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Abstract

Linkage disequilibrium (LD) refers to the statistical dependency of the DNA
content at nearby locations of the chromosome. Numerous approaches to ana-
lyze genome data rely on the well documented fact that LD decays monotonously
with the distance of the studied loci. This decay, though noisy and modi�ed by
a number of factors, can be attributed to the recombination process, a major
source of genetic variation in diploid organisms.

In this work we take �rst steps toward analyzing the extent of LD between
very distant loci, even loci from di�erent chromosomes. This is in contrast
to traditional �genome-wide� analyses which merely study the LD within each
chromosome separately.

We design several measures of LD, and use them for analyzing the HapMap data.
We also consider LD between supermarkers determined by haplotype clusters
in windows of a few SNPs.

We report on suggestive pairs of loci where unusually large correlations are
observed within all ethnic groups.

We describe how the computations can be arranged in a way that enables an
all-pairs analysis of the data, that is, all pairs of loci across all the 22 autosomal
chromosomes. This kind of �genome times genome� analysis is computationally
very burdensome due to the sheer number of possible pairs. We show ways to
make it feasible.
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1 Introduction

In this study we consider dependencies between genomic regions. A widely
used measure, linkage disequilibrium (LD), refers to the fact that neighboring
areas in a chromosome are dependent of each other. The dependence stems
from recombination: when genetic material is switched between the members of
a chromosome pair, neighboring locations have a higher probability of staying
close to each other. LD between two loci decays as the distance between the
loci increases, and very far away loci are typically assumed independent of each
other.

Our goal is to �nd out whether there are distant loci whose contents are cor-
related with each other. A signi�cant LD between two far-away loci, perhaps
across two di�erent chromosomes, suggests that there might be a functional ex-
planation behind it: the two loci a�ect a phenotype characterstic to the studied
population through interactions.

There are some obvious computational problems involved when trying to
compare all pairs of loci across all chromosomes. To this end, we develop sum-
mary statistics and arrange the computations in an e�cient way.

We mostly concentrate on comparing two SNPs at a time. In addition we will
consider summary statistics: �supermarkers�, clusters of haplotypes in windows
of a few SNPs. The clusters are found by a Bernoulli mixture model.

We analyze the HapMap data consisting of 209 individuals from four ethnic
groups, and we indeed �nd some pairs of loci whose mutual dependence is un-
usually high. We also control against population e�ects, so that the observed
correlations are not just due to one population being di�erent from another, but
to, e.g., interactions between genes.

We also brie�y touch upon the Perlegen data consisting of three ethnic
groups, and demonstrate some small-sample e�ects that arise.

This paper is organized as follows. We �rst brie�y introduce the data. We
then detail the steps of our analysis, in particular the testing for LD between the
loci. We also discuss the computational issues and present some solutions that
we have found useful. We then present results on which kind of dependencies
are found and where. We conclude with a discussion, with pointers to further
research.

2 Materials and methods

2.1 The data sets

We analyzed the Hapmap data [The03], http://www.hapmap.org, phase I (March
2005). The data consist of 45 Han Chinese (HCB), 44 Japanese (JPT), 60 Eu-
ropean (CEU) and 60 Yoruban (YRI) samples. Among the CEU and YRI
populations, the data was originally given in trios consisting of two parents and
a child, making 90 samples in both groups, but we discarded the children in
order to have independent samples.

We also analyzed the Perlegen data set [HSN+05] that consists of the geno-
type of 71 individuals: 23 African Americans, 24 European Americans, and 24
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Han Chinese. In total the Perlegen data contain 1.6 million SNPs.
In the remainder of the document, we present results on the HapMap data,

unless otherwise noted.
Di�erent subpopulations contain partially di�erent markers or SNPs. We

have taken markers which are found in all subpopulations. In the HapMap
data, the number of SNPs in each chromosome is shown in Table 1.

chr SNP
1 49221
2 57155
3 41720
4 37514
5 37492
6 42700
7 28413
8 48863
9 38271
10 31131
11 28238
12 26652
13 23514
14 18453
15 16200
16 14949
17 15001
18 25871
19 10838
20 12721
21 13143
22 11900

Table 1: Number of markers per chromosome, HapMap data

In some cases we also preprocess the data such that we compute the mini-
mum allele frequency (MAF) of each marker, and remove the markers for which
the MAF is smaller than 5 per cent. A marker whose MAF is very small assumes
almost constant values throughout the population and, thus, has a low infor-
mation content: with a limited sample size, such a marker cannot participate
in statistically signi�cant correlations with other markers.

2.2 Outline

Our measures of LD are based on comparing the haplotype distribution at two
loci. For each pair of two loci, A and B, we compute the value of a test statis-
tic s(A,B) that measures the statistical dependency of a random individual's
genotypes on the loci A and B. We call the pair (A,B) statistically signi�cant
if the test statistic s(A,B) exceeds a certain threshold θ. The parameter θ is to
be �xed and will be considered in more detail later.
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2.3 Statistical signi�cance

Before we start, let us mention a few important issues regarding the validity of
our results, in the light of statistical signi�cance.

Our �rst concern are the populations. As there are four distinct populations
in the HapMap data (and three in the Perlegen data), it can be expected that
some distant loci are in strong association in the combined data solely due to
the population structure. For example, the allele frequencies at a SNP can be
very di�erent in di�erent populations. Such associations, however, are not very
interesting, for they can be explained by �neutral variation.�

We therefore examine associations separately in each of the populations.
Because of the small sample size, we restrict our attention to pairs of loci for
which the association is relatively strong in all populations.

Another concern worth discussing in the beginning is that of multiple test-
ing. Over the course of all-pairs analysis of loci from two chromosomes we will
eventually perform millions of statistical tests. A natural question then is, do
we �nd some statistically signi�cant results merely by chance, even though there
is no dependency in the data?

The problem of multiple testing is often tackled by e.g. Bonferroni correction
or Fisher's combined probability test. Both of these approaches assume that the
tests are independent, which is not the case in our setting.

Instead, we will rely on permutation tests: we randomly permute the indi-
viduals in one locus and leave the other locus intact, and test for the dependency
between the loci. This is repeated, say, 100 or more times. If a dependency is
found in a signi�cant portion of the runs, we can conclude that the observed
phenomenon is not a characteristic of the original data, but just a spurious
correlation.

Also, in cases where exhaustive permutation tests are too burdensome, we
choose a very small value for P, far smaller than the usual P=0.05 limit.

Let us brie�y mention a recent paper in which a somewhat similar prob-
lem was addressed. Misawa and Kamatani [MK09] discuss the testing of allele
frequency di�erences between case and control populations in genome-wide as-
sociation studies (GWAS). A common approach is to test for di�erences in the
allele frequencies of every single-nucleotide polymorphism (SNP) between the
case and the control populations. Misawa et al [MFY+08] developed haplotype-
based algorithms to correct for multiple comparisons. Instead of permutation
tests, Misawa and Kamatani developed a set of computer programs for the par-
allel computation of accurate P values in haplotype-based GWAS.

We now turn to the technical measures of linkage disequilibrium.

2.4 Measures of LD: Contingency tables

Given two loci A and B, we want to map the haplotype data at A and B to a real
number that measures the statistical dependency of an individual's genotypes
at the loci A and B in the sampled population.

Our measures of dependency are based on the contingency table where the
entry at uv counts the number of individuals having genotype u at locus A and

3



genotype v at locus B. Here the genotypes on A are understood as the possible
pairs of haplotypes on A, labelled arbitrarily; similarly for locus B. An example
of such a table is given in Table 2. In the table we assume that loci A and B
both consist of one SNP only: at locus A the possible alleles are A and a, and
at locus B they are B and b.

locus B
BB Bb bb Total

AA O(AA,BB) O(AA,Bb) O(AA,bb) N(AA)
locus A Aa O(Aa,BB) O(Aa,Bb) O(Aa,bb) N(Aa)

aa O(aa,BB) O(aa,Bb) O(aa,bb) N(aa)
Total N(BB) N(Bb) N(bb) N

Table 2: A contingency table of possible genotype values. Both loci A and
B consist of one diploid SNP. By O(i, j) we denote the number of individuals
having genotype i at locus A and genotype j at locus B.

It is a standard procedure to measure the linkage disequilibrium by the de-
viation from independence assumption in the contingency table. Assuming the
loci A and B independent of each other, the uvth entry of the contingency table
should be the product of the uth and vth row and column marginals, divided
by the total number of individuals. If the entries deviate substantially from
these expected counts, we reject the independence assumption and state that
there is a dependence between the loci A and B, and this dependence controls
the distribution of the entries in the contingency table. Widely used statistical
tests include the Chi squared goodness-of-�t test and an exact binomial test.
Of these, the Chi squared test is computationally simpler but it assumes that
the counts are approximately normally distributed, posing some restrictions on
the entries of the table. For this reason, we choose the exact binomial test, to
be discussed in the following subsection. Other numerical measures have been
devised, too, and we will present one of them in the sequel.

We note that with a sample of N individuals, the number of di�erent possible
3× 3 contingency tables with 9 entries is

(
N+8

8

)
. For N = 24 and N = 60, this

equals to 10 518 300 and 7 392 009 768 di�erent tables. Accordingly, with
current powerful computers, it is quite conceivable to run statistical analysis for
the complete ensemble.

Binomial test. The number of counts in each cell of the contingency table is
binomially distributed: O(i, j) ∼ Bin(N, p). Here N , the total number of trials,
is given by the total number of counts, and p, the probability of falling into cell
ij, is given by the product of the ith and jth row and column marginals, divided
by N2.

In the binomial test, we measure the tail probability P of a binomial dis-
tribution at the value given in entry ij of the contingency table, assuming the
mean of the binomial distribution is given by the expected count in entry ij.
The tail probability is computed at each entry of the contingency table, and
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the smallest probability is returned. In case the smallest probability is very
small, we conclude that the contingency table deviates from the independence
assumption.

A possible drawback of the binomial test is that only the cell giving the
smallest tail probability is taken into account. Suppose that there are two cells
whose tail probability is quite small but not smaller than a prede�ned limit �
we end up ignoring this table although the independence assumption might well
be violated. However, due to the sheer number of tests that we will perform,
we always prefer to have as small probabilities as possible, to avoid detecting
spurious dependencies merely by chance.

Weir's delta. Weir [Wei79] and Weir & Cockerham [WC89] introduce the
composite measure of linkage disequilibrium, denoted as ∆, which is based on
the number of haplotypes in contrast to the number of genotypes. Hamilton
and Cole [HC04] further discuss how to standardize the measure, allowing com-
parison between populations. Using the notation of Table 2, the value for ∆ for
loci A and B is given by

∆AB = (2O(AA,BB) + O(AA,Bb) + O(Aa,BB) +
1
2
O(Aa,Bb))/N

−2
(
N(AA) +

1
2
N(Aa)

)(
N(BB) +

1
2
N(Bb)

)/
N2 , (1)

and as we see, the ∆ measure indeed measures the number of the alleles A and
B, and not just the number of observed genotypes containing A and B. The ∆
measure for loci A and B is symmetric in that although formula (1) used the
numbers of observations of alleles A and B, the output would be the same if the
formula was written for alleles a and b instead. This symmetry implies that the
expected value of ∆ over all possible contingency tables with N individuals is
0. In practice, we wish to look at the absolute value of ∆.

The null hypothesis of no linkage disequilibrium corresponds to the case
∆AB = 0, and large absolute values of ∆AB indicate a dependency between loci
A and B.

We sometimes prefer to use a scaled version of ∆ as it is not a�ected by
di�erent population sizes. The scaling is presented in Hamilton and Cole [HC04]:
any set of genotype frequencies will fall into one of six possible cases. For each of
these cases we can determine the extremum value of ∆. The scaled ∆ is obtained
simply by dividing the value in formula (1) by the corresponding extremal value.

2.5 Behaviour of Weir's ∆ and the binomial test

Let us �rst compare some basic properties of the test statistics for genotypic LD,
irrespective of the data at hand. In the analyses discussed in this section, we
consider all possible 3× 3 contingency tables for a given number of individuals.

Di�erences between ∆ and P. We examined whether the P value of the
binomial test and Weir's ∆ can lead to substantially di�erent judgements of the
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linkage disequilibrium between two loci. To this end, we consider the distribu-
tions of these statistics over all 3× 3 contingency tables for N = 24 individuals.
Perhaps surprisingly, we observed that in many cases, Weir's ∆ (either scaled or
unscaled) �nds no indication of linkage disequilibrium even though the binomial
test does (Figure 1): the binomial P value is very small and thus signi�cant,
but the ∆ is not large and thus not signi�cant. An extreme example of such a
contingency table is

BB Bb bb
AA 0 x 0
Aa 6 0 6
aa 0 12− x 0

where x is any integer between 0 and 12: Based on the marginal distributions of
the table, the middle entry of the table should have several observations, assum-
ing independence of the genotypes. The binomial test recognizes the apparent
deviation from independence. In sharp contrast, Weir's ∆ evaluates to 0, since
the observations �t perfectly with independence at the allelic level. This casts
some doubt on the validity of ∆ as a measure of genotypic LD.

Figure 1: P value of the binomial test (vertical axis) versus Weir's ∆ (horizontal
axis). Each dot corresponds to one possible contingency table of 24 individuals.
The tables in the bottom left corner are such that the binomial test recognizes
a deviation from linkage equilibrium, but the ∆ measure does not.
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Special cases of the contingency table. In our experiments on HapMap
data, we will later see that there are two special cases of the contingency table
(Table 2) for which statistically signi�cant values of the test statistics are ob-
tained. These are the diagonal and upper-triangular con�guration whose general
patterns are shown in Tables 3 and 4.

BB Bb bb
AA N1 0 0
Aa 0 N2 0
aa 0 0 N3

Table 3: Diagonal con�guration of the contingency table.

BB Bb bb
AA N1 N2 0
Aa N3 0 0
aa 0 0 0

Table 4: Upper triangular con�guration of the contingency table.

In the diagonal con�guration of Table 3, the unscaled delta equals

(2N1N3 +
1
2
N2(N1 + N3))/N2.

The largest absolute value is 1
2 , which is achieved for N1 = N3 = N/2, N2 = 0.

Now, if N2 is large and N1 and N3 are small, then ∆ will be small, and the
case is not interesting. This agrees well with the interpretation of the binomial
test. When N1 and N3 are large and N2 is small, ∆ becomes large and the
case is regarded interesting. Again, this is in accordance with the binomial test.
But using the scaling proposed in [HC04], the scaled ∆ is equal to 1 in this
con�guration, irrespective of the values of N1, N2 or N3.

In the upper triangular con�guration of Table 4, the unscaled ∆ would give
∆ = −N2N3/(2N2) where N = N1 +N2 +N3. If N1 is large and N2 and N3 are
small, ∆ is close to zero and interpreted as insigni�cant. The conclusion with
the binomial test is similar. The largest absolute value for unscaled ∆ is 1/8,
obtained when N1 = 0 and N2 = N3. Using the scaling proposed in [HC04],
the scaled ∆ is again equal to 1 in this con�guration, irrespective of the values
of N1, N2 or N3. Thus the scaled ∆ would always �nd a substantial linkage
disequilibrium in the two con�gurations depicted in Tables 3 and 4.

The above two cases, diagonal and upper-triangular, only have two free
parameters when the total N = N1 + N2 + N3 is �xed, and it is thus easy to
visualize their behaviour as a function of the two free parameters. This is done
in �gures 2 to 3 for N = 60. We see that the patterns are nonsymmetric, and
that their extrema do not always coincide: the smallest binomial P values are
obtained at con�gurations for which the (unscaled) ∆ is not extremal.

While the diagonal con�guration yields a very signi�cant association, such
a pattern may be more easily explained by nonbiologial than biological reasons.
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Figure 2: Weir's ∆ (left) and log of binomial P value (right) at the diagonal
con�guration, N = 60
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Figure 3: Weir's ∆ (left) and log of binomial P value (right) at the upper
triangular con�guration, N = 60

Indeed, if the counts are zero outside the diagonal, the two markers are identical,
as if one marker was read as two di�erent markers. Thus, a marker database
error could be a plausible explanation for an extreme diagonal pattern.

The upper triangular con�guration, on the other hand, suggests that a geno-
type (or individual) is not viable if it carries two or more copies of the rarer
alleles (a and b); or, in other words, the genotype is viable only if it is ho-
mozygous with respect to the more frequent allele (A and B) in one or both
markers.

Distributions of ∆ and P. Apart from the diagonal and upper-triangular
con�gurations of the contingency table, it might be interesting to study the
properties of the 3× 3 contingency tables in general. The details are presented
in Appendix B in which we show that a major proportion of all possible (theoret-
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ical) contingency tables output a large ∆ or a small binomial P value, indicating
linkage disequilibrium. However, in real-world data, the cases of large ∆ or small
P are much more infrequent, as the genotypes in di�erent chromosomes are most
often independent of each other.

2.6 Clustering haplotypes

We also hypothesized that an individual SNP contains a limited amount of infor-
mation, and we thus designed haplotype-based statistics that collect information
from several adjacent SNPs. Consequently, our measures of LD would be based
on comparing the haplotype distribution at two loci, each locus speci�ed by a
window of a few SNP markers.

In this setting, we proceed as follows. For each locus A consisting of d con-
secutive SNPs, we group the haplotypes on A into k internally homogeneous
classes, called superalleles. An unordered pair of superalleles de�nes the corre-
sponding supergenotype. Here d and k are parameters to be �xed.

Then for each pair of two loci, A and B, we compute the value of the test
statistic s(A,B) that measures the statistical dependency of a random individ-
ual's supergenotypes on the loci A and B. The test statistics are the same as
in the single-SNP setting described previously in Section 2.4.

We model the haplotype population by a Bernoulli mixture [EH81]. The
details of the clustering of the haplotypes via a Bernoulli mixture model are
presented in Appendix A.

2.7 Computational issues

The setting. Our input data covered almost 630000 SNPs for HapMap and
roughly 1.6 million SNPs for Perlegen data, which translate, respectively, into
200 billion and over one trillion (1012) pairs of SNPs for which the LD mea-
sures had to be evaluated. The numbers may appear unpleasantly large at �rst
sight, especially since we had to go through these billion or trillion pairs four
times (for four separate populations in HapMap data; in Perlegen the number of
populations was three). One should remember that a modern computer can in
principle handle several billion additions or multiplications per second under op-
timum conditions. In practice, this kind of e�ciency can only be achieved if the
data used for calculations are available in the processor core, and usually this is
not true. Instead, data have to be transferred from main memory to processor
core through a hierarchical system of faster but smaller cache memories.

Not only delays in receiving data, but also delays in the instruction queue can
hamper rapid computations. Complex conditional structures in the inner loops
slow down any program. Another related issue is the programming language
used. Compiled languages (C, Fortran 90) yield usually much faster programs
than languages or scripts interpreted one line or command at a time (e.g., Matlab
or R).

Therefore, in order to carry out any computations as fast as possible it is
vital to organize both the data structures and the arithmetic operations so that
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the processor cores (almost) always have the necessary variables and instructions
at disposal.

Computing the association for single-SNP genotypes. Parallelization of
LD calculations is very straightforward, for the problem is data parallel in a nat-
ural way. In a two-dimensional processor grid the SNP data for one chromosome
is distributed along one dimension and the SNP data for another chromosome
along the second dimension.

The evaluation of Weir's ∆ is rather simple, even when scaled. The evalu-
ation of the binomial measure is a more complicated matter: In principle, one
would have to evaluate the binomial cumulative distribution function twice (for
both tails) for each of the nine elements in the 3× 3 table of observed genotype
combinations. For over one trillion SNP pairs this would mean close to twenty
trillion function evaluations. The number of these evaluations can be reduced
by two techniques. Firstly, one can form a table of the function values for ev-
ery possible combination of the number of observed cases versus the probability
given by the marginal distributions. Admittedly, this is feasible only when the
size of the population is rather small, because the size of the table will grow as
the cube of the size of the population � in the HapMap data, we could not re-
sort to this technique. Secondly, because the cumulative distribution function is
monotonous, it is possible to calculate a set of critical numbers of observations.
The actual function values are searched only when it is clear by comparison with
these critical limits that a signi�cant case has been found.

The computations were run on a somewhat outdated Sun Fire 25K platform
with 1.2 GHz UltraSparc IV processors. With 32 processors it took between 2 to
5 days to complete one sweep where each SNP was paired with every other SNP
four times (once for each population). The exact amount of time depended on
the test measure used (binomial test was more time consuming than Weir's ∆)
and the minority allele frequency threshold � we often discarded SNP's whose
minority allele frequency was lower than, say, 5 per cent. With higher threshold
a smaller number of SNPs was taken into consideration, and accordingly the
computation was faster.

On equivalent markers and distributed computation. It may well hap-
pen that the genomic data are identical for several loci, i.e., the sequences of
0's and 1's corresponding to our biallelic markers agree through the whole pop-
ulation for two or more loci. The data are thus in a sense partitioned into
equivalence classes. This o�ers a seemingly simple way to speed up the cal-
culations: Instead of having to �nd out the value of an LD-measure for every
SNP pair, it will su�ce to compute the measure only once for each equivalence
class and then use the result for all markers in that particular class. Of course,
maintaining an index set over the markers belonging to the classes takes some
computational e�ort as well.

It turns out, however, that this computational shortcut introduces a severe
problem. The data are distributed between several processors. When advan-
tage is taken of the equivalence classes, the set of loci assigned to a particular
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processor is no longer contiguous; furthermore, for di�erent ethnic populations,
the partitioning into equivalence classes will be di�erent. This means that for
di�erent populations, the data on a processor will not correspond to the same
set of loci. Therefore, when trying to form between two populations the inter-
section of the sets of SNP pairs with a signi�cant amount of LD, one will have to
compare the result sets between every processor. This will take a considerable
amount of message passing � the more processors, the more message passing
� and thus slow down the overall computation. Thus, with a large number of
processors it will probably be more e�cient to ignore the advantage given by
the marker equivalence classes.

3 Results

In Section 2.4 and Appendix B we studied and compared some basic properties
of the test statistics for genotypic LD, independent of the data at hand.

We now report on our �ndings in the all-pairs analyses of HapMap and
Perlegen data sets. We start by studying how the LD decays as a function of
the physical distance between the loci in Section 3.1. We then demonstrate how
strong LD is found, and where, in later sections.

3.1 Decay of genotypic linkage disequilibrium

We examined how the statistical dependency of single-SNP genotypes decays
as a function of the physical distance between the SNPs. We observe that LD
decays rapidly: the binomial P values increase and thus become less signi�cant,
and Weir's scaled ∆ decreases. Both measures reach a more or less constant
level at distances around 100 kb and larger: Figures 4 and 5 (Perlegen data), 6
and 7 (HapMap data).

A peculiar observation is that in Perlegen data, the genotypic LD tends to be
relatively small in general, even at short distances like 1 kb. This is observed in
particular in the binomial P values (Figure 4) and unscaled ∆ (not shown). This
is in contrast to what one would expect, and can perhaps be explained by one or
more of the following facts: we consider the dependency of unphased genotypes;
the haplotypes that build up the genotype are not chosen independently; the
Perlegen data has quite small populations, and the number of loci having a very
small MAF is large, thus as a result, LD cannot be observed due to noise.

The scaled ∆ is not as badly a�ected by a small population size and small
MAF values (Figure 5). Also, the phenomenon was not seen with any LD
measure studied in the HapMap data set which is substantially larger.
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axis: Weir's scaled ∆. Horizontal axis: distance in base pairs, on a logarithmic
scale. Perlegen data, chromosome 8, ethnic group 1, MAF = 0.00.
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Figure 6: Histogram of scaled ∆. Horizontal axis: distance in base pairs, on a
logarithmic scale. MAF, minimum allele frequency, 0.00 (left) or 0.05 (right).
HapMap data, chromosome 8, ethnic group HCB.
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Figure 7: Histogram of binomial P values. Horizontal axis: distance in base
pairs, on a logarithmic scale. MAF, minimum allele frequency, 0.00 (left) or
0.05 (right). HapMap data, chromosome 8, ethnic group HCB.
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3.2 All-pairs analyses between chromosomes

We have run pairwise analyses between all loci in all chromosomes, measuring
the values of the test statistics: Weir's ∆ and binomial P values. In this section
we will present various aspects of those analyses. We start with a discussion on
how to choose the threshold of interestingness for the test statistics, and take
one pair of chromosomes as an example. Later we will also report our �ndings
on other pairs of chromosomes.

3.2.1 Choosing the threshold; chromosomes 6 vs 9 as an example.

We computed both Weir's ∆ and the binomial measure for all pairs of individual
SNPs and for all pairs of 4 consecutive SNPs over the Perlegen and HapMap
data sets. We examined the number of locus pairs for di�erent thresholds for the
test statistics, counting only locus pairs for which the threshold was exceeded
in all ethnic groups and thus a signi�cant linkage disequilibrium was inferred.
For Weir's ∆, thresholds of 0.1 and larger were considered, and for the binomial
P value, thresholds of P = 0.04 and smaller.

As an example, we show results on chromosomes 6 versus 9. Figure 8 shows
the results on Perlegen data when one member of the pair is from chromosome
6 and the other from chromosome 9. Similarly, Figure 9 shows the results on
HapMap data.

From these �gures we can learn something regarding the choice of the thresh-
old: if the threshold is too strict (large ∆ or small binomial P), then no signs
of LD are found. Feasible values for the threshold seem to be around 0.15 and
smaller for ∆. For the binomial test, in HapMap data (Figure 9), one might
choose to use thresholds of P = 0.0001 or larger, as there are several pairs of
loci found using such thresholds. In addition, in both data sets, there are sig-
ni�cantly more pairs of loci for which thresholds of about P = 0.02 to P = 0.04
are exceeded, but such P values are perhaps not small enough to be interesting:
in the course of millions of tests we easily encounter some spurious correlations,
as discussed in Section 2.3.

The case d = 4 in the �gures corresponds to using 4 consecutive alleles which
were grouped using the procedure described in Section 2.6: the haplotypes were
grouped via Bernoulli mixture modelling into �superalleles� which in turn were
tested against linkage disequilibrium using our standard measures. We can
see that the independence assumption is again violated in several cases. An
exception is the case of HapMap data and Weir's unscaled ∆ for which no signs
of LD were found using the grouped superalleles.

We also studied choosing the threshold when the data set contained all loci
from chromosomes 8 versus 9. In this case (not shown), suitable thresholds
for Weir's ∆ were again found to be around 0.15 or smaller for ∆. For the
binomial P value, interesting values were only found if the threshold was set
around P = 0.02 or larger, but it is questionable if this is signi�cant enough to
be interesting. It might thus be that there are no strong violations of linkage
equilibrium between chromosomes 8 and 9.

When considering the value of the threshold, a natural question is whether
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Figure 8: Cumulative distribution (in a logarithmic scale) of the number of pairs
of loci for which Weir's unscaled ∆ (top) or binomial P value (bottom) exceeds
a threshold (horizontal axis) in every ethnic group. Left: loci of 1 SNP, right:
loci of 4 SNPs. N = maximum number of pairs exceeding the threshold. In each
locus pair, one locus is from chromosome 6 and the other from chromosome 9.
Perlegen data.

the chosen threshold is strict enough. It is easy to say that the threshold is
too strict if no LD is found, or that the threshold is too lazy if almost all pairs
exhibit LD, but these borderlines are not enough. For the binomial test, the
chosen threshold has a direct statistical interpretation, but for Weir's ∆ this is
not the case.
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3.2.2 Findings of high LD

Above we found that there are a few marker pairs in chromosomes 6 versus 9
whose linkage disequilibrium is signi�cantly larger than that of two markers on
average. For these pairs, the LD is almost as high as for marker pairs located
close to each other in one chromosome.

We ran the analyses through all pairs of chromosomes in HapMap data, and
found several cases, where marker pairs picked from certain regions within the
chromosomes show unusually high degree of linkage disequilibrium. Both Weir's
∆ (unscaled) and the binomial measure typically detect the same regions. The
marker pairs with most signi�cant values of LD in these regions are shown in
Tables5 and 6. In the tables, we have omitted some marker pairs which are
almost the same as a pair listed in the table, to avoid unnecessary repetitions
of almost-identical �ndings.

The marker pairs listed in Tables 5 and 6 obey a �diagonal� con�guration
such as the one depicted in Table 3. It would be interesting to examine, to
what extent these associations can be explained merely due to erroneous marker
location information rather than truly biological phenomena; a more detailed
study is, however, beyond the scope of the present work.

In Table 5 we have used Weir's unscaled ∆ instead of the scaled one. The
scaling would require storing nontrivial amounts of measurements in the mem-
ory during the computations. Also, setting the threshold proved to be infeasible
when the scaled ∆ was used (not shown): we got a very large number of signi�-
cant marker pairs, 0.02 to 0.04 per cent of all marker pairs. Often these marker
pairs obey the upper triangular con�guration depicted in Table 4. But after
discarding the markers whose minimum allele frequency is smaller than 0.05 per
cent, the number of signi�cant marker pairs found by scaled ∆ is much smaller,
only 0.2 · 10−7 to 2 · 10−7 times the number of marker pairs. These correspond
to pairs in which N2 and N3, the numbers of heterozygous alleles Aa and Bb in
Table 4, are large enough to reach the minimum allele frequency threshold.

In total, in each pair of two chromosomes Ci and Cj , the number of signif-
icant marker pairs found using Weir's unscaled ∆ is typically 0 to 3 when the
markers are from di�erent chromosomes: remember that there are 22 times 21
such chromosome pairs. A few pairs of chromosomes Ci and Cj are exceptional
such that the number of signi�cant marker pairs is 20 to 30.

Table 6 shows the marker pairs detected the binomial measure. Each pair of
chromosomes contained a few cases for which the binomial P value was between
0.03 and 0.04. In addition, a couple of extreme cases having a P value from 10−5

to 10−4 were found in some pairs of chromosomes. These P values are similar
to those obtained when we take two nearby markers from the same chromosome
(in which case the LD is expected to be high). Thus we are able to �nd some
extreme, statistically signi�cant values of the linkage disequilibrium between
di�erent chromosomes.
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chr chr bp bp ∆
1 4 48097 24231 240260635 119901820 1.77e-01

1 7 17553 12383 83139601 75977629 1.75e-01

1 13 37391 14169 194523430 74793426 1.34e-01

1 13 1578 18184 8388847 91097772 1.74e-01

1 13 2194 6118 11518948 42261409 1.46e-01

3 4 16851 12593 87016490 57177152 1.69e-01

4 6 17781 8030 85843666 31492413 1.14e-01

4 18 12953 2204 59007364 12085950 1.54e-01

4 18 12953 2205 59007364 12086249 1.54e-01

4 18 12953 2207 59007364 12105509 1.54e-01

4 18 12953 2210 59007364 12121165 1.69e-01

4 18 12953 2212 59007364 12145824 1.34e-01

4 18 12953 2213 59007364 12155155 1.69e-01

4 18 12953 2214 59007364 12168099 1.72e-01

4 18 12953 2216 59007364 12185773 1.69e-01

4 18 12953 2218 59007364 12201483 1.69e-01

4 18 12953 2221 59007364 12207812 1.69e-01

4 18 12953 2222 59007364 12207885 1.69e-01

5 14 10101 7499 51443614 53369029 -1.31e-01

5 14 10100 7502 51436683 53402907 1.22e-01

5 14 10100 7504 51436683 53415605 1.22e-01

5 15 17075 12962 84825180 85670741 1.91e-01

5 15 15805 7883 79078552 59545732 9.78e-02

5 16 8358 5368 39190719 27972673 -8.64e-02

5 17 13446 11925 66318489 67584325 1.66e-01

5 17 13446 11926 66318489 67584377 1.66e-01

6 9 7724 10934 30054632 27480967 1.28e-01

6 9 7740 10934 30118137 27480967 1.22e-01

6 9 7904 14907 31002386 63344625 8.67e-02

6 9 8184 14928 32326215 66475178 9.15e-02

6 9 8185 14928 32328899 66475178 9.15e-02

6 9 8191 14928 32349834 66475178 9.15e-02

6 9 8195 14928 32369264 66475178 9.15e-02

6 9 8197 14928 32372860 66475178 9.15e-02

6 9 8198 14928 32377831 66475178 9.15e-02

6 9 8199 14928 32378952 66475178 9.15e-02

6 9 8205 14928 32407835 66475178 9.15e-02

6 9 8402 13942 33314560 36032008 1.17e-01

6 9 8405 13942 33330653 36032008 -1.43e-01

11 15 11672 9261 58659275 65879592 1.38e-01

11 16 6859 5795 31555909 46763904 1.41e-01

11 16 6864 5795 31596651 46763904 -1.41e-01

11 16 6874 5795 31650758 46763904 -1.42e-01

11 16 6876 5795 31656162 46763904 1.41e-01

11 16 6880 5795 31691152 46763904 -1.41e-01

11 17 2735 14477 12652878 78997868 -1.27e-01

14 15 15415 8713 89759182 63263311 1.82e-01

Table 5: Marker pairs having a signi�cant linkage disequilibrium measured us-
ing Weir's ∆. Columns: chromosomes, marker ids, marker locations in the
chromosomes measured as base pairs (bp), ∆. HapMap data.
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chr chr marker marker bp bp P value

1 4 48097 24231 240260635 119901820 5.37e-05

1 7 17552 12381 83138012 75957562 1.93e-05

1 7 17552 12382 83138012 75961477 1.93e-05

1 7 17552 12384 83138012 75982113 1.93e-05

1 13 37391 14169 194523430 74793426 8.83e-05

1 13 1578 18184 8388847 91097772 5.30e-04

1 13 2194 6118 11518948 42261409 9.26e-04

3 4 16851 12593 87016490 57177152 5.14e-05

4 6 17781 8030 85843666 31492413 9.83e-05

4 18 12953 2204 59007364 12085950 3.78e-05

4 18 12953 2205 59007364 12086249 3.78e-05

4 18 12953 2207 59007364 12105509 3.78e-05

4 18 12953 2210 59007364 12121165 3.78e-05

4 18 12953 2212 59007364 12145824 3.78e-05

4 18 12953 2213 59007364 12155155 3.78e-05

4 18 12953 2214 59007364 12168099 3.78e-05

4 18 12953 2216 59007364 12185773 3.78e-05

4 18 12953 2218 59007364 12201483 3.78e-05

4 18 12953 2221 59007364 12207812 3.78e-05

4 18 12953 2222 59007364 12207885 3.78e-05

5 14 10101 7499 51443614 53369029 1.05e-04

5 15 17075 12962 84825180 85670741 6.42e-05

5 15 15805 7883 79078552 59545732 7.93e-05

5 16 8358 5368 39190719 27972673 7.34e-05

5 16 36920 7061 178018332 53543451 4.81e-04

5 17 13446 11925 66318489 67584325 7.34e-05

5 17 13446 11926 66318489 67584377 7.34e-05

5 17 13446 11929 66318489 67621922 7.34e-05

6 9 7724 10934 30054632 27480967 1.12e-04

6 9 7740 10934 30118137 27480967 1.12e-04

6 9 7904 14907 31002386 63344625 5.00e-03

6 9 8184 14928 32326215 66475178 1.46e-04

6 9 8185 14928 32328899 66475178 1.46e-04

6 9 8191 14928 32349834 66475178 1.46e-04

6 9 8195 14928 32369264 66475178 1.46e-04

6 9 8197 14928 32372860 66475178 1.46e-04

6 9 8198 14928 32377831 66475178 1.46e-04

6 9 8199 14928 32378952 66475178 1.46e-04

6 9 8205 14928 32407835 66475178 1.46e-04

6 9 8402 13942 33314560 36032008 5.85e-04

6 9 8405 13942 33330653 36032008 8.41e-04

11 15 11672 9261 58659275 65879592 7.12e-05

11 16 6859 5795 31555909 46763904 7.93e-05

11 16 6864 5795 31596651 46763904 7.93e-05

11 16 6874 5795 31650758 46763904 7.93e-05

11 16 6876 5795 31656162 46763904 7.93e-05

11 16 6880 5795 31691152 46763904 7.93e-05

11 17 2735 14477 12652878 78997868 6.62e-05

14 15 18159 12116 102561095 81519400 7.53e-05

14 15 18159 12118 102561095 81524629 7.53e-05

14 15 18159 12119 102561095 81527871 7.53e-05

14 15 18159 12120 102561095 81538040 7.53e-05

14 15 18159 12121 102561095 81539432 7.53e-05

14 15 18159 12122 102561095 81542012 7.53e-05

14 15 18159 12124 102561095 81553349 7.53e-05

14 15 18159 12125 102561095 81562882 7.53e-05

14 15 18159 12126 102561095 81565918 7.53e-05

14 15 18159 12127 102561095 81577713 7.53e-05

14 15 18159 12128 102561095 81583855 7.53e-05

14 15 15415 8713 89759182 63263311 1.42e-04

Table 6: Marker pairs having a signi�cant linkage disequilibrium measured us-
ing the binomial P value. Columns: chromosomes, marker ids, marker loca-
tions in the chromosomes measured as base pairs (bp), binomial tail probability.
HapMap data.
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Locations of interesting marker pairs along the chromosome. Above
we found several marker pairs in exceptionally strong linkage disequilibrium. Let
us now visualize their locations in more detail, taking chromosomes 1 and 7 as an
example. Chromosomes 1 and 7 contain 49 221 and 28 413 markers, respectively,
yielding a total number of about 1.4 billion marker pairs. A marker pair was
interpreted as having a signi�cant LD if the binomial measure had a P value
smaller than 0.04; this was the case for 150 marker pairs among those 1.4 billion
marker pairs. The P value 0.04 is still quite high, and in fact most of those
150 pairs have a P value between 0.01 and 0.04 which is perhaps insigni�cant.
However, there are a few pairs having a P value 10−5. Alternatively, a marker
pair was interpreted as having a signi�cant LD if the absolute value of Weir's ∆
was 0.08 or larger. In Figure 10 we see the binomial P values and Weir's unscaled
∆ for the marker pairs whose LD was deemed signi�cant. Figure 10 (a) is 3-
dimensional, having the locations in chromosomes 1 and 7 as the horizontal axes,
and logarithmic values of the binomial measure and Weir's ∆ in the vertical axis.
Small values of the binomial measure are interesting, and large values of ∆; we
see that there is a small area in which several extremal values are concentrated,
as the binomial measure is very small and ∆ is large. Scaled ∆ never yields
interesting values. The 3-dimensional plot is somewhat di�cult for the human
eye, and thus we also show a 2-dimensional plot in Figure 10 (b) which is a
zoomed-in detail of the interesting area. In (b) the actual numerical values of
the LD measures are not visible, but only the locations in chromosome 1 and
chromosome 7. There clearly are two regions in which strong LD is observed.
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Figure 10: LD measures of signi�cant marker pairs, in a logarithmic scale. (a)
3-dimensional plot showing the locations in chromosomes 1 and 7, and the values
of the LD measures. There is a small area in which extremal LD is reached. (b)
A 2-dimensional projection, zoomed into the interesting area.
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3.2.3 Permutation tests

When running through the all-pairs analyses of loci from two chromosomes we
will perform millions of statistical tests. It might then be that we encounter
some spurious correlations merely by chance, even though there are no real
dependencies in the data. To tackle this problem, we rely on permutation tests.

We permuted the ordering of individuals within each subpopulation sepa-
rately, and then tested for LD using the binomial and ∆ measures. Again, we
required that the chosen threshold value for LD was exceeded in all subpopula-
tions separately. This makes it quite hard for random associations to pop up:
even if we by chance found a signi�cant LD in one marker pair in one subpopu-
lation, the same marker pair should be signi�cant in all subpopulations in order
to be reported as interesting.

In interchromosome marker pairs of chromosomes 14 and 15 in HapMap
there are a few pairs whose binomial measure is 7.53 · 10−5 in the original
data. We permuted the data 1000 times, and tested if any dependency was
found in a signi�cant portion of the runs � if yes, then our original �nding
would be doubtful. However, in 1000 permutations we did not �nd any pairs
having a binomial measure smaller than 0.01 (for all the three subppoulations
simultenously). This gives evidence that the dependencies found in the original
data are truly interesting.

3.3 All-pairs analyses within a chromosome

Until now, we have presented interchromosomal results in which one member
of the pair of loci was from one chromosome, and the other member was from
another chromosome. It is interesting to see how signi�cant the linkage disequi-
librium is in an intrachromosomal case where both members are from the same
chromosome.

Along the lines of Section 3.2.1, we counted the number of locus pairs for
which our test statistics exceeded certain thresholds in all ethnic groups. Both
members of the pair are from chromosome 6.

Figure 11 shows the results at HapMap data. (For Perlegen data, the ob-
servations are somewhat similar but as the data set is smaller, we cannot have
as small P values as with HapMap data.) When comparing Figures 9 and 11
we see that a larger number of extreme values of the LD measures is obtained
when both members of the pair of loci are from the same chromosome. In the
�gures, this is denoted by N. Also, the extreme values are �more extreme�: the
maximum values of Weir's ∆ are larger (roughly 0.27 vs. 0.13), and the bino-
mial P values are smaller (roughly 10−6 vs. 10−4). This is to be expected, as
nearby loci often demonstrate LD, and the distance between loci at two distinct
chromosomes is always �in�nite�.

The case of loci consisting of d = 4 SNPs, the right-hand side plots of Figure
11, show the behaviour of the Bernoulli mixture model. We can see that the
mixture model can indeed �nd interesting locations, as soon as there exist some.

When running through all chromosomes, the number of signi�cant intra-
chromosomal marker pairs is from several tens of thousands to a few hundred
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Figure 11: Cumulative distribution (in a logarithmic scale) of the number of
pairs of loci for which the Weir's unscaled ∆ (top) or binomial P value (bottom)
exceeds a threshold for every ethnic group. Left: loci of 1 SNP, right: loci of
4 SNPs. N = maximum number of pairs exceeding the threshold. All loci are
from chromosome 6. HapMap data.

thousands, depending on the size of the chromosome. This is of course signi�-
cantly more than in the interchromosomal case, which was discussed in Section
3.2.2.

We then contrast the �ndings of high interchromosome LD, shown in Section
3.2.2, to the values of intrachromosome LD. Consider the LD of two markers
which both belong to chromosome 1. The LD of nearby markers is typically
high, so we wish to contrast our interchromosome (1 vs 7) �ndings to intrachro-
mosome (1 vs 1) values. Of all marker pairs in chromosome 1, 0.017 per cent
have a P value less than 0.04; this is a signi�cantly larger number than when
one marker was from chromosome 1 and another from chromosome 7. Then
again, consider the peak value of the interchromosome (1 vs 7) LD � among the
intrachromosome (1 vs 1) marker pairs, less than 1/106 are more extreme than
the interchromosome peak. Figure 12 shows the sorted values of the binomial
measure in intrachromosome (1 vs 1) and interchromosome (1 vs 7) pairs; we
indeed see that the extreme interchromosome P values are small also when com-
pared to intrachromosome values. This is indicative of a nontrivial LD between
distant loci.
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Figure 12: Sorted values of the binomial measure, in a logarithmic scale. Left:
markers within chromosome 1. Right: one marker from chromosome 1 and
another from chromosome 7.

3.4 Clustering consecutive markers by the Bernoulli mixture

model

In the above sections we have reported the LD between two markers located in
two di�erent chromosomes and found that there are a few interesting marker
pairs. We have also brie�y touched upon the case of grouping consecutive mark-
ers into �supermarkers�. Let us now return to this for a small while.

We took d = 4 consecutive markers and clustered them using Bernoulli
mixture modeling as described in Section 2.6 into supermarkers. We then tested
for the dependence between those. This was repeated for all d = 4 length
windows in all chromosomes.

Both the binomial measure and Weir's unscaled ∆ found two areas con-
taining interesting supergenotypes in HapMap data. The �rst of these areas is
spanned by markers 17531�17545 in chromosome 1 and markers 12366�12369
in chromosome 7. The second area is close to the �rst one, and spanned by
markers 17552�17557 in chromosome 1 and markers 12380�12388 in chromo-
some 7. These interesting areas were also found at our studies on individual
markers reported in Section 3.2, and thus there do not seem to be areas that
are interesting only as supergenotypes as opposed to original genotypes.

4 Discussion

We have presented methods for analysing the linkage disequilibrium (LD) be-
tween distant genetic loci. LD refers to the statistical dependency of the DNA
content at two locations. An often documented fact is that LD of nearby loci
is high, and it decays monotonously with the distance of the studied loci. This
decay can be attributed to the recombination process that is a major source of
genetic variation: the more distant the two loci are, the higher the probability
that genetic material is switched between the members of a chromosome pair.

We were interested in �nding distant loci where the content of the DNA
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is correlated not merely due to the structure of the population or the study
sample. Finding a signi�cant LD between two far-away loci is indicative of a
possible functional dependence: some phenotype characteristic to the popula-
tion in question is a�ected by two loci that interact in a non-trivial way, e.g.,
a person may carry a certain genotype at one locus only if he carries a certain
other genotype at the other locus. It is, however, also possible that a signi�cant
LD between two far-away loci arises just due to a misplaced marker, that is,
for some reason a marker is erroneously annotated with a wrong chromosome
number.

To reveal linkage disequilibrium between two distant loci, we introduced
a new test statistic, termed the binomial measure, that aims at �nding two
strongly correlated genotypes, one from each locus. We showed that this new
measure can be more powerful than, for instance, Weir's ∆ [Wei79, WC89], when
the alleles at the two loci are relatively independent. We found some problems
in the usage of ∆: Firstly, one can demonstrate by a simple theoretical analysis
that it does not always distinguish dependence between two loci. Secondly, we
do not have a baseline to which to compare the level of ∆ and thus cannot assess
when ∆ is large enough to be interesting. In contrast, the binomial measure
behaves in a way that is easily tractable in statistical terms.

We also described various computational techniques and tricks that enable
a genome-wide analysis of all pairs of SNPs or small windows of SNPs. The
techniques include parallelisation, precomputation of certain threshold values,
�lazy evaluation�, and means for e�cient memory management.

We reported results concerning the LD between distant loci in the HapMap
and Perlegen data sets. The HapMap data consist of four populations and the
Perlegen of three populations. The observed distributions of the test statistics
suggest that some of the strongest correlations may indicate a non-random,
functional association. We chose a threshold for the P values of the binomial
test, and required that the threshold was met in each subpopulation separately.
This adds to the statistical signi�cance of the observations.

However, it is somewhat nontrivial to estimate the statistical signi�cance of
these associations due to a huge number of dependent multiple tests performed
and due to the population structure underlying the data.

Permutation testing is one reasonable approach to estimating the extent to
which large correlations may occur just by chance. The idea is to draw a large
sample, say 100 or 1000, random permutations of the genotypes in one chro-
mosome, within each of the four (HapMap) or three (Perlegen) ethnic groups,
while keeping the order of the genotypes �xed in the other chromosome. Then
for any �xed threshold of a test statistics, one can compute the proportion of the
permuted data sets for which the count of locus pairs exceeding the threshold
is larger than the corresponding count for the original data. We performed this
in each subpopulation separately, making it quite hard for spurious correlations
to appear: even if one marker pair in one subpopulation was by change found
signi�cant, the same marker pair should be signi�cant in all subpopulations, in
order to be interpreted as interesting. Indeed, in the original data, there were a
few marker pairs whose binomial P value was of order 10−5; in 1000 permuted
data sets we did not �nd any P values smaller than 0.01. This gives strong
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evidence to the signi�cance of our results.
In addition, we brie�y considered the use of �supergenotypes� consisting of

a few consecutive markers, constructed using a mixture-model based clustering
method. Our original hypothesis was that an individual SNP contains a limited
amount of information, and that it would be fruitful to collect information from
several adjacent SNPs. Our measures of LD would then be based on comparing
the haplotype distribution at two loci, each locus speci�ed not by one marker
but a window of a few markers. Somewhat in contrast to our original hypothesis,
the �ndings of high LD were mostly at pairs of single-SNP loci. A few interesting
multiple-SNP loci were also discovered, but those loci were also found via the
single-SNP studies.

In the Perlegen data, the �ndings of LD between distant loci were not as
strong as in the Hapmap data. For this reason, we also considered the possibility
that truly dependent distant regions of the genome are hundreds of kilobases
long, spanning tens to hundreds of SNPs. To this end, we considered a summary
statistic that aggregates the statistics based on pairs of short windows of SNPs.
We found that often in Perlegen data there is a consecutive region within one
chromosome, containing markers that are highly dependent with a small number
of markers in another chromosome.

Let us also note that if the data were completely random in an uniform
manner, then we should have found a much larger number of pairs in high
linkage disequilibrium. In contrast, the genomic data is highly structured such
that nearby loci are in linkage disequilibrium � as is well known � and far-away
loci are not, except for the few interesting cases that we have indicated.

Our methodology can be further extended and tested in a few directions.
First, we described an approach to measure LD between larger genomic

regions by aggregating the tests for pairs of loci within the regions. How much
one can gain with this approach compared to single locus pairs remains to be
studied.

Second, we have used the binomial P values for judging if a contingency
table is in linkage equilibrium or not, in other words, if there is a dependence
between two variables in the table. We could also use Fisher's exact test whose
purpose is to reveal the dependence as well. The margins of the table are �xed.
Under the null hypothesis of independence, this leads to the hypergeometric
distribution. We compute a P value for the observed table of counts, using our
favourite method (binomial, Chi squared, likelihood ratio or other). We also list
all tables having the same row and column marginals as our observed table, and
compute their P values. We then sum the P values of all those tables whose P
values are at most as large as the P value of the observed table. If the sum of
these P values is smaller than a prede�ned limit, say 0.05, we conclude that the
observed table violates the independence assumption.

Third, we considered the dependency of unphased genotypes. In a recent
paper, Wu et al [WJX08] present a way of measuring the LD when linkage phase
information of marker loci for unrelated individuals is unknown. They classify
the interaction into intragametic interaction of two alleles from di�erent loci on
the same haplotype, and intergametic interaction of two alleles from di�erent
loci on di�erent haplotypes. These interactions will lead into intragametic and
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intergametic LD.
Fourth, we do not known whether there exists any true, non-random asso-

ciations in the real data we analyzed. Thus, it would interesting to simulate
data with planted dependencies of varying strength between some distant loci,
and to see how large sample size is needed for reliable discovery of the truly
dependent loci, at some tolerable false positive rate.
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A Clustering of haplotypes via Bernoulli mixture mod-

eling

To test our hypothesis that an individual SNP contains a limited amount of in-
formation, we designed haplotype-based statistics that collect information from
several adjacent SNPs. In this setting, our measures of LD are based on com-
paring the haplotype distribution at two loci, each locus speci�ed by a window
of a few SNP markers.

For each locus A consisting of d consecutive SNPs, we group the haplotypes
on A into k internally homogeneous classes, called superalleles. An unordered
pair of superalleles de�nes the corresponding supergenotype. Then for each pair
of two loci, A and B, we compute the value of the test statistic s(A,B) that
measures the LD between supergenotypes on the loci A and B.

We model the haplotype population by a Bernoulli mixture [EH81].

Bernoulli mixture model. Consider a locus A consisting of d consecutive
SNPs. Let x2i−1 and x2i denote the ith individual's paternal and maternal
haplotypes over the d SNPs, for i = 1, . . . , n. At every SNP, let the alleles take
values from {0, 1}. For brevity, let xh denote a haplotype, be it maternal or
paternal, and h = 1, . . . , 2n.

We clustered the 2n haplotypes into k groups via mixture modelling. We
modelled the haplotype population by a Bernoulli mixture [EH81] with k com-
ponents, that is, we assigned haplotype xh a probability

p(xh;α, β) =
k∑

c=1

αc

d∏
j=1

β
xhj

cj (1− βcj)1−xhj ,

where α consists of the mixture proportions α1, . . . , αk, that sum up to unity,
and where β consists of the probabilities βcj that a haplotype assigned to the cth
component has allele 1 at the jth SNP. A standard expectation�maximization
algorithm was employed for setting the parameters α and β so as to (locally)
maximize the likelihood

∏
h p(xh;α, β) for the observed haplotypes.

Independence assumption in a multivariate mixture model. In a mul-
tivariate mixture model such as the one presented above, the underlying assump-
tion is that the attributes (here, SNPs) are independent of each other (given the
component in the mixture). This simplifying assumption allows us to write the
joint probability of the attributes xhj in a product form

∏
j β

xhj

cj (1− βcj)1−xhj .
However, in haplotype data, it is well known that neighboring SNPs depend
on each other in a more complicated fashion. Thus, the model can viewed as
a computational convient approximation that is expected to give a good �t if
the haplotype clusters are tight: each βcj is close to 0 or 1, in which case the
haplotype distribution within a cluster can be (mostly) explained by genotyping
errors.
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Estimating the model and assigning supergenotypes. In the EM algo-
rithm, the mixture proportions αc are iteratively updated by

αc =
1
n

2n∑
h=1

rch ,

where rch is the posterior probability of component c having created haplotype
xh, and its update rule is in turn

rch =
αc

∏
j β

xhj

cj (1− βcj)1−xhj∑
c αc

∏
j β

xhj

cj (1− βcj)1−xhj
.

The update equation for the parameter βcj is

βcj =
∑2n

h=1 rchI(xhj = 1)∑2n
h=1 rch

where I(xhj = 1) is an indicator function, taking value 1 when xhj = 1 and 0
otherwise.

Finally, after the EM algorithm has converged, we assign each haplotype
xh the cluster c for which the posterior probability rch is the largest over c =
1, . . . , k. Each haplotype xh is thus assigned into one of k groups, which we
call a superallele, re�ecting the fact that it takes values in {1, . . . , k}, instead
of {0, 1} as in the case of the original alleles. Thus the haplotypes x2i−1 and
x2i determine a supergenotype si as an unordered pair of maternal and paternal
superalleles, denoted as {u, v}, with 1 ≤ u ≤ v ≤ k. Note that a supergenotype
is spanned by d SNPs.

B Distributions of ∆ and binomial P in a general case

Apart from the diagonal and upper-triangular con�gurations of the contingency
table, it is interesting to study the properties of the 3 × 3 contingency tables
in general. Here we show that a major proportion of all possible (theoretical)
contingency tables output a large ∆ or a small binomial P value, indicating
linkage disequilibrium. However, in real-world data, the cases of large ∆ or
small P are much more infrequent, as the genotypes in di�erent chromosomes
are most often independent of each other.

The expected value for ∆ over all possible contingency tables with N in-
dividuals is 0.083 for N = 24, 0.078 for N = 45 and 0.077 for N = 60. The
straightforward de�nition of ∆ renders an analytical calculation of the standard
deviation possible, and the result is

σ =

√
(11N + 2)(N − 1)(N + 9)

1320N3
.

The range of ∆ is [−0.5, 0.5].
A major proportion of all possible (theoretical) contingency tables thus out-

put a large ∆, but in real-world data, the cases of large ∆ are much more
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infrequent. In Figure 13 (left panel) we present the cumulative distribution
function of the absolute value of ∆, computed over all contingency tables with
a population of N = 60. In the HapMap experiments presented in Section 3.2
we concluded that �interesting� values of ∆ typically are 0.1 or larger. A com-
putational analysis shows that the fraction of tables with |∆| > 0.1 is 0.295. So,
with a genuinely random uniform distribution of contigency tables, we should
expect that approximately 30 percent of tables show strong LD in the sense that
|∆| exceeds the threshold value of 0.1. In real-world data, the situation is quite
di�erent.
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Figure 13: Cumulative distribution of |∆| (left) and binomial P (right) computed
over all 3× 3 contingency tables in a population of N = 60 individuals

Similarly, a major proportion of all possible contingency tables output a
small (and thus �signi�cant�) P value of the binomial test, although real-world
data is typically closer to the null hypothesis of no linkage disequilibrium. We
have computed numerically the expected value and standard deviation for the
binomial test over all possible contigency table con�gurations with certain �xed
number of people. For N = 24, the expected value of P is µ = 0.098 and
the standard deviation is σ = 0.087; for N = 45 the results are µ = 0.048 and
σ = 0.068, and for N = 60, µ = 0.032 and σ = 0.056. Because of its probabilistic
nature, the range of the binomial test is P ∈ (0, 1]. Note that we have deliberately
chosen not to consider the cases where the binomial distribution returns zero
probability.

Figure 13 (right panel) shows the cumulative distribution of P, computed
over all contingency tables with N = 60.

Naturally, the exact values of the cumulative distribution function depend
on the size of the population, but with N = 45 the results are almost identical to
N = 60. If we regard our computational task as a Bernoulli process consisting
of a series of four independent tests, the share of SNP pairs passing the process
should be of the order 0.34 = 0.0081. As demonstrated in Section 3.2, this is not
at all the case. Of course, the four populations are not genuinely independent.
Also, the principles on which the sampling of SNPs is based a�ects the results.
A more careful look at the distribution of the number of three possible genotypes
(AA, Aa and aa) shows that the SNP data really is not uniformly distributed.
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Typically, only the number of the more common homozygote AA is even nearly
uniformly distributed, i.e., in a population of size N , the number of persons with
this genotype gets any of the values 0, 1, ..., N with an almost equal probability
1/(N + 1). The minor allele homozygote aa, on the other hand, is much more
likely to appear only in a few persons, or not at all, than in a large number
of people. The heterozygote case Aa is most likely to appear in a moderate
number of people, while the cases with a very small or a very large number of
heterozygotes are rare.
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