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Abstract

We consider approximate policy evaluation for finite state and action Markov decision pro-
cesses (MDP) in the off-policy learning context and with the simulation-based least squares
temporal difference algorithm, LSTD(λ). We establish for the discounted cost criterion that
the off-policy LSTD(λ) converges almost surely under mild, minimal conditions. We also an-
alyze other convergence and boundedness properties of the iterates involved in the algorithm,
and based on them, we suggest a modification in its practical implementation. Our analysis
uses theories of both finite space Markov chains and Markov chains on topological spaces, in
particular, the e-chains.
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1 Introduction

We consider approximate policy evaluation for finite state and action Markov decision processes
(MDP) in an exploration-enhanced learning context, called “off-policy” learning. In this context,
we employ a certain policy called the “behavior policy” to adequately explore the state and action
space, and using the observations of costs and transitions generated under the behavior policy, we
may approximately evaluate any suitable “target policy” of interest. This differs from the standard
policy evaluation case – “on-policy” learning – where the behavior policy always coincides with
the policy to be evaluated. The dichotomy between off-policy and on-policy learning stems from
the exploration-exploitation tradeoff in practical model-free/simulation-based methods for policy
search. With their flexibility, off-policy methods form an important part of the model-free learning
methodology (Sutton and Barto [SB98]) and have been suggested as important simulation-based
methods for large-scale dynamic programming (Glynn and Iglehart [GI89]).

The algorithm we consider in this paper, the off-policy least squares temporal difference (TD)
algorithm, LSTD(λ), is one of the exploration-enhanced methods for policy evaluation. More specif-
ically, we consider discounted total cost problems with discount factor α < 1. We evaluate the
so-called Q-factors of the target policy, which are essential for policy iteration, and which are simply
the costs of the policy in an equivalent MDP that has as its states the joint state-action pairs of the
original MDP.1 This MDP will be the focus of our discussion, and we will refer to Q-factors as costs
for simplicity.

Let I = {1, 2, . . . , n} be the set of state-action pairs indexed by integers from 1 to n. We assume
that the behavior policy induces an irreducible Markov chain on the space I of state-action pairs
with transition matrix P , and that the target policy we aim to evaluate would induce a Markov
chain with transition matrix Q. We require naturally that for all states, possible actions of the
target policy are also possible actions of the behavior policy. This condition can be written in terms
of the transition probabilities of the two Markov chains as

pij = 0 ⇒ qij = 0, i, j ∈ I. (1)

We denote this condition by Q ≺ P .

Let g be the vector of expected one-stage costs g(i) under the target policy. The cost vector J∗

of the target policy satisfies the Bellman equation

J∗ = g + αQJ∗. (2)

With the temporal difference methods (Sutton [Sut88]; see also the books by Bertsekas and Tsitsiklis
[BT96], Sutton and Barto [SB98], Bertsekas [Ber07], and Meyn [Mey07]), we approximate J∗ by the
solution of a projected multistep Bellman equation

J = ΠT (λ)(J) (3)

involving a multistep Bellman operator T (λ) parametrized by λ ∈ [0, 1], whose exact form will be
given later. Here Π is a linear operator of projection onto an approximation subspace {Φr | r ∈
<nr} ⊂ <n with respect to a weighted Euclidean norm, where Φ is an n×nr matrix whose columns
span the approximation subspace and whose rows are often called “features” of states/actions. In the
case considered here, we take the weights in the projection norm to be the steady-state probabilities
of the Markov chain induced by the behavior policy. The projected Bellman equation (3) is equivalent
to a low dimensional equation on <nr , and its solution Φr∗ (when it exists) lies in the approximation
subspace and is used to approximate the cost vector J∗ of the target policy.

1The equivalent MDP on the space of state-action pairs can be described as follows. Consider any two state-action
pairs i = (s, u) and j = (ŝ, v). Suppose that under action u, a transition from s to ŝ occurs with probability p(ŝ | s, u)
and incurs the cost c(s, u, ŝ) in the original MDP. Then the cost of transition from i to j in the equivalent MDP
is g(i, j) = c(s, u, ŝ), and the transition probability from i to j under a policy which takes action v at state ŝ with
probability µ(v | ŝ) is p(ŝ | s, u)µ(v | ŝ).
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The off-policy LSTD(λ) algorithm that we will analyze aims to construct the low-dimensional
equivalent of the projected equation (3) by using observations generated under the behavior policy.
The algorithm takes into account the discrepancies between the behavior and the target policies
by properly weighting the observations. The technique is based on importance sampling, which is
widely used in dynamic programming and reinforcement learning contexts (see e.g., [GI89, SB98,
PSD01, ABJ06]). The off-policy LSTD(λ) algorithm we will analyze was first given by Bertsekas
and Yu [BY09] in the general context of approximating solutions of linear systems of equations.
The form of the algorithm bears similarities to other off-policy TD(λ) algorithms, e.g., the episodic
off-policy TD(λ) in Precup et al. [PSD01], as well as to the on-policy LSTD(λ) counterpart (Bradtke
and Barto [BB96], Boyan [Boy99]). The algorithm can be described as follows.

Let (i0, i1, . . .) be an infinitely long state trajectory of the Markov chain with transition matrix
P , generated under the behavior policy. Let φ(i) denote the transpose of the ith row vector of
matrix Φ, i.e.,

Φ′ =
[
φ(1) φ(2) · · · φ(n)

]
.

Let g(i, j) be the per-stage cost of transition from state i to j. The off-policy LSTD(λ) method
computes low-dimensional vector iterates Zt, bt and matrix iterates Ct as follows: with (z0, b0, C0)
being the initial condition, for t ≥ 1,

Zt = λα
qit−1it

pit−1it
· Zt−1 + φ(it), (4)

bt = (1− 1
t+1 )bt−1 + 1

t+1Ztg(it, it+1), (5)

Ct = (1− 1
t+1 )Ct−1 + 1

t+1Zt

(
α

qitit+1
pitit+1

· φ(it+1)− φ(it)
)′
. (6)

The vector bt and matrix Ct aim to approximate the quantities defining the projected Bellman
equation (3). A solution rt of the equation

Ctr + bt = 0

is used to give Φrt as an approximation of J∗ at time t.2

The on-policy case corresponds to the special case P = Q. Then, all the ratios
qit−1it

pit−1it
appearing

above in Zt and Ct become 1, and the algorithm reduces to the on-policy LSTD algorithm as first
given by Bradtke and Barto [BB96] for λ = 0 and Boyan [Boy99] for λ ∈ [0, 1].

In the off-policy case, a practically important property is that the ratios qij

pij
are determined by

the ratios between the action probabilities of the target and the behavior policies, and do not depend
on the state transition probabilities of the original MDP, (as can be seen from Footnote 1). Thus
they need not be stored and can be calculated on-line in the algorithm. This fact is well-known and
finds use in many existing simulation-based algorithms for MDP.

A full convergence analysis of the off-policy LSTD(λ) algorithm does not exist in the literature,
to our knowledge. The almost sure convergence of the algorithm (i.e., convergence with probability
one) in special cases has been studied. A proof for the on-policy case can be found in Nedić and
Bertsekas [NB03]. A proof for the off-policy case under the assumption that λαmax(i,j)

qij

pij
< 1

(with 0/0 treated as 0) is given in Bertsekas and Yu [BY09]; this covers the on-policy case as well
as the off-policy LSTD(λ) for λ close or equal to 0, but for a general value of λ, the condition is
too stringent on either the target or the behavior policy. Note that the case with a general value
of λ is important in practice, because using a large value of λ not only improves the quality of the
approximation from the projected Bellman equation, but also avoids potential pathologies regarding
the existence of solution of the equation (as λ approaches 1, ΠT (λ) becomes a contraction mapping,
ensuring the existence of a unique solution).

2In this paper we do not discuss the exceptional case where Ctr + bt = 0 does not have a solution. Our focus will
be on the asymptotic properties of the sequence of equations Ctr + bt = 0 themselves, in relation to the projected
Bellman equation.
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In this work, we establish the almost sure convergence of the sequences {bt}, {Ct}, as well as
their convergence in the first mean, under the general conditions given at the beginning, namely, the
irreducibility of P and Q ≺ P . Our results imply that the off-policy LSTD(λ) solution Φrt converges
to the solution Φr∗ of the projected Bellman equation (3) almost surely, whenever Eq. (3) has a
unique solution (if (3) has multiple solutions, then any limit point of {Φrt} is a solution of it.) As
will be seen later, the convergence of {bt}, {Ct} in the first mean (Theorem 3.1) can be established
using arguments based on finite space Markov chains, while the proof of the almost sure convergence
is not so straightforward and finite space Markov chains-based arguments are no longer sufficient.
The technical complexity here is partly due to the fact that the sequence {Zt} cannot be bounded a
priori. Indeed, the convergence proofs in [NB03, BY09] used the boundedness of {Zt} in the special
cases of LSTD(λ), while for the off-policy case and a general value of λ, we can show that in fairly
common situations, {Zt} is almost surely unbounded (Prop. 3.2). Neither does it seem likely that
without imposing extra conditions, the sequence of Zt can have bounded variance. Nevertheless,
these do not preclude the almost sure convergence of the off-policy LSTD(λ) algorithm, as we will
show.

It is worth mentioning that the study of the almost sure convergence of the off-policy LSTD(λ)
is not solely of theoretic interest. Various TD algorithms other than LSTD(λ) use the same approxi-
mations bt, Ct to build approximating models (e.g., preconditioned TD(λ) in Yao and Liu [YL08]) or
fixed point mappings (e.g., LSPE(λ), see Bertsekas and Yu [BY09]; and scaled versions of LSPE(λ),
see Bertsekas [Ber09]) needed in the algorithms. Therefore in the off-policy case, the asymptotic
behavior of these algorithms on a sample path depends on the mode of convergence of {bt}, {Ct},
and so does the interpretation of the approximate solutions generated by these algorithms. For algo-
rithms whose convergence relies on the contraction property of mappings, (for instance, LSPE(λ)),
the almost sure convergence of {bt}, {Ct} on every sample path is critical. Furthermore, the mode
of convergence of the off-policy LSTD(λ) is also relevant for understanding the behavior of other
off-policy TD algorithms, e.g., the non-episodic off-policy TD(λ) and episodic off-policy TD(λ) with
very long episodes, which, although not computing directly bt, Ct, implicitly depend on the conver-
gence properties of {bt}, {Ct}.

To establish the almost sure convergence of {bt}, {Ct}, we will study the Markov chain {(it, Zt)}
on the topological space I × <nr . Again, the lack of boundedness of Zt makes it difficult to argue
the existence of an invariant probability measure by constructing explicitly the form of {Zt} for
a stationary Markov chain {(it, Zt)} in the limit, as can be done in the on-policy case (Tsitsiklis
and Van Roy [TV97]). We will use the theory of e-chains (see Meyn and Tweedie [MT09]), which
concerns topological space Markov chains with equicontinuous transition kernels, to establish two
main results: (i) the Markov chain {(it, Zt)} has a unique invariant probability measure and is
ergodic (Theorem 3.2), and (ii) the almost sure convergence of {bt}, {Ct} (and hence the almost
sure convergence of the off-policy LSTD(λ) algorithm) (Theorem 3.3). The first ergodicity result is
indeed stronger than what is needed to show (ii); but it sheds light on the nature of the TD iterates
and provides a basis for analyzing other off-policy TD(λ) algorithms in the future.

Let us also mention the ODE (ordinary differential equation) proof approach: relevant here is
the mean-ODE method (see e.g., Kushner and Yin [KY03], Borkar [Bor06, Bor08]), which, however,
requires the verification of conditions that in our case would be tantamount to the almost sure
convergence conclusion we want to establish.

The paper is organized as follows. We specify notation and definitions in Section 2. We present
our main results and outline their key proof arguments in Section 3. We then give details of
proofs/analyses based on finite space Markov chains and topological space Markov chains in Sec-
tions 4 and 5, respectively. Finally, we discuss other applications of our results and future research
in Section 6.
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2 Notation and Specifications

The projected Bellman equation (3) associated with TD(λ) methods is a projected version of a
multistep Bellman equation parametrized by λ ∈ [0, 1]. In particular, let T be the Bellman operator

T (J) = g + αQJ, ∀J ∈ <n.

The mapping T (λ) in Eq. (3) is defined by

T (λ) = (1− λ)
∞∑

m=0

λmTm+1, λ ∈ [0, 1);

T (1)(J) = lim
λ→1

T (λ)(J), ∀J ∈ <n.

Let Ξp denote the diagonal matrix with the diagonal elements being the steady-state probabilities
of the Markov chain with transition matrix P , induced by the behavior policy. Equation (3) is
equivalent to the low dimensional equation on <nr ,

Φ′ΞpΦr = Φ′ΞpT
(λ)(Φr)

= Φ′Ξp

∞∑
m=0

λm(αQ)m
(
g + (1− λ)αQΦr

)
.

By rearranging terms, it can be written as

C̄r + b̄ = 0, (7)

where b̄ is an nr × 1 vector and C̄ an nr × nr matrix, given by

b̄ = Φ′Ξp

∞∑
m=0

λm(αQ)mg, (8)

C̄ = Φ′Ξp

∞∑
m=0

λm(αQ)m(αQ− I)Φ. (9)

The iterates bt, Ct in the off-policy LSTD(λ) [Eqs. (5), (6)] aim to approximate b̄, C̄ respectively,
which define the projected equation (7) and equivalently (3). The convergence of {bt}, {Ct} to b̄, C̄
respectively, in any relevant mode, is what we want to show.

In the rest of the paper, we use it to denote the random state variable at time t and ī or i∗ to
denote specific states. To simplify notation, we denote β = λα and study iterates of the form

Zt = β
qit−1it

pit−1it
· Zt−1 + φ(it), (10)

Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′, (11)

with β < 1, (z0, G0) being the initial condition, and {γt} being a stepsize sequence. The correspon-
dence between iterates Gt and the vectors bt and matrices Ct in LSTD(λ) [cf. Eqs. (5), (6)] is as
follows: with γt = 1/(t+ 1),

Gt =

{
bt, if ψ(it, it+1) = g(it, it+1),
Ct, if ψ(it, it+1) = α

qitit+1
pitit+1

· φ(it+1)− φ(it).
(12)

We want to show that Gt converges, in any relevant mode, to the constant vector/matrix

G∗ = Φ′Ξp

( ∞∑
m=0

βmQm
)
Ψ, (13)
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where the vector/matrix Ψ is given row-wisely by

Ψ =


ψ̄(1)′

ψ̄(2)′

· · ·
ψ̄(n)′

 , with ψ̄(i) = E
[
ψ(i0, i1) | i0 = i

]
.

Here and in what follows E denotes expectation with respect to the distribution of the Markov
chain {it} with transition matrix P . As can be seen, corresponding to the two choices of ψ in
the expression of Gt [Eq. (12)], Ψ equals g or (αQ − I)Φ, and G∗ equals b̄ or C̄, respectively [cf.
Eqs. (8)-(9)].

We make two assumptions, one on the transition matrices P andQ, as mentioned at the beginning
of Section 1, and the other on the stepsize sequence.

Assumption 2.1. The Markov chain {it} with transition matrix P is irreducible, and Q ≺ P in
the sense of Eq. (1).

Assumption 2.2. The sequence of stepsizes γt is deterministic and satisfies γt ∈ (0, 1],∑
t

γt = ∞,
∑

t

γ2
t <∞, lim sup

t→∞

γt

γt−1
<∞. (14)

Such sequences of γt include 1/t, t−ν , ν ∈ (0, 1], for instance. When conclusions hold for a specific
sequence {γt}, such as γt = 1/t, we will state them explicitly.

3 Main Results

We pursue separately two lines of analysis, one based on properties of the finite space Markov chain
{it} and the other based on properties of the topological space Markov chain {(it, Zt)}. In this
section we overview our main results and outline key proof arguments. In the two following sections
we will give detailed proofs.

Throughout the paper, let ‖ · ‖ denote the F -norm ‖V ‖ = maxi,j |Vij | for a matrix V , and the
infinity norm ‖V ‖ = maxi |Vi| for a vector V , in particular, ‖V ‖ = |V | for a scalar V . Let “a.s.”
stand for almost sure convergence.

3.1 Analysis Based on Finite Space Markov Chains

First, it is not difficult to show that Gt converges in mean. This implies immediately that the
LSTD(λ) solution rt converges in probability to the solution r∗ of Eq. (7) when the latter exists and
is unique.

Theorem 3.1. Under Assumption 2.1, for each initial condition z0, suptE‖Zt‖ ≤ c
1−β where

c = max{‖z0‖,maxi ‖φ(i)‖}. Under Assumptions 2.1 and 2.2, for each initial condition (z0, G0),

lim
t→∞

E‖Gt −G∗‖ = 0.

Next, based essentially on a zero-one law for tail events of Markov chains (see Breiman [Bre92,
Theorem 7.43]), we can show the following result.

Proposition 3.1. Under Assumptions 2.1 and 2.2, for each initial condition (z0, G0) and any E of
the following events, either P(E) = 0 or P(E) = 1:

(i) E = {limt→∞Gt exists, and supt ‖Zt‖ <∞};



Convergence of LSTD(λ) under General Conditions 8

(ii) E = {supt ‖Zt‖ <∞};

(iii) E = {limt→∞ γtZt = 0};

(iv) E = {limt→∞Gt exists}.

Theorem 3.1 and Prop. 3.1(iv) together have the following implication on the convergence of Gt.
According to Prop. 3.1(iv), for the event E = {limt→∞Gt exists}, we have P(E) = 1 or 0. Suppose
P(E) = 1. Then Gt

a.s.→ G for some random variable G. Since Theorem 3.1 implies Gt → G∗

in probability, which further implies the convergence of a subsequence Gtk

a.s.→ G∗, we must have
G = G∗ a.s.; therefore Gt

a.s.→ G∗. Suppose now P(E) = 0. Then we only have the convergence of
Gt to G∗ in probability implied by Theorem 3.1. This is summarized as follows.

Corollary 3.1. Under Assumptions 2.1 and 2.2, for each initial condition (z0, G0), either Gt
a.s.→ G∗,

or Gt → G∗ in probability and with probability 1, on every sample path Gt does not converge.

In Section 3.2, we will rule out the second case in Cor. 3.1 for the stepsize sequence γt = 1/(t+1),
using the line of analysis based on the Markov chain {(it, Zt)}.

We discuss other implications of Prop. 3.1, contrasting the off-policy case with the standard,
on-policy case where P = Q. In the latter case, events (i) and (ii) in Prop. 3.1 both have probability
one; event (ii) – the boundedness of Zt – is true by the definition of Zt. By contrast, in the off-policy
case, under seemingly fairly common situations (as we show below), Zt is almost surely unbounded,
and consequently, events (i) and (ii) have probability zero. While the unboundedness of Zt may
sound disquieting, note that it is γtZt

a.s.→ 0, the event shown in (iii), and not the boundedness of
Zt, that is necessary for the almost sure convergence of Gt. In other words,

{ lim
t→∞

Gt exists} ⊂ { lim
t→∞

γtZt = 0}.

This can be seen from the fact that

Gt −Gt−1 = −γtGt−1 + γtZtψ(it, it+1)′,

and γt → 0 as t→∞.

For practical implementation, however, the unboundedness of Zt can be unwieldy. This suggests
that in practice, instead of iterating Zt directly, we equivalently iterate γtZt via

γtZt = β
qit−1it

pit−1it
· γt

γt−1
· (γt−1Zt−1) + γtφ(it), (15)

whenever the magnitude of Zt becomes intolerably large. That γtZt
a.s.→ 0 when γt = 1/(t+ 1) will

be implied by the almost sure convergence of Gt we later establish.

We now demonstrate by construction that in seemingly fairly common situations, Zt is almost
surely unbounded. Our construction is based on a consequence of the extended Borel-Cantelli
lemma [Bre92, Problem 5.9, p. 97] (see Lemma 4.5 in Section 4.3) and the zero-one probability
statement for the event {supt ‖Zt‖ <∞} in Prop. 3.1(ii).

Denote by Zt,j and φj(it) the jth element of the vector Zt and φ(it), respectively. Consider a
cycle configuration of states (̄i1, ī2, . . . , īm, ī1) with the following three properties:

(a) it occurs with positive probability:

pī1 ī2pī2 ī3 · · · pīm ī1 > 0; (16)

(b) it has an amplifying effect in the sense that

βm qī1 ī2
pī1 ī2

qī2 ī3
pī2 ī3

· · · qīmī1
pīmī1

> 1; (17)
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(c) for some j̄, the j̄th elements of φ(̄i1), . . . , φ(̄im) have the same sign and their sum is non-zero:
i.e.,

either φj̄ (̄ik) ≥ 0, ∀k = 1, . . . ,m, with φj̄ (̄ik) > 0 for some k; (18)
or φj̄ (̄ik) ≤ 0, ∀k = 1, . . . ,m, with φj̄ (̄ik) < 0 for some k. (19)

Proposition 3.2. Suppose there exists a cycle configuration of states (̄i1, ī2, . . . , īm, ī1) possessing
properties (a)-(c) above, and j̄ is as in (c). Then there exists a constant ν, which depends on the
cycle and is negative (respectively, positive) if Eq. (18) (respectively, Eq. (19)) holds in (c), and if
for some neighborhood O(ν) of ν, P(it = ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1, then P(supt ‖Zt‖ = ∞) = 1.

We remark that the extra technical condition P(it = ī1, Zt,j̄ 6∈ O(ν) i.o.) = 1 in Prop. 3.2 is
nonrestrictive. The opposite case – that on a set with non-negligible probability, Zt,j̄ eventually
always lies arbitrarily close to ν whenver it = ī1 – seems unlikely to occur except in highly contrived
examples.

3.2 Analysis Based on Topological Space Markov Chains

To establish the almost sure convergence of Gt to G∗, we consider the Markov chain {(it, Zt), t ≥ 0}
on the topological space S = I × <nr with product topology (discrete topology on I and usual
topology on <nr ). We show that {(it, Zt)} can be related to a type of Markov chains, called e-
chains, whose transition kernel functions possess a certain equicontinuity property [MT09]. Central
to our proof is the analysis of the differences in the processes {Zt} for different initial conditions z0
and the same sample path of {it}. As can already be seen from Eq. (10), for two such processes
{Zt}, {Ẑt} with initial conditions z0, ẑ0, respectively, their differences satisfy the simple recursion:

Zt − Ẑt = β
qit−1it

pit−1it
· (Zt−1 − Ẑt−1), (20)

which implies that the difference sequence converges almost surely to zero (Lemma 4.3). Using more
careful characterizations of such difference sequences together with the first part of Theorem 3.1,
we can establish the various properties needed for applying the law of large numbers (LLN) for
e-chains [MT09] and show that the chain {(it, Zt)} is ergodic.

Our conclusions are summarized in the following two theorems. Definitions of related terminolo-
gies and detailed analysis will be given in Section 5.

Theorem 3.2. Under Assumption 2.1, the Markov chain {(it, Zt)} is an e-chain with a unique
invariant probability measure π, and almost surely, for each initial condition, the sequence of occu-
pation measures {µt} on S converges weakly to π, where µt is defined by

µt(A) =
1
t

t∑
k=1

1A(ik, Zk)

for all Borel-measurable subsets A of S, and 1A denotes the indicator function for the set A.

Let Eπ denote expectation with respect to the stationary distribution Pπ of the Markov chain
{(it, Zt)} with initial distribution π.

Theorem 3.3. Under Assumption 2.1, G∗ = Eπ[Z0ψ(i0, i1)′], and with stepsize γt = 1/(t+ 1), for
each initial condition (z0, G0), Gt

a.s.→ G∗.

Theorem 3.3 implies that for each initial condition, the sequence {Φrt} computed by the off-
policy LSTD(λ) algorithm converges almost surely to the solution Φr∗ of the projected Bellman
equation (3) when the latter exists and is unique.
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4 Details of Analysis Based on Finite Space Markov Chains

In this section we prove Theorem 3.1 and Props. 3.1 and 3.2. We denote by Lt
s the product of ratios

of transition probabilities along a segment of the state trajectory, (is, is+1, . . . , it):

Lt
s =

qisis+1
pisis+1

· qis+1is+2
pis+1is+2

· · · qit−1it

pit−1it
. (21)

Define Lt
t = 1. Note that for s ≤ s′ ≤ t, Ls′

s L
t
s′ = Lt

s and

E[Lt
s | is] = 1.

4.1 Proof of Theorem 3.1

The first part of Theorem 3.1 is straightforward to show. By Eq. (10),

Zt = βtLt
0z0 +

t−1∑
m=0

βmLt
t−mφ(it−m).

So, with c = max{‖z0‖,maxi ‖φ(i)‖},

E‖Zt‖ ≤ cE
[
βtLt

0 +
t−1∑
m=0

βmLt
t−m

]
= c

t∑
m=0

βm ≤ c

1− β
.

To prove the second part of theorem on the convergence of Gt to G∗ in the first mean, we first
consider another process (Z̃t,T , G̃t,T ) on the same probability space, and apply the LLN for a finite
space irreducible Markov chain to G̃t,T . We then relate (Z̃t,T , G̃t,T ) to (Zt, Gt).

In particular, for a positive integer T , define

Z̃t,T = Zt, t ≤ T ; G̃0,T = G0,

and define

Z̃t,T = φ(it) + βLt
t−1φ(it−1) + · · ·+ βTLt

t−T · φ(it−T ), t > T ; (22)

G̃t,T = (1− γt)G̃t−1,T + γtZ̃t,T ψ(it, it+1)′, t ≥ 1. (23)

Note that for t ≤ T , G̃t,T = Gt because Z̃t,T and Zt coincide.

It is straightforward to show {G̃t,T } converges almost surely to a constant G∗T related to G∗. By
construction {Z̃t,T } is bounded. Furthermore, if we consider the finite space Markov chain {Xt}
with Xt = (it−T , it−T+1, . . . , it, it+1), then for t > T , Z̃t,Tψ(it, it+1)′ is a function of Xt. Denote
this function by f . Since G̃T,T takes values in a finite set (whose size depends on T ), a standard
application of LLN and stochastic approximation theory (see e.g., Borkar [Bor08, Chap. 6, Theorem
7 and Cor. 8]) shows that under the stepsize condition in Assumption 2.2, G̃t,T converges a.s. to
E0[f(XT+1)], the expectation of f(XT+1) under the stationary distribution of the Markov chain
{Xt} (equivalently, that of the chain {it}):

G̃t,T
a.s.→ G∗T = E0

[
Z̃T+1,T ψ(iT+1, iT+2)′

]
= Φ′Ξp

( T∑
m=0

βmQm
)
Ψ. (24)

We now relate (Zt, Gt) to (Z̃t,T , G̃t,T ). First we bound E‖Zt−Z̃t,T ‖. By definition ‖Zt−Z̃t,T ‖ = 0
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for t ≤ T . For t ≥ T + 1, similarly to bounding E‖Zt‖, we have with c = max{‖z0‖,maxi ‖φ(i)‖},

E‖Zt − Z̃t,T ‖ = E
∥∥∥βtLt

0z0 +
t−1∑

m=T+1

βmLt
t−mφ(it−m)

∥∥∥
≤ cE

[ t∑
m=T+1

βmLt
t−m

]

= c

t∑
m=T+1

βm ≤ cβT+1

1− β
. (25)

Next we bound E‖Gt − G̃t,T ‖. By the definition of Gt and G̃t,T ,

Gt − G̃t,T = (1− γt)
(
Gt−1 − G̃t−1,T

)
+ γt

(
Zt − Z̃t,T

)
ψ(it, it+1)′,

which implies

‖Gt − G̃t,T ‖ ≤(1− γt)‖Gt−1 − G̃t−1,T ‖+ γt‖Zt − Z̃t,T ‖‖ψ(it, it+1)‖.

Consequently, with c = maxi,j ‖ψ(i, j)‖,

E‖Gt − G̃t,T ‖ ≤ (1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtcE‖Zt − Z̃t,T ‖

≤ (1− γt)E‖Gt−1 − G̃t−1,T ‖+ γtεT , (26)

where the last inequality follows from Eq. (25), and for some constant c,

εT = cβT+1/(1− β) → 0, as T →∞. (27)

Since γt ∈ (0, 1] and ‖Gt − G̃t,T ‖ = 0 for t ≤ T , Eq. (26) implies

sup
t
E‖Gt − G̃t,T ‖ ≤ εT . (28)

We now bound E
∥∥G̃t,T − G∗T

∥∥. By Eq. (24) G̃t,T − G∗T
a.s.→ 0. By the construction of G̃t,T and

the fact γt ∈ (0, 1], for some deterministic constant cT depending on T , ‖G̃t,T ‖ ≤ cT ,∀t. Therefore,
by the Lebesgue bounded convergence theorem,

lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥ = 0. (29)

Combining Eqs. (28) and (29), we have

lim sup
t→∞

E ‖Gt −G∗‖ ≤ lim sup
t→∞

E
∥∥Gt − G̃t,T

∥∥+ lim
t→∞

E
∥∥G̃t,T −G∗T

∥∥+
∥∥G∗ −G∗T

∥∥
≤ εT + 0 + ε̃T , (30)

where ε̃T = ‖G∗ − G∗T ‖, and ε̃T → 0 as T → ∞, as can be seen from the definition of G∗ and G∗T ,
Eqs. (13) and (24). Letting T go to ∞ in the r.h.s. of (30) and using also Eq. (27), it follows that
lim supt→∞E ‖Gt −G∗‖ = 0. This completes the proof.

4.2 Proof of Prop. 3.1

We will use a zero-one law for tail events of Markov chains. An event E is called a tail event of a
process {Xt} if for all positive integers s, E ∈ σ(Xt, t ≥ s), the σ-field generated by Xt, t ≥ s. (See
Breiman [Bre92, Def. 3.10]).
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Lemma 4.1 (Zero-one law; see Breiman [Bre92, Theorem 7.43]). Any tail event of an irreducible
and aperiodic finite space Markov chain has probability zero or one.

We need a form of the zero-one law applicable to events that are “almost” tail events. This is
given in Cor. 4.1 after the next lemma.

Lemma 4.2. Let X = {Xt} be a finite space Markov chain on the probability space (Ω,F ,P). Let
W ∗ ⊂ Ω be such that W ∗ ∈ F and P(W ∗) = 0. Let X ′ = {X ′

t} be the restriction of X to Ω \W ∗.
Then X ′ is a Markov chain on the probability space (Ω′,F ′,P′), where

Ω′ = Ω \W ∗, F ′ = {B \W ∗ | B ∈ F}, P′(B) = P(B), ∀B ∈ F ′.

Furthermore, X ′ has the same state transition probabilities as X.

Proof. Since W ∗ ∈ F , F ′ ⊂ F by construction and P ′(B) is well-defined for each B ∈ F ′. Using
the fact W ∗ ∈ F ,P(W ∗) = 0, it is straightforward to verify that F ′ is by definition a σ-field of Ω′

and P′ by definition a probability measure on (Ω′,F ′). So (Ω′,F ′,P′) is a well-defined probability
space.

To show X ′ (X restricted to Ω′) is a Markov chain on (Ω′,F ′,P′), we verify that the conditional
probability P′(X ′

t+1 = xt+1 | X ′
0, . . . , X

′
t) is a function of X ′

t and xt+1. For any s ≥ 0, let

E ′ = {ω ∈ Ω′ | X ′
0(ω) = x0, . . . , X

′
s(ω) = xs}, E = {ω ∈ Ω | X0(ω) = x0, . . . , Xs(ω) = xs}.

We have E ′ ⊂ E ⊂ E ′ ∪W ∗, and since P(W ∗) = 0, P(E) = P(E ′) = P′(E ′). This shows that X on
(Ω,F ,P) and X ′ on (Ω′,F ′,P′) have the same distribution, in particular,

P′(X ′
0 = x0, . . . , X

′
t = xt) = P(X0 = x0, . . . , Xt = xt),

P′(X ′
0 = x0, . . . , X

′
t = xt, X

′
t+1 = xt+1) = P(X0 = x0, . . . , Xt = xt, Xt+1 = xt+1).

Hence, for any (x0, . . . , xt) such that P′(X ′
0 = x0, . . . , X

′
t = xt) > 0,

P′(X ′
t+1 = xt+1 | X ′

0 = x0, . . . , X
′
t = xt) =

P′(X ′
0 = x0, . . . , X

′
t = xt, X

′
t+1 = xt+1)

P′(X ′
0 = x0, . . . , X ′

t = xt)

=
P(X0 = x0, . . . , Xt = xt, Xt+1 = xt+1)

P(X0 = x0, . . . , Xt = xt)
= P(Xt+1 = xt+1 | X0 = x0, . . . , Xt = xt)
= P(Xt+1 = xt+1 | Xt = xt),

which is a function of xt and xt+1. This shows X ′ is a Markov chain and has the same transition
probabilities as X.

Corollary 4.1. Let X, X ′ and W ∗ be as in Lemma 4.2, and furthermore, let X be irreducible and
aperiodic. If E ∈ F is such that E \W ∗ is a tail event of X ′, then P(E) = 1 or 0.

Proof. By Lemma 4.2, X ′ is an irreducible and aperiodic Markov chain on (Ω′,F ′,P′). Therefore,
by Lemma 4.1, the tail event E ′ = E \W ∗ has either P′(E ′) = 0 or P′(E ′) = 1. We have E ′ ⊂ E ⊂
E ′ ∪W ∗, P(W ∗) = 0, and P(E ′) = P′(E ′) by the construction of P′ in Lemma 4.2. This implies
P(E) = P(E ′) = P′(E ′), so P(E) is either zero or one.

We will also use the following two lemmas for bounding iterates.

Lemma 4.3. Let Yt = βLt
t−1Yt−1, t ≥ 1 be vector-valued random variables, where β < 1, E‖Y0‖ <

∞, and Y0 is independent of it, t ≥ 1 conditionally on i0. Then, Yt = βtLt
0Y0

a.s.→ 0, and in particular,
the sequence of nonnegative scalar random variables βtLt

0
a.s.→ 0.
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Proof. From the definition of Yt and Lt
s [cf. Eq. (21)],

Yt = βtLt
t−1L

t−1
t−2 · · ·L1

0Y0 = βtLt
0Y0.

Consider any component of Yt and the nonnegative scalar sequence Xt = βLt
t−1Xt−1 with Xt being

the absolute value of the corresponding component of Yt. For t ≥ 1, let Ft−1 = σ(X0, is, s ≤ t− 1),
the σ-field generated by X0, is, s ≤ t−1. Using the independence assumption on Y0 and the Markov
property of {it}, we have for t ≥ 1,

E
[
Xt | Ft−1

]
= βXt−1 ≤ Xt−1,

which implies that {(Xt,Ft)} is a nonnegative supermartingale. Since EX0 < ∞, by a martingale
congergence theorem (see Breiman [Bre92, Theorem 5.14] and its proof), Xt

a.s.→ X, a non-negative
random variable with EX ≤ lim inft→∞EXt. Since β < 1, EXt = βtEX0 → 0 as t→∞. Therefore
X = 0 a.s., implying Xt

a.s.→ 0 and Yt
a.s.→ 0.

Lemma 4.4. Suppose {γt} satisfies Assumption 2.2 and {δt} is a sequence of positive scalars such
that for some ε > 0

δt+1 ≤ (1− γt)δt + γtε.

Then lim supt→∞ δt ≤ ε.

Proof. This is evident and can be verified using proof by contradiction.

We now prove Prop. 3.1 by applying the zero-one law for Markov chains. We discuss separately
the case of an aperiodic chain and the case of a periodic chain. We give a detailed proof for event
(i) and point out the differences in the proof arguments for events (ii)-(iv). Recall the definitions of
Zt, Gt [cf. Eqs. (10), (11)]: with Z0 = z0,

Zt = βLt
t−1 · Zt−1 + φ(it), Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′. (31)

Case A: an aperiodic chain

Event (i): E = {limt→∞Gt exists, and supt ‖Zt‖ <∞}. The first step of our proof is to write Zt

and Gt as
Zt = (Zt − Y 0

t ) + Y 0
t , Gt = (Gt −R0

t ) +R0
t , (32)

where the sequences {Y 0
t }, {R0

t }, to be defined shortly, are such that

(a) for all t, (Zt − Y 0
t ), (Gt −R0

t ) are functions of is, s > 0;

(b) (Y 0
t , R

0
t )

a.s.→ 0;

(c) as a consequence of (b) and Eq. (32),

on Ω\W0 : Gt converges and sup
t
‖Zt‖ <∞ ⇔ (Gt−R0

t ) converges and sup
t
‖Zt−Y 0

t ‖ <∞,

(33)
where W0 is the set on which (Y 0

t , R
0
t ) 6→ 0 and P(W0) = 0.

We define {Y 0
t }, {R0

t } as follows:

Y 0
0 = Z0, Y 0

t = βLt
t−1 · Y 0

t−1, t ≥ 1; (34)

R0
0 = G0, R0

t = (1− γt)R0
t−1 + γtY

0
t ψ(it, it+1)′, t ≥ 1. (35)

Then,
Z0 − Y 0

0 = 0, G0 −R0
0 = 0, (36)
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and for t ≥ 1,

Zt = βLt
t−1 · Zt−1 + φ(it)

= βLt
t−1 ·

(
Zt−1 − Y 0

t−1 + Y 0
t−1

)
+ φ(it)

= βLt
t−1 ·

(
Zt−1 − Y 0

t−1

)
+ Y 0

t + φ(it),
Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′

= (1− γt)
(
Gt−1 −R0

t−1 +R0
t−1

)
+ γt(Zt − Y 0

t + Y 0
t )ψ(it, it+1)′

= (1− γt)
(
Gt−1 −R0

t−1

)
+R0

t + γt(Zt − Y 0
t )ψ(it, it+1)′,

which, by rearranging terms, are equivalent to for t ≥ 1,

Zt − Y 0
t = βLt

t−1 ·
(
Zt−1 − Y 0

t−1

)
+ φ(it), (37)

Gt −R0
t = (1− γt)

(
Gt−1 −R0

t−1

)
+ γt(Zt − Y 0

t )ψ(it, it+1)′. (38)

The processes (Zt − Y 0
t ), (Gt −R0

t ), t ≥ 0 do not functionally depend on i0, as can be seen from
the fact that the variables Z0 − Y 0

0 = 0, G0 − R0
0 = 0, Z1 − Y 0

1 = φ(i1), and Lt
t−1, t ≥ 2 do not

functionally depend on i0. Therefore property (a) above is satisfied.

We now show (Y 0
t , R

0
t )

a.s.→ 0. Noticing E‖Y 0
0 ‖ < ∞, we apply Lemma 4.3 to {Y 0

t , t ≥ 0} [cf.
Eq. (34)] and obtain Y 0

t
a.s.→ 0. By Eq. (35), ‖R0

t ‖ satisfies

‖R0
t ‖ ≤ (1− γt)‖R0

t−1‖+ γtc‖Y 0
t ‖.

with c = maxi,j ‖ψ(i, j)‖, a deterministic constant. Applying Lemma 4.4 with δt = ‖R0
t ‖, the fact

Y 0
t

a.s.→ 0 implies ‖R0
t ‖

a.s.→ 0, equivalently, R0
t

a.s.→ 0. Thus, (Y 0
t , R

0
t )

a.s.→ 0 and property (b) above is
satisfied. Consequently Eq. (33) in property (c) follows.

We now apply the preceding argument recursively. Consider the recursions (37)-(38) satisfied by
(Zt − Y 0

t ), (Gt −R0
t ), t ≥ 1. They have the same form as those for Zt, Gt, t ≥ 0 [cf. Eq. (31)]. So we

can apply the preceding argument to obtain an analogous decomposition of (Zt−Y 0
t ), (Gt−R0

t ), t ≥ 0
as

Zt − Y 0
t = (Zt − Y 0

t − Y 1
t ) + Y 1

t , Gt −R0
t = (Gt −R0

t −R1
t ) +R1

t ,

with
Y 1

0 = 0, R1
0 = 0; Y 1

1 = Z1 − Y 0
1 = φ(i1), R1

1 = G1 −R0
1,

and with other desirable properties analogous to properties (a)-(c). Moreover, we can apply recur-
sively the preceding argument to the resulting sequences

(
Zt −

∑k−1
j=0 Y

j
t

)
,
(
Gt −

∑k−1
j=1 R

j
t

)
, t ≥ k

for k = 1, 2, ..., (by construction these variables equal zero for t < k), and define similarly for each
k ≥ 1, the sequence {(Y k

t , R
k
t ), t ≥ 0} as follows. We define Y k

t = 0, Rk
t = 0 for t < k, and we define

(Y k
t , R

k
t ), t ≥ k by the recursive formulae in Eqs. (34)-(35), i.e.,

Y k
t = βLt

t−1 · Y k
t−1, Rk

t = (1− γt)Rk
t−1 + γtY

k
t ψ(it, it+1)′, t ≥ k + 1,

with the initial variables Y k
k , R

k
k given by

Y k
k = Zk −

k−1∑
j=0

Y j
k = φ(ik), Rk

k = Gk −
k−1∑
j=1

Rj
k.

It is also evident that for each k, the initial variable Y k
k = φ(ik) of the sequence {Y k

t , t ≥ k} has
finite mean and is independent of is, s > k conditionally on ik. Thus we can apply first Lemma 4.3
to establish Y k

t
a.s.→ 0, and then Lemma 4.4 to show Rk

t
a.s.→ 0, as in the preceding analysis. As the

final result of this procedure, we obtain decompositions of Zt, Gt as

Zt =
(
Zt −

k∑
j=0

Y j
t

)
+

k∑
j=0

Y j
t , Gt =

(
Gt −

k∑
j=0

Rj
t

)
+

k∑
j=0

Rj
t , k ≥ 0,

with the following properties: for every k ≥ 0,
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(a’) for all t,
(
Zt −

∑k
j=0 Y

j
t

)
,
(
Gt −

∑k
j=0R

j
t

)
are functions of is, s > k;

(b’) (Y k
t , R

k
t ) a.s.→ 0;

(c’) on Ω \ ∪k
j=0Wj ,

Gt converges and sup
t
‖Zt‖ <∞ ⇔

(
Gt −

k∑
j=0

Rj
t

)
converges and sup

t

∥∥∥Zt −
k∑

j=0

Y j
t

∥∥∥ <∞,

(39)

where Wj , j ≥ 0 are sets of zero probability (on which (Y j
t , R

j
t ) 6→ 0).

Let W ∗ = ∪∞j=0Wj . Then, P(W ∗) = 0 and for all k,

on Ω \W ∗ :

Gt converges and sup
t
‖Zt‖ <∞ ⇔

(
Gt −

k∑
j=0

Rj
t

)
converges and sup

t

∥∥∥Zt −
k∑

j=0

Y j
t

∥∥∥ <∞.

(40)

Now, let Ω′ = Ω \W ∗ and consider the event

E ′ = E \W ∗ =
{
ω ∈ Ω′

∣∣∣Gt(ω) converges, and sup
t
‖Zt(ω)‖ <∞

}
.

Let X ′ be the Markov chain X = {it} restricted to Ω′. Lemma 4.2 shows that X ′ is a Markov chain
on the probability space (Ω′,F ′,P′) constructed from (Ω,F ,P) by excluding W ∗, as given in the
lemma. Equation (40) and property (a’) above imply that E ′ is a tail event of X ′. Therefore by
Cor. 4.1, if the original Markov chain X is irreducible and aperiodic, then P(E) = 1 or 0.

Events (ii)-(iv): We use the same sequences of Y k
t , R

k
t and sets Wk,W

∗ constructed earlier. The
zero-one probability statements for events (ii)-(iv) can be established using the preceding argument
with the following replacements: we replace the equivalence relation in Eqs. (39) and (40) (on
Ω \ ∪k

j=0Wj and Ω \W ∗, respectively) with

• “ supt ‖Zt‖ <∞ ⇔ supt

∥∥∥Zt −
∑k

j=0 Y
j
t

∥∥∥ <∞” for event (ii) E = {supt ‖Zt‖ <∞};

• “ limt→∞ γtZt = 0 ⇔ limt→∞ γt

(
Zt−

∑k
j=0 Y

j
t

)
= 0” for event (iii) E = {limt→∞ γtZt = 0};

• “Gt converges ⇔
(
Gt −

∑k
j=0R

j
t

)
converges” for event (iv) E = {limt→∞Gt exists }.

Case B: a periodic chain

Suppose now {it} is periodic with period d. We first apply the preceding argument to the aperiodic
chain {Xj

s , s ≥ 0}, where Xj
s = (isd+j , isd+j+1, . . . , isd+j+d−1), 0 ≤ j ≤ d− 1.

Event (i): E = {limt→∞Gt exists, and supt ‖Zt‖ <∞}. By the proof for the aperiodic case, each
of the d events

Ej =
{
Gsd+j converges, and sup

s
‖Zsd+j‖ <∞

}
, 0 ≤ j ≤ d− 1, (41)

has P(Ej) = 1 or 0. Since E ⊂ ∩d−1
j=0Ej , to show P(E) = 1 or 0, it is sufficient to show ∪d−1

j=0Ej ⊂ E .
Consider any Ej . From the definition of Gt and Zt,

‖Gt −Gt−1‖ = γt ‖−Gt−1 + Ztψ(it, it+1)′‖ , ‖Zt‖ ≤ c(1 + ‖Zt−1‖),
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where c is some deterministic constant. Using the fact γt → 0, this implies

on Ej : ‖Gsd+j+1 −Gsd+j‖ → 0, sup
s
‖Zsd+j+1‖ <∞,

so Ej ⊂ E(j+1) mod d and furthermore, for all ω ∈ Ej , the subsequence {Gsd+j+1(ω), s ≥ 0} converges
to the same limit as the subsequence {Gsd+j(ω), s ≥ 0}. This shows that all Ej are equal, and
furthermore, ∪d−1

j=0Ej ⊂ E . Therefore, P(E) = 1 or 0.

Events (ii)-(iii): The proof argument for event (ii) E = {supt ‖Zt‖ < ∞} in the periodic case is
the same as for event (i) except that we replace Ej in Eq. (41) by

Ej =
{

sup
s
‖Zsd+j‖ <∞

}
, 0 ≤ j ≤ d− 1.

A similar argument applies to event (iii) E = {limt→∞ γtZt = 0}, in which case we define Ej to be

Ej =
{

lim
s→∞

γsd+jZsd+j = 0
}
, 0 ≤ j ≤ d− 1,

we have P(Ej) = 1 or 0 by the proof for the aperiodic case, and we show ∪d−1
j=0Ej ⊂ E using the fact

that γt → 0 and for some deterministic constants c1, c2, c3,

γt‖Zt‖ ≤ c1
γt

γt−1
γt−1‖Zt−1‖+ γtc2, and

γt

γt−1
≤ c3,

where the last inequality follows from Assumption 2.2.

Event (iv): E = {limt→∞Gt exists }. As shown in Section 3.1, we have

E ⊂ Ẽ = { lim
t→∞

γtZt = 0},

where Ẽ is the event in (iii) and P(Ẽ) = 1 or 0, as we just proved. We also have by the proof for the
aperiodic case that each event

Ej =
{
Gsd+j converges

}
, 0 ≤ j ≤ d− 1,

has P(Ej) = 1 or 0, and E ⊂ ∩d−1
j=0Ej . Therefore, to show P(E) = 1 or 0, it is sufficient to show

∪d−1
j=0Ej ∩ Ẽ ⊂ E . Consider any Ej . Since

‖Gt −Gt−1‖ ≤ γt‖Gt−1‖+ c‖γtZt‖,

for some deterministic constant c, we have

on Ej ∩ Ẽ : ‖Gsd+j+1 −Gsd+j‖ → 0, as s→ 0.

which implies
Ej ∩ Ẽ ⊂ Ej+1 mod d ∩ Ẽ ,

and furthermore, on Ej ∩ Ẽ , the two subsequences {Gsd+j+1, s ≥ 0}, {Gsd+j , s ≥ 0} converge to
the same limit. Repeating this argument for all j, we have that all the sets Ej ∩ Ẽ are equal, and
furthermore, for all ω ∈ Ej ∩ Ẽ , the entire sequence {Gt(ω)} converges. This implies ∪d−1

j=0Ej ∩ Ẽ ⊂ E .
The proof is now complete.

4.3 Proof of Prop. 3.2

We will use the following lemma, which is a consequence of the extended Borel-Cantelli lemma [Bre92,
Problem 5.9, p. 97].
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Lemma 4.5. For any process {Xt, t ≥ 0} with Xt taking values in S, and any Borel-measurable
subsets A,B of S, if for all t,

P (∃s, s > t,Xs ∈ B | Xt, Xt−1, . . . , X0) ≥ δ > 0, on {Xt ∈ A},

then
{Xt ∈ A i.o.} ⊂ {Xt ∈ B i.o.} a.s.

In the above “i.o.” stands for “infinitely often,” and “a.s.” means that the set-inclusion relation
holds after excluding a set of zero probability from the expression on the left-hand-side.

We now prove Prop. 3.2. Denote by C the set of states {̄i1, ī2, . . . , īm} appeared in the cycle
configuration. We prove the statement for the case where the cycle satisfies properties (a), (b) and
(c) with Eq. (18), that is, φj̄(i) is nonnegative for any i ∈ C and positive for some i ∈ C. An
identical argument with a change of signs applies to the case where Eq. (18) is replaced by Eq. (19)
in property (c).

Suppose at time t, it = ī1 and Zt = zt. If the chain goes through the cycle of states during the
time interval [t, t + m], then a direct calculation shows the value zt+m,j̄ of the j̄th component of
Zt+m would be:

zt+m,j̄ = βmlm0 · zt,j̄ + ε, (42)

where

ε =
m−1∑
k=1

βm−klmk φj̄ (̄ik+1) + φj̄ (̄i1), lmk =
qīk+1 īk+2
pīk+1 īk+2

qīk+2 īk+3
pīk+2 īk+3

· · · qīmī1
pīmī1

, 0 ≤ k ≤ m− 1.

By properties (b) and (c) with Eq. (18), we have

ε > 0, βmlm0 > 1.

Define ζ = βmlm0 . Consider the sequence {ys} defined by the recursion

ys+1 = ζys + ε, s ≥ 0;

ys corresponds to the value zt+sm,j̄ if during [t, t+ sm] the chain would repeat the cycle s times [cf.
Eq. (42)]. Since ζ > 1, ε > 0, simple calculation shows that unless ys = −ε/(ζ − 1) for all s ≥ 0,
|ys| → ∞ as s→∞.

Let ν = −ε/(ζ−1) = −ε/(βmlm0 −1) be the cycle-dependent, negative constant in the statement
of the proposition. Consider any η > 0 and two positive integers K1,K2 with K1 ≤ K2. Let s be
such that |ys| ≥ K2 for all y0 ∈ [−K1,K1], y0 6∈ (ν − η, ν + η). By property (a) of the cycle and
the Markov property of {it}, whenever it = ī1, conditionally on the history, there is some positive
probability δ independent of t to repeat the cycle s times. Therefore, by Lemma 4.5,

{it = ī1, Zt,j̄ 6∈ (ν − η, ν + η), ‖Zt‖ ≤ K1 i.o.} ⊂ {‖Zt‖ ≥ K2 i.o.} a.s. (43)

We now prove Zt is almost surely unbounded, i.e., P
(
supt ‖Zt‖ < ∞

)
= 0. By Prop. 3.1(ii),

P
(
supt ‖Zt‖ < ∞

)
= 0 or 1, so let us assume P

(
supt ‖Zt‖ < ∞

)
= 1 to derive a contradiction.

Define
K1 = median

(
sup

t
‖Zt‖

)
, E = {sup

t
‖Zt‖ ≤ K1}. (44)

Then,
K1 <∞, P

(
E) ≥ 1/2.

Let η > 0 be such that (ν − η, ν + η) ⊂ O(ν), where O(ν) is the neighborhood of ν in the statement
of the proposition. By the assumption in the proposition P

(
it = ī1, Zt,j̄ 6∈ (ν − η, ν + η) i.o.

)
= 1.

Since E ⊂ {‖Zt‖ ≤ K1 i.o.}, this implies

E ⊂ {it = ī1, Zt,j̄ 6∈ (ν − η, ν + η), ‖Zt‖ ≤ K1 i.o.} a.s.
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It then follows from Eq. (43) that for any K2 > K1,

E ⊂ {sup
t
‖Zt‖ ≥ K2} a.s.

Since P(E) ≥ 1/2, this contradicts the definition of E in Eq. (44). Therefore P
(
supt ‖Zt‖ <∞

)
= 0.

This completes the proof.

5 Details of Analysis Based on e-Chains

In this section we will analyze the properties of the Markov chain {(it, Zt)} on the topological
space S = I × <nr with product topology, where the topology on I is the discrete topology and
that on <nr is the usual topology metrized by ‖ · ‖ (equivalently, the Euclidean distance). We will
establish Theorem 3.2 on the ergodicity of {(it, Zt)} (Section 5.1) and Theorem 3.3 on the almost
sure convergence of Gt when the stepsizes are 1/(t + 1) (Section 5.2), using theories of topological
space Markov chains, in particular, the e-chains (Meyn and Tweedie [MT09]).

First, we specify some notation and definitions. In this section, P denotes the transition proba-
bility kernel (or transition function) of a Markov chain {Xt} on the state space S, i.e.,

P = {P (x,A), x ∈ S,A ∈ B(S)},

where P (x, ·) is the conditional probability of X1 given X0 = x. The k-step transition probability
kernel is denoted by P k. As an operator, P k maps any bounded measurable function f : S → < to
another such function P kf , given by

P kf(x) =
∫

S

P k(x, dy)f(y) = Ex

[
f(Xk)

]
,

where Ex denotes expectation with respect to Px, the probability distribution of {Xt} initialized
with X0 = x.

Let Cb(S), Cc(S) denote the set of bounded continuous functions on S, the set of continuous
functions on S with compact support, respectively. Note that since the space I of it is discrete,
Cb(S) consists of all functions f such that f(i, z) is bounded and continuous in z for each i. Similarly,
Cc(S) consists of all functions f such that for each i, f(i, z) is continuous in z and has compact
support on <nr , the space of z. Note also that since I is finite, any f ∈ Cc(S) is bounded.

A Markov chain on S is called an e-chain, if its transition probability kernel P possesses the
equicontinuity property: for each f ∈ Cc(S), the family of functions {P tf} is equicontinuous on
compact sets. We will show that {(it, Zt)} is an e-chain, and furthermore, it has a unique invariant
probability measure and almost surely weakly convergent sequences of occupation measures for each
initial condition. These are the conclusions of Theorem 3.2, which we will use to prove Theorem 3.3
on the almost sure convergence of Gt. Theorem 3.2 is however stronger than what is needed to
prove Theorem 3.3; it can be useful in analyzing the convergence of other incremental variants of
the LSTD algorithm in the future.

There is an alternative way to prove Theorem 3.3 using only the existence of an invariant proba-
bility measure not the uniqueness. With this proof approach we would use the weak Feller property
of {(it, Zt)},3 a property weaker than the e-chain property, and the first part of Theorem 3.1 to estab-
lish first the existence of at least one invariant probability measure by applying [MT09, Prop. 12.1.3].
We can then prove Theorem 3.3 using modified versions of the arguments given in Section 5.2.

3A Markov chain on S is a weak Feller chain if its transition kernel P maps Cb(S) to Cb(S) [MT09, Prop. 6.1.1(i)].
To see {(it, Zt)} is weak Feller, note that by definition the realization of Z1 given (z0, i0, i1) is a continuous function
of z0 for given i0, i1. Denote this function by Z1(z0, i0, i1). For any f ∈ Cb(S), f(i, z) is bounded and continuous in
z for each i, and it can be seen that

Pf(i, z) = E[f(i1, Z1) | i0 = i, Z0 = z] =
X

j

pijf
`
j, Z1(z, i, j)

´
is also bounded and continuous in z for each i, so Pf ∈ Cb(S).



Convergence of LSTD(λ) under General Conditions 19

We will present the e-chain-based analysis, since it is more thorough and has a broader range of
potential applications, as noted earlier.

5.1 Proof of Theorem 3.2

We will prove Theorem 3.2 in a series of propositions. First, we prove {(it, Zt)} is an e-chain. In
this and the subsequent analysis, we will need to compare multiple realizations of Zt: Z1

t , Z
2
t , . . .,

corresponding to different initial conditions z̄1, z̄2, . . ., respectively, and for the same sample path of
{it}. Such comparison is legitimate because Zt, which we recall is recursively defined by

Zt = βLt
t−1 · Zt−1 + φ(it) (45)

[cf. Eqs. (10) and (21)], is a (vector-valued) function of (i0, i1, . . . , it) and the initial condition
z0. In such comparison we use P to denote the probability distribution of the resulting process
{(it, Z1

t , Z
2
t , . . .)}.

We will need the following lemma, which is a consequence of Lemma 4.3.

Lemma 5.1. For two initial conditions (̄i0, z0) and (̄i0, z0 + ∆), let (it, Zt) and (it, Ẑt) be the
corresponding processes, respectively, with the same sample path of {it}. Then Zt − Ẑt = βtLt

0∆
independently of z0, and Zt − Ẑt

a.s.→ 0. Furthermore, for any a ∈ (0, 1), δ > 0 and δ0 > 0, there
exists a finite integer N̄ δ,a

δ0
, such that for all z0 and ∆ with ‖∆‖ ≤ δ0,

P
(
‖Zt − Ẑt‖ ≤ δ, ∀ t ≥ N̄ δ,a

δ0

)
≥ a.

Proof. From the evolution of Zt, Ẑt given in Eq. (45), we have

Zt − Ẑt = βLt
t−1 ·

(
Zt−1 − Ẑt−1

)
, (46)

which shows that Zt − Ẑt = βtLt
0∆ and is independent of z0 for all t. Furthermore, by Lemma 4.3

βtLt
0

a.s.→ 0 and Zt − Ẑt
a.s.→ 0.

Consider any δ > 0. Since βtLt
0

a.s.→ 0, for almost every sample path of {it}, i.e., for almost every
ω ∈ Ω, there exists a finite integer N(ω) such that

βtLt
0(ω)δ0 ≤ δ, ∀ t ≥ N(ω),

which implies that for any ∆ with ‖∆‖ ≤ δ0,

‖Zt(ω)− Ẑt(ω)‖ = βtLt
0(ω)‖∆‖ ≤ βtLt

0(ω)δ0 ≤ δ, ∀ t ≥ N(ω).

Clearly N is a well defined random variable. For a ∈ (0, 1), let

N̄ δ,a
δ0

= min{k | P
(
{ω : N(ω) ≤ k}

)
≥ a}.

Then, P{‖Zt − Ẑt‖ ≤ δ, ∀ t ≥ N̄ δ,a
δ0
} ≥ a for all pairs of initial conditions with ‖∆‖ ≤ δ0.

Proposition 5.1. The Markov chain {(it, Zt)} is an e-chain.

Proof. For any f ∈ Cc(S) and ε > 0, since f is uniformly continuous, there exists δ > 0 such that

|f(i, z)− f(i, ẑ)| ≤ ε, ∀i, z, ẑ with ‖z − ẑ‖ ≤ δ. (47)

To show {P tf} is equicontinuous with respect to the product topology on S, we consider for each
given ī0, any two initial conditions x = (̄i0, z0) and x̂ = (̄i0, ẑ0) with ‖z0 − ẑ0‖ ≤ δ0 for some δ0 > 0,
and we bound

|P tf(x)− P tf(x̂)| = |E[f(it, Zt)− f(it, Ẑt)]|,



Convergence of LSTD(λ) under General Conditions 20

where {Zt} and {Ẑt} are two processes for the same sample path of {it} and corresponding to the
two initial conditions x, x̂, respectively.

By Lemma 5.1, for any a ∈ (0, 1) and δ0 > 0, there exists N̄ δ,a
δ0

such that for all initial conditions
z0, ẑ0 with ‖z0 − ẑ0‖ ≤ δ0,

P{‖Zt − Ẑt‖ ≤ δ} ≥ a, ∀ t ≥ N̄ δ,a
δ0
.

Let a be sufficiently close to 1 so that 2(1 − a)‖f‖∞ ≤ ε, where ‖f‖∞ = supx∈S |f(x)| < ∞ (it is
finite because f is bounded). Then, since by Eq. (47)

|f(it, Zt)− f(it, Ẑt)| ≤ ε, on {‖Zt − Ẑt‖ ≤ δ},

we have for all initial conditions (̄i0, z0), (̄i0, ẑ0) with ‖z0 − ẑ0‖ ≤ δ0,

|E[f(it, Zt)− f(it, Ẑt)]| ≤ E[|f(it, Zt)− f(it, Ẑt)|] ≤ ε+ (1− a)2‖f‖∞ ≤ 2ε, t ≥ N̄ δ,a
δ0
. (48)

For N̄ δ,a
δ0

given above we now bound |E[f(it, Zt)− f(it, Ẑt)]|, t < N̄ δ,a
δ0

. We have

‖Zt − Ẑt‖ = βtLt
0‖z0 − ẑ0‖, sup

t<N̄δ,a
δ0

βtLt
0 < c

for some positive deterministic constant c. So if ‖z0 − ẑ0‖ ≤ sδ0 ≤ δ/c for some s ∈ (0, 1], then all
possible values of ‖Zt− Ẑt‖, t < N̄ δ,a

δ0
can be enclosed in a ball centered at the origin and with radius

δ, and consequently by Eq. (47)

|E[f(it, Zt)− f(it, Ẑt)]| ≤ E[|f(it, Zt)− f(it, Ẑt)|] ≤ ε, t < N̄ δ,a
δ0
, (49)

while Eq. (48) certainly holds for all z0, ẑ0 with ‖z0− ẑ0‖ ≤ sδ0 because s ≤ 1. Thus we have proved
that for all z0, ẑ0 with ‖z0 − ẑ0‖ ≤ sδ0,

|E[f(it, Zt)− f(it, Ẑt)]| ≤ 2ε, ∀t.

This shows that {P tf} is equicontinuous, so by definition {(it, Zt)} is an e-chain.

Next we prove {(it, Zt)} has a unique invariant probability measure. A Markov chain {Xt} on
S is said to be bounded in probability if for each initial condition x and each ε > 0, there exists a
compact subset C ⊂ S such that

lim inf
t→∞

Px(Xt ∈ C) ≥ 1− ε. (50)

This entails {Xt} being bounded in probability on average: lim inft→∞
1
t

∑t
j=1 Px(Xj ∈ C) ≥ 1− ε,

a condition needed in proving that there exists a unique invariant probability measure.

Lemma 5.2. The Markov chain {(it, Zt)} is bounded in probability.

Proof. Let x = (̄i0, z0) be any initial condition. By the first part of Theorem 3.1, for all t, Ex‖Zt‖ ≤ c
for some constant c depending on z0. For any ε > 0, let K be such that c/K ≤ ε, and then by
Markov’s inequality, Px(‖Zt‖ ≥ K) ≤ c/K ≤ ε for all t. Therefore

Px(‖Zt‖ ≤ K) ≥ 1− ε, ∀t, (51)

and the compact set C in (50) can be chosen to be I × {z | ‖z‖ ≤ K}.

For a Markov chain {Xt} on S, by definition a state x∗ is reachable if for every neighborhood
O(x∗) of x∗, ∑

t

Py(Xt ∈ O(x∗)) > 0, ∀y ∈ S. (52)

For an e-chain which is bounded in probability on average, the existence of a reachable state is
necessary and sufficient for the existence of a unique invariant probability measure [MT09, Theorem
18.4.4(i)].
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Proposition 5.2. The Markov chain {(it, Zt)} has a reachable state.

Proof. We proceed in three steps. We consider first a fixed initial condition (̄i, z̄), and then initial
conditions of the form (̄i, z̄+∆), and finally, arbitrary initial conditions. Our proof relies on showing a
stronger statement than Eq. (52): there exists a state x∗ = (i∗, z∗) such that for every neighborhood
O(x∗) of x∗,

lim sup
t→∞

Py

(
(it, Zt) ∈ O(x∗)

)
> 0, ∀ y ∈ S.

Since the space of it is discrete, this is equivalent to for every neighborhood O(z∗) of z∗,

lim sup
t→∞

Py(it = i∗, Zt ∈ O(z∗)) > 0, ∀y ∈ S.

Consider a fixed initial condition y = (̄i, z̄). We have shown in the proof of Lemma 5.2 [cf.
Eq. (51)] that for any a ∈ (0, 1), there exists a compact set C ⊂ <nr such that

Py(Zt ∈ C) ≥ a, ∀t. (53)

Since Py(Zt ∈ C) =
∑

i Py(it = i, Zt ∈ C), Eq. (53) implies∑
i

lim sup
t→∞

Py(it = i, Zt ∈ C) ≥ lim sup
t→∞

∑
i

Py(it = i, Zt ∈ C) ≥ a,

so there exists i∗ such that
lim sup

t→∞
Py(it = i∗, Zt ∈ C) > 0. (54)

Fix i∗ and we find z∗ next.

Let {δk, k ≥ 0} be a positive sequence with δk ↘ 0. We now construct a sequence of closed balls
Ck of radius δk in <nr and with the following property:

lim sup
t→∞

Py

(
it = i∗, Zt ∈ ∩j≤kCj ∩ C

)
> 0. (55)

Starting with k = 0, consider the set of all open balls Bδk
(z) of radius δk and centered at z for all

z ∈ C. This set {Bδk
(z) | z ∈ C} is an open cover of the compact set C, so it has a finite subcover,

in which, because of Eq. (54), there must exist at least one open ball Bδk
(z̄k) centered at some point

z̄k ∈ C and possessing the property

lim sup
t→∞

Py(it = i∗, Zt ∈ Bδk
(z̄k) ∩ C) > 0. (56)

Let Ck be the closure of Bδk
(z̄k), then Ck satisfies Eq. (55) with k = 0. Repeating the above

procedure with ∩j≤kCj ∩ C in place of C, we find a closed ball Ck+1 of radius δk+1 and centered
at some z̄k+1 ∈ C which satisfies Eq. (55). In this manner we construct the sequence of closed balls
Ck of radius δk and with property (55).

As can be seen from Eq. (55), the compact sets ∩j≤kCj ∩ C, k ≥ 0 are all nonempty, and they
form a decreasing sequence as k → ∞, so their intersection is nonempty. Let z∗ ∈ ∩jCj ∩ C. Any
neighborhood O(z∗) of z∗ contains a closed ball centered at z∗ with certain radius δ > 0, and this
ball in turn contains Ck for all k with δk ≤ δ/2 since z∗ ∈ ∩jCj . By Eq. (55), this implies for such
Ck,

lim sup
t→∞

Py(it = i∗, Zt ∈ O(z∗)) ≥ lim sup
t→∞

Py(it = i∗, Zt ∈ Ck) > 0. (57)

Thus we obtain for any neighborhood O(z∗) of z∗,

lim sup
t→∞

Py(it = i∗, Zt ∈ O(z∗)) > 0. (58)

We now show (i∗, z∗) is a reachable state by proving the above relation for other initial conditions.
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Consider next initial condition ŷ = (̄i, z̄ + ∆) for some ∆ ∈ <nr . For any neighborhood O(z∗),
let O′(z∗) be a smaller neighborhood such that for some δ > 0,

‖z1 − z2‖ ≤ δ, z1 ∈ O′(z∗) ⇒ z2 ∈ O(z∗). (59)

Using Eq. (58), we can define ε, a ∈ (0, 1) such that

ε = lim sup
t→∞

Py(it = i∗, Zt ∈ O′(z∗)), a+ ε > 1.

Consider two processes (it, Zt) and (it, Ẑt) starting with initial conditions y, ŷ, respectively, and with
the same sample path of {it}. Let δ0 = ‖∆‖. By Lemma 5.1, for the above a, δ and δ0, there exists
N̄ δ,a

δ0
<∞ such that for all t ≥ N̄ δ,a

δ0
, P(‖Zt − Ẑt‖ ≤ δ) ≥ a. Since by Eq. (59)

‖Zt − Ẑt‖ ≤ δ, Zt ∈ O′(z∗) ⇒ Ẑt ∈ O(z∗),

we have that for all t ≥ N̄ δ,a
δ0

,

P(it = i∗, Ẑt ∈ O(z∗)) ≥ P(it = i∗, ‖Zt − Ẑt‖ ≤ δ, Zt ∈ O′(z∗))
≥ P(it = i∗, Zt ∈ O′(z∗)) + P(‖Zt − Ẑt‖ ≤ δ)− 1
≥ P(it = i∗, Zt ∈ O′(z∗)) + a− 1,

and taking limsup of both sides as t→∞,

lim sup
t→∞

P(it = i∗, Ẑt ∈ O(z∗)) ≥ lim sup
t→∞

P(it = i∗, Zt ∈ O′(z∗)) + a− 1 = ε+ a− 1 > 0. (60)

Thus we have proved that for all initial conditions of the form ŷ = (̄i, z̄ + ∆) for some ∆ ∈ <nr ,

lim sup
t→∞

Pŷ(it = i∗, Ẑt ∈ O(z∗)) > 0. (61)

Finally, consider an arbitrary initial condition ỹ = (̃i, z̃). Denote the corresponding process by
(̃it, Z̃t). Since the Markov chain {̃it} is irreducible, there exists a finite time T such that Pỹ (̃iT =
ī) > 0. Let ẑ be a possible value of Z̃T , i.e., Pỹ (̃iT = ī, Z̃T = ẑ) > 0. Denote by (it, Zt) the process
with initial condition (̄i, ẑ). Then, for any neighborhood O(z∗) of z∗,

Pỹ (̃it+T = i∗, Z̃t+T ∈ O(z∗)) ≥ Pỹ (̃iT = ī, Z̃T = ẑ) ·P(̄i,ẑ)(it = i∗, Zt ∈ O(z∗)),

which implies that with a = Pỹ (̃iT = ī, Z̃T = ẑ),

lim sup
t→∞

Pỹ (̃it+T = i∗, Z̃t+T ∈ O(z∗)) ≥ a · lim sup
t→∞

P(̄i,ẑ)(it = i∗, Zt ∈ O(z∗)) > 0, (62)

where the second inequality follows from Eq. (61). This completes the proof.

By [MT09, Theorem 18.4.4(i)], Props. 5.1 and 5.2 and Lemma 5.2 together imply

Corollary 5.1. The Markov chain {(it, Zt)} has a unique invariant probability measure π.

By [MT09, Theorems 12.1.1, 18.4.2], Props. 5.1 and 5.2 and Lemma 5.2 together also imply

Corollary 5.2. For the Markov chain {(it, Zt)} and any initial condition x ∈ S, 1
T

∑T
t=1 P

t(x, ·)
converges weakly to the invariant probability measure π.
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Recall that the occupation probability measures µt, t ≥ 1 of a Markov chain {Xt} on S are
defined by

µt(A) =
1
t

t∑
k=1

1A(Xt), ∀A ∈ B(S),

where 1A denotes the indicator function for a Borel-measurable set A. To show that for the chain
{(it, Zt)} and each initial condition, the sequence {µt} is uniformly tight almost surely, we verify
the following geometric drift condition, given by Meyn [Mey89] (see also Meyn and Tweedie [MT09,
Theorem 18.5.2]). For the chain {(it, Zt)}, satisfying this condition implies also that the chain is
bounded in probability, which we proved separately earlier.

Lemma 5.3. The Markov chain {Xt}, where Xt = (it, Zt), satisfies the following geometric drift
condition: There exist a coercive function V : S → [1,∞], a compact set C ⊂ S, and constants
ζ > 0, b <∞, such that

Ex[V (X1)]− V (x) ≤ −ζV (x) + b1C(x), ∀x ∈ S.

Proof. Define V (x) = ‖z‖+ 1 for x = (i, z). Define C = I ×Dr, where Dr ⊂ <nr is a closed ball of
radius r and centered at the origin. The radius r and constants ζ, b are to be specified shortly. Let
c = maxi ‖φ(i)‖. Consider any x = (i0, z0) ∈ S. Since Z1 = βL1

0 · z0 + φ(i1), E‖Z1‖ ≤ β‖z0‖ + c.
Therefore,

Ex[V (X1)]− V (x) = Ex

[
‖Z1‖

]
− ‖z0‖ = (β − 1)‖z0‖+ c

= −ζ(‖z0‖+ 1) + (ζ + β − 1)‖z0‖+ ζ + c

= −ζV (x) + (ζ + β − 1)‖z0‖+ ζ + c. (63)

Let ζ, r > 0 and b <∞ be such that

ζ < 1− β, r ≥ (ζ + c)/(1− β − ζ), b = ζ + c.

Then

(ζ + β − 1)‖z0‖+ ζ + c ≤

{
b ‖z0‖ ≤ r, i.e., x ∈ C
0 ‖z0‖ > r, i.e., x /∈ C.

(64)

Combining Eqs. (63)-(64) gives the desired inequality for Ex[V (X1)]− V (x).

Lemma 5.3 and Cor. 5.1 together imply that for each initial condition, the sequence {µt} of
occupation measures of {(it, Zt)} converges weakly to π almost surely ([MT09, Theorem 18.5.1(ii)];
see also [MT09, Theorem 18.5.2]). This completes the proof of Theorem 3.2.

5.2 Proof of Theorem 3.3

To establish the almost sure convergence of Gt, we still need to show that Z0ψ(i0, i1)′ has finite ex-
pectation under the stationary distribution Pπ of the Markov chain {(it, Zt)} with initial distribution
π. We will need Cor. 5.2, which states

1
T

T∑
t=1

P t(x, ·) weakly−→ π, ∀x ∈ S. (65)

Let Eπ denote expectation with respect to Pπ.

Proposition 5.3. Eπ

[
‖Z0ψ(i0, i1)′‖

]
<∞.
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Proof. Since ‖Z0ψ(i0, i1)′‖ ≤ c‖Z0‖ for the deterministic constant c = maxi,j ‖ψ(i, j)‖, to prove the
statement it is sufficient to show Eπ[‖Z0‖] <∞. For a given initial condition x = (̄i0, z0) and some
constant c depending on x, we have by the first part of Theorem 3.1

Ex[‖Zt‖] ≤ c, ∀t ≥ 0. (66)

Consider a sequence of scalars ak, k ≥ 0 with

a0 = 0, a1 ∈ (0, 1], ak+1 = ak + 1, k ≥ 1. (67)

Define a sequence of disjoint open sets {Ok, k ≥ 0} on the space of z as

Ok = {z | ak < ‖z‖ < ak+1}. (68)

We have for all t,
∞∑

k=0

ak ·Px(Zt ∈ Ok) ≤ Ex

[
‖Zt‖

]
,

and
∞∑

k=0

ak+1 ·Px(Zt ∈ Ok) ≤
∞∑

k=0

(ak + 1) ·Px(Zt ∈ Ok) ≤ 1 +
∞∑

k=0

ak ·Px(Zt ∈ Ok).

Therefore, by Eq. (66),
∞∑

k=0

ak+1 ·Px(Zt ∈ Ok) ≤ c+ 1, ∀ t ≥ 0,

or equivalently,
K∑

k=0

ak+1 ·Px(Zt ∈ Ok) ≤ c+ 1, ∀K ≥ 0, t ≥ 0.

It then follows that for all K ≥ 0, T ≥ 0,

1
T

T∑
t=1

K∑
k=0

ak+1 ·Px(Zt ∈ Ok) =
K∑

k=0

ak+1 ·

(
1
T

T∑
t=1

Px(Zt ∈ Ok)

)
≤ c+ 1. (69)

Since by constructionOk and I×Ok are open sets on <nr and S, respectively, by Cor. 5.2 [cf. Eq. (65)]
and [MT09, Theorem D.5.4] we have for all k,

lim inf
T→∞

1
T

T∑
t=1

Px(Zt ∈ Ok) ≥ π
(
I ×Ok

)
.

Combining this with Eq. (69), we have for all K ≥ 0,

K∑
k=0

ak+1 · π
(
I ×Ok

)
≤

K∑
k=0

ak+1 ·

(
lim inf
T→∞

1
T

T∑
t=1

Px(Zt ∈ Ok)

)

≤ lim inf
T→∞

K∑
k=0

ak+1 ·

(
1
T

T∑
t=1

Px(Zt ∈ Ok)

)
≤ c+ 1.

This implies
∞∑

k=0

ak+1 · π
(
I ×Ok

)
≤ c+ 1. (70)
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We now bound Eπ[‖Z0‖]. Consider two choices {a1
k}, {a2

k} of the sequence {ak} in (67) with
a1
1 = 1, a2

1 = 1/2, and denote their corresponding open sets in (68) by O1
k, O

2
k, respectively. Since

the sets O1
k, O

2
k, k ≥ 0 together cover the space of z except for the origin, we have

‖Z0‖ ≤ ‖Z0‖
∞∑

k=0

(
1O1

k
(Z0) + 1O2

k
(Z0)

)
≤

∞∑
k=0

(
a1

k+1 · 1O1
k
(Z0) + a2

k+1 · 1O2
k
(Z0)

)
,

where the second inequality follows from the definition of O1
k, O

2
k. Therefore,

Eπ[‖Z0‖] ≤ Eπ

[ ∞∑
k=0

(
a1

k+1 · 1O1
k
(Z0) + a2

k+1 · 1O2
k
(Z0)

)]
=

∞∑
k=0

a1
k+1 · π(I ×O1

k) +
∞∑

k=0

a2
k+1 · π(I ×O2

k)

≤ 2(c+ 1),

where the last inequality follows from Eq. (70). This completes the proof.

We can now prove Theorem 3.3, which states that with γt = 1/(t+ 1), for each initial condition
(z0, G0), Gt

a.s.→ G∗, and G∗ = Eπ

[
Z0ψ(i0, i1)′

]
.

Fix G0, and consider an initial condition (z0, G0) for any z0. Consider the sequence {Gt} corre-
sponding to γt = 1/(t+ 1), and a related sequence {G̃t} given below, with Z0 = z0:

Gt =
1

t+ 1

( t∑
k=1

Zkψ(ik, ik+1)′ +G0

)
, G̃t =

1
t+ 1

t∑
k=0

Zkψ(ik, ik+1)′.

Since G0/(t+1) → 0 and Z0ψ(i0, i1)′/(t+1) → 0 as t→∞, the convergence of {Gt} on a sample path
is equivalent to that of {G̃t}, which does not depend on G0. By Prop. 5.3, Eπ‖Z0ψ(i0, i1)′‖ < ∞.
Therefore, applying the law of large numbers (see [MT09, Theorem 17.1.2]) to the stationary Markov
process {(it, Zt, it+1)} under Pπ, it can be seen that for each initial condition x = (̄i, z̄) from a
measurable set F with π(F ) = 1, G̃t

a.s.→ Gx, a random variable (which is a function of x and i1),
and consequently, Gt

a.s.→ Gx. But the second part of Theorem 3.1 implies there exists a subsequence
Gtk

a.s.→ G∗, so Gx is degenerate and Gx = G∗ a.s. Hence for any initial condition x ∈ F , Gt
a.s.→ G∗.

Furthermore, we have G∗ = Eπ

[
Z0ψ(i0, i1)′

]
. This is because the fact Gx = G∗ Px-a.s. for all

x ∈ F and π(F ) = 1 implies G∗ = Eπ[G∗] = Eπ[GX0 ] where X0 = (i0, Z0), while by the law of
large numbers for stationary processes (see [Doo53, Theorem 2.1] or [MT09, Theorem 17.1.2] and
its proof), Eπ[GX0 ] = Eπ

[
Z0ψ(i0, i1)′

]
.

We now show for any initial condition x̂ 6∈ F , the corresponding Ĝt also converges almost surely
to G∗. Let x̂ = (̄i, ẑ). Since {it} is irreducible, π({̄i} × <nr ) > 0. We also have π(F ) = 1, so
there exists x̄ = (̄i, z̄) ∈ F for some z̄ ∈ <nr . Let ∆ = ẑ − z. Consider {(Ẑt, Ĝt)} and {(Zt, Gt)}
corresponding to the two initial conditions x̂ 6∈ F and x̄ ∈ F , respectively, and for the same path of
{it}. By Lemma 4.3, we have

Ẑt − Zt = βtLt
0∆, βtLt

0
a.s.→ 0.

The second relation implies also
1

t+ 1

t∑
k=1

βkLk
0

a.s.→ 0. (71)

Therefore,

‖Ĝt −Gt‖ =
∥∥∥ 1
t+ 1

t∑
k=1

(
Ẑk − Zk

)
ψ(ik, ik+1)′

∥∥∥ ≤ c‖∆‖
( 1
t+ 1

t∑
k=1

βkLk
0

)
,
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where c = maxi,j ‖ψ(i, j)‖. By Eq. (71), this implies Ĝt −Gt
a.s.→ 0. We have Gt

a.s.→ G∗ (because its
initial condition x̄ ∈ F , as we just proved); therefore Ĝt

a.s.→ G∗.

Thus for any initial condition (̄i, z̄) and G0, Gt
a.s.→ G∗. Since the space of i0 is finite, this implies

for any initial distribution of i0 and initial (z̄, G0), Gt
a.s.→ G∗. The proof is now complete.

6 Discussion

We have analyzed the convergence and boundedness properties of the off-policy LSTD(λ) algorithm
for Q-factor approximation in discounted total cost MDP. In this section, we discuss briefly the
application of our results in three other contexts: (i) cost approximation (instead of the Q-factor
approximation that we considered); (ii) policy evaluation under the average cost criterion; and (iii)
approximately solving general linear fixed point equations with TD methods. We then conclude the
paper by addressing some topics for future research.

Cost Approximation

We consider first approximating the costs of the target policy in the original MDP. In this case, the
off-policy LSTD(λ) algorithm differs slightly form the one for approximating the Q-factors, which
was considered in the paper; but it can be cast into a form that fits the framework of our analysis.

More specifically, let {(s0, u0), (s1, u1), . . .} be a trajectory of state-action pairs generated under
the behavior policy. For each state s, let q(u | s) and p(u | s) denote the probability of taking action
u under the target and the behavior policies, respectively, and let c(s, u, ŝ) be the one-stage cost
of transition from s to a successor state ŝ under action u. Suppose the approximation subspace is
{Φ̂r | r ∈ <nr}, where each row vector of the matrix Φ̂ represents numerical “features” of some state
s and is denoted by φ̂(s)′. Then, for approximating the cost function J∗(s) of the target policy, the
LSTD(λ) iterates Zt, bt, Ct, t ≥ 1 can be defined as

Zt = λα q(ut−1|st−1)
p(ut−1|st−1)

· Zt−1 + φ̂(st),

bt = (1− 1
t+1 )bt−1 + 1

t+1Zt · q(ut|st)
p(ut|st)

· c(st, ut, st+1),

Ct = (1− 1
t+1 )Ct−1 + 1

t+1Zt

(
α q(ut|st)

p(ut|st)
· φ̂(st+1)− φ̂(st)

)′
,

with Z0 = z0, b0 and C0 being the initial condition. Note that in the definition of bt, the transition
cost c(st, ut, st+1) is multiplied by the ratio q(ut|st)

p(ut|st)
. This is a small difference between the above

algorithm and the one given by Eqs. (4)-(6) in Section 1 for Q-factor approximation.

To apply our analysis to the above LSTD(λ) algorithm for cost approximation, again we assume
that the behavior policy induces an irreducible Markov chain {(st, ut)} on the space of state-action
pairs, and that p(u | s) = 0 ⇒ q(u | s) = 0 for all states s and actions u. However, we consider
the Markov chain {it, t ≥ 0} on the space of action-state pairs with it = (ut−1, st), where u−1 is
immaterial and can be defined arbitrarily. More precisely, we define the space I of it to be the set
of action-state pairs (v, s) such that there exists some state s̃ with p(v | s̃)p(s | s̃, v) > 0. It can be
seen that with this definition of I, under the behavior policy, {it} is an irreducible Markov chain on
I if {(st, ut)} is irreducible.

We define φ(i) = φ̂(s) for a state i = (v, s) ∈ I of the Markov chain {it}. For a pair of states
i = (v, s), j = (u, ŝ) ∈ I, we define the cost of transition from i to j to be g(i, j) = c(s, u, ŝ). It can
be seen that under the behavior policy, the probability of transition from i = (v, s) to j = (u, ŝ)
is p(u | s)p(ŝ | s, u), whereas under the target policy, it would be q(u | s)p(ŝ | s, u). Therefore
qij

pij
= q(u|s)

p(u|s) , and in particular,
qitit+1
pitit+1

= q(ut|st)
p(ut|st)

, where we define 0/0 = 0. (This shows also that

u−1 is immaterial, as we claimed.) We can now cast the above LSTD iterates in the form of the
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iterates (Zt, Gt), which we analyzed in the paper:

Zt = β
qit−1it

pit−1it
· Zt−1 + φ(it),

Gt = (1− γt)Gt−1 + γtZtψ(it, it+1)′,

where β = λα, γt = 1/(t+ 1), and

Gt =

bt, if ψ(it, it+1) =
qitit+1
pitit+1

· g(it, it+1),

Ct, if ψ(it, it+1) = α
qitit+1
pitit+1

· φ(it+1)− φ(it).

The assumption that p(u | s) = 0 ⇒ q(u | s) = 0 for all s and u is equivalent to Q ≺ P . Thus all of
our results apply to the cost approximation case.

Policy Evaluation in Average Cost MDP

We consider now approximate policy evaluation in MDP with the average cost criterion and the
application of the off-policy LSTD(λ) algorithm in this context. We consider Q-factor approximation;
the case of cost approximation is similar, as we just discussed. Assuming that the target policy
induces a Markov chain on the state-action space with a single recurrent class, its average cost η∗

(a scalar) and differential cost vector J∗ together satisfy the Bellman equation

J∗ = (g − η∗e) +QJ∗,

where e is the vector of all ones. In the on-policy case, using almost surely convergent on-line
estimates of η∗, we can apply TD(λ) to solve a projected multistep Bellman equation

J = ΠT (λ)(J), where T (J) = (g − η∗e) +QJ,

and obtain approximate differential costs (Tsitsiklis and Van Roy [TV99]), similar to the discounted
case. In the off-policy case, convergent estimates of η∗ are not straightforward to obtain by simple
averaging or iterative computation. One possibility is to first approximate η∗ by some η̂ and then
solve the projected equation

J = ΠT̂ (λ)(J), where T̂ (J) = (g − η̂e) +QJ.

The latter can be done by the off-policy LSTD(λ) with λ < 1 and our convergence analysis also
applies in this case. The solution of the projected equation, when it exists, approximates the
differential cost vector J∗. However, by the average cost MDP theory (see e.g., Puterman [Put94],
Bertsekas [Ber07]), unless η̂ = η∗ the corresponding equation without the projection, J = T̂ (λ)(J)
does not have a solution. This is different from the discounted case.

As to the approximate average cost η̂, it can be obtained from either the finite stage costs of the
target policy, or by its discounted costs for a discount factor close to 1, based on the well-known
relation between the discounted costs and the average cost (see e.g., [Put94, Ber07]). The latter
approximation can be computed using the off-policy LSTD(λ) for the discounted problem.

An alternative approach to approximate policy evaluation is to approximate the average cost
problem by a discounted one, and to derive from the approximate discounted costs an approximation
of the pair (η∗, J∗) simultaneously, based on the relation between the average cost and the discounted
problems (see e.g., [Put94, Ber07]). In this case the off-policy LSTD(λ) algorithm we analyzed is
certainly applicable.

Linear Fixed Point Equations

We discuss next a direct extension of our analysis to the context of approximately solving a linear
fixed point equation

x = T (x) = Ax+ b
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with TD methods, as discussed in Bertsekas and Yu [BY09]. Here A is an n × n matrix and b an
n-dimensional vector. Compared with the policy evaluation case, the main difference is that the
substochastic matrix αQ in the Bellman equation (2) is replaced by an arbitrary matrix A.

Let |A| be the signless version of A, with the (i, j)th entry being |aij |. Then for λ ∈ (0, 1] such
that λ|A| is strictly substochastic in the sense that

λ
∑

j

|aij | < 1, ∀ i,

we can define analogously the multistep fixed point mapping T (λ) involving the matrix
∑∞

k=0 λ
kAk,

and find an approximate solution of x = T (x) by solving x = ΠT (λ)(x) using simulation-based
algorithms. In particular, we can treat the indices of rows and columns as states and employ a
Markovian row/column sampling scheme described by a transition matrix P , and apply the off-
policy LSTD(λ) algorithm with the coefficients αqij replaced by aij , as described in [BY09].

Similarly, the analysis in the present paper applies in this more general context, assuming the
irreducibility of P and |A| ≺ P , in addition to λ|A| being strictly substochastic. The slight modifi-
cation we need when bounding various quantities of interest is to replace the ratios Lt

t−1 =
ait−1it

pit−1it
,

now possibly negative, by their absolute values, and to use the fact that

E
[
λ|Lt

t−1| | it−1

]
≤ ν < 1

for some constant ν. A slightly more general case where λ
∑

j |aij | ≤ 1 for all i and with equality
for some but not all i, may be analyzed using a similar approach.

Future Research

We mention some issues in extending our analysis to countable or continuous state space MDP.
In this case, we will need additional conditions on the Markov chain {it} induced by the behavior
policy, as well as on the relation between the chain {it} and the basis functions φ(it) used in the
approximation, in order to ensure that the multistep Bellman equation is well defined and that
{(Zt, Gt)} behaves properly. This is because the sequence {φ(it)} can be unbounded. As a subject
for future research, we may consider imposing suitable drift conditions and combine them with the
e-chain-based analysis in the present paper.

There are some other problems that deserve future study. One is the convergence of various
off-policy TD(λ) algorithm variants for a general value of λ, as mentioned in the introduction. (In
the case of λ = 0, there are several convergent gradient-based off-policy TD variants; see Sutton et
al. [SMP+09] and the references therein.) Another is the finite sample properties of these algorithms
as well as LSTD, analogous to those considered by Antos et al. [ASM08]. A third one is the question
of the almost sure convergence of LSTD(λ) with a general stepsize sequence (possibly random).
Such stepsizes are useful particularly when LSTD(λ) is applied to policy evaluation at a faster time-
scale in two-time-scale policy iteration schemes with incremental policy improvement at a slower
time-scale.
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