
Applications of Diamonded Double Negation

Anssi Yli-Jyrä

Department of General Linguistics, University of Helsinki, Finland

Abstract. Nested complementation plays an important role in express-
ing counter- i.e. star-free and first-order definable languages and their
hierarchies. In addition, methods that compile phonological rules into
finite-state networks use double-nested complementation or “double nega-
tion”. This paper reviews how the double-nested complementation ex-
tends to a relatively new operation, generalized restriction (GR), coined
by the author (Yli-Jyrä and Koskenniemi 2004). This operation encap-
sulates a double-nested complementation and elimination of a concate-
nation marker, diamond, whose finite occurrences align concatenations
in the arguments of the operation. The paper demonstrates that the GR
operation has an interesting potential in expressing regular languages,
various kinds of grammars, bimorphisms and relations. This motivates a
further study of optimized implementation of the operator.

1 Introduction

The goal of this paper1 is to advocate implementation and optimization of a non-
classical regular operation – generalized restriction. This operation augments a
double-nested complementation in a very useful way.

Algorithms for complementation are not among the most famous operators
in finite-state toolkits due to various reasons that that include (i) the need to
define the universal language, (ii) the need to determinize the automaton with a
possibly exponential construction and (iii) the absence of weights in the resulting
automaton.

Complementation has an important role in generalized star-free expressions
and hierarchies characterizing star-free languages. Generalized star-free expres-
sions consist of finite languages, concatenations and the Boolean operators, in-
cluding complementation that assumes the universal language. They describe
the counter-free i.e. star-free languages [1,2]. These languages are also charac-
terized with the dot-depth hierarchy [3] and first order logic with linear order
(FO[<]) [4]. It is also known that typical regular string set expressions in lan-
guage technology can be reduced to star-free expressions [5].

In addition, complementation is an important operation in finite-state mor-
phology, where it is used to compile conditional rules into automata. In the early
finite-state accounts of morphology, phonological rules were compiled manually
into transducers. Johnson [6] sketched in 1972 how to obtain finite-state trans-
ducers (and bimachines) directly from rules. In 1981, Kaplan and Kay presented

1 The original title of this invited paper was The Hidden Jewels of Double Negation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14913516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Anssi Yli-Jyrä

another approach to compilation of generative phonological rules descriptions
[7]. A bit later, rules of the classical Two Level (TWOL) model [8] and its early
implementations were at first hand-compiled. In these circumstances, Kaplan
discovered the relevance of double-nested complementation [7]. According to a
recent interview (Kaplan, p.c., 2007), back then his eureka was: “Everything
must be [a] double negation!”

Roughly two decades later the author discovered [9] how to combine double-
nested complementation with special markers (diamonds) that occurred only
a specified number of times (typically twice) in hidden strings. This extension
is called generalized restriction (GR) because it generalizes the semantics of
the context restriction rule of the TWOL model. The new operator has many
applications in linguistic finite-state formalisms.

By surveying the applications of the operation, the paper argues that the
operator is a versatile and practical tool for finite-state grammar construction.

The Structure of the Paper The notational preliminaries are in Section 2.
Section 3 contains introduction to implication rules in finite-state phonology and
morphology. Section 4 introduces diamonds and generalized restriction. Sections
5, 6, 7, 8, 9 tell about their applications in constraint systems, combinatorial
systems, bracketed systems, bimorphisms, and optimality theoretic systems, re-
spectively. Section 10 discusses a measure of locality in nested generalized re-
striction. A case example of the possible optimizations is elaborated in Section
11 and the paper is concluded by Section 12.

2 Preliminaries

We assume the reader is familiar with classical results on the connection between
closure properties of deterministic and non-deterministic automata and those of
regular languages. Apart from Section (7.2), all string sets in this paper are
regular languages.

Let A1, A2 be sets of symbols. Let U and V be languages over A1. We
assume that the reader is familiar with regular languages and the basic regular
operations: concatenation UV , intersection U ∩ V , union U ∪ V , asymmetric
difference U\V , complementation U , Kleene’s star U∗, and Kleene’s plus U+.
Let U0 = U≤0 = ǫ and let Uk and U≤k, where k > 0, denote respectively the
languages UU (k−1) and (ǫ∪U)U≤(k−1). The local A2-closure of U is the relation
fA2

:A∗1 → A∗1 defined as fA2
(U) = {f(a0)f(a1) . . . f(am−1) | a0a1 . . . am−1∈U ∧

a0, a1, . . . , am−1∈A1} where f(a) = a∗ for every a∈A2, and f(a)=a otherwise.
The elimination of symbols A2 in language U is the function dA2

(U) = fA2
(U)\

A∗1A2A
∗
1. If r is a binary relation, its inverse is denoted by r−1.

Notation A1:A2 denotes alphabet {a1:a2|a1 ∈ A1, a2 ∈ A2}. Set Π is called
the total pivot alphabet. Its every element is a character pair a:b and it is closed in
such a way that a:a, b:b ∈ Π for all a:b ∈ Π. The diamond alphabet M contains
markers ⋄0:⋄0, ⋄1:⋄1, ⋄2:⋄2, . . . , ⋄s:⋄s and it is disjoint from Π. An identity pair
a:a ∈ (Π ∪M) is often written simply as symbol a.

Applications of Diamonded Double Negation 3

The null string is denoted by ǫ. We often denote set {u}, where u ∈ A∗1, by u.
The length of string u is denoted by |u|. A sequence u = a0:b0a1:b1 . . . am−1:bm−1

⊆ (A1:A2)
∗ is called a symbol-pair string and analyzed alternatively as a string

pair (x1, x2) = (a0a1 . . . am−1, b0b1 . . . bm−1). Pair (x1, x2) can be denoted by
x1:x2 if |x1| = |x2|. In such a pair, x1 is called the input string and x2 is called
the output string.

Disjoint sets BL ⊆ Π and BR ⊆ Π have the same cardinality and they are
called the left and the right bracket alphabets, respectively. Set BL contains at
least symbols <1, <2, <v, <np, <vp, <←−−subj

, <−→obj
, and set BR contains at least symbols

>1, >2, >v, >np, >vp, >←−−subj
, >−→obj

. Let B = BL ∪BR and Bi = {<i, >i}.
Let 0:0 ∈ Π be a representative for the empty string ǫ. The input and output

projections π1, π2 : Π∗ → Π∗ are defined as π1(X) = {d0(x1):d0(x1) |x1:x2∈X}
and π2(X) = {d0(x2):d0(x2) |x1:x2∈X}. Let I = π1(Π) and Σ = I\B.

3 Two Historically Important Implication Operators

Variations of production, alternation and constraint rules in linguistics have a
close relationship to logical implications. In propositional logic, material implica-
tion can be expressed with a disjunction with only one negation: a→ b = (¬a)∨b.
A double negation occurs in de Morgan’s law : a∨ b = ¬(¬a∧¬b). By combining
these equivalences, we obtain a double negation with conjunction:

a→ b = ¬((¬¬a) ∧ ¬b) = ¬(a ∧ ¬b). (1)

3.1 Kaplan’s if-then Operators

The introduction quoted Ronald Kaplan’s spontaneous eureka “everything must
be a double negation” (p.c., 2007). His words crystallize the following discovery:
Choosing Equation (1) instead of equation a → b = (¬a) ∨ b is a very useful
choice when implications in finite-state phonology are compiled into automata:
Equation (1) can be varied by replacing the conjunction with concatenation – a
conjunction of a prefix and a juxtaposed suffix in a string.

Equation (1) resembles Kaplan’s if-then operators [7] that take two argument
languages P, S ⊆ Π∗:

if-P-then-S(P, S)
def
= PS = (Π∗\P (Π∗\S)) (2)

if-S-then-P(P, S)
def
= PS = (Π∗\(Π∗\P)S) (3)

P-iff-S(P, S)
def
= if-P-then-S(P, S) ∩ if-S-then-P(P, S). (4)

3.2 Compound Context Restriction

Definition Koskenniemi [8] employs in his Two-Level Grammar a constraint
rule called context restriction. This rule type involves two-way context conditions

4 Anssi Yli-Jyrä

such as #L R# whose alternative forms are related by the following equiva-
lences:

... ...⇔ ...ǫ ǫ...; #Π∗L ...⇔ L ...; ... RΠ∗# ⇔ ... R. (5)

If the rule has several two-way contexts, it is called a compound context restric-
tion (CCR) [7] and written as

X ⇒ #L1 R1#, . . . ,#Ln Rn#. (6)

Semantics In Rule 6, languages X,Li, Ri ⊆ Π∗, for every i ∈ {1, 2, . . . , n} are
called, respectively, the center, the left context i and the right context i. The rule
denotes the largest subset of Π∗ where every occurrence of factor x ∈ X splits
the whole string into three parts v, x, y in such a way that there is at least one
i such that v ∈ L1 and y ∈ R1 [7].

The if-then operators provide an easy solution to the exact compilation of
simple (i.e. 1-context) context restriction [7,8]:

X ⇒ #L1 R1#
def
= if-S-then-P(L1,XΠ

∗) ∩ if-P-then-S(Π∗X,R1). (7)

Underlying Complexity In contrast to the simple context restriction, CCR
is very combinatorial. Since there are n two-sided contexts, there are 2n − 1
potential ways in which at least one two-sided context #Li Ri# surrounds each
occurrence of the factor x ∈ X. Each context can fail to be satisfied on its left,
right or both sides, i.e. there are 3n potential ways in which too many of the 2n
context parts can be missing.

There are (m + 1)(m + 2)/2 factors in an m-character string. The center
can properly embed to itself (e.g. bcd ∪ c), embed to and be aligned with itself
(e.g. bc+), or self-overlap (e.g. bc ∪ cd). According to the given semantics of
CCR, all instances of X must be surrounded by a context. Even if the occur-
rences of factors x1, x2 ∈ X were embedded or overlapping, their contexts should
independently satisfy the context restriction.

Approximate Formulas Traditionally, the correct semantics has only been ap-
proximated in the previously described implementations of the context restriction
operator: Karttunen et al. [10] and Kaplan and Kay [7] mark the occurrences of
center factors of CCR using a concatenation closure of constrained regions. That
does not work, however, if center X ⊆ Π∗ is not a subset of Π. Grimley-Evans
et al. [11] mark a contiguous sequence of center factors. The method assumes
that the applications of the rule are in consecutive and non-overlapping ranges
of positions. A method by Kempe (p.c., see the appendix of [9]) replaces in an
auxiliary tape all center occurrences that have a valid context and verifies that
there is no occurrence of center that has not been replaced.

Yli-Jyrä and Koskenniemi [9] survey a number of approximate formulas. In
fact, there are real examples of rules where all known approximate methods

Applications of Diamonded Double Negation 5

fail [5]. Pasi Tapanainen’s program RuleCompile, still in use in 1998, produced
output that has not been shown incorrect, but it is possible that it is based on
a very good approximate algorithm.

4 First-Order Logic and Diamonds

4.1 Context Restriction

With Star-Free Operators A correct formula for two-context context restric-
tion was published independently by two authors: (i) Dale Gerdemann (see the
appendix of [9]), and (ii) the current author [5,9]. The first formula was like this:

X ⇒#L1 R1#,#L2 R2#
def
=

if-P-then-S(Π∗X,R1 ∪R2) ∩ if-S-then-P(L1,X(R1\R2)) ∩

if-S-then-P(L2,X(R2\R1)) ∩ if-S-then-P(L1 ∪ L2,X(R1 ∩R2)). (8)

The second solution [5] handles any number of contexts, but it involves a star-
free expression whose size is exponential to n. This motivates the search for a
better compilation method.

It is remarkable that these compilation methods for CCR are based on con-
catenation and Boolean operations, i.e. star-free operations. Star-free operations
are closely related to finite model-theory and first-order logic in particular. To
study this connection in depth, we can assume that languages X,L1, R1, . . . ,
Ln, Rn are star-free.

With Position Variables In the first-order logic with linear order, FO[<], we
can interpret formulas over a finite string w = 〈c0, c1, . . . , cm−1〉. Denote ci with
w[i] and denote substring cici+1 . . . cj−1 with w[i, j], where 0≤i≤j≤m. Variables
i, j, k, · · · ∈ N specify string positions and they have to be bound in complete
FO[<] sentences.

The occurrence of symbol c ∈ Π in position i ∈ N is described by pred-
icate φc(i, i + 1) that is true if and only if i < m and w[i] = c. The sub-
string cbcb+1 . . . ce−1 ∈ Π∗ is described by formula φv(b, e) = φcb

(b, b+1) ∧
φcb+1

(b+1, b+2) ∧ · · · ∧ φce−1
(e−1, e). The universal language over alphabet Π

is described by formula φΠ∗(b, e) = (∀b≤i≤e−1) ∨c∈Πφc(i, i+ 1). Let U and V
be languages over Π. The concatenation of languages U and V is described by
formula φUV (b, e)=∃i(φU (b, i) ∧ φV (i, e)). The union of languages U and V is
described by formula φU∪V (b, e)=φU (b, e) ∨ φV (b, e). The intersection of sets U
and V is described by formula φU∪V (b, e)=φU (b, e) ∧ φV (b, e). The asymmetric
difference U\V is described by formula φU\V (b, e)=φU (b, e) ∧ ¬φV (b, e).

For all star-free expressions p over alphabet Π, a corresponding FO[<] ex-
pression can be constructed by collecting it recursively from the expression tree
of p. String w matches the expression p if sentence φp(0, |w|) is true.

If φX(b, e), φL1
(b, e), φR1

(b, e), . . . φLn
(b, e), φRn

(b, e) are formulas describing
star-free languages X,L1, R1, . . . , Ln, Rn, then Rule 6 is described as set

{w∈Π∗ | ¬∃0≤i≤j≤|w|[φX(i, j) ∧ ¬ ∨n
i=1 (φLi

(0, i) ∧ φRi
(j, |w|))]}. (9)

6 Anssi Yli-Jyrä

With Range Variables The signature of FO[<] can be extended with position
range variables v,x,y, · · · ∈ N × N each of which is a pair of type [b, e] where
b ≤ e. The variables denote substrings w[bv, ev], w[bx, ex], w[by, ey], Expres-
sion x∈X denotes formula φX(bx, ex). If ev=bx, the concatenation of substrings
denoted by ranges v and x is denoted by range [bv, ex] and expressed as vx.
Equivalence v=x denotes formula bv=bx ∧ ev=ex. The language of expression 6
is described as set

{w∈Π∗ | ¬∃v,x,y[w=vxy ∧ x∈X ∧ ¬ ∨n
i=1 (v∈Li ∧ y∈Ri)]}. (10)

With MSO Logic The logic FO[<] captures only star-free languages. In order
to handle all regular operands, we should extend the logic with monadic second-
order (MSO) quantifiers [12,13]. In contrast to Vaillette [14] who makes exten-
sively use of MSO when describing various rules we could maintain the structure
of the first-order formula (10) and employ MSO quantifiers only the internal
structure of subformulas φX(b, e), φL1

(b, e), φR1
(b, e), . . . φLn

(b, e), φRn
(b, e).

4.2 Diamond

As an alternative to an MSO-based semantics, we can use the closure properties
of regular languages and transform Formula 10 into regular operations. Like
MSO logic, a method based on regular operators is not limited to the case where
the operators are star-free.

Our ad hoc transformation is based on an encoding that eliminates individual
range variables. We observe that inside the scope of quantification ∃v,x,y, the
quantified variables are restricted by condition w=vxy. In other words, string
w is a concatenation of three substrings v = w[bv, ev], x = w[bx, ex], and y =
w[by, ey].

To indicate the parts of the string w ∈ Π∗, we use marked concatenation
v⋄1x⋄1y where ⋄1 /∈ Π. A membership test x ∈ X will be implemented as
condition v⋄1x⋄1y ∈W where W = Π∗⋄1X⋄1Π

∗. Similarly, the condition v∈Li∧
y∈Ri corresponds now to condition v⋄1x⋄1y ∈ W ′i where W ′i = Li⋄1Π

∗⋄1Ri.
Subformula φ(v,x,y) = x∈X∧¬∨n

i=1 (v∈Li∧y∈Ri) thus becomes v⋄1x⋄1y ∈ C
where C = W\ ∪n

i=1 W
′
i .

To obtain concatenation as usual, we just eliminate the markers from marked
concatenations: vxy = dM (v⋄1x⋄1y). This corresponds to quantifier elimination.
Accordingly, dM (C) denotes the set {w ∈ Π∗ | ∃v,x,y(w=vxy ∧ φ(v,x,y))}.
It is now easy to see that Formula (10) corresponds to regular expression

Π∗\dM (Π∗⋄1X⋄1Π
∗\ ∪n

i=1 Li⋄1Π
∗⋄1Ri). (11)

The most obvious advantage of (11) is its linear size according to the number
of contexts. Instead of a Boolean combination of 2n “double negations” as in
(8), Formula (11) contains only one “double negation”.

Expression (11) uses a marker symbol ⋄1 that we call a diamond. If fact, we
assume a marker alphabet M that contains ⋄1 and other diamonds. Diamonds

Applications of Diamonded Double Negation 7

differ essentially from auxiliary markers used by Kaplan and Kay [7]: the number
of their occurrences in strings of C is constrained by an integer k. They also bear
resemblance to pebbles in Ehrenfeucht-Fraisse games.2

4.3 Generalized Restriction

Marked concatenations constitute the foundation for generalized restriction op-
erator (GR), a new operation coined by the current author [9]. We define the
GR operator now in a manner that is slightly more general in comparison to the

original definition. The GR operator
Π,k,M
⇒ : 2(Π∗MΠ∗)≤k

× 2(Π∗MΠ∗)∗ → 2Π∗

is
defined by the equation

W
Π,k,M
⇒ W ′

def
= Π∗\dM (W\W ′). (12)

Languages W and W ′ are called in [15] the generalized precondition and the
generalized postcondition, respectively. When M = {⋄} and W,W ′⊆(Π∗MΠ∗)k

for some k, the definition is essentially the same as originally.

First-Order Definability A regular expression describes a star-free language
if (but not only if) its generalized star-height [16] is zero. The star-height is
increased by such operators as Kleene’s star. The universal language Π∗ is only
a short-hand for ∅ and is therefore a neutral element for star-height. Compound
context restriction preserves the star-height in regular expressions [5]. It is in-
teresting to see whether the same property holds for generalized restriction.

Assume that the arguments of the GR operator are star-free. To prove that
the operator does not increase the star-height, we first split its operands accord-
ing to the number of diamonds:

[W
Π,k,M
⇒ W ′] = ∩k

i=0 [Wi
Π,k,M
⇒ W ′i]

where Wi = W ∩ (Π∗MΠ∗)i and W ′i = W ′ ∩ (Π∗MΠ∗)i. (13)

While it is possible that strings of W ′ contain more than k diamonds, it does not
matter, because such strings does not affect the difference W\W ′. It now suffices

to show that each sub-GR Wi
Π,k,M
⇒ W ′i preserves the generalized star-height.

For this purpose, we split each sub-GR according to the diamond types used:

[Wi
Π,k,M
⇒ W ′i] = ∩c1∈M · · · ∩ck∈M [U

Π,k,M
⇒ U ′] where

U=Wi∩(Π∗ciΠ
∗ci+1 . . . Π

∗ckΠ
∗);U ′=W ′i∩(Π∗ciΠ

∗ci+1 . . . Π
∗ckΠ

∗). (14)

Because U and U ′ are obtained respectively from star-free languages W and
W ′ by star-free operations, they are also star-free. Again, it suffices to show

2 Recently, Måns Hulden (p.c., 2008) has elaborated this marker-variable connec-
tion and added the likeness of predicate logic to regular expressions using named
diamond-like markers.

8 Anssi Yli-Jyrä

that every sub-GR U
Π,k,M
⇒ U ′ in this decomposition preserves the generalized

star-height. This time, we assume there are finite decompositions of U and U ′:

U
Π,k,M
⇒ U ′ = [U1 ∪ . . . Ur

Π,k,M
⇒ Ur+1 ∪ . . . Up] where every Ui is of

the form Ui = Xi,0c1Xi,1c1 . . . ckXi,k in which c1, c2, . . . , ck ∈M. (15)

In fact, there exists a decomposition like in Formula (15) because the strongly
connected components in the automata recognizing U and U ′ do not contain
diamond transitions and it is therefore easy to extract subautomata between the
diamonds. All subautomata of the automata recognizing U and U ′ are counter-
free because languages U and U ′ are star-free [2]. Accordingly, each component
Xi,j corresponds to a counter-free subautomaton and is, thus, star-free and de-
finable by an FO[<] formula φXi,j

(b, e).
Now, as we have split the original GR into sub-GRs, it suffices to show that

every sub-GR [U1 ∪ . . . Ur
Π,k,M
⇒ Ur+1 ∪ . . . U

′
p] is definable in FO[<]. This holds

because we have the equation

[U1 ∪ . . . Ur
Π,k,M
⇒ Ur+1 ∪ . . . Up] = {w∈Π∗ | ¬∃x0,x1, . . .xk[w=x1x2 . . .xk∧

(∨r
i=1 ∧

k
j=0 xj∈Xi,j) ∧ ¬(∨p

i=r+1 ∧
k
j=0 xj∈Xi,j)]}. (16)

To conclude, the GR operation preserves the generalized star-height when the
height of all its arguments is zero.

Problem 1. Is it possible to get a shorter proof by proving that deletion dM :
(Π∗MΠ∗)∗ → Π∗ preserves the generalized star height when its domain is
restricted to (Π∗MΠ∗)k?

5 Application: Constraint Systems

Often finite-state grammars and rule compilation methods involve constraint
relations that are either intersected or composed with other regular relations.
The GR operator can be used to construct constraint languages. In addition, it
is possible to combine conjunctive constraints so that only one GR operator is
needed, or decompose the operator into a conjunction of layers in order to reduce
the total count of states in automata. In this section, we will review these three
uses of the operator.

5.1 Simple Constraints

Let X ⊆ Π∗ be a language that acts as a constraint such as in finite-state
intersection grammar [17]. A constraint language X can be turned into its com-

plement through the equation X = [X
Π,0,M
⇒ ∅].

Let X ⊆ Π∗ be a local grammar that describes forbidden patterns [18]. It

can be compiled into as a constraint language nowhere(X)
def
= [Π∗XΠ∗

Π,0,M
⇒ ∅].

Applications of Diamonded Double Negation 9

The center prohibition rule [15] (denoted by /<=) bears some similarity to the
nowhere operation and is defined by the equation

[X/<=#L1 R1#, . . . ,#Ln Rn#]
def
= [∪n

i=1Li⋄0X⋄0Ri
Π,2,M
⇒ ∅]. (17)

Yli-Jyrä and Koskenniemi [9] document how Kaplan’s if-then operators are re-

duced to generalized restrictions: if-P-then-S(P, S) = [P ⋄1Π
∗ Π,1,M

⇒ Π∗⋄1S];

if-S-then-P(P, S) = [Π∗⋄1S
Π,1,M
⇒ P ⋄1Π

∗]; P-iff-S(P, S) = [(P ⋄1Π
∗ ∪ Π∗⋄1S)

Π,1,M
⇒ P ⋄1S]. Generalized restriction captures also compound context restric-

tion (denoted by =>) and coercion (denoted here by <<= although [9] used <=),
through the equations

[X=>#L1 R1#, . . .#Ln Rn#]
def
= [Π∗⋄1X⋄1Π

∗Π,2,M
⇒ ∪n

i=1Li⋄1Π
∗⋄1Ri]; (18)

[X<<=#L1 R1#, . . . ,#Ln Rn#]
def
= [∪n

i=1Li⋄1Π
∗⋄1Ri

Π,2,M
⇒ Π∗⋄1X⋄1Π

∗]. (19)

Generalized Two-Level Grammar (GTWOL) [15] introduces center presence re-
quirement (denoted by <==, actually the same as coercion with (additional) pre-
conditions [9]), and includes presence requirement (denoted by ==>) that pro-
vides a direct interface to the 2-diamond GRs. These are defined by

[X<==C]
def
= [C

Π,2,M
⇒ Π∗⋄1X⋄1Π

∗] where C⊆Π∗⋄1Π
∗⋄1Π

∗; (20)

[C==>C ′]
def
= [C

Π,2,M
⇒ C ′] where C,C ′⊆Π∗⋄1Π

∗⋄1Π
∗. (21)

Two-level Grammar [8] contains an operation called surface coercion (tradition-
ally denoted by <=). It is defined by the equation

[X<=#L1 R1#, ...,#Ln Rn#]
def
= [X<==(∪iLi⋄1π

−1
1 (π1(X))⋄1Ri)]. (22)

5.2 Decomposing into Conjunctive Constraints

It is not always practical to evaluate a GR operation W
Π,k,M
⇒ W ′ as a whole.

It may sometimes be better to decompose the operands W using additional
preconditions [9]. For this purpose, we need a number of layer preconditions
P1, P2, . . . , Pm ∈ (Π∗MΠ∗)∗ that are defined in such a way that W ⊆ ∪m

i=1(Pi∩
W). The decomposition corresponds then to intersection

∩m
i=1(W ∩ Pi

Π,k,M
⇒ W ′). (23)

5.3 Systems of Conjunctive Constraints

In contrast to decompositions, We can also reduce intersection of two GRs into
one GR. The possible scenarios include the equations

[W1
Π,k,M
⇒ W ′1] ∩ [W2

Π,k,M
⇒ W ′2] = [(W1 ∪W2)

Π,k,M
⇒ (W ′1 ∪W

′
2)]

when W1 ∩W
′
2 ⊆W ′1 and W2 ∩W

′
1 ⊆W ′2; (24)

[W1
Π,k,M
⇒ W ′1]

⊎

[W2
Π,k,M
⇒ W ′2]

def
= [(W1∪W2)

Π,k,M
⇒ ((W1∩W

′
1)∪(W2∩W

′
2))]. (25)

10 Anssi Yli-Jyrä

In (25), the new operator

⊎

is called coherent intersection since it resolves
various implication conflicts between two conjunctive generalized restrictions. In
the following, we illustrate the applications of the conjunctive GR operation in
(24) with three examples.

Enforcing Balanced Structure A new operator match-L-R(L,D,R) is de-
fined by the equation

match-L-R(L,D,R)
def
=[L⋄1Π

∗ Π,1,⋄1
⇒ L⋄1DR] ∩ [Π∗⋄2R

Π,1,⋄2
⇒ LD⋄2R]. (26)

According to the operator, a left side L (or right side R) must always be paired
with a right side R (or left side L), and separated from that with a string that
belongs to D. The operator is useful in enforcing balanced structures such as
bracketing. Thanks to Equation (24), the operator can also be defined using only
one GR operator as the equation

match-L-R(L,D,R) = [(L⋄1Π
∗ ∪Π∗⋄2R)

Π,1,M
⇒ (L⋄1DR ∪ LD⋄2R)]. (27)

Moreover, a feasible superset of L⋄1DR∪LD⋄2R can be obtained from L⋄1D⋄2R
with the local closure operator fM that acts as a “metarule” in the equation

match-L-R(L,D,R) = [(L⋄1Π
∗ ∪Π∗⋄2R)

Π,1,M
⇒ fM (L⋄1D⋄2R)]. (28)

Double Arrow Rules The double arrow operator (context restriction plus
surface coercion) in Two-Level Grammar [8] is a conjunction of two simpler
rules. Each such rule reduces to a single GR operation defined by the equation

[X<=>#L1 R1#, . . . ,#Ln Rn#]
def
= [C

Π,2,M
⇒ ∪n

i=1Li⋄1X⋄1Ri] (29)

where C = (∪n
i=1Li⋄1 π

−1
1 (π1(X)) ⋄1Ri) ∪ (Π∗⋄1X⋄1Π

∗).

Coarsely Interpreted Two-Level Grammar Yli-Jyrä and Koskenniemi [15]
compile rules of Generalized Two-level Grammar like in Formulas (17), (18), (20),

(21), (22), and (29). All rule types reduce to a common form Wi
Π,2,M
⇒ W ′i .

If the rules are loose enough to avoid mutual conflicts, they can be compiled
easily in separation. The semantics of the whole grammar is traditionally ob-
tained as an intersection of the individual rules [8], provided that a compound
context restriction is counted as a single rule.

In theory, it is also possible to compile all rules at once as if their intersection
were computed [15]. The uniform rules are combined straightforwardly on the
basis of (24). One possibility to do this is presented in the equation

∩i(Wi
Π,2,M
⇒ W ′i) = [(∪i⋄iWi)

Π,3,M
⇒ ∪i⋄iW

′
i]. (30)

Applications of Diamonded Double Negation 11

6 Application: Combinatorial Systems

We now turn our attention from the constraining power of the GR operator to its
ability to generate a language through its second operand. If the first operand of
the GR operator is the universal language, the second operand specifies strings
that remain. In comparison, if a logical formula φ1 is a tautology, the truth value
of the material implication φ1 → φ2 depends completely on the right-hand side
φ2. Accordingly, any language X ⊆ Π∗ can be passed through the GR operation

unchanged as follows: X = [Π∗
Π,0,M
⇒ X].

6.1 String Coverings with a Lexicon

The things get very interesting when we modify the first operand by adding into
it a diamond that occurs before an arbitrary character position. This changes a
lot: a string in the second operand would now be passed through the GR oper-
ation only if its every character is disjunctively preceded by a hidden diamond:

X=[Π∗ν′1,1(Π)Π∗
Π,1,M
⇒ ν′⋆,1(X)] where ν′1,j(W)=d−1

{⋄1,...,⋄j}
(W)∩(ǫ∪(Π∗M)Π+) (31)

and ν′⋆,j(W)=d−1
{⋄1,...,⋄j}

(W)∩(ǫ∪(Π∗M)∗Π+).

The same effect is captured by adding two diamonds that surround each char-
acter and empty string on both operand languages:

X=[Π∗ν2,1(Π)Π∗
Π,2,M
⇒ ν⋆,1(X)] where ν2,j(W)=d−1

{⋄1,...,⋄j}
(W) ∩ (Π∗⋄jΠ

∗⋄jΠ
∗)

and ν⋆,j(W)=d−1
{⋄1,...,⋄j}

(W). (32)

Free Contexts We can now elaborate the right-hand side of the GR and add
there left and right contexts #Π∗ Π∗#:

X ′ = [Π∗ν′1,1(Π)Π∗
Π,1,M
⇒ Π∗ν′⋆,1(X)Π∗]=[Π∗ν2,1(Π)Π∗

Π,2,M
⇒ Π∗ν⋆,1(X)Π∗]. (33)

Every string in the result X ′ will now have a string covering that consists of
possibly overlapping factorsX. For example, ifX = {autom, mate, eria} thenX ′

contains such strings as automate, materia and automateriautom. Accordingly,
we have defined a simple combinatorial system. If we want, we can concatenate
a unique sentinel symbol σ ∈ Π to the end of the lexicon X ⊆ (Π\σ)∗ in order
to generate X ′ = (Xσ)∗ i.e. a set of strings covered with non-overlapping factors
taken from set Xσ.

Problem 2. Can coverings be used to describe allomorph selection, nonconcate-
native morphotactics, interdigitation and multi-component rewriting?

Problem 3. Can ν′⋆,j or ν⋆,j be used on the left hand side of an extended GR
operator that would still preserve star-freeness? How the change interacts with
star-freeness, automata size and applications?

12 Anssi Yli-Jyrä

6.2 Optional Changes

Rules as Permissions The string coverings help us to understand GTWOL
[15]. In GTWOL, any CCR rule is equivalent to a coherent intersection of simple
context restrictions. The set of all n context restrictions are combined under
the coherent intersection operator, which corresponds to automatic right-arrow
conflict resolution [19,20]. This interpretation is reflected by the equation

[X1=>#L1 R1#]

⊎

. . .

⊎

[Xn=>#Ln Rn#] = [W1
Π,2,M
⇒ S1] (34)

where W1=Π
∗ν′1,1(Π)Π∗ and S1= ∪n

i=1 Liν
′
⋆,1(Xi)Ri.

Default Correspondences GTWOL [15] assumes that the identity pairs in the
string covering do not need permissions. This is now captured in every GTWOL
by a default context restriction rule [I∗=>] that permits substrings consisting
of identity pairs I to occur unconditionally. This rule corresponds to default
correspondence pairs in the classical TWOL [8].

Multi-Character Changes In context restriction rules of GTWOL, center X
can contain strings longer than one character. These multi-character changes can
be described also in the classical TWOL through a combined effect of several
rules. Regardless of the description, multi-character changes introduce a so-called
embedded-center conflict. The conflict is more difficult to detect in TWOL that
uses several partial rules.

Consider GTWOL rules [a:i => m:m] and [a:i b:j c:k => l:l r:r]. In a
conjunctive system, the first rule would reject string l:l a:i b:j c:k r:r although
it is accepted by the second, more specific rule. Meanwhile, the second one
would reject string m:m a:i b:j c:k m:m although it is accepted by the first one.
Because the second rule is more specific, this violates expectations based on the
principle of longest application [15]. To observe this principle, (35) includes the
constraining aspects of context restriction rules. Every application of the rule
involves a position range whose indication requires at least two diamonds. The
relation ν⋆,j(W) is used to produce all entailed (shorter) rules when we redefine

W1 = Π∗ν2,1(Π ∪ ∪n
i=1Xi)Π

∗; S1 = ∪n
i=1Li ν⋆,1(Xi)Ri. (35)

6.3 Coercions

A change such as (reduce+ation):(reduc000tion) requires three double-arrow
rules in the classical Two-Level Grammar [8,19]. Black et al. [21] make the point
that these rules depend on each other and if one is missing, the failure caused by
the broken interaction may not be easy to recognize. In GTWOL, the support for
multi-character centers considerably alleviates the danger of broken interaction.

In GTWOL, an embedded-center conflict occurs between surface coercion
rules [a:o <= m:m] and [a:i b:j c:k <= r:r]. The first rule would reject string
m:m a:i b:j c:k r:r but the second would accept it. This conflict is solved again

Applications of Diamonded Double Negation 13

through the principle of the longest application. Yet GTWOL does not auto-
matically collect rules that interact as parts of long changes, if such changes are
described with multiple rules.

All multi-context surface coercions can be split into rules that have only
one context, because such rules have the common X that is the result of the
coercion. The set of p simple surface coercions are again combined under coherent
intersection. The semantics of a set of surface coercions is, thus, defined by

[X1<=#L1 R1#]

⊎

. . .

⊎

[Xp<=#Lp Rp#]
def
= [W2

Π,2,M
⇒ S2]

where W2= ∪p
i=1 Li ν2,2(π

−1
1 (π1(Xi)))Ri; S2= ∪p

i=1 Li ν⋆,2(Xi)Ri. (36)

Partial-overlap conflicts [22] are difficult to detect and solve. Such a conflict
occurs, for example, when conjunction of surface coercion rules [1:a 2:b <=] and
[2:p 3:c <=] do not associate any surface form to lexical string 123. These could
be solved by adding a combined “super-rule” that has a strictly wider center.
E.g., [1:a 2:b 3:3 ∪ 1:1 2:p 3:c <=] would override the original conflicting rules.

Disjunctive Ordering In Generative Phonology, alternative rewriting rules for
the same phoneme are disjunctively ordered in such a way that a rule with the
most specific environment condition is preferred over rules that apply elsewhere.
Karttunen [19] presented a similar approach to left-arrow conflicts where two
surface coercions claim opposite surface forms. The conflicting left-arrow rules
can often, but not always, be ordered according to their specificity.

A given disjunctive order can be implemented easily. Define, for the coercion
rule, an extended syntax [li :: Xi<=#Li Ri#] that indicates the level of the rule.
The rule belongs to li levels 1, 2, . . . , li. The rules at each level are put together
under coherent intersection that resolves all left-arrow conflicts at that level.
Accordingly, a coercion rule at level l will override a coercion rule at a level
j, 1 ≤ j ≤ l provided that the center of the rule at level j is not strictly longer.
A rule with strictly longer center cannot be overriden by another rule, which is
a potential problem in the current GTWOL.

We now update the definitions of W2 and S2 in such a way that both disjunc-
tive ordering and the principle of longest applications are observed. The relation
ν⋆,j is used to produce all entailed rules where diamonds mark the center and
its substrings. This change is reflected by the redefinitions

W2= ∪p
i=1 Li ν2,li(π

−1
1 (π1(Xi)))Ri; S2= ∪p

i=1 Li ν⋆,li(Xi)Ri. (37)

A left-right arrow conflict [15] is not very common but it occurs e.g. between
surface coercion [1 :: a:a <= c:c] and context restriction [1 :: a:o => c:c].
The classical formalism guides the user to use double-arrow rules such as [1 ::
a:a <=> c:c]. Using double arrow rules is no longer necessary in GTWOL [15],
because it is based on coherent intersection rather than intersection of rules. Ac-
cordingly, a successful rule application of one kind of rule overrides a correspond-
ing failing application. Effectively, rules [1 :: a:a => c:c] and [1 :: a:o <= c:c]
are thus implicitly added when one is specified.

14 Anssi Yli-Jyrä

However, coercion is considered stronger than restriction. At level 2 they can
override and take precedence over conflicting context restriction rules that are
at level 1. We can now combine context restrictions and surface coercions under
coherent intersection, in a similar fashion as [15], by computing

[W1
Π,2,M
⇒ S1]

⊎

[W2
Π,2,M
⇒ S2]. (38)

Problem 4. How the disjunctive order of rules is determined most efficiently?
How the remaining interaction, conflicts and overriding should be addressed?

7 Application: Bracketed Systems

We will now study applications of the GR operation in systems that use brackets
to represent (i) overlap-free rewriting [7,11,23] or (ii) limited tree structures of
context-free, dependency and mildly context-sensitive grammars [24,17,5,25,26].

7.1 Segmentation

Bracketed Generalized Two-Level Grammar (BGTWOL) [27] contains a rules
whose centers are bracketed. In addition, every BGTWOL includes a default core
Gencore. This and bracketed context restriction (denoted by (=>)) are defined
by equations

Gencore = [Π =>]

⊎

[I∗ =>] (39)

[X ′ (=>)#L1 R1#, . . .#Ln Rn#]
def
= [X ′ =>#L′1 R′1#, . . .#L′n R′n#] where

X ′⊆BLXBR; X,Li, Ri⊆(Π\B)∗, L′i=d
−1
B (Li), R

′
i=d

−1
B (Ri) for every i. (40)

Rewriting or replace rules are usually represented in the literature with an
arrow operator that relates a replaced string (or strings set) and its replacement
[7,28]. Gerdemann and van Noord [29] argue that this kind of rule format fails
to capture backreferences to the replaced in the replacement. In the current
presentation, we assume that the center X and the contexts L1, R2, . . . Ln, Rn

are regular subsets of (Π\B)∗. This helps us to capture the maximally flexible
definition of replace rules, including the backreferences and oriented contexts.

7.2 Tree Structures

According to a classical theorem due to Chomsky and Schützenberger [30], every
context-free language is a homomorphic image of the intersection of a semi-Dyck
language Dm [31] and a regular language R. This representation of context-
free languages is varied in a few recent representations [5,25,9,26] whose regular
approximations provide an excellent application for the GR operation.

In all these representations, the context-freeness of the system comes from a
semi-Dyck language Dm whose strings have balanced bracketing. For example,

Applications of Diamonded Double Negation 15

the semi-Dyck language over alphabet {<, >} is the language D1 generated by the
context-free grammar with a single nonterminal symbol S, two terminal symbols

<, >, and productions S → S<S>S and S → ǫ.
Language D′1 ⊂ B∗ is obtained from D1 by substituting BL and BR respec-

tively for the terminals < and >. Such semi-Dyck languages that use m different
kinds of labeled brackets are obtained from D′1 with concatenation and Boolean
operations [32,26]. Often language D′1 is extended to language ∆ = d−1

Π\B(D′1)

that contains also freely occurring non-bracket symbols.

Limited Bracketing The approximation ∆i ⊂ d−1
Π\B(D′1), where i ∈ N, can be

obtained by induction on the bracketing depth i using a nested GR as follows:

∆0 = match-L-R(Π∗BL, ∅, BRΠ
∗) = W

Π,1,M
⇒ ∅

where W = (Π∗BL⋄1Π
∗) ∪ (Π∗⋄2BRΠ

∗); (41)

∆i = match-L-R(Π∗BR,∆i−1, BRΠ
∗) = W

Π,1,M
⇒ fM (Π∗BL⋄1∆i−1⋄2BRΠ

∗)

where i > 0 and W = (Π∗BL⋄1Π
∗) ∪ (Π∗⋄2BRΠ

∗). (42)

Language ∆i is the largest set of strings over Π where the unlabeled bracketing
is balanced and the depth of bracketing is limited by integer i, i ≥ 0. This set is
clearly star-free, because the generalized star-height of expression is zero.

If we add more brackets to BL and BR, the approximation ∆i can be used
in certain grammar representations in a useful way although language ∆i itself
does not check bracket labels. It can be used in approximations in such a way
that labels get checked on a label-by-label basis [32,26]. Layerization (see below)
provides an even better way to check labels without large constraint automata.

The context-free sets of parse trees exhibit tree locality that is lost in string-
based representations and their star-free approximations. The inductive star-free
definition (42) of limited bracketing ∆i demonstrates that the approximation
exhibits another form of locality [33] although the tree locality of context-free
grammars is lost in approximation.

Subtypes of Representations There are two main types of grammar encod-
ings that resemble the Chomsky-Schützenberger representations: T1 is based on
local patterns and T2 is based on sparse rules. In T1, the semi-Dyck language is
combined with the grammar by intersection. In T2, it is woven into the grammar
rules with several regular operations.

Types T1 and T2 have subtypes: In [30], local patterns are based on con-
stituent boundaries (T1A). In [26], local patterns describe argument structures
(T1B). Sparse rules are based on either context restrictions (T2A) [17] or brack-
eting restriction constraints (T2B) [9]. Interestingly, all these subtypes are easily
captured by the GR operation.

For each subtype T1A, . . . ,T2B, a typical GR rule is given in the following.
The following examples are based on the local constituency tree [s → np vp] or

16 Anssi Yli-Jyrä

the local dependency tree [hit → subj ⋆ obj].

T1A : Π∗ ν′1,1(Π) Π∗
Π,1,M
⇒ Π∗ ν′⋆,1(<s<np ∪ >np<vp ∪ >vp<s) Π

∗ (43)

T1B : Π∗ ν′1,1(Π) Π∗
Π,1,M
⇒ Π∗ ν′⋆,1(>←−−subj

hit <−→obj
) Π∗ (44)

T2A : Π∗⋄1<np∆>np⋄1Π
∗ Π,2,M

⇒ Π∗<s⋄1<np∆>np⋄1<vp∆>vp>sΠ
∗ (45)

T2B : Π∗<s⋄1∆⋄1>sΠ
∗ Π,2,M

⇒ Π∗<s⋄1<np∆>np<vp∆>vp⋄1>sΠ
∗ (46)

Problem 5. What other grammar systems could be approximated through this
kind of representations?

Layerization In the approximated T2 representations, the compiled grammar
rules tend to grow undesirably when the depth of bracketing grows. Such gram-
mars could be represented, however, much more compactly through layerization.

The layerization technique (Section 5.2) is an additional example of the flex-
ibility of the GR operation. Each layer can correspond to a grammar that con-
straints the labeled bracketing at a given depth [9,34]. Additional preconditions
added to generalized restrictions split the rules into layers that are easy to com-
bine. A similar approach optimizes T1 representations.

8 Application: Bimorphisms

The notion of bimorphism has been introduced in connection to tree transfor-
mations [35]. However, because strings are a special case of trees, it is possible
to restrict tree bimorphisms to string bimorphisms. Let Σ1, Σ2 and Π be al-
phabets. A bimorphism is a triple (ψ1, P, ψ2) where ψ1 : Π∗ → Σ∗1 is the input
homomorphism, P ⊆ Π∗ is the pivot, and ψ2 : Π∗ → Σ∗2 is the output homomor-
phism. The transformation relation β(P) ⊆ Σ∗1 ×Σ∗2 computed by bimorphism
is defined as β(P) = {(ψ1(w), ψ2(w)) | w ∈ P}.

We give two examples on how GR can be used to describe regular relations
through a bimorphism.

Relations Defined by Two-Level Grammars The rule component of every
two-Level grammar G [8,15] describes the language GenG ⊆ Π∗. Let ψ1(w) =
π1(w), ψ2(w) = π2(w), Σ1 = ψ1(Π) and Σ2 = ψ2(Π). The grammar G defines
bimorphism (ψ1,GenG, ψ2).

Relations Defined by Conditional Optional Replace Conditional optional
replace (without overlaps) [36,27], denoted by (->), can be implemented with
a bracketed context restriction P and bimorphism (ψ1, P, ψ2) where ψ1(w) =
π1(dB(w)) and ψ2(w) = π2(dB(w)). This is defined by the equation

X (->) #L1 R1#, . . .#Ln Rn#
def
= β(GenG)

where GenG = Gencore

⊎

[<X> (=>) #L1 R1#, . . .#Ln Rn#]. (47)

Applications of Diamonded Double Negation 17

Note that the presented new syntax [27] for the replace operator is inspired by
Two-Level Grammar [8]. When Beesley and Karttunen [20] write a replace rule as
[a (->) b //c d], we write the same as [a:b (->) #Π∗π−1

2 (c) π−1
1 (d)Π∗#].

Problem 6. Could a bimorphism be used to relate two GR-based grammars?
Such an arrangement could be useful in machine translation.

Problem 7. Could the GR operation be used to describe properties of tree lan-
guages? Recall that the spine language of recognizable tree languages is regular
and thus closed under the Boolean operations and diamond elimination.

9 Application: Optimality Theoretic Systems

Strict Preference Relations An interesting application of the GR operator
suggests itself when the pivot language P of a bimorphism (ψ1, P, ψ2) is brack-
eted. Yli-Jyrä [27] derives different kinds of replace rules from optional replace
rules using strict preference relations T ⊆ I∗ × I∗ such as

Tmost+
def
= {(π1(w), π2(w))|w∈

(

BL:0Σ+BR:0∪Σ ∪B
)∗
} (48)

Tlest,B′
def
= {(w,w′)|w,w′∈I∗, dB(w)=dB(w′), w/∈I∗B′I∗, w′∈I∗B′I∗} (49)

Tlr
def
= {(vby, vau)|v, y, u∈I∗, a∈Π\B, b∈BL, dB(y)=dB(au)} (50)

Tlrlong
def
= {(vau, vby)|v, u, y∈I∗, a∈Π\B, b∈BR, dB(y)=dB(au)}. (51)

Jäger’s Composition Operation The preference relations are used as an
optimality-theoretic (OT) constraint component (Con) that ranks of the candi-
dates. The composition of the pivot GenG ⊆ Π∗ with the constraints in Con is
implemented with a left-associative operator r-glc that is defined by

GenG r-glc T
def
= {w∈GenG | ¬∃w′(w′∈GenG ∧ (π1(w), π1(w

′))∈T)}. (52)

The operator r-glc is a variant of glc, an operator that Jäger [37] controver-
sially coined generalized lenient composition (GLC).3

9.1 Examples

The conditional obligatory replace rule (denoted by ->) and the conditional left-
to-right longest replace rule (denoted by @->) are compiled as follows:

X ->#L1 R1#, . . . ,#Ln Rn#
def
= β(Gen

′
G r-glc (Tmost+∪Tlest,B2

)) (53)

X @->#L1 R1#, . . . ,#Ln Rn#
def
= β(GenG r-glc (Tlr ∪ Tlrlong)) (54)

where GenG =[<1 X >1 (=>) #L1 R1#, . . . ,#Ln Rn#]

⊎

Gencore

and Gen
′
G =[<2π1(X)>2 (=>) #L1 R1#, . . . ,#Ln Rn#]

⊎

GenG.

3 According to Dale Gerdemann (p.c., 2008), the GLC operator rather addresses a
crucial problem with ordinary lenient composition than generalizes the operator.

18 Anssi Yli-Jyrä

In order to compile parallel conditional obligatory replacement, Kempe and
Karttunen [28] employ a large number of brackets. Skut et al. [38] presents
a rule compiler for ranked replace rules. Such ranking can be implemented by
combining a bracketed context restriction and a GLC-based parse ranking [27].

9.2 The Principled Design for Constrained Bimorphisms

The extended bimorphism in (53) and (54) is structured in a similar fashion as
Optimality Theory [39]. The roles of the candidate generator language GenG,
the constraint component Con and the transformation β are outlined as follows:

β(GenG ◦ Con) = β(GenG glc1 Con1 . . . glcc Conc) (55)

where glci ∈ {glc, r-glc, b-glc} is left associative.

It is interesting that the structure of (55) separates tasks according to their
descriptive complexity. Because the candidate language GenG is described with
a generalized restriction whose arguments are, almost without question, star-free,
GenG is typically star-free and thus captured by FO[<]. The Con constraints
that compare candidate strings are not same-length relations [7] but they are
regular relations that could be themselves described with bimorphisms. Finally,
homomorphisms inside β are just stateless mappings and they have therefore
very simple structure. Accordingly, the components in (55) are relations that
are contrasted as follows:

stateless β vs. star-free same-length GenG vs. regular Con. (56)

We believe that (55) is a design pattern that applies to numberless situations
and helps us to develop algorithms that are designed to address different kinds
of tasks efficiently.

10 Dot-Depth

Non-determinism and locality are related concepts. Mráz et al. [40] use the
amount of encoded structural information as a measure for the degree of non-
determinism of context-free grammars. If enough information on categories is
added to the strings of a context-free language, the language becomes a deter-
ministic context-free language. In a similar fashion, the star-freeness of a regular
language means essentially that there is enough information to make the lan-
guage star-free.

The Dot-Depth Hierarchy The amount of locality in star-free languages can
be measured using the forbidden pattern hierarchy, the group hierarchy and the
concatenation hierarchies such as the dot-depth hierarchy [4,41,42]. The dot-
depth hierarchy corresponds in a very natural way to the classical hierarchy of
first-order logic based on the alternation of existential and universal quantifiers
in the prenex normal-form [4].

Applications of Diamonded Double Negation 19

The dot-depth hierarchy was introduced by Cohen and Brzozowski [3]. In
the dot-depth hierarchy, the first level, B0, is the Boolean closure of trivial
languages {a}, a ∈ Π. An intermediate family of languages, Mi, i ≥ 0, contains
the concatenations of zero or more languages from Bi−1. The next level, Bi,
i > 0, consists of the Boolean combinations of the languages in Mi−1.

Although an upper bound for the dot-depth of a language can be computed
from a corresponding star-free expression, we do not know if there is a general
decision procedure for the exact dot-depth [42].

The Measuring Problem Star-free constructions such as in [43,5] allows for
proving by induction on i that the dot-depth of language ∆i is actually not larger
than i+ 1, because ∆i could be contained to Bi+1. This is done as follows:

Π∗ ={a} − {a} : B0

∆0 =Π∗{<, >}Π∗ : B1

λi =BL∆i−1BL∆i−2BL . . . ∆1BL∆0BL : Mi

ρi =BR∆0BR∆1BR . . . ∆i−2BR∆i−1BR : Mi

∆i =Π∗λiΠ∗ ∩Π∗ρiΠ∗ ∩∆i−1BRΠ∗ ∩Π∗BL∆i−1 : Bi+1. (57)

The GR-based construction (42) involves about 2i nested applications of
complementation and local closure fM . It is, however, a surprising fact that
these do not seem to contribute to the dot-depth of the languages Bi more than
one level per an induction step because the dot-depth of these languages cannot
be bigger than the upper-bounds that are computed in (57). The upper bounds
apply to the construction (42) as follows:

B0 : Π∗ ={a} − {a}

B1 : W =(Π∗BL⋄1Π
∗) ∪ (Π∗⋄2BRΠ

∗); ∆0 = Π∗\fM (W)

Mi+1 : W ′i =Π∗BL⋄1∆i⋄2BRΠ
∗

Bi+1 : ∆i =Π∗\fM (W\fM (W ′i−1)). (58)

Problem 8. Can we include generalized restriction to the operations used to build
the dot-depth hierarchy? What is the contribution of diamond elimination to the
dot-depth of the language?

11 Optimized Implementation

In Section 1, we mentioned a few potential objections against the GR operation.
Some of the issues remain to be addressed. For example, we would like to compile
grammars on the fly and apply them efficiently to surface syntactic parsing or
to construction of lexical transducers.

20 Anssi Yli-Jyrä

Guided Intersection The intersection of Two-Level rules would normally
be too large [44], which causes difficulties if we try to compile the grammar
component in separation. Karttunen [44] addresses this problem with a high-
arity operation: intersecting composition. Under this operation in expression
L (◦∩) (R1, R2, . . . , Rr), the intersection of the phonological constraints R1,
R2, . . . , Rr ⊆ Π∗ is simultaneously restricted under composition with a regular
relation L that represents the pairs of analyses and lexical forms.

A comparable approach can be used when the grammar is compiled using
the GR operation. This time, however, a constraint language L′ = π−1

1 ({ x2 |
(x1, x2) ∈ L}) based on the set of lexical strings in lexicon L should be added
to the postcondition as a conjunctive:

L◦[L′ ∩ (W
Π,2,M
⇒ W ′)] = L◦[⋄0Π

∗ ∪W
Π,2,M
⇒ ⋄0L

′ ∪W ′] = L◦[Π∗\dM (W ′′)]

where W ′′ = (⋄0Π
∗ ∪W)\(⋄0L

′ ∪W ′). (59)

A new diamond, ⋄0, is concatenated to L′ because it is not guaranteed that
W ′ ∩Π∗ ⊆ L′. We see now that the set of lexical forms and the grammar can
both be combined under the GR operation, but we do not yet obtain an efficient
compilation method without further optimizations. Languages W and W ′ are
typically similar to local grammar languages such as Π∗GΠ∗ of Mohri (2005),
since it often happens that W = Π∗WΠ∗ or W ′ = Π∗W ′Π∗. A slightly im-
proved compilation method would take advantage of the sparseness and locality
of the grammar constraints.

Non-Deterministic Failure Automata Because W and W ′ are obtained
as unions from individual grammar rules, it is natural and space efficient to
represent these languages with non-deterministic automata. It might be also a
good idea to compress these automata by optimizing their transition relations
using failure transitions [18].

Optimized State Subsets The classical subset construction algorithm [45]
constructs a deterministic automaton by creating all subsets of the state set
that are reachable from the initial state with some common strings. The failure
representation [18] optimizes also determinization, because it makes earlier states
more popular subset elements than the latter states. In addition, many subsets
could be merged easily by a trick that we call final loop optimization: if the
subset contains an element state q that recognizes the universal language over
the alphabet of the remaining suffixes, it is of no use to add any other element
states to the subset.

Guided Determinization Suppose that we want to determinize the automa-
ton recognizing W ′′ before the diamonds are removed from it. In order to take
better advantage of the final loop optimization, we would like to ensure that
W ′′ is as large as possible. Accordingly, we add all strings that do not occur in

Applications of Diamonded Double Negation 21

lexicon (i.e. the strings in L′ = Π∗\L′) to the minuend (⋄0Π
∗∪W). In addition,

these bad strings can contain diamonds freely. This change can make W ′′ larger,
but dM (W ′′) remains the same:

dM (W ′′) = dM ((⋄0Π
∗ ∪W ∪ d−1

0 (L′))\(⋄0L
′ ∪W ′)). (60)

A non-deterministic automaton recognizing (⋄0Π
∗ ∪W ∪ d−1

0 (L′)) reaches a
final loop when it recognizes a marked string w ∈ (Π∪M)∗ for which w(Π∪M)∗∩
d−1
0 (L′) = ∅. This optimizes the subset construction considerably. The resulting

method would apply the grammar to the lexicon in a very much similar way as
intersecting composition [44], i.e. by avoiding paths that are not supported by
the lexicon.

Subtracting Determinization In the above, the subtrahend (⋄0L
′ ∪W ′) has

to be determinized. This can be a bottleneck, because typically W ′ = Π∗W ′.
we can, however, postpone the determinization of the subtrahend by using de
Morgan’s law, which allows us, in a way, subtract during determinization:

(⋄0Π
∗ ∪W ∪ d−1

0 (L′))\(⋄0L
′ ∪W ′) = ⋄0Π∗ ∪W ∪ d−1

0 (L′) ∪ ⋄0L′ ∪W. (61)

Specialization We can specialize the generalized postconditionW ′ of the gram-
mar by intersecting it with lexicon L′ because only the strings in L′ need per-
missions. The subtrahend can, thus, be replaced with (⋄0L

′ ∪ (d−1
M (L′) ∩W ′)).

It is also possible that the determinization of sub-expression ⋄0Π
∗ ∪W ∪ L′ is

a bottleneck, because typically W = Π∗W . To address this problem, we can
specialize W and rewrite the sub-expression as ⋄0Π

∗ ∪ (d−1
M (L′) ∩W) ∪ L′.

In comparison to W , intersection d−1
M (L′) ∩W is easier to determinize as a

part of the subexpression: it looks like its correlate d−1
0 (L′) is already in the

union. Moreover, if very few marked strings in W applied to the lexicon, the
intersection would result into a small or empty language, which reduces the
burden of determinization. The same could happen also with the strings in W ′,
which suggests that both W and W ′ should be specialized as in the equation

Π∗\dM (W ′′) = Π∗\dM (W ′′′)

where W ′′′ = ⋄0Π∗ ∪ (d−1
M (L′) ∩W) ∪ d−1

0 (L′) ∪ ⋄0L
′ ∪ (d−1

M (L′) ∩W ′). (62)

In sum, a deterministic automaton recognizing the marked language can be
constructed, in most cases, without much effort on useless paths. While this
language still contains diamonds, it is a significant step in computing Formula
(59) efficiently.

We look forward to experiments that compare the GR-based compilation
method for two-level grammars with Karttunen’s intersecting composition [44].

Problem 9. Is there a lazy algorithm that would (1) determinize, (2) comple-
ment, (3) remove diamonds and (4) determinize using dynamic programming?
Can it compute dM (W ′′′) more efficiently than the step-by-step approach?

22 Anssi Yli-Jyrä

Problem 10. Are there real cases where the presented optimization is not suffi-
cient? Can the implementation of the GR operator be optimized for them? Can
the evaluation of GR take advantage of layerization?

Problem 11. Can we define weighted generalized restriction and optimize it in
different applications?

Problem 12. Can we define the GR operator even more generally without loosing
its good properties? Study the use of ν⋆ with coherent intersection.

12 Conclusion

Generalized restriction is a new and lesser-known star-free operation. It takes
advantage of special-purpose marker symbols, diamonds, when combining the
Boolean operators with concatenation. It increases the succinctness of star-free
expressions and can be used with other regular operators. The operator has sev-
eral important applications. It expresses a large family of constraints, rules and
grammars as languages whose strings contain diamonds. An elegant representa-
tion for transducers is obtained by defining transductions via bimorphisms where
generalized restriction describes the pivot. Inside bimorphisms, the operator can
generate a set of candidates for a system of violable constraints.

We discussed many properties and applications of generalized restriction and
identified twelve open problems. In addition, we sketched an optimized compi-
lation method for two-level grammars.

Acknowledgements

In 2002, Lauri Carlson provided invaluable intellectual feedback and support
during my first explorations of star-freeness [5] and first-order definability in
finite-state grammars. This article was improved through some critical comments
by Dale Gerdemann, Måns Hulden and Kimmo Koskenniemi in 2008.

References

1. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Informa-
tion and Control 8(2) (1965) 190–194

2. McNaughton, R., Papert, S.: Counter-free Automata. Research Monograph No.
65. MIT Press (1971)

3. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. Journal of Computer
and System Sciences 5 (1971) 1–15

4. Thomas, W.: Classifying regular events in symbolic logic. Journal Comput. System
Sci. 25 (1982) 360–376

5. Yli-Jyrä, A.: Describing syntax with star-free regular expressions. In: 11th EACL
2003, Proceedings of the Conference, Budapest, Hungary (2003) 379–386

6. Johnson, C.D.: Formal aspects of phonological description. Number 3 in Mono-
graphs on linguistic analysis. Mouton, The Hague (1972)

Applications of Diamonded Double Negation 23

7. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20(3) (1994) 331–378

8. Koskenniemi, K.: Two-level morphology: a general computational model for word-
form recognition and production. Number 11 in Publications. Department of Gen-
eral Linguistics, University of Helsinki, Helsinki (1983)

9. Yli-Jyrä, A., Koskenniemi, K.: Compiling contextual restrictions on strings into
finite-state automata. In Cleophas, L., Watson, B.W., eds.: The Eindhoven FAS-
TAR Days, Proceedings. Number 04/40 in Computer Science Reports, Eind-
hoven, The Netherlands, Technische Universiteit Eindhoven (2004) Also available
at www.ling.helsinki.fi/~aylijyra/dissertation/7.pdf.

10. Karttunen, L., Koskenniemi, K., Kaplan, R.M.: A compiler for two-level phono-
logical rules. Report CSLI-87-108, Center for Study of Language and Information,
Stanford University, CA (1987)

11. Grimley-Evans, E., Kiraz, G.A., Pulman, S.G.: Compiling a partition-based two-
level formalism. In: 16th COLING 1996, Proc. Conference. Volume 1., Copenhagen,
Denmark (1996) 454–459

12. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society 98(1) (1961) 21–51

13. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6 (1960) 66–92

14. Vaillette, N.: Logical Specification of Finite-State Transductions for Natural Lan-
guage Processing. PhD thesis, Ohio State University (2004)

15. Yli-Jyrä, A., Koskenniemi, K.: Compiling generalized two-level rules and gram-
mars. In: Proceedings of FinTAL 2006. LNAI (2006)

16. Pin, J.E., Straubing, H., Thérien, D.: Some results on the generalized star-height
problem. Information and Computation 101(2) (1992) 219–250

17. Koskenniemi, K., Tapanainen, P., Voutilainen, A.: Compiling and using finite-state
syntactic rules. In: Proc. COLING’92. Volume I., Nantes, France (1992) 156–162

18. Mohri, M.: Local grammar algorithms. In Arppe et al., A., ed.: Inquiries into
Words, Constraints, and Contexts. Festschrift in Honour of Kimmo Koskenniemi
on his 60th Birthday. CSLI Publications (2005) 84–93

19. Karttunen, L.: Finite-state constraints. In: Proceedings of the International Con-
ference on Current Issues in Computational Linguistics, Universiti Sains Malaysia,
Penang, Malaysia (1991)

20. Beesley, K., Karttunen, L.: Finite state morphology. CSLI Studies in Computa-
tional Linguistics. CSLI Publications, Stanford, CA, USA (2003)

21. Black, A., Ritchie, G., Pulman, S., Russell, G.: Formalisms for morphographemic
description. In: 3rd EACL 1985, Proceedings of the Conference, Copenhagen,
Denmark (1987) 11–18

22. Yli-Jyrä, A., Koskenniemi, K.: A new method for compiling parallel replacement
rules. In Holub, J., Žd’́arek, J., eds.: Implementation and Application of Automata,
12th International Conference, CIAA 2007, Revised Selected Papers. Volume 4783
of LNCS., Springer (2007) 320–321

23. Barthélemy, F.: Partitioning multitape transducers. In: Pre-proceedings of
FSMNLP 2005. (2005) 3–12 The post-proceedings will appear in the LNAI series
of Springer-Verlag.

24. Krauwer, S., des Tombe, L.: The finite state transducer as a theory of language.
Utrect Working Papers in Linguistics, UWPL 9 (1980) 1–86

25. Yli-Jyrä, A.: Axiomatization of restricted non-projective dependency trees through
finite-state constraints that analyse crossing bracketings. In Kruijff, G.J.M.,

24 Anssi Yli-Jyrä

Duchier, D., eds.: Proc. Workshop of Recent Advances in Dependency Grammar,
Geneva, Switzerland (2004) 33–40

26. Yli-Jyrä, A.: Approximating dependency grammars through intersection of star-
free regular languages. International Journal of Foundations of Computer Science
16(3) (2005) 565 – 579

27. Yli-Jyrä, A.: Transducers from parallel replacement rules and modes with gener-
alized lenient composition. In: Proceedings of FSMNLP 2007, Potsdam, Germany
(2008)

28. Kempe, A., Karttunen, L.: Parallel replacement in finite state calculus. In: 16th
COLING 1996, Proc. Conference, Copenhagen, Denmark (1996) 622–627

29. Gerdemann, D., van Noord, G.: Transducers from rewrite rules with backreferences.
In: 9th EACL 1999, Proceedings of the Conference. (1999) 126–133

30. Schützenberger, M.P.: On context-free languages and push-down automata. Infor-
mation and Computation (Information and Control) 6 (1963) 246–264

31. Harrison, M.A.: Introduction to Formal Language Theory. Reading, Massachusetts,
Addison-Wesley (1978)

32. Wrathall, C.: Characterizations of the Dyck sets. RAIRO – Informatique Théorique
11(1) (1977) 53–62

33. Hella, L., Libkin, L., Nurmonen, J.: Notions of locality and their logical charac-
terizations over finite models. Journal of Symb. Logic 64(4) (1999) 1751–1773

34. Yli-Jyrä, A.: Contributions to the theory of finite-state based grammars. Num-
ber 38 in Publications. Department of General Linguistics, University of Helsinki
(2005)

35. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoretical
Computer Science 20 (1982) 33–93

36. Karttunen, L.: The replace operator. In: 33th ACL 1995, Proceedings of the
Conference, Cambridge, MA, USA (1995) 16–23

37. Jäger, G.: Gradient constraints in finite state OT: The unidirectional and the
bidirectional case. In: Finite State Methods in Natural Language Processing 2001
(FSMNLP 2001), ESSLLI Workshop, Helsinki (2001) (35–40)

38. Skut, W., Ulrich, S., Hammervold, K.: A flexible rule compiler for speech synthesis.
In: Proc. Intelligent Information Systems 2004, Zakopane, Poland (2004)

39. Prince, A., Smolensky, P.: Optimality Theory: Constraint interaction in generative
grammar. Technical Report RuCCS TR-2, Rutgers University Center for Cognitive
Science, New Brunswick, NJ (1993)

40. Mráz, F., Plátek, M., Otto, F.: A measure for the degree of nondeterminism of
context-free languages. In Holub, J., Žd’́arek, J., eds.: Implementation and Appli-
cation of Automata, 12th International Conference, CIAA 2007, Revised Selected
Papers. Volume 4783 of LNCS., Springer (2007) 192–202

41. Glaßer, C.: Forbidden-patterns and word extensions for concatenation hierarchies.
PhD thesis, Bayerischen Julius-Maximilians-Universität Würzburg (2001)

42. Pin, J.E.: Algebraic tools for the concatenation product. Theoretical Computer
Science 292(1) (2003) 317–342

43. Thomas, W.: A concatenation game and the dot-depth hierarchy. In: Computation
Theory and Logic, In Memory of Dieter Rödding. Volume 270 of Lecture Notes In
Computer Science. Springer (1987) 415–426

44. Karttunen, L.: Constructing lexical transducers. In: 15th COLING 1994, Proceed-
ings of the Conference. Volume 1., Kyoto, Japan (1994) 406–411

45. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Publishing Company, Reading, Massachusetts (1986)

