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1 Introduction

Expectations have been an important part of many macroeconomic models. Consumers and

firms maximize their expected utility, or profit, based upon their expectations of several economic

variables Since they effect the decision process, expectations will naturally also have a large

impact on the macroeconomy. The current accepted method for modelling expectations in

macroeconomics is allowing agents to form Rational Expectations (RE). With RE, agents form

their expectations using the mathematical expectations operator conditioned upon available

information usually involving perfect knowledge of the market equilibrium. Although RE is

the solution norm for the profession, many economists believe that RE gives agents too much

intelligence by assuming that they know all the equilibrium parameter values of the model.

Since the introduction of RE by Muth (1961) and Lucas (1972, 1973), the bounded

rationality literature has presented several alternatives. The works of Townsend (1978), Bray and

Savin (1986), Evans and Honkapohja (2001), Guesnerie (1992), and Hommes and Sorger (1998)

have suggested several types of less sophisticated expectations schemes to limit the intelligence of

economic agents.

One method to limit hyperrationality is by allowing agents to learn the parameters of the

model through time. With econometric learning, agents are boundedly rational with the ability to

learn the parameters of the model by using least squares to form their expectations. The agents

attempt to estimate the REE by using data from the economy. They form statistical estimates of

the equilibrium parameters and update these estimates every period. It has been discovered that

the learning process is stable and converges to the rational expectations equilibrium (REE) for

some macroeconomic models with reasonable parameter values. Evans (1989) and Evans and

Honkapohja (1992) introduced the E-stability principle which states that the mapping from the

perceived law of motion (PLM) to the actual law of motion (ALM) governs the stability of the

REE under least squares learning.1 Using their E-stability principle, for some macroeconomic

models, we can determine the stability of the solution under this learning rule. One may think that

if these solutions are E-stable, then using RE may not be such an undesirable method to solve for

long run equilibria. Furthermore, for models with multiple equilibria, we can distinguish between

solutions that are E-stable and those that are not E-stable.

1 For a detailed explanation of E-stability, see Evans and Honkapohja (2001).
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In the learning literature, a few papers consider models with heterogenous expectations.

Evans and Honkapohja (1997) focus on a situation where all agents use the same learning process,

but they all may begin with different initial expectations. They find that all of the agents will

asymptotically learn the RE solution analogous to the RE in the homogeneous expectations case

as long as it is E-stable. Evans, Honkapohja, and Marimon (2001) allow for heterogeneity and

random adjustments in expectations in a model with a continuum [0,1] agents. They suppose

that each agent may have one of two types of expectations given some probability. They find

that the heterogeneity disappears asymptotically and the expectations then converge to the RE

solution. Under this form of heterogeneity, the stability conditions may not be the same in some

models for homogenous and heterogenous expectations. Honkapohja and Mitra (2002) present

structural heterogeneity where the representative agent can not be used. They find that this type of

heterogeneous learning affects stability conditions for learning for some common macroeconomic

models. Giannitsarou (2003) considers three types of heterogeneity: initial perceptions, different

degrees of inertia in updating, and different learning rules. She shows that the last two types of

heterogeneity may cause different stability conditions than with homogeneous expectations.

The above literature has focused mainly on heterogeneity in models with a single

equilibrium. Multiple equilibria has been well discussed in the macroeconomic literature by

Azariadis (1981), Cass and Shell (1983), Azariadis and Guesnerie (1986), and Farmer (1999).

When heterogeneous expectations exist in a model with multiple equilibria, one can examine

how heterogeneity affects the stability properties of more than one equilibrium under learning.

Furthermore, if the level of heterogeneity is allowed to change, the stability properties of the

equilibria can be further examined.

This paper presents heterogeneity in a different manner than the papers listed above. This

is a fourth type of heterogeneity that can exist in a model with multiple equilibria. I assume that

there are two types of agents with different perceived laws of motion. The first type believes that

some economic variable follows an independent and identically distributed (i.i.d.) process while

the second type believes that this variable follows an AR(1) process. Both types of agents use least

squares to learn the true process of the economic variable in question. This paper examines how

this form of heterogeneity affects E-stability in a specific “ad hoc” macroeconomic model. I show

that the E-stability conditions will be affected by the proportion of agents that use each perceived

law of motion. Finally, I examine the relationship between E-stability and the mean square error



3

(MSE) of each equilibrium. It turns out that the two equilibria “exchange” stability at a level of

heterogeneity where the MSE of the inefficient predictor is minimized.

2 The Model

2.1 Homogeneous Expectations

The model used in this paper is a linear stochastic macroeconomic model. The Sargent and

Wallace (1975) “ad hoc” model, an example of one of these types of models, is made up of three

equations: an aggregate supply equation, an IS equation and a LM equation. These three equations

can be reduced to a univariate reduced form that represents the equilibrium of this model.

Another linear stochastic macroeconomic model is the real balance model of Taylor (1977).

This is a variation of the rational expectations IS-LM model where the real balance effect enters

each equation. Like the Sargent and Wallace (1975) model, this model can be reduced to a single

equation representing the equilibrium. This model has the possibility of multiple stationary REE,

and it has previously been the focus of detailed analysis in the learning literature, for example see

Evans and Honkapohja (1994) and Heinemann (2000).

The reduced form of these models is the following:

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt (1)

where E∗ denotes a not necessarily rational expectation and vt is a linear combination of iid

stochastic shocks. Therefore, Et−1vt = 0.

REE Solutions

I first present the solutions to the model under homogeneous expectations, so that the impact

to the solutions from heterogeneity can be fully understood. Each agent will use their perceived

law of motion (PLM) of the economy to estimate the parameters of the model. The solution to

the model will depend upon the distribution of the agents with different PLM’s, so the solution to

equation 1 will depend on the averaged perceived law of motion among all agents. The averaged

PLM produces the actual law of motion (ALM) followed by the economy. If all agents use the
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following perceived law of motion (defined as PLM1 or the “first predictor”):

yt = a1 + vt, (2)

then the unique (REE) is the following:

a1 =
α

1− β0 − β1
. (3)

If all agents use the following PLM (defined as PLM2 or the “second predictor”):

yt = a2 + b2yt−1 + vt, (4)

then there are two REE of the following:

a2 =
−α
β1

and b2 =
1− β0
β1

or (5)

a2 =
α

1− β0 − β1
and b2 = 0. (6)

These solutions are referred to as the AR(1) solution and the minimum state variable (MSV)

solution respectively. As one can see, the MSV solution to the model using PLM2 has the same

value as the solution to the model using PLM1.

E-stability Conditions

In order for agents to learn an equilibrium value for the parameters of the model, the

equilibrium must be E-stable.

Definition 1: E-stability is the condition of local asymptotic stability of a fixed point φ̄ = T
¡
φ̄
¢

under the differential equation2
dφ

dτ
= T (φ)− φ, (7)

where T is the mapping from the perceived law of motion, φ, to the implied actual law of motion,

T (φ) and τ denotes “notional” or “artificial” time.

Formal details of the T-map, T , are provided below. If an equilibrium is E-stable, then

the agents will asymptotically learn the given equilibrium. This is a local condition, so initial

parameter estimates must be in the neighborhood of attraction to ensure E-stability.3 When all

agents use the same PLM, the equilibrium constitutes a Rational Expectations Equilibrium (REE).

2 In the homogenous expectations case, φ = (a1) for PLM1 and φ =
µ

a2
b2

¶
for PLM2.

3 This condition brings forward many doubts on the usefulness of this literature. It turns out that this
model is stable for any −1 < b < 1 and any reasonable choice of a. This is just assuming that agents
believe the process to be stationary which is not, by any means, a very strong assumption.
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It turns out that the REE’s are E-stable for only some values of β0 and β1. These E-stability

conditions are expressed graphically in figure 1 which will be useful to compare these conditions

with the E-stability conditions for heterogeneous expectations.

FIGURE 1. E-stability Conditions for Homogenous Expectations

If agents use PLM1, it turns out that the condition for E-stability is

β0 + β1 < 1. (8)

This is known as the weak E-stability condition for the MSV solution. One can also find the

strong E-stability conditions for the MSV solution which are the E-stability conditions for the

MSV solution where all agents use PLM2. The strong E-stability conditions are

β0 < 1 and β0 + β1 < 1. (9)

The E-stability conditions for the AR(1) solution for PLM2 are

β0 > 1 and β1 < 0. (10)

It is not possible for the MSV solution to be strongly E-stable and the AR(1) solution to be weakly

E-stable which will be an important fact in the case of heterogenous expectations.
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2.2 The Model with Heterogenous Expectations

For heterogeneous expectations, assume that there are two types of agents. One type uses the

MSV PLM, or PLM1, while the other uses the AR(1) PLM, or PLM2. These agents may differ

because the first type of agents are not willing to calculate the values for both a and b, so they

decide to just find the average of y. Assume that there is a fixed proportion of agents who use

PLM1 and agents who use PLM2. This assumption will later be relaxed in the paper. Let µ be

referred to as the proportion of agents that use the MSV PLM. Therefore, a proportion of µ agents

form expectations using PLM1:

PLM1 : yt = a1 + vt (11)

and a proportion of (1− µ) agents form expectations using PLM2:

PLM2 : yt = a2 + b2yt−1 + vt. (12)

The actual law of motion (ALM) is formed from the averaged PLM of the agents, or PLMA:

PLMA : yt = µa1 + (1− µ)a2 + (1− µ)b2yt−1 + vt. (13)

The ALM

By combining equations 1 and 13, I obtain:

yt = α+ µa1(β0 + β1 + β1(1− µ)b2) + (1− µ)a2(β0 + β1 + β1(1− µ)b2)

+[(1− µ)b2(β0 + (1− µ)β1b2)]yt−1 + vt (14)

This equation describes the actual stochastic process followed by yt given the PLM’s of the two

types of agents. For each type, I now compute, for this yt process, the actual PLM parameters

that best fit the yt process (in the mean square sense). I will call these implied parameters the

ALM. For type 2 agents, the ALM parameters are simply the intercept and slope parameters of the

implied yt process. Because, for µ < 1, agents using PLM1 underparameterize the yt stochastic

process, I need to compute for them the parameters of the yt process projected onto the space of

PLM1. Since type 1 agents model the process as iid, this is simply given by the mean of the

implied yt process.
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The mapping from the average PLM to the ALM is thus the following:4

T

 a1
a2
b2


=

 α+µa1(β0+β1+β1(1−µ)b2)+(1−µ)a2(β0+β1+β1(1−µ)b2)
1−(1−µ)b2(β0+(1−µ)β1b2)

α+ µa1(β0 + β1 + β1(1− µ)b2) + (1− µ)a2(β0 + β1 + β1(1− µ)b2)
(1− µ)b2(β0 + (1− µ)β1b2)

 (15)

where Ta15 is a “projected ALM”6 assuming that the model follows a stationary process

(−1 < b2 < 1). Note that the first component of the T-map is given by:

Ta1 =
Ta2

1− Tb2
. (16)

The Mixed Expectations Equilibria

Next, I solve for the Mixed Expectations Equilibrium (MEE), where are defined as the fixed

points of the T-mapping.7 The agents that use PLM2 have the correct form of the economy

and therefore their solution is rational within the equilibrium. Those agents using PLM1

underparameterize the economy; although their mean is correct, their forecast errors are correlated

with yt−1 and hence their expectations are not as precise as the agents using PLM2. The learned

solution for the agents using PLM1 is optimal given their restricted class of PLM’s. It is easily

verified from the T-map that the MEE are:

a1 =
α

1− b2 − µλ− (1− µ) (1− b2)λ
,

a2 =
(1− b2)α

1− b2 − µλ− (1− µ) (1− b2)λ
, and (17)

b2 =
1− (1− µ)β0
(1− µ)2β1

4 For convenience, I call this the ALM, although for type 1 agents the T-map gives the projected ALM.
5 Ta1 denotes the first component of the map.
6 This is called a “projected ALM” since these agents use a misperceived law of motion which does
not have the same form as the ALM. Note that if the solution is in the MSV form, then these agents
asymptotically do not have a misspecified learning rule.
7 Since the agents using PLM1 underparameterize the economy, when the equilibrium is AR(1), the
equilibrium found by these agents will be referred as the Restricted Perceptions Equilibrium.
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or

a1 =
α

1− β0 − β1
,

a2 =
α

1− β0 − β1
, and (18)

b2 = 0

where:

λ = 1 + β1 + µβ0.

As with homogenous expectations where all agents use PLM2, there are two equilibria: the AR(1)

solution 17 and the MSV solution 18. It is important to note that the MSV MEE is the same as the

MSV REE under homogeneous expectations. The AR(1) MEE is a combination of the MSV REE

and the AR(1) REE since both PLM’s are being used.8

3 E-Stability

Next, I solve for the E-stability conditions9 which is done by forming an ordinary differential

equation (ODE) of the following:
dφ

dτ
= T (φ)− φ. (19)

For stability, the eigenvalues of the Jacobian matrix of this above expression must have negative

real parts.10 Figure 2 graphically presents all the E-stability results found below.

3.1 E-stability Results for the MSVMEE and AR(1) MEE

The E-stability results of the MSV MEE and the AR(1) MEE are stated in the following

proposition:

Proposition 1: E-stability conditions for the above linear stochastic model with heterogeneous

expectations.

8 It can be easily check that the MEE for extreme values of µ correspond to the REE for the homogenous
agents case.
9 E-stability is applicable only if the stability of the stochastic recursive algorithm for the model can be
determined by the E-stability equation 19. This is demonstrated in the appendix.
10 See the appendix for the ODE and the eigenvalues of the Jacobian matrix.
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1. All MSV MEE in the set

ES1 =

½
(β0, β1) |β0 <

µ
1

1− µ

¶
, β0 + β1 < 1

¾
(20)

are E-stable. All MSV MEE outside of this set are E-unstable.

2. All AR(1) MEE in the set

ES2 =

½
(β0, β1) | 1

1−µ < β0 <
1
1−µ − (1− µ)β1,

β1 < 0

¾
(21)

are E-stable. All AR(1) MEE outside of this set are E-unstable.11

3.2 Graphical Representation of the E-stability Conditions

Figure 2 presents the graph for the E-stability conditions under heterogeneous expectations.

1 represents β0 = 1, 2 represents β0 + β1 = 1, 3 represents β0 = 1
1−µ , and 4 represents

β1 =
1−β0(1−µ)
(1−µ)2 . The original homogenous MSV strong E-stability condition was represented

by area A in figure 2. Heterogenous expectations now adds area B to A as the area of MSV

E-stability. Area B represents an area that was weakly MSV E-stable but not strongly MSV

E-stable for homogenous expectations. This area now represents part of the MSV E-stable area

since some of the agents use the MSV PLM. The E-stability conditions for the MSV MEE are

now dependent upon µ, the proportion of agents using the MSV predictor.

11 In this paper, I do not examine stability properties when some agents use higher order PLM’s.
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FIGURE 2. E-stability Conditions for Heterogeneous Expectations

These E-stability conditions reflect a combination of the strong E-stability and weak E-stability

conditions from the MSV REE with homogenous expectations. The restriction on β0 decreases as

the proportion of agents using PLM1 increases. Since both the weak and strong E-stability results

for homogeneous expectations have the inequality β0 + β1 < 1 in common, intuition tells us that

µ should not be included in this stability condition. These results produce the following corollary:

Corollary 1: E-Stability conditions for the MSV MEE from the above model become less stringent,

with respect to β0, as the proportion of agents that use the MSV predictor increases.

Less stringent means that as µ increases, the maximum value for β0 necessary for MSV

E-stability increases. Note that as β0 is allowed to increase, the model requires a smaller value of

β1 for MSV E-stability. This is due to the condition: β0 + β1 < 1 necessary for MSV E-stability.

Now consider the AR(1) E-stability conditions represented by regions C and D in figure 2.

Region D represents an area that was non-stationary with homogenous expectations, but it is now

stationary and E-stable for a given µ. E-stability conditions rule out area E which was AR(1)

E-stable and stationary with homogenous expectations. Area E now represents the MEE that are

non-stationary that would be stationary if all agents used the AR(1) PLM.
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The E-stability conditions for the AR(1) MEE are a hybrid of both the E-stability conditions

for the MSV REE and the AR(1) REE under homogeneous expectations. The stability condition

β0 >
1

1− µ
(22)

is a form of the E-stability condition for the AR(1) solution in the homogenous case where β0 > 1.

The stability condition

0 >

Ã
(1− µ)2 β1 (1− β0 − β1)

1− (1− µ)β0 − (1− µ)2 β1

!
(23)

is a combination of the two conditions for AR(1) E-stability

β0 > 1

β1 < 0,

the strong E-stability conditions for the MSV solution

β0 + β1 < 1

β0 < 1,

all divided by the condition for stationarity

β1 <
1

(1− µ)2
− 1

(1− µ)
β0.

With these two stability conditions for the model, I will examine how the agents who misspecify

the model affect the stability of the equilibrium. In other words, what happens to the stability of

the equilibria when the value of µ increases?

Corollary 2: For any given (β0, β1) that is AR(1) E-stable for some µ0, there exists a µ1 > µ0 such

that the AR(1) MEE is E-unstable.

As more agents use PLM1, the E-stable MEE will eventually not be the solution corresponding

to the “minority” of agents using PLM2.

4 The Role of Heterogeneity

Corollary 2 shows that if the level of heterogeneity, µ , is arbitrarily changed, then a MEE may

transform from being E-stable to E-unstable. I now consider in detail the implications of varying

µ. For this exercise to be well defined, I need to require that every AR(1) MEE be stochastically

stationary. This is because If the MEE is non-stationary, then the agents using PLM1 will be
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using an obviously misspecified learning rule. I will therefore only consider models in which all

AR(1) solutions are stationary for all µ ∈ [0, 1− 1
β0
).12

4.1 Stationarity for Heterogenous Expectations

Figure 3 shows the values of b2 for the AR(1) MEE as µ changes. Some of the equilibrium values

from the AR(1) solution (17) may be non-stationary for some values of µ, β0, and β1. Therefore,

I now restrict β0 and β1 such that the AR(1) MEE is stationary for any µ ∈ [0, 1− β−10 ).

FIGURE 3. The value of b2 of the AR(1) Solution as µ Varies.

To restrict −1 < b2 < 1, it must be that

max b2 < 1

and

min b2 > −1.
12 For any µ > 1− β−10 , the AR(1) MEE is not E-stable, while the MSV solution is always stationary, so
the issue of stationarity does not arise for µ > 1− 1

β0
.
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In the appendix, it is shown that for b2 < 1, it must be that

β1 < −
1

4
β20. (24)

Assume that the values of β0 and β1 always satisfy the above condition. This rules out the shaded

areas represented in figure 4. A restriction for β0 and β1 will not be necessary for −1 < b2 since

the AR(1) MEE is not E-stable for

µ > 1− 1

β0
.

No additional assumption for the MSV MEE is necessary because there is no problem of

stationarity for this solution.

FIGURE 4. E-stability Conditions for Heterogeneous
Expectations When µ is Allowed to Vary

4.2 Switching

For parameters restricted to this region, at least one of the two MEE’s is E-stable for all µ ∈ [0, 1].
However, for part of the region, the equilibria exchange E-stability when the proportion of agents

using the MSV predictor, µ, is changed.
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Definition 2: Switching is said to occur at (β0, β1) if (i) for all µ ∈ [0, 1], exactly one MEE is
E-stable and (ii) there exists µc ∈ (0, 1) such that the AR(1) MEE is E-stable for µ < µc and the

MSV MEE is E-stable for µ > µc.

Recall that µ = 1− β−10 is the point where the solution changes from being MSV E-stable

to AR(1) E-stable. As the value of µ increases, the level curve, β0 = 1
1−µ , shifts to the right. With

a large enough increase in µ, the model will transform from being AR(1) E-stable to being MSV

E-stable. The following proposition examines the limits of this level curve to establish the region

of E-stability switching.

Proposition 2: Switching occurs within the set

S =

½
(β0, β1) |β0 > 1, β1 < −

1

4
β20

¾
. (25)

This region described above is the same region of weak E-stability of the AR(1) REE and

the MSV REE in the homogenous expectations case with the restricted stationarity conditions.

This area is represented as areas B and C in figure 4. Adding more agents that use a particular

PLM to the model makes the solution corresponding to that particular PLM more likely to be

E-stable.

4.3 The Mean Squared Error and Switching

Next, consider the mean squared error (MSE) for each estimator under each equilibrium. The

MSE is calculated in the appendix and is the following for the AR(1) MEE:

MSE1 =
(1− µ)4σ2β21

(1− µ)4β21 − (1− (1− µ)β0)
2
≥ σ2 (26)

MSE2 = σ2 (27)

where the subscript denotes the number of the PLM used as a predictor. The MSE for PLM1 is

never less than the MSE for PLM2, for the AR(1) MEE, since PLM1 is the inefficient estimator

of the solution. The MSE for the MSV MEE is the following:

MSE1 =MSE2 = σ2. (28)

In this case, each predictor has the same asymptotic quality of prediction. This brings forward the

question “why does E-stability switch from the AR(1) solution to the MSV solution for different

values of µ?” The answer to this question is the following proposition:
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Corollary 3: Exactly one solution can be E-stable for any (β0, β1) for the heterogeneous

expectations case. If β1 < −14β20 and β0 > 1, the AR(1) MEE and MSV MEE exchange

E-stability when the MSE of the first predictor (with an AR(1) solution) is minimized with respect

to µ.

It turns out that the minimum ofMSE1 is σ2. The two equilibria, at this value of µ, are equal

to the MSV MEE where b2 = 0. Therefore, this is the point where both predictors are efficient,

orMSE1 = MSE2 = σ2. When the MSE’s of the solutions are equal, there is an exchange of

stability between the two solutions. As more agents use a specific predictor, the solution that is

E-stable is the solution corresponding to that predictor. When µ is larger than its switching point

value, the MSV predictor is no longer asymptotically inefficient, since the AR(1) solution changes

from a sink to a source. Hence, here the MSV solution is E-stable while the AR(1) solution is

not. When µ is smaller than the above value, the inefficiency of the MSV predictor and the fact

that more of the agents are using PLM2 makes the AR(1) solution E-stable and the MSV solution

E-unstable.

4.4 Agent Dynamic E-stability

Finally, I examine the region where switching never occurs, but one MEE is always E-stable for all

µ ∈ [0, 1]. This will be referred to as Agent Dynamic E-stability.

Definition 3: A MEE is Agent Dynamic E-stable (ADE) if it is E-stable for all µ ∈ [0, 1].

When a MEE is Agent Dynamic E-stable, no change in agents beliefs can change the

stability of either MEE. E-stability of this solution does not depend upon the proportion of agents

using PLM1, so switching will never occur. The region of ADE turns out to be the same region

as another important area in the homogenous agent problem.

Proposition 3: The region of ADE in the heterogenous agent case is equal to the region of strong

E-stability for the MSV solution in the homogenous agents case.

The region of ADE is represented by area A in figure 4. The above proposition gives

information on the nature of E-stability of the MEE’s in the ADE region. The reason the AR(1)

MEE is never E-stable here is that for homogenous expectations, it is not E-stable here. This

intuition produces the following corollary:

Corollary 4: For the model presented above, the only MEE that is ADE is the MSV solution.
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5 Conclusion

This paper has studied several asymptotic convergence properties of the above model under

heterogenous expectations. The E-stability conditions were observed for the model for both the

AR(1) and Minimum State Variable (MSV) solutions. I then observed the stability conditions

of the model under learning when heterogeneity was allowed to vary. For this, I examined both

the mean squared error for using each predictor and also the restrictions for the AR(1) solution to

always be stationary for all E-stable solutions.

The AR(1) solution is affected by heterogeneous expectations, but the MSV solution does

not change with heterogeneous expectations. E-stability of the mixed expectations equilibrium

(MEE) for both the MSV and AR(1) solutions depends upon the proportion of agents who

believe that the economy follows an independent and identically distributed (i.i.d.) process. If

this proportion of heterogeneity were different, some solutions that are E-stable for the current

proportion of heterogeneity become E-unstable solutions.

Finally, I ask "what are the stability conditions if we can observe any level of heterogeneity?"

It turns out that for the agents using the i.i.d. predictor to learn a solution, the equilibrium must be

stationary for any level of heterogeneity. I find the conditions for stationarity for all previously

E-stable equilibria. From this set of possible equilibria, two phenomena may occur. First, for an

exogenously changing level of heterogeneity, it is possible that one initially E-stable equilibrium

may become E-unstable while the other equilibrium becomes E-stable at this point of change.

There is an exchange of stability between the two equilibria at the level of heterogeneity where

the mean squared error of the MSV predictor is minimized. Second, in another region of the

parameter space, the MSV equilibrium may be E-stable for all possible levels of heterogeneity.

Heterogeneity adds another kink to the armor of the rational expectations hypothesis. For

agents to possess RE, they must know the structure of the equilibrium as well as the expectations

made by all other agents in the economy. Because of this additional strong assumption, the

bounded rationality literature becomes even more attractive as an alternative paradigm for

modelling expectations.
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6 Appendix

6.1 Proofs

Proof of Proposition 1 An equilibrium is E-stable if the E-stability differential equation

dφ

dτ
= T (φ)− φ (29)

is stable. This means the eigenvalues of the Jacobian matrix of this ODE must all have negative

real parts.

1. When we insert the value of b2 = 0 into the eigenvalues of the Jacobian matrix, we get

the following eigenvalues:13

−1,
µ

1

1− µ

¶
− β0, β0 + β1 − 1

All three of these values are negative when:

β0 <

µ
1

1− µ

¶
(30)

β0 + β1 < 1 (31)

When any of these conditions are not met, at least one of the eigenvalues has positive real parts

making the ODE unstable. Therefore, for the MSV MEE to be E-stable, the parameters must be

contained in the above mentioned set.

2. When we insert the value of b2 = 1−(1−µ)β0
(1−µ)2β1 into the eigenvalues of the Jacobian matrix,

we get the following eigenvalues:14

−1, 1− (1− µ)β0,

Ã
(1− µ)2 β1 (1− β0 − β1)

1− (1− µ)β0 − (1− µ)2 β1

!

13 It can be easily shown that for µ = 1, the eigenvalues are {−1, −1, −1 + β0 + β1}. This turns out to be
the MSV weak E-stability condition for the homogenous agents case.
14 For µ = 0, it turns out the eigenvalues are: {−1, −1 + β0 + (1 + b2)β1, β0 + 2β1b2 − 1}. This is the
result for AR(1) weak E-stability in the homogenous agents case.
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All three of these values are negative when:

β0 >

µ
1

1− µ

¶
(32)

0 >

Ã
(1− µ)2 β1 (1− β0 − β1)

1− (1− µ)β0 − (1− µ)2 β1

!
(33)

Consider inequality 33 for E-stability. We can re-write this equation as

0 >

µ
β1 (1− β0 − β1)

1− (1− µ)β0 − (1− µ)2 β1

¶
.

Let us consider the case where β1 < 0. Since there are some agents that use PLM1, the model

must be stationary. Therefore,

b2 =
1− (1− µ)β0

(1− µ)2 β1
< 1.

This can be further written as

1− (1− µ)β0 − (1− µ)2 β1 > 0.

Therefore, for inequality 33 to hold, it must be that

β0 + β1 < 1.

The stationarity condition is more restrictive than this, so it turns out that the stationarity condition:

β0 <
1

1− µ
− (1− µ)β1

will be one of the conditions for E-stability in this model.

Now consider the case where β1 > 0. For stationarity, it turns out that we need:

1− (1− µ)β0 − (1− µ)2 β1 < 0.

This means that it must be that

1− β0 − β1 > 0

or

β0 < 1− β1.

Our first E-stability condition

β0 >
1

1− µ
will not be met in this case. Therefore, for the AR(1) MEE to be E-stable, the following must

hold:

1

1− µ
< β0 <

1

1− µ
− (1− µ)β1 (34)

β1 < 0. (35)
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When one of these above stated conditions are not met, then either one of the eigenvalues of the

Jacobian matrix are positive making the ODE unstable or the model is not stationary. In this case,

the model is E-unstable. Therefore, for the AR(1) MEE to be E-stable, the parameters must be

contained within the above mentioned set.

Proof of Corollary 1 The derivative from level curve 30 is

∂β0
∂µ

= (1− µ)−2 > 0 (36)

Notice that β0 > (1− µ)−1 for the AR(1) MEE and that β0 < (1− µ)−1 for the MSV MEE. The

critical value of β0 for MSV E-stability increases as µ increases. This increase in µ makes MSV

E-stability less stringent while AR(1) E-stability becomes more stringent.

Proof of Corollary 2 If (β0, β1) is AR(1) E-stable, then β0 > (1− µ0)
−1 and condition 33

holds. Since µ0 ∈ [0, 1), then there exists a µ1 > µ0. It follows that

1

1− µ0
<

1

1− µ1
∈ (1,∞). (37)

Choose µ1 such that (1− µ1)
−1 > β0. Now the model is no longer AR(1) E-stable.

Proof of Proposition 2 For switching to occur we must be in a region where both types

of E-stability exist for some µ ∈ [0, 1]. For the AR(1) MEE to be potentially E-stable for all
µ ∈ [0, 1), it must be that the solution will be stationary for all µ ∈ [0, 1). Therefore, it must be
that β1 < −14β20 as discussed previously. This is the only possible region where the switching
will occur. The second necessary condition for this E-stability switching is that the level curve

βc0 = (1− µ)−1 can cross the point of (β0, β1). Since µ ∈ [0, 1], then βc0 ∈ (1,∞). From this, it
must be that β0 > 1 for switching to occur. Therefore, the bounds of the E-stability switching are

the following: β0 > 1 and β1 < −14β20.

Proof of Proposition 3 In the homogenous expectations case, both the AR(1) and MSV

solutions are weakly E-stable in the set S =
©
(β0, β1) |β0 > 1, β1 < −14β20

ª
. The union of the

two sets describing E-stability of the two solutions, in the heterogeneous expectations case, is:

ES1 ∪ ES2 = ∅. Therefore, both of the solutions can not be E-stable for any (β0, β1). In the
heterogenous expectations case, if β1 < −14β20, then inequality 33 always holds. Since β0 > 1,

there is some µ such that the AR(1) solution is E-stable. Therefore, if β1 < −14β20, then the level
curve distinguishing the difference between MSV and AR(1) E-stability is β0 = (1− µ)−1. The
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derivative of MSE1 is zero if:

2(1− µ)3 (2− (1− µ)β0 (3− (1− µ)β0))σ
2β21 = 0

⇒ 2 (2− (1− µ)β0 (3− (1− µ)β0))σ
2β1 = 0

⇒ (2− (1− µ)β0 (3− (1− µ)β0)) = 0

⇒ µ = 1− 2

β0
and µ = 1− 1

β0

The second solution is exactly the switching point of E-stability of the above model as long as

β1 < −14β20. Checking the SOC, we find that

µ = 1− 2

β0
(38)

is a maximum for theMSE1, while

µ = 1− 1

β0
(39)

is a minimum for theMSE1.

Proof of Proposition 3 From the homogenous agent case, the region of strong E-stability in

the above model is A = {(β0, β1)|β0 < 1, β0 + β1 < 1}. In order for no E-stability switching
to occur, we must be outside of the set S mentioned above. Therefore, it must be that β0 < 1.

Moreover, to have ADE we must always be in a region where the MEE is always E-stable. This

only occurs when we have β0 + β1 < 1. This is the region of strong E-stability for the MSV

solution in the homogenous agents case.

Proof of Corollary 4 The region of strong ADE is contained entirely in the region of MSV

E-stable MEE’s and outside of the region of AR(1) E-stable MEE’s.

6.2 The Stochastic Recursive Algorithm

To show that E-stability is applicable for this model, we must show that stability of the stochastic

recursive algorithm can be determined by exactly the E-stability equation:

dφ

dτ
= T (φ)− φ. (40)
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The model with the two learning rules presented above can be described using recursive least

squares. The model in RLS form is:

φt = φt−1 + t−1
 yt − a1,t−1

S−1t−1zt−1
µ
yt − z0t−1

µ
a2,t−1
b2,t−1

¶¶  (41)

St = St−1 + t−1(ztz0t − St−1) + t−2(
−t
t+ 1

)(ztz
0
t − St−1) (42)

where

φ0t−1 = (a1,t−1, a2,t−1, bt−1);

z0t−1 = (1, yt−1).

Consider a stochastic recursive algorithm of the form

θt = θt−1 + γtQ (t, θt−1,Xt) , (43)

where θt is a vector of parameter estimates, Xt is the state vector, and γt is a deterministic

sequence of gains. Q describes the way in which the estimate θt−1 is updated every period from

the previous period’s observations. The system 41-42 is implicitly in the standard form of the

SRA15 where:

θ = vec(φt St)

Xt =


1
yt
yt−1
vt


γτ = t−1.

The components of Q are the following:

Qφ(t, θt−1,Xt) =

µ
z0t−1T2(φt−1)− a1,t−1 + vt

S−1t−1zt−1(z
0
t−1(T2(φt−1)− φ2,t−1) + vt)

¶
(44)

QS(t, θt−1,Xt) = vec((ztz
0
t − St−1) + t−1(

−t
t+ 1

)(ztz
0
t − St−1)) (45)

15 See Evans and Honkapohja (2001) for details of the stochastic recursive algorithm. See pp. 34-36,
Chapter 6 for technical details, and Chapter 8 for details of the above model.
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where

Q =

µ
Qφ(t, θt−1,Xt)
QS(t, θt−1,Xt)

¶
T2(φt−1) =

µ
Ta2(φt−1)
Tb2(φt−1)

¶
φ2,t−1 =

µ
a2,t−1
b2,t−1

¶
.

We have now set up the T-mapping such that T1 and T2 correspond with the PLM’s of the two

types of agents respectively. Notice that the ALM for the economy is governed entirely by the

T-mapping of the agents with the correctly specified model.

Next, we can determine convergence of the SRA using stochastic approximation. Marcet

and Sarget (1989) have shown how this technique presented in Ljung (1977) can be useful in

the analysis of adaptive learning. The stochastic approximation approach associates an ordinary

differential equation (ODE) with the SRA:

dθ

dτ
= h (θ (τ)) , (46)

where h (θ) is

h (θ) = lim
t→∞EQ (t, θ,Xt) .

Following Evans and Honkapohja (2001), we get the following:

hφ(φ, S) = lim
t→∞E

µ
z0t−1T2(φt−1)− a1,t−1 + vt

S−1t−1zt−1(z
0
t−1(T2(φt−1)− φ2,t−1) + vt)

¶
(47)

hS(φ, S) = lim
t→∞E((ztz

0
t − St−1) + t−1(

−t
t+ 1

)(ztz
0
t − St−1)) (48)

where

h (θ) =

µ
hφ(φ, S)
hS(φ, S)

¶
.

If we assume yt follows a stationary process, then Equation 47 becomes the following:

hφ(φ, S) =

µ
E(yt)− a1,t−1

S−1t−1Ezt−1z
0
t−1(T2(φt−1)− φ2,t−1)

¶
(49)

Since

Eztz
0
t = Ezt−1z0t−1 =

µ
1 E(yt(φ))

E(yt(φ)) E(yt(φ)
2)

¶
≡Mz(φ),

E(yt) = T1(φt−1),

and Ezt−1vt = 0, we have the following:

hφ(φ, S) =

µ
T1(φ)− a1

S−1Mz(φ)(T2(φ)− φ2)

¶
(50)

hS(φ, S) = Mz(φ)− S. (51)
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The associated ODE from the system of SRA’s becomes:

dφ

dτ
=

µ
T1(φ)− a1

S−1Mz(φ)(T2(φ)− φ2)

¶
(52)

dS

dτ
= Mz(φ)− S. (53)

This system is now recursive and note that equation 53 is a globally stable system with S →Mz(φ)

from any starting point. From this fact, it follows that S−1Mz(φ) → I from any starting point

provided that S is invertible along the path. This means that the stability of the system can be

determined entirely by the following ODE:

dφ

dτ
=

µ
T1(φ)− a1
T2(φ)− φ2

¶
= T (φ)− φ. (54)

Therefore, we can find the stability of the system by finding the E-stability conditions.

6.3 Stationarity of the AR(1) MEE

Here we solve for the maximum value for b2. Recall that

b2 =
1− (1− µ)β0

(1− µ)2 β1
. (55)

Therefore,
∂b2
∂µ

=
(1− µ)2 β0β1 + [1− (1− µ)β0] 2 (1− µ)β1

(1− µ)4 β21
(56)

so the maximum is where

(1− µ)2 β0β1 + [1− (1− µ)β0] 2 (1− µ)β1 = 0

From this we get:

µ = 1− 2

β0
. (57)

Therefore,

max b2 =
1− 2

β0
β0³

2
β0

´2
β1

=
−β20
4β1

. (58)

6.4 The ODE and the eigenvalues of the Jacobian matrix

From the T-mapping we can get the following ODE:
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dφ

dτ
= T (φ)− φ

=

 α+µa1(β0+β1+β1(1−µ)b2)+(1−µ)a2(β0+β1+β1(1−µ)b2)
1−(1−µ)b2(β0+(1−µ)β1b2) − a1

α+ µa1(β0 + β1 + β1(1− µ)b2) + (1− µ)a2(β0 + β1 + β1(1− µ)b2)− a2
(1− µ)b2(β0 + (1− µ)β1b2)− b2


To check for stability, we must find the Jacobian matrix of the previous ODE and look at the

eigenvalues of that matrix. I find that the eigenvalues of this matrix are:

Eigenvalues of Jacobian=

−1
(1− µ)β0 + (1− µ)22β1b2 − 1

β1−(β0+(1−µ)b2β1)(−1−(1−µ)b2(1−(1−µ)β0+(1−µ)(−1−(1−µ)b2)β1))−1
(1−(1−µ)b2(β0+(1−µ)b2β1))

All these eigenvalues must have negative real parts. Note that the third eigenvalue has a

restriction that the denominator can not be equal to zero.

6.5 Calculation of the MSE for both of the PLM’s

MSE for the first PLM

PLM1:

MSE1 = E(y − a1)
2

= E(Ta2 + Tb2yt−1 + vt − a1)
2

= E(T 2a2) +E(T 2b2y
2
t−1) +E(v2t ) +E(a21) + 2E(Ta2Tb2yt−1)

−2E(Ta2a1)− 2E(a1Tb2yt−1)
= a22 + b22E(y

2
t−1) + σ2v + a21 + 2a2b2a1 − 2a1a2 − 2a21b2

= a22 +
b22

1− b22
(a22 + 2a1a2b2 + σ2v) + σ2v + a21 + 2a1a2b2 − 2a1a2 − 2a21b2

= (a22 + 2a1a2b
3
2 + σ2v)

1

1− b22
+ a21 + 2a1a2b2 − 2a1a2 − 2a21b2

If b=0 then the MSE from the first predictor becomes:

MSE1 = σ2v (59)
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When we enter the MEE values in for theMSE1 we get the following solution:

MSE1 =
(1− µ)4σ2β21

(1− µ)4β21 − (1− (1− µ)β0)
2

(60)

TheMSE1 is not defined at all values since the denominator may be zero at some values of µ, β0,

and β1. Next, the denominator is solved for zero to see where theMSE1 is undefined.

(1− µ)4β21 − (1− (1− µ)β0)
2 = 0

⇒ ((1− µ)2β1 − 1 + (1− µ)β0)((1− µ)2β1 + 1− (1− µ)β0) = 0

Here are both solutions to the above equation:

⇒ (1− µ)(β0 + (1− µ)β1) = 1

⇒ β1 =
1

(1− µ)2
− 1

(1− µ)
β0

and

⇒ (1− µ)((1− µ)β1 − β0) = −1
⇒ β1 = −

1

(1− µ)2
+

1

(1− µ)
β0

The above equations describe the values where the model goes from stationary to non-stationary.

If we just concern ourselves with values that are stationary, then we will not have to worry about

theMSE1 being undefined.

MSE for the second PLM

PLM2:

MSE2 = E(y − a2 − b2yt−1)2

= E(Ta2 + Tb2yt−1 + vt − a2 − b2yt−1)2

= a22 + b22E(y
2
t−1) + σ2v + a22 + b22E(y

2
t−1) + 2a1a2b2 − 2a22 − 2a1a2b2

−2a1a2b2 − 2b22E(y2t−1) + 2a1a2b2
= σ2v (61)

The mean square error for the second predictor will always be σ2v as long as y follows a stationary

process. This means that theMSE1 ≥ MSE2 for all E-stable stationary values of α, β0, and

β1. This intuitively makes sense because the AR(1) predictor is always unbiased while the MSV

predictor is unbiased only when b2 = 0.
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