds that 1
tν̄

∑t
k=1

(
h(Zk, ik, ik+1)−Gh,∗) a.s.→ 0 for some ν̄ ∈ (0.5, 1],



Analysis of LSTD(λ) under General Conditions 19

then using stochastic approximation theory [KY03, Chap. 6], we can show that Gh
t

a.s.→ Gh,∗ for the
stepsizes γt = (t + 1)−ν , ν ∈ [ν̄, 1]. We also note that for a general stepsize sequence satisfying
Assumption 2.2, it can be shown that {Gt} converges with probability zero or one [Yu10, Prop. 3.1]
(cf. Remark 3.1).

4 Applications and Extensions

In this section we apply the results of Section 3 to analyze the convergence of an off-policy TD(λ)
algorithm, and we also extend the convergence analysis of the off-policy LSTD(λ) algorithm for
finite space MDP to MDP with compact action and state spaces.

4.1 Convergence of an Off-Policy TD(λ) Algorithm

We consider an off-policy TD(λ) algorithm which aims to solve the projected Bellman equation
(6) with stochastic approximation type iterations. It has the same form as the standard, on-policy
TD(λ) algorithm, and it is given by

rt = rt−1 + γtZtdt,

where Zt is as in Eq. (19), and dt is the so-called temporal difference term given by

dt = Lt+1
t g(it, it+1) + αLt+1

t φ(it+1)′rt−1 − φ(it)′rt−1.

This algorithm is proposed in [BY09, Sec. 5.3] in the context of approximate solutions of linear
equations with TD methods. It bears similarity to the off-policy TD(λ) [PSD01], but differs from
the latter in a considerable way. (In particular, it differs from the latter in the definitions of Zt

and the projected Bellman equation, as well as in using an infinitely long trajectory of observations
instead of a fixed-length trajectory to update Zt’s.) Convergence of the algorithm has not been fully
analyzed. We now apply the results of Section 3.3 and the o.d.e.-based stochastic approximation
theory [KY03, Chap. 6] to analyze a constrained version of the algorithm.

Introducing the function
h(z, i, j; r) = z ψ1(i, j)′r + ψ2(i, j) (37)

with ψ1(i, j) = α
qij

pij
φ(j)−φ(i) and ψ2(i, j) = qij

pij
g(i, j), we may write the off-policy TD(λ) algorithm

equivalently as
rt = rt−1 + γth(Zt, it, it+1; rt−1).

To avoid the technical difficulty regarding the boundedness of {rt} in the above unconstrained
algorithm, we consider its constrained version

rt = Π̂H

[
rt−1 + γth(Zt, it, it+1; rt−1)

]
, (38)

where Π̂H is the projection onto some compact convex set H ⊂ <d.

We apply [KY03, Theorem 6.1.1] to analyze the convergence of this algorithm. Since [KY03] is
a standard reference on stochastic approximation, we do not repeat here the theorem and its long
list of conditions, nor do we verify the conditions one by one for the TD(λ) algorithm, as some of
them obviously hold. We will point out only the key arguments in the analysis.

The “mean” function involved in the mean o.d.e. is the continuous function h̄(r) given by

h̄(r) = C̄r + b̄, r ∈ <d,

with C̄, b̄ defined as in Eq. (7). For any fixed r, by Theorem 3.3, for each initial z0,

1
t

t∑
k=1

h(Zk, ik, ik+1; r)
a.s.→ h̄(r). (39)
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We can bound the function h(z, i, j; r) by

‖h(z, i, j; r)‖ ≤ (‖r‖+ 1)ρ1(z, i, j), where ρ1(z, i, j) = d
∥∥z ψ1(i, j)′

∥∥+
∥∥ψ2(i, j)

∥∥,
and bound the change in h(z, i, j; r) in terms of the change in r by

‖h(z, i, j; r̄)− h(z, i, j; r̂)‖ ≤ ‖r̄ − r̂‖ρ2(z, i, j), where ρ2(z, i, j) = d
∥∥z ψ1(i, j)′

∥∥.
The functions ρ1 and ρ2 are Lipschitz continuous in z, so by Theorem 3.3, for each initial z0,

1
t

t∑
k=1

ρj(Zk, ik, ik+1)
a.s.→ Eπ

[
ρj(Z0, i0, i1)

]
, j = 1, 2. (40)

From Eqs. (39) and (40) it follows that when γt = O(1/t) with γt−γt+1
γt

= O(1/t), the asymptotic rate
of change condition (the Kushner-Clark condition), which is the main condition in [KY03, Theorem
6.1.1], is satisfied by the various terms as required in the theorem (see [KY03, Example 6.1, p. 171]).

For the constrained algorithm (38), another condition in [KY03, Theorem 6.1.1] is

sup
t
E‖h(Zt, it, it+1; rt−1)‖ <∞.

It is satisfied because with {rt} confined in the compact setH, E‖h(Zt, it, it+1; rt−1)‖ ≤ c1E‖Zt‖+c2
for some constants c1, c2, while by Lemma 3.1 suptE‖Zt‖ ≤ c for some constant c depending on
the initial z0. Hence, applying [KY03, Theorem 6.1.1], we have the convergence of the constrained
off-policy TD(λ) algorithm.

Proposition 4.1. Let the stepsize γt satisfy γt = O(1/t) and γt−γt+1
γt

= O(1/t). Then {rt} given
by Eq. (38) converges almost surely to some limit set of the o.d.e.:

ṙ = h̄(r) + z for some z ∈ −NH(r),

where NH(r) is the normal cone of H at the point r ∈ H, and z is the boundary-reflecting term to
keep the o.d.e. solution in H.

As shown in [BY09, Props. 3 and 5], when λ is sufficiently close to 1, the mapping ΠT (λ) becomes
a contraction, and correspondingly, with Φ having full rank, the matrix C̄ in h̄(r) is negative definite.
In that case, if the unique solution r∗ of h̄(r) = 0 lies in H, and if H is a closed ball centered at the
origin with sufficiently large radius, then, using the negative definiteness of C̄, it can be shown that
no points r on the boundary of H can be stationary for the above o.d.e., so rt

a.s.→ r∗.

Similar to the discussion in Remark 3.5, the question of whether the conclusion of Prop. 4.1 holds
for a stepsize sequence that decreases at a rate slower than 1/t is closely connected to the rate of
the convergence in Eqs. (39) and (40). (See the discussion in [KY03, Example 6.1, p. 171].)

4.2 Extension to Compact Space MDP

We now extend the convergence analysis of the off-policy LSTD(λ) algorithm in Section 3 for finite
space MDP models to MDP with a compact state and action space I. In particular, we focus on
the case where I is a compact metric space, the per-stage cost function is continuous, and both the
behavior and the target policies induce weak Feller Markov chains on I. The results of Section 3
then extend directly. The case of more general compact space MDP models is a subject for future
research.

Let Q and P denote the transition probability kernels of the Markov chains on I induced by the
target and behavior policies, respectively, i.e.,

Q =
{
Q(i, A), i ∈ I, A ∈ B(I)

}
, P =

{
P (i, A), i ∈ I, A ∈ B(I)

}
.
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Abusing notation, we still let {it} denote the compact space Markov chain with transition kernel P .
We will later use PS to denote the transition probability kernel of the chain {(it, Zt)}. We impose
the following conditions on P , Q, the per-stage costs and the approximation subspace.

Assumption 4.1.

(i) The Markov chain {it} is weak Feller and has a unique invariant probability measure ξ.

(ii) For each i ∈ I, the conditional probability Q(i, ·) is absolutely continuous with respect to P (i, ·),
with ζ(i, ·) being one version of the Radon-Nikodym derivative. The function ζ is continuous
on I2.

Assumption 4.2.

(i) The per-stage transition cost g(i, j) is a continuous function on I2.

(ii) The approximation subspace H is the linear span of {φ1, . . . , φd}, where φ = (φ1, . . . , φd) is an
<d-valued continuous function on I.

4.2.1 The Approximation Framework and Algorithm

Assumption 4.1 implies that the transition probability kernel Q must also have the weak Feller
property.4 Then, with a continuous per-stage transition cost function under Assumption 4.2(i), the
cost function J∗ of the policy associated with Q is continuous. It satisfies the Bellman equation

J = T (J), where T (J) = ḡ + αQJ,

and ḡ is the expected one-stage cost function; and it also satisfies the multistep Bellman equation
J = T (λ)J , λ ∈ [0, 1] defined as in Eq. (5), all of which are now functional equations. (See e.g.,
Bertsekas and Shreve [BS78] for general space MDP theory.)

In the TD approximation framework, we consider the set of continuous functions as a subset of
the larger space L2(I, ξ) = {f | f : I → <,

∫
f2(x)ξ(dx) < ∞} with semi-inner product 〈·, ·〉 and

the associated seminorm ‖ · ‖2,ξ given, respectively, by

〈f, f̂〉 =
∫
f(x)f̂(x) ξ(dx), ‖f‖22,ξ = 〈f, f〉, f, f̂ ∈ L2(I, ξ).

For L2(I, ξ), denote by L2(I, ξ) the factor space of equivalent classes (corresponding to the equiva-
lence relation ∼ defined by f ∼ f̂ if and only if ‖f − f̂‖2,ξ = 0). For any f ∈ L2(I, ξ), let f∼ denote
its equivalent class in L2(I, ξ), and let H∼ denote the subspace of equivalent classes of f , f ∈ H.
We consider the projected multistep Bellman equation

J∼ = ΠT (λ)(J), J ∈ H, ⇔ J = arg min
f∈H

‖T (λ)J − f‖22,ξ, (41)

where Π : L2(I, ξ) → L2(I, ξ) is the projection onto H∼ with respect to the ‖ · ‖2,ξ-norm. Since
I is compact, Assumption 4.2 implies the boundedness of the one-stage cost function ḡ as well as
the boundedness of any function f ∈ H, so for any J ∈ H, T (λ)(J) ∈ L2(I, ξ) and ΠT (λ)(J) is
well defined. The projected equation (41) may not have a solution; however, this case will not be
discussed here, since our focus is on the approximation of the equation by samples. By a direct
calculation, a low-dimensional representation of (41) is now given by

C̄r + b̄ = 0, r ∈ <d,

4By [MT09, Prop. 6.1.1(i)], Q is weak Feller if Qf ∈ Cb(I) for all f ∈ Cb(I). We have (Qf)(x) =R
ζ(x, y)f(y)P (x, dy). Using the continuity of ζ and the weak Feller property of P under Assumption 4.1, and

using also the fact that a continuous function on a compact space is bounded and uniformly continuous, it can be
verified that for any continuous function f , Qf is also continuous. So Q has the weak Feller property.
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where

C̄ =


〈
φ1 , Q

(λ)(αQ− I)φ1

〉
· · ·

〈
φ1 , Q

(λ)(αQ− I)φd

〉
...

. . .
...〈

φd , Q
(λ)(αQ− I)φ1

〉
· · ·

〈
φd , Q

(λ)(αQ− I)φd

〉
 , b̄ =


〈
φ1 , Q

(λ)ḡ
〉

...〈
φd , Q

(λ)ḡ
〉
 ,

and Q(λ) in the above is defined by the weighted sum of m-step transition probability kernels Qm:

Q(λ) =
∞∑

m=0

(λα)mQm

[cf. Eq. (7)], and it is an operator on the space of measurable functions on I.

The off-policy LSTD(λ) algorithm takes the same form as the one in the finite space case, but
has the Radon-Nikodym derivative ζ(i, j) in place of the ratios qij

pij
[cf. Eqs. (8)-(10)]:

Zt = β ζ(it−1, it) · Zt−1 + φ(it), (42)
bt = (1− γt)bt−1 + γtZt ζ(it, it+1) · g(it, it+1), (43)

Ct = (1− γt)Ct−1 + γtZt (αζ(it, it+1) · φ(it+1)− φ(it))
′
, (44)

where β = λα and φ(i) = (φ1(i), . . . , φd(i)) is viewed as a d × 1 vector. The goal is again to
use sample-based approximations (bt, Ct) to estimate (b̄, C̄), which define the projected Bellman
equation. As before, we will study the iterates Zt and

Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′,

where ψ is a real-valued (corresponding to bt) or <d-valued (corresponding to Ct) continuous function
on I2. In particular, it can be seen from Eqs. (43)-(44) that depending on the choice of ψ, {Gt}
specializes to {bt} or {Ct}:

Gt =

{
bt if ψ(i, j) = ζ(i, j) · g(i, j),
Ct if ψ(i, j) = αζ(i, j) · φ(j)− φ(i).

(45)

We write ψ in terms of its components as (ψ1, . . . , ψm), for m = 1 or d. The convergence of {bt}, {Ct}
to b̄, C̄, respectively, in any mode, amounts to the convergence of {Gt} to

G∗ =


〈
φ1 , Q

(λ)ψ̄1

〉
· · ·

〈
φ1 , Q

(λ)ψ̄m

〉
...

. . .
...〈

φd , Q
(λ)ψ̄1

〉
· · ·

〈
φd , Q

(λ)ψ̄m

〉
 , (46)

where ψ̄j is defined to be the mean of the jth component of ψ, as in the finite space case:

ψ̄j(i) = E
[
ψj(i0, i1) | i0 = i

]
, i ∈ I.

4.2.2 Convergence Analysis

We now show the convergence of {Gt} to G∗ in mean and with probability one under Assumptions 4.1
and 4.2 and proper conditions on the stepsizes γt. First, we redefine Lt

`, ` < t appearing in the
analysis of Section 3 to be

Lt
` = ζ(i`, i`+1) · ζ(i`+1, i`+2) · · · ζ(it−1, it), (47)

and define Lt
t = 1. Under Assumption 4.1(ii), we have as in the finite space case,

E[Lt
` | i`] = 1 a.s.
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The conclusions of Lemmas 3.1 and 3.2 continue to hold in the compact space case considered here.
In particular, for Lemma 3.1 to hold, it is sufficient that ‖φ(i)‖ is uniformly bounded on I, which
is implied by Assumption 4.2(ii), while Lemma 3.2 holds by the definition of Zt, requiring no extra
conditions. We can now extend the convergence analysis of Sections 3.2 and 3.3 straightforwardly,
using most of the proofs given there.

Extending Theorem 3.1, we have the convergence of {Gt} in mean stated in slightly more general
terms as follows.

Proposition 4.2. Let h(z, i, j) be a vector-valued continuous function on <d×I2 which is Lipschitz
continuous in z uniformly with respect to (i, j). Let

Gh
t = (1− γt)Gh

t−1 + γth(Zt, it, it+1)

with the stepsize sequence {γt} satisfying Assumption 2.2. Then under Assumptions 4.1 and 4.2(ii),
there exists a constant Gh,∗ such that for each initial condition (z0, G0),

lim
t→∞

E‖Gh
t −Gh,∗‖ = 0.

Proof. The proof is almost the same as that of Theorem 3.1. Suppressing the superscript h for
simplicity, we first consider for a positive integer T , the process {(Z̃t,T , G̃t,T )} as defined in the
proof of Theorem 3.1: Z̃t,T = Zt for t ≤ T ; G̃0,T = G0; and

Z̃t,T = φ(it) + βLt
t−1φ(it−1) + · · ·+ βTLt

t−Tφ(it−T ), t > T ; (48)

G̃t,T = (1− γt)G̃t−1,T + γth
(
Z̃t,T , it, it+1

)
, t ≥ 1. (49)

By Assumptions 4.1(ii) and 4.2(ii), ζ and φ are uniformly bounded on their domains. Conse-
quently, {‖Z̃t,T ‖} can be bounded by some deterministic constant depending on T , and so are
{‖h
(
Z̃t,T , it, it+1

)
‖} and {‖G̃t,T ‖} because of the boundedness of h on compact sets and the as-

sumption γt ∈ (0, 1] (Assumption 2.2).

We then show that {G̃t,T } converges almost surely to a constant G∗T independent of the initial
condition. To this end, we view h(Z̃t,T , it, it+1) as a function of Xt = (it−T , it−T+1, . . . , it+1) for
t > T , and we write it as ĥ(Xt). Let Yt = (Y1,t, Y2,t) = (Xt, ĥ(Xt)), t > T . We can write the
iteration for G̃t,T , t > T as

G̃t,T = G̃t−1,T + γtf
(
Yt, G̃t−1,T

)
,

where the function f is given by f(y,G) = y2−G for y = (y1, y2). Then we have the following facts:

(i) f is continuous in (y,G) and Lipschitz in G uniformly with respect to y.

(ii) {G̃t,T } is bounded.

(iii) {Yt, t > T} is a Feller chain on a compact metric space which is independent of the initial
G0, and moreover, it has a unique invariant probability measure. This follows from Assump-
tion 4.1(i) and the continuity of h: since {it} is a Feller chain on a compact metric space, {Xt}
is also a Feller chain, which together with ĥ being continuous implies that {Yt, t > T} is also
weak Feller. The unique invariant probability measure of the latter chain is clearly determined
by that of {it}.

Using these facts, we can apply the result of Borkar [Bor08, Chap. 6, Lemma 6, Theorem 7 and
Cor. 8] to obtain that with E0 denoting expectation under the stationary distribution of the Markov
chain {it},

G̃t,T
a.s.→ G∗T , where G∗T = E0

[
h(Z̃k,T , ik, ik+1)

]
, ∀k > T.

This is Eq. (28) in the proof of Theorem 3.1. We then apply the rest of the latter proof.
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The sequence {Gt} is a special case of the sequence {Gh
t } in the proposition, with the function

h given by h(z, i, j) = zψ(i, j)′. In this case, similar to the derivation given after the proof of
Theorem 3.1, it can be shown that Gh,∗ = G∗ given in Eq. (46).

We now proceed to show the ergodicity of {(it, Zt)} and the almost sure convergence of {Gt},
extending Theorems 3.2 and 3.3. In what follows, we use PS to denote the transition probability
kernel of the Markov chain {(it, Zt)} on the metric space S = I × <d.

Since ζ and φ are continuous functions under our assumptions, it can be verified directly that if
{it} is weak Feller, then {(it, Zt)} is also weak Feller. We state this as a lemma, omitting the proof.

Lemma 4.1. Under Assumptions 4.1 and 4.2(ii), the Markov chain {(it, Zt)} is weak Feller.

As in the finite space case, this together with the boundedness in probability of {(it, Zt)} indicated
by Lemma 3.1(ii) implies that {(it, Zt)} has at least one invariant probability measure π. But we will
now give an alternative way of reasoning for this, which is much more general and does not rely on
which type of chain {it} is or whether φ is bounded. The argument is based on constructing directly
a stationary process {(it, Zt)}, and it was used by Tsitsiklis and Van Roy [TV97, Eq. (5), p. 682]
for analyzing the on-policy TD(λ) algorithm. Here we follow the reasoning given in Meyn [Mey07,
Chap. 11.5, p. 520] for analyzing the on-policy LSTD algorithm, which is more general than the
argument given in the former work and suitable for our case.

Lemma 4.2. If {it} has a unique invariant probability measure ξ and φ is Borel-measurable with∫
‖φ‖dξ <∞, then the Markov chain {(it, Zt)} has at least one invariant probability measure π with

Eπ[‖Z0‖] <∞.

Proof. Consider a double-ended stationary Markov chain {it,−∞ < t < ∞} with transition prob-
ability kernel P and probability distribution Po. Let Yt = (it, it−1, . . .). Due to stationarity, for
all t, the probability distributions of Yt are the same, which is a measure on

(
I∞,B(I∞)

)
and will

be denoted by µY . We will consider in particular Y0 and Y1. For y ∈ I∞, the space of Yt, we
write y in terms of its components as (y0, y−1, . . .). So corresponding to a realization of Y0 given by
y = (̄i0, ī−1, . . .), y0 = ī0, y−1 = ī−1, . . . , for example.

Denote by E0 expectation with respect to Po. We write Lm
` , ` ≤ m given by Eq. (47) as

L(i`, i`+1, . . . , im) to make the dependence on the it’s explicit. We have

∞∑
k=0

βkE0

[
‖L(i−k, . . . , i0) · φ(i−k)‖

]
=

∞∑
k=0

βkE0

[
‖φ(i−k)‖

]
<∞,

which is equivalent to

∞∑
k=0

βk

∫
‖L(y−k, . . . , y0) · φ(y−k)‖ dµY (y) <∞.

Therefore by a theorem on integration [Rud66, Theorem 1.38, p. 28-29], we can define an <d-valued
measurable function on

(
I∞,B(I∞)

)
by

f(y) =

{∑∞
k=0 β

kL(y−k, . . . , y0) · φ(y−k) if y ∈ A;
0 otherwise,

(50)

where A is a measurable subset of I∞ such that µY (A) = 1 and for all y ∈ A, the series appearing
in the first case of the above definition converges to a vector in <d; and f satisfies∫

‖f(y)‖ dµY (y) <∞ and
∫
f(y) dµY (y) = E0

[
f(Y0)] =

∞∑
k=0

βkE0

[
L0
−kφ(i−k)

]
. (51)
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Let Zo
0 = f(Y0), and define Zo

1 by the recursion that defines Z1 with z0 = Zo
0 :

Zo
0 = f(Y0), Zo

1 = f̃(Y1)
def
= βζ(i0, i1) · f(Y0) + φ(i1).

Then {(i0, Zo
0 ), (i1, Zo

1 )} is a Markov chain with transition probability kernel PS . Consider the two
functions f and f̃ . By the definition of f in Eq. (50) and the fact that L(y`1 , . . . , y`2)·L(y`2 , . . . , y`3) =
L(y`1 , . . . , y`3) for `1 ≤ `2 ≤ `3, we have

f̃(y) = f(y), ∀ y ∈ A ∩ (I ×A).

Since Po(Y0 ∈ A) = µY (A) = 1 implies µY (I × A) = Po
(
Y1 = (i1, Y0) ∈ I × A

)
= 1, we have

µY

(
A ∩ (I × A)

)
= 1. So f̃ and f can differ only on the set

(
A ∩ (I × A)

)c, which has µY -
measure zero. As they define Zo

1 and Zo
0 , respectively, this shows that (Y0, Z

o
0 ) and (Y1, Z

o
1 ) have

the same distribution, and hence that (i0, Zo
0 ) and (i1, Z0

1 ) have the same distribution, which is an
invariant probability measure of the chain {(it, Zt)}. Denote the latter by π. We have by Eq. (51),
Eπ[‖Z0‖] = E0[‖Zo

0‖] =
∫
‖f(y)‖ dµY (y) <∞.

The following proposition parallels Theorem 3.2 and shows that the chain {(it, Zt)} has a unique
invariant probability measure and is ergodic.

Proposition 4.3. Under Assumptions 4.1 and 4.2(ii), the Markov chain {(it, Zt)} has a unique
invariant probability measure π, and for each initial condition x, almost surely, the sequence of
occupation measures {µx,t} converges weakly to π.

Proof. Let π be any invariant probability measure of {(it, Zt)}, the existence of which follows from
Lemma 4.2. First, we argue exactly as in the proof of Theorem 3.2, using Prop. 4.2 in place of
Theorem 3.1, to establish that there exists a subset F of S with π(F ) = 1, and for each initial
condition x = (̄i, z) such that (̄i, z̄) ∈ F for some z̄, {µx,t} converges weakly to π, Px-almost surely.

Next we show π is unique. Suppose π̃ is another invariant probability measure. Then the
preceding conclusion holds for a set F̃ with full π̃-measure. On the other hand, π and π̃ must have
their marginals on I coincide with ξ, the unique invariant probability measure of the chain {it}.
Let FI = {i | (i, z) ∈ F for some z} and define F̃I similarly as the projection of F̃ on I. The fact
π(F ) = π̃(F̃ ) = 1 implies ξ(FI) = ξ(F̃I) = 1, so FI∩F̃I 6= ∅ and there exists a state ī with (̄i, z̄) ∈ F
and (̄i, ẑ) ∈ F̃ for some z̄, ẑ. Then, by the preceding proof, for any initial condition x = (̄i, z) with
z ∈ <d, µx,t → π and µx,t → π̃ weakly, Px-almost surely. This shows π = π̃ and π is the unique
invariant probability measure.

Finally, consider initial conditions x = (̄i, z̄) with ī 6∈ FI . Because {(it, Zt)} is weak Feller
(Lemma 3.4), has a unique invariant probability measure, and also satisfies the drift condition
given in Lemma 3.1(i) with the stochastic Lyapunov function V (i, z) = ‖z‖, which is nonnegative,
continuous and coercive on S, we have the almost sure weak convergence of {µx,t} to π also for each
x 6∈ F by [Mey89, Props. 3.2, 4.2]. This completes the proof.

Let us use Eπ to denote also the expectation with respect to the stationary distribution of
{(it, Zt)}. Similar to the proof of Prop. 3.2, it can be seen that the conclusion Eπ[‖Z0‖] < ∞
of Lemma 4.2 implies that Eπ[‖h(Z0, i0, i1)‖] < ∞ for all functions h satisfying the conditions in
Prop. 4.2, that is, all vector-valued continuous functions h(z, i, j) that are Lipschitz continuous in z
uniformly with respect to (i, j). Thus we can extend Theorem 3.3 as follows.

Proposition 4.4. Let h and {Gh
t } be as defined in Prop. 4.2. Let the stepsize in Gh

t be γt = 1/(t+1).
Then, under Assumptions 4.1 and 4.2(ii), there exists a set A ⊂ I with ξ(A) = 1, where ξ is the
unique invariant probability measure of {it}, such that for each initial condition (̄i0, z0, Gh

0 ) with
ī0 ∈ A, Gh

t
a.s.→ Gh,∗, where Gh,∗ = Eπ

[
h(Z0, i0, i1)

]
is the constant in Prop. 4.2.
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Proof. We argue exactly as in the proof of Theorem 3.3, using Prop. 4.2 in place of Theorem 3.1, to
establish the convergence of {Gh

t } to Gh,∗, first for each initial condition Gh
0 and x = (̄i0, z0) ∈ F ,

where F is a set of full π-measure, and then for each initial condition Gh
0 and x = (̄i0, z0) where

ī0 ∈ A = {i | (i, z) ∈ F for some z}. Since the marginal of π on I coincides with ξ and π(F ) = 1,
the set A, being the projection of F on I, has measure 1 under ξ. The proof of the expression of
Gh,∗ is the same as that in Theorem 3.3.

Remark 4.1. The conclusions of Props. 4.4 and 4.3 are stronger than what we can obtain by just
applying the strong law of large numbers for the stationary process {(it, Zt)}, without using its
Feller property and the weak convergence result of Prop. 4.2. In the latter case, what we can claim
directly is only that {Gh

t } converges almost surely for the stepsize γt = 1/(t + 1) and each initial
condition as in Prop. 4.4.

Unlike in the finite space case, Prop. 4.4 asserts the almost sure convergence of {Gh
t } only for

the subset of initial conditions with ī0 ∈ A. However, for the rest of the initial conditions, Prop. 4.3
implies that we can use modified bounded iterates to obtain a good approximation of Gh,∗, as noted
in Remark 3.4. Thus the conclusions we obtain in this compact space case are practically as strong
as those in the finite space case.

The above theorems apply to the off-policy LSTD(λ) iterates {Gt} with the function h being
h(z, i, j) = zψ(i, j)′. They can also be applied to analyzing an off-policy TD(λ) algorithm for the
compact space MDP model, similar to that in Section 4.1.

5 Discussion

While we have focused on the discounted total cost problems, the off-policy LSTD(λ) algorithm
and the analysis given in the paper can be applied to average cost problems if a reliable estimate of
the average cost of the target policy is available. For details we refer to the discussion at the end
of [Yu10]. Here we mention briefly the application of the results of Section 3 in a related, non-MDP
context of approximate solutions of linear fixed point equations. We then conclude the paper by
addressing some topics for future research.

Consider approximately solving a linear fixed point equation

x = T (x) = Ax+ b,

where A = [aij ] is an n× n matrix and b an n-dimensional vector. We may apply the TD methods,
as discussed in Bertsekas and Yu [BY09]. Compared with policy evaluation in MDP, the main
difference is that the substochastic matrix αQ in the Bellman equation (1) is now replaced by an
arbitrary matrix A.

In particular, the TD(λ) approximation framework and algorithms can be applied for λ ∈ [0, 1]
such that λ

∑n
j=1 |aij | < 1 for all i. If we let |A| be the signless version of A, with the (i, j)th entry

being |aij |, then the latter condition on λ is equivalent to λ|A| being a strictly substochastic matrix.
For the above λ, analogous to the multistep Bellman equation, we can define the parametrized mul-
tistep fixed point mapping T (λ) involving the matrix

∑∞
k=0 λ

kAk. We can then find an approximate
solution of x = T (x) by solving x = ΠT (λ)(x) using simulation-based algorithms. In particular,
we can treat the row/column indices of the matrix A as states, employ a Markovian row/column
sampling scheme described by a transition matrix P , and apply the off-policy LSTD(λ) algorithm
with the coefficients αqij replaced by aij , as described in [BY09].

Similarly, the analysis given in Section 3 extends directly to this context, assuming the irre-
ducibility of P and |A| ≺ P , in addition to λ|A| being strictly substochastic. We only need a slight
modification in the analysis: when bounding various quantities of interest, we replace the ratios
Lt

t−1 =
ait−1it

pit−1it
, now possibly negative, by their absolute values, and we use the property

E
[
λ|Lt

t−1| | it−1

]
≤ ν < 1
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for some constant ν in place of Eq. (18). A slightly more general case where λ
∑

j |aij | ≤ 1 for all i
and with equality for some but not all i, may be analyzed using a similar approach.

There are many problems deserving further study. One is the almost sure convergence of the
unconstrained version of the on-line off-policy TD(λ) algorithm [BY09] for a general value of λ. (In
the case of λ = 0, there are several convergent gradient-based off-policy TD variants; see Sutton et
al. [SMP+09] and the references therein.) Another is the almost sure convergence of LSTD(λ) with
a general stepsize sequence, possibly random; such stepsizes are useful particularly in two-time-scale
policy iteration schemes, where LSTD(λ) is applied to policy evaluation at a faster time-scale, while
incremental policy improvement is carried out at a slower time-scale. Another subject for future
research is to extend the analysis in this paper to MDP models with a non-compact state-action
space and unbounded costs. Finally, while we have focused on analyzing the asymptotic properties
of the off-policy LSTD algorithm, its finite-sample properties such as those considered by Antos et
al. [ASM08] and Lazaric et al. [LGM10] are also worth studying.
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Appendix: A Numerical Example

In this appendix, we use a simple 2-state example to illustrate the unboundedness of {Zt} and the
convergence behavior of the LSTD(λ) algorithm for different stepsize sequences.

We let β = 0.98,

Q =
[
0.2 0.8
0.5 0.5

]
, P =

[
0.45 0.55
0.6 0.4

]
,

Φ′ = [φ(1) φ(2)] = [2 1], ψ(i, j) = 1, i, j ∈ {1, 2}.

Thus Zt, Gt are one-dimensional and [
qij

pij

]
=
[
0.44 1.45
0.83 1.25

]
.

There are several simple cycles of states satisfying the conditions of Prop. 3.1. For example, {2, 2}
is such a cycle with β q22

p22
= 1.225 > 1, {1, 2, 1} is another one with β2 q12

p12
· q21

p21
= 1.164 > 1, and

{1, 2, 2, 1} is yet another with β3 q12
p12

· q22
p22

· q21
p21

= 1.426 > 1. So {Zt} is almost surely unbounded
(cf. Prop. 3.1 and the discussion preceding it). This phenomenon is demonstrated by a simulation
run shown in the figure below, where the maximal values of ‖Zt‖ in intervals of length C = 5× 106

are plotted.
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Figure 1: {Zt} from a simulation run. Y-axis: max(k−1)C<t≤kC ‖Zt‖ where C = 5× 106; X-axis: k.

For this example, it can be verified also that the variance of Zt increases to infinity as t increases.
In the next figure, we compare the behavior of Gt for stepsizes γt that decrease at different rates.
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We plotted the values of {Gt} in a simulation run for t in the time interval (k− 1)C < t ≤ kC with
k = 200 and C = 5× 106 as in the previous figure. The horizontal axis shows t− (k − 1)C.

For γt = O(1/t), O(1/t0.95) and O(1/t0.9), the corresponding {Gt} is converging to G∗, while for
γt = O(1/t0.8) and O(1/t0.7), the corresponding {Gt} seems to converge to G∗ not almost surely,
but only weakly, as demonstrated by its oscillation around G∗. These simulation results seem to
confirm that almost sure convergence of {Gt} may occur only for those stepsizes that decrease at a
rate much faster than t−0.5. (Compare with Theorem 3.3, Remark 3.5 and Theorem 3.1.)
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Figure 2: Behavior of {Gt} for different stepsizes γt.


