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1 Introduction

In this study, I examine the implementation of emission policy in a union

of countries. The production of goods in any country incurs emissions that

pollute all over the union, but efficiency in production in each country can

be improved by research and development which has a random outcome. In

every country, there is a local planner that maximizes welfare and has enough

instrument to control the allocation of resources in the country. In the union,

there are common environmental regulations that compel local planners to

spend some of their resources to pollution abatement.

In particular, I examine the following cases of exercising emission policy:

(i) Laissez-faire. All countries choose their optimal emissions ignoring the

externality through pollution.

(ii) Pareto optimum. In the union, there is a benevolent central planner that

sets emission quotas for all member and is able to transfer resources

between countries.

(iii) Lobbying without emission trade. In the union, there is a self-interested

central planner that sets emission quotas for all countries. That planner

is subject to lobbying and has no financial resources of its own.

(iv) Lobbying with emission trade. In the union, there is a self-interested

central planner that sets emission quotas for all countries, and a market

through which the countries can sell their quotas to each others. The

central planner is subject to lobbying and has no financial resources.

In this model, there are two sources of inefficiency. One is negative exter-

nality through pollution, for which a single country has too much production

with emissions and too little investment in R&D. The second externality

is waste due to lobbying. Given that the central planner consists at least

partly of different households than the rest of the population, political con-

tributions are waste from the viewpoint of the latter. The relative weight of

these sources determine the outcome of the comparison between cases (i)-(iv).

The impact of any environmental policy depends crucially on the exis-

tence of uncertainty. The papers Corsetti (1997), Smith (1996), Turnovsky
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(1995,1999) consider public policy by a growth model where productivity

shocks follows a Wiener process. Soretz (2003) applies that approach to en-

vironmental policy. In one of my earlier publications (Palokangas 2008), I

examine an economic union where member countries produce emissions in

fixed proportion to labor in production and where uncertainty is embodied

in technological change in the form of Poisson processes. As a result of this,

I obtain Pareto-optimal emission taxes for the member countries. In this

paper, I modify Palokangas’ (2008) model so that (i) the central planner is

self-interested and (ii) labor and emissions are different inputs in production.

This paper is organized as follows. Sections 2 and 3 present the general

structure of the union and a single country. Sections 4, 5, 6 and 7 examine

the cases (i)-(iv) above, respectively.

2 The union

I consider a union of fixed number n of similar countries. Each country

j ∈ {1, ..., n} has a fixed labor supply L, of which the amount lj is used in

production and the rest

zj = L− lj (1)

in R&D. I assume that all countries j ∈ {1, ..., n} produce the same good,

for simplicity.1 The total supply of the consumption good in the union, y, is

the sum of the outputs yj of all the member countries:

y =
n∑

j=1

yj. (2)

Let mj be emissions in country j and P be pollution in the union. I assume

that pollution is determined by total emissions in the union,
∑n

j=1 mj:

P =
n∑

j=1

mj. (3)

1With some complication, but with no significant effect on the results, it would be
possible to assume as well that the final consumption good is composed of the outputs of
all countries through CES technology.
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The bigger the number of countries, n, the bigger the negative externality

through pollution. Fos this reason, I say that the decision making in the

union is the more centralized (de-centralized), the smaller (bigger) n.

All households in the union share the same preferences and take income,

prices and the interest rate r as given. Thus, they all behave as if there

were a single representative household for the whole union. The household

chooses its flow of consumption C to maximize its utility starting at time T ,
∫ ∞

T

(log C)e−ρ(θ−T )dθ,

where θ is time and ρ > 0 the constant rate of time preference. This utility

maximization leads to the Euler equation (cf. Grossman and Helpman 1994b)

Ė
E =

dE
dt

1

E = r − ρ with E .
= pC, (4)

where p the consumption price, E household spending and r the interest rate.

The goods market is in equilibrium, if the supply y equals the demand C.

Because in the model there is no money that would pin down the nominal

price level at any time, it is convenient to normalize the households’ total

consumption expenditure in the common market, E , at unity. From y = C,

E = 1, (2) and (4) it then follows that the interest rate r is constant:

E = 1, p =
1

C
=

1

y
= 1

/ n∑
j=1

yj, r = ρ > 0. (5)

3 The countries

Each country j consists of the production sector, which makes the consump-

tion good, and the abatement sector, which uses resources to meet the envi-

ronment regulations in the union. Because pollution P employs resources in

the abatement sector, it decreases production yj. I assume that the marginal

rate of substitution between production and pollution is given by

∂yj/∂P = −δyj/P, (6)

where δ > 0 is a constant. The efficiency of production in country j is aγj ,

where a > 1 is a constant and γj is the serial number of technology. In the
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advent of technological change in country j, this efficiency increases from aγj

to aγj+1. Noting this and (6), total output in country j is a function of labor

input lj, emissions mj and the level of productivity, aγj , as follows:

yj = aγjf(lj,mj)P
−δ, fl

.
= ∂f/∂lj > 0, fm

.
= ∂f/∂mj > 0,

fll
.
=

∂2f

∂l2j
< 0, flm

.
=

∂2f

∂lj∂mj

> 0, fmm
.
=

∂2f

∂m2
j

< 0,

flfm

flmf
= σ ∈ (0, 1) ∪ (1,∞),

mjfm(lj,mj)

f(lj, mj)
=

mj

lj

fm(lj/mj, 1)

f(lj/mj, 1)
.
= ξ

(mj

lj

)
,

ljfl(lj,mj)

f(lj,mj)
= 1− mjfm(lj,mj)

f(lj,mj)
, ξ′

(mj

lj

) {
> 0 for σ > 1,
< 0 for σ < 1,

(7)

where f is a CES production function, σ the constant elasticity of substitu-

tion between labor and emissions, δ the constant elasticity of output with

respect to pollution and P−δ the abatement factor.

The local planner in country j (hereafter local planner j) pays political

contributions Rj to the central planner of the union. Real income in country j

is therefore given by yj−Rj, where yj is output and Rj political contributions.

Noting (7), I obtain local planner j’s utility from an infinite stream of real

income beginning at time T as follows:

E

∫ ∞

T

(yj −Rj)e
−r(t−T )dt = E

∫ ∞

T

[
aγjf(lj,mj)P

−δ −Rj

]
e−r(t−T )dt, (8)

where E is the expectation operator and r > 0 the interest rate [cf. (5)].

The improvement of technology in country j depends on labor devoted

to R&D, zj. In a small period of time dt, the probability that R&D leads to

development of a new technology is given by λzjdt, while the probability that

R&D remains without success is given by 1− λzjdt, where λ is productivity

in R&D. Noting (1), this defines a Poisson process χj with

dχj =

{
1 with probability λzjdt = λ(L− lj)dt,
0 with probability 1− λzjdt = 1− λ(L− lj)dt,

(9)

where dχj is the increment of the process χj. The expected growth rate of

productivity aγj in the production sector in the stationary state is given by

gj
.
= E

[
log aγ+1 − log aγ

]
= (log a)λzj = (log a)λ(L− lj),

where E is the expectation operator (cf. Aghion and Howitt 1998), p. 59,

and Wälde (1999). In other words:

4



Proposition 1 The expected growth rate gj of country j’s output is in fixed

proportion to labor devoted to R &D, zj = L− lj, in that country.

Given this result, I can use labor devoted to R&D, zj, as a proxy for the

growth rate in each country j.

4 Laissez-faire

If there is laissez-faire, there is no lobbying and no political contributions

either, Rj = 0 for all j. Local planner j then maximizes its utility (8) by

emissions mj and labor input lj subject to Poisson technological change (9),

given emissions in the rest of the union,

m−j
.
=

∑

k 6=j

mk. (10)

The value of the optimal program for planner j starting at time T is then

Ωj(γj,m−j, n, T )
.
= max

(mj , lj) s.t. (9)
E

∫ ∞

T

aγjf(lj,mj)(mj + m−j)
−δe−r(t−T )dt.

(11)

I denote Ωj = Ωj(γj,m−j, n, T ) and Ω̃j = Ωj(γj + 1,m−j, n, T ). The

Bellman equation corresponding to the optimal program (11) is

rΩj = max
mj ,lj

Φj(mj, lj, γj,m−j, n, T ), (12)

where

Φj(mj, lj, γj,m−j, n, T ) = aγjf(lj,mj)(mj + m−j)
−δ + λ(L− lj)

[
Ω̃j − Ωj

]
.

(13)

This leads to the first-order conditions

∂Φj

∂mj

=
aγjfm(lj,mj)

(mj + m−j)δ
− δaγjf(lj,mj)

(mj + m−j)δ+1
= 0, (14)

∂Φj

∂lj
=

aγjfl(lj,mj)

(mj + m−j)δ
− λ

[
Ω̃j − Ωj

]
= 0. (15)
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To solve the dynamic program, I try the solution that the value of the

program, Ωj, is in fixed proportion ϕj > 0 to instantaneous utility:

Ωj(γj,m−j, n, T ) = ϕja
γjf(lj,mj)(mj + m−j)

−δ. (16)

This implies

(Ω̃j − Ωj)/Ωj = a− 1. (17)

Inserting (16) and (17) into the Bellman equation (12) and (13) yields

1/ϕj = r + (1− a)λ(L− lj) > 0. (18)

Inserting (16) and (17) into the first-order conditions (14) and (15) yields

mj

Ωj

∂Φj

∂mj

=
1

ϕj

[
mjfm(lj,mj)

f(lj,mj)
− δmj

mj + m−j

]
= 0,

lj
Ωj

∂Φj

∂lj
=

1

ϕj

ljfl(lj,mj)

f(lj,mj)
− (a− 1)λlj = 0. (19)

Because there is symmetry throughout all countries j = 1, ..., n in the

model, it is true that all countries have equal emissions mj = m in equilib-

rium. Inserting this into (18) and (19) and noting (1), (7) and (10) yield

ξ
(mj

lj

)
.
=

mjfm(lj,mj)

f(lj,mj)
=

δmj

mj + m−j

=
δ

n
∈ (0, 1), (20)

(a− 1)λlj =
[
r + (1− a)λ(L− lj)

] ljfl

f
=

[
r + (1− a)λ(L− lj)

][
1− mjfm

f

]

=
[
r + (1− a)λ(L− lj)

]
(1− δ/n). (21)

Solving for mj/lj from (20) and lj from (21) yields

mj

lj
= ξ−1

( δ

n

)
.
= ϕ(n),

dϕ

dn
= − δ

n2ξ′
=

{
< 0 for σ > 1,
> 0 for 0 < σ < 1,

lj = l(n)
.
=

r + (1− a)λL

(a− 1)λ︸ ︷︷ ︸
+

(n

δ
− 1

︸ ︷︷ ︸
+

)
> 0, r + (1− a)λL > 0, l′ > 0,

z(n) = L− l(n), z′ < 0, mj = m(n)
.
= ϕ(n)l(n),

m′ = lϕ′ + ϕl′ > 0 for 0 < σ < 1. (22)

These results can be rephrased as follows:
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Proposition 2 A higher level of centralization (i.e. a decrease in n)

(a) decreases the level of output, lj (i.e. l′ > 0), but increases the growth

rate, zj (i.e. z′ < 0),

(b) decreases emissions mj unambiguously (i.e. m′ > 0), when labor and

emissions are gross complements, 0 < σ < 1,

(c) increases emissions per labor input, mj/lj (i.e. ϕ′ < 0), when labor and

emissions are gross substitutes, σ > 1.

A higher level of centralization helps to internalize the effect of pollution.

In that case, the local planners alleviate pollution by transferring resources

from production into R&D. This decreases output, but speeds up economic

growth. When labor and emissions are gross complements, the decrease of

labor in production decreases emissions as well. When labor and emissions

are gross substitutes, labor transferred from production into R&D is partly

replaced by emissions. This increases the emissions-labor ratio in production.

5 Pareto optimum

Assume a benevolent central planner which has enough instruments to trans-

fer income between countries.2 Because the countries do not pay political

contributions to a benevolent planner, Rj = 0 for all j, and because such a

planner can internalize the externality of pollution entirely, the outcome is

the Pareto optimum where the union behaves as if there were one jurisdiction

only, n = 1. Noting (22), labor input in production at the Pareto optimum

is given by

l(1)
.
=

r + (1− a)λL

(a− 1)λ

(1

δ
− 1

)
. (23)

Furthermore, proposition 2 has the following corollary:

Proposition 3 The growth rate z is the highest at the Pareto optimum.

2In the model, it would be sufficient if the central planner could tax consumption in al
countries at any rate and then use the revenue for subsidizing R&D.
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For the remainder of this paper, I assume that the central planner is self-

interested, not benevolent. In section 6, I assume that the central planner

taylors a specific emission quota mj for each country, but the countries cannot

trade with these quotas. In section 7, I introduce emission trade.

6 Lobbying with emission quotas

Following Grossman and Helpman (1994), I assume that the central planner

of the union has its own interests and collects political contributions. Local

planner j in each country j ∈ {1, ..., n} pays political contributions Rj to the

central planner which decides on a specific emission quota mj for each country

j ∈ {1, ..., n}. The order of this common agency game is the following. First,

the local planners set their political contributions (R1, ..., Rn) conditional

on the central planner’s prospective policy (m1, ..., mn). Second, the central

planners sets the quotas (m1, ..., mn) and collect the contributions for its

personal consumption. Third, the local planners maximize their utilities

given the level of political contributions (R1, ..., Rn). This game is solved in

reversed order as follows. Subsection 6.1 considers a local planner, subsection

6.2 the central planner and subsection 6.3 the political equilibrium.

6.1 The local planners

Local planner j maximizes its utility (8) by labor input lj subject to Poisson

technological change (9) on the assumption that the interest rate r, the quotas

m1, ..., mn, pollution P =
∑

j mj [cf. (3)] and and its political contributions

Rj are kept constant. It is equivalent to maximize

E

∫ ∞

T

aγjf(lj, mj)P
−δe−r(t−T )dt

by lj subject to (9), given r, mj, P and Rj. The value of the optimal program

for local planner j starting at time T can then be defined as follows:

Γj(γj,mj, P, T ) = max
lj s.t. (9)

E

∫ ∞

T

aγjf(lj,mj)P
−δe−r(t−T )dt. (24)
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I denote Γj = Γj(γj,mj, P, T ) and Γ̃j = Γj(γj + 1, , mj, P, T ). The Bell-

man equation corresponding to the optimal program (24) is

rΓj = max
lj

Ψj(lj, γj,mj, P, T ), (25)

where

Ψj(lj, γj,mj, P, T ) = aγjf(lj,mj)P
−δ + λ(L− lj)

[
Γ̃j − Γj

]
. (26)

This leads to the first-order condition

∂Ψj

∂lj
= aγjfl(lj,mj)P

−δ − λ
[
Γ̃j − Γj

]
= 0. (27)

To solve the dynamic program, I try the solution that the value of the

program, Γj, is in fixed proportion ϑj > 0 to instantaneous utility:

Γj(γj,mj, P, T ) = ϑja
γjf(lj,mj)P

−δ,
∂Γj

∂mj

=
fm(lj,mj)

f(lj,mj)
Γj,

∂Γj

∂P
= −δ

Γj

P
.

(28)

This implies

(Γ̃j − Γj)/Γj = a− 1. (29)

Inserting (28) and (29) into the Bellman equation (25) and (26) yields

1/ϑj = r + (1− a)λ(L− lj) > 0. (30)

Inserting (28), (29) and (30) into the first-order conditions (27) and noting

(7), one obtains

lj
Γj

∂Ψj

∂lj
=

1

ϑj

ljfl(lj,mj)

f(lj,mj)
− (a− 1)λlj =

1

ϑj

[
1− ξ

(mj

lj

)]
− (a− 1)λlj

=
[
r + (1− a)λ(L− lj)

][
1− ξ

(mj

lj

)]
− (a− 1)λlj = 0. (31)

Noting (3), (7), (24) and (28), local planner j’s utility (8) becomes

Υj(Rj,m1, ..., mn) = Γj(γj, mj, P, T )−
∫ ∞

T

Rje
−r(t−T )dt

= Γj(γj, mj, P, T )−Rj/r,

∂Υj

∂mj

=
∂Γj

∂mj

+
∂Γj

∂P

∂P

∂mj

= Γj

[
fm(lj,mj)

f(lj,mj)
− δ

P

∂P

∂mj

]
=

Γj

mj

[
ξ
(mj

lj

)
− δmj

P

]

,

∂Υj

∂mk

=
∂Γj

∂P

∂P

∂mk

= −δΓj

P

∂P

∂mk

= −δΓj

P
for k 6= j,

∂Υj

∂Rj

= −1

r
. (32)
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6.2 The self-interested central planner

The present value the expected flow of the real political contributions Rj

from all countries j at time T is given by

E

∫ ∞

T

n∑
j=1

Rje
−r(θ−T )dθ. (33)

Given this, (3) and (32), I specify the central planner’s utility function as:

G(m1, ...,mn, R1, ..., Rn)
.
= E

∫ ∞

T

n∑
j=1

Rje
−r(θ−T )dθ +

n∑
j=1

ζjΥ
j(Rj,m1, ..., mn)

=
1

r

n∑
j=1

Rj +
n∑

j=1

ζjΥ
j(Rj,m1, ..., mn), (34)

where constants ζj ≥ 0 are the weight of planner j’s welfare in the central

planner’s preferences. Grossman and Helpman’s (1994a) objective function

(34) is widely used in models of common agency and it has been justified

as follows. The politicians are mainly interested in their own income which

consists of the contributions from the public,
∑

j Rj, but because they must

defend their position in general elections, they must sometimes take the util-

ities of the interest groups Υj into account directly. The linearity of (34) in∑
j Rj is assumed, for simplicity.

6.3 The political equilibrium

Each local planner j tries to affect the central planner by its contributions Rj.

The contribution schedules are therefore functions of the central planner’s

policy variables (= the emission quotas mj):

Rj(m1, ..., mn), j = 1, ..., n. (35)

Following proposition 1 of Dixit, Grossman and Helpman (1997), a subgame

perfect Nash equilibrium for this game is a set of contribution schedules

Rj(m1, ..., mn) and a policy (m1, ..., mn) such that the following conditions

(i)− (iv) hold:

(i) Contributions Rj are non-negative but no more than the contributor’s

income, Υj ≥ 0.
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(ii) The policy (m1, ...,mn) maximizes the central planner’s welfare (34)

taking the contribution schedules Rj as given,

(m1, ..., mn)

∈ arg max
m1,...,mn

G
(
m1, ..., mn, R1(m1, ..., mn), ..., Rn(m1, ..., mn)

)
; (36)

(iii) Local planner j cannot have a feasible strategy Rj(m1, ..., mn) that

yields it a higher level of utility than in equilibrium, given the central

planner’s anticipated decision rule,

(m1, ..., mn) = arg max
m1,...,mn

Υj
(
Rj(m1, ..., mn),m1, ..., mn

)
. (37)

(iv) Local planner j provides the central planner at least with the level

of utility than in the case it offers nothing (Rj = 0), and the central

planner responds optimally given the other local planners contribution

functions,

G
(
m1, ..., mn, R1(m1, ...,mn), ..., Rn(m1, ...,mn)

)

≥ max
m1,...,mn

G
(
m1, ..., mn, R1(m1, ...,mn), ..., Rj−1(m1, ..., mn), 0,

Rj+1(m1, ..., mn), ..., Rn(m1, ..., mn)
)
.

Noting (32), the conditions (37) are equivalent to

0 =
∂Υj

∂Rj

∂Rj

∂mk

+
∂Υj

∂mj

= −1

r

∂Rj

∂mk

+
∂Υj

∂mk

for all k,

and

∂Rj

∂mj

= r
∂Υj

∂mj

= r
Γj

mj

[
ξ
(mj

lj

)
− δmj

P

]

,

∂Rj

∂mk

= −rδΓj

P
for k 6= j.

Given these equations, one obtains

∂

∂mk

n∑
j=1

Rj =
n∑

j=1

∂Rj

∂mk

=
∂Rk

∂mk

+
∑

j 6=k

∂Rj

∂mk

= r
Γk

mk

[
ξ
(mk

lk

)
− δmk

P

]
−

∑

j 6=k

rδΓj

P
= r

Γk

mk

[
ξ
(mk

lk

)
− δmk

P

1

Γk

n∑
j=1

Γj

]

.

(38)
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Noting (35) and (37), the central planner’s utility function (34) becomes

G(m1, ..., mn)
.
= G

(
m1, ..., mn, R1(m1, ...,mn), ..., Rn(m1, ...,mn)

)

=
1

r

n∑
j=1

Rj(m1, ..., mn) +
n∑

j=1

ζj max
m1,...,mn

Υj
(
Rj(m1, ..., mn),m1, ..., mn

)
.

(39)

Noting (38) and (63), the equilibrium conditions (36) are equivalent to the

first-order conditions

∂G
∂mk

=
1

r

∂

∂mk

n∑
j=1

Rj =
Γk

mk

[
ξ
(mk

lk

)
− δmk

P

1

Γk

n∑
j=1

Γj

]
= 0 for all k. (40)

The political equilibrium is now specified by the equilibrium conditions

(31) for all local planners j = 1, ..., n plus those (40) for the central planner.

In this system, there are 2n unknowns, (lj,mj) for j = 1, ..., n. I assume, for

simplicity, uniform initial productivity in the union, γk = γ1 for all k 6= 1.

In the system, noting (28), this yields perfect symmetry lj = l, mk = m and

Γj = Γ for the countries j = 1, ..., n in equilibrium. Given this and (3), the

equilibrium conditions (31) and (40) change into

ξ
(mj

lj

)
=

δmk

P

1

Γk

n∑
j=1

Γj = δ
mk

P
n = δ,

(a− 1)λlj
r + (1− a)λ(L− lj)

= 1− mfm

f
= 1− ξ = 1− δ. (41)

The results (41) are the same as the result (20) and (21) with n = 1. This

shows that m, l and z = L− l are the same as at the Pareto optimum (23):

Proposition 4 In the case of lobbying with given emission quotas, emissions

m and the growth rate z are socially optimal.

The introduction of the central planner as a decision maker for emissions

eliminates the externality through pollution. This effect is the same for both

a benevolent and a self-interested central planner.

In the case of lobbying, the countries pay political contributions, Rj >

0 for all j, while in the case of Pareto-optimal policy, there are no such

contributions, Rj = 0 for all j. If the central planner consists of different

12



households than the rest of the population (even partly), one can define

political contributions are a waste from the viewpoint of the latter. Thus,

there is the following corollary for proposition 4:

Proposition 5 In the case of lobbying with given emission quotas, welfare

is sub-optimal.

7 Lobbying with emission trade

In this section, I assume that the central planner defines a quota for each

country’s emissions, but the countries can trade emissions among themselves.

To enable a stationary state equilibrium in the model, I assume that the

quotas are in fixed proportion to the level of productivity aγj so that more

advances countries get tighter restrictions. Therefore, the quota for country

j’s productivity-adjusted emissions mja
γj is given by qj. When country j

has excess quotas, qj > mja
γj , it can sell the difference qj − mja

γj to the

other members of the union at the price p. Correspondingly, when country j

has excess emissions, mja
γj − qj, it must buy the difference mja

γj − qj from

other countries at the price p. At the level of the whole union, productivity-

adjusted emissions
∑n

j=1 mja
γj are equal to total quotas

∑n
j=1 qj,

n∑
j=1

mja
γj =

n∑
j=1

qj. (42)

Local planner j in each country j ∈ {1, ..., n} pays political contributions

Rj to the central planner. The order of this common agency game is the fol-

lowing. First, the local planners set their political contributions (R1, ..., Rn)

conditional on the central planner’s prospective policy (q1, ..., qn). Second,

the central planners sets the quotas (q1, ..., qn) and collect the contributions

for its personal consumption. Third, the local planners maximize their utili-

ties given the level of political contributions (R1, ..., Rn). This game is solved

in reversed order as follows. Subsection 7.1 considers a local planner, sub-

section 7.2 the central planner and subsection 7.3 the political equilibrium.

13



7.1 The local planners

Planner j’s utility starting at time T , (8), can be extended into

Υj .
= E

∫ ∞

T

[
aγjf(lj,mj)(mj + m−j)

−δ + p
(
qj −mja

γj
)−Rj

]
e−r(t−T )dt,

(43)

where p(qj − mja
γj) is country j’s net income from emission trade. Local

planner j maximizes its utility (43) by labor input lj and emissions mj subject

to Poisson technological change (9) on the assumption that the interest rate

r, the quotas q1, ..., qn, the emission price p, emissions in the rest of the union,

m−j, and its political contributions Rj are kept constant. It is equivalent to

maximize
∫ ∞

T

aγj
[
f(lj,mj)(mj + m−j)

−δ − pmj

]
e−r(t−T )dt

by (lj,mj) subject to (9), given r, q1, ..., qn, p, m−j and Rj. The value of the

optimal program for local planner j can then be defined as follows:

Γj(γj, p,m−j, T )

= max
(mj , lj) s.t. (9)

E

∫ ∞

T

aγj
[
f(lj,mj)(mj + m−j)

−δ − pmj

]
e−r(t−T )dt. (44)

I denote Γj = Γj(γj, p, m−j, T ) and Γ̃j = Γj(γj + 1, p,m−j, T ). The

Bellman equation corresponding to the optimal program (44) is

rΓj = max
lj ,mj

Ψj(lj, γj, p, m−j, T ), (45)

where

Ψj(lj, γj, p,m−j, T )

= aγj
[
f(lj,mj)(mj + m−j)

−δ − pmj

]
+ λ(L− lj)

[
Γ̃j − Γj

]
. (46)

This leads to the first-order conditions

∂Ψj

∂mj

= aγj

[
fm(lj, mj)

(mj + m−j)δ
− δf(lj,mj)

(mj + m−j)δ+1
− p

]
= 0, (47)

∂Ψj

∂lj
=

aγjfl(lj,mj)

(mj + m−j)δ
− λ

[
Γ̃j − Γj

]
= 0. (48)

14



I try the solution that the value of the program, Γj, is given by

Γj(γj, p, m−j, T ) = ϑja
γj

[
f(lj,mj)

(mj + m−j)δ
− pmj

]
,

∂Γj

∂p
= −ϑja

γjmj, (49)

where ϑj > 0 is independent of the control variables. This implies

(Γ̃j − Γj)/Γj = a− 1. (50)

Inserting (49) and (50) into the Bellman equation (45) and (46) yields

1/ϑj = r + (1− a)λ(L− lj) > 0. (51)

Given (49), (50) and (51) the first-order conditions (47) and (48) change into

p =
fm(lj,mj)

(mj + m−j)δ
− δf(lj,mj)

(mj + m−j)δ+1
, (52)

1

Γj

∂Ψj

∂lj
=

r + (1− a)λ(L− lj)

f(lj,mj)(mj + m−j)−δ − pmj

fl(lj,mj)

(mj + m−j)δ
− (a− 1)λ = 0. (53)

7.2 The self-interested central planner

In the system (10), (52) and (53) for j = 1, .., n, there are 3n equations, 3n

unknown variables, lj, mj and m−j for j = 1, .., n, and the known variable p.

This and the symmetry throughout j = 1, ..., n imply

mj = m(p) and lj = l(p) for j = 1, ..., n. (54)

Inserting this into (42) yields

m(p)
n∑

`=1

aγ` =
∑
j=1

qj

and

p = m−1

( n∑
j=1

qj

/ n∑

`=1

aγ`

)
,

∂p

∂qj

=
1

m′ ∑n
`=1 aγ`

, (55)

where m−1 is the inverse function of m.
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Noting (44), (49) and (55), Local planner j’s utility (43) changes into

∆j(Rj, q1, ..., qn) = Υj = Γj(γj, p, m−j, T ) +

∫ ∞

T

(pqj −Rj)e
−r(t−T )dt

= Γj(γj, p, m−j, T ) +
1

r
(pqj −Rj),

∂∆j

∂Rj

= −1

r
,

∂∆j

∂qj

=
p

r
+

(
qj

r
+

∂Γj

∂p

)
∂p

∂qj

=
p

r
+

(
qj

r
− ϑja

γjmj

)
∂p

∂qj

=
p

r
+

qj/r −mja
γjϑj

m′ ∑n
`=1 aγ`

,

∂∆j

∂qk

=

(
qj

r
+

∂Γj

∂p

)
∂p

∂qk

=
qj/r −mja

γjϑj

m′ ∑n
`=1 aγ`

for k 6= j. (56)

From the conditions (51), (52) and (53) it follows that labor input lj and

emissions mj in production are constant over time for all countries j.

The local planners j = 1, ..., n lobby the central planner which decides on

the emission quotas (q1, ..., qn). Following Grossman and Helpman (1994),

I assume that the central planner has its own interests and collects contri-

butions (R1, ..., Rn) from the local planners. Given this, I specify Grossman

and Helpman’s (1994) utility function for the central planner as follows:

G(q1, ..., qn, R1, ..., Rn)
.
= E

∫ ∞

T

n∑
j=1

Rje
−r(θ−T )dθ +

n∑
j=1

ζj∆
j(Rj, q1, ..., qn)

=
1

r

n∑
j=1

Rj +
n∑

j=1

ζj∆
j(Rj, q1, ..., qn), (57)

where constants ζj ≥ 0 is the weight of planner j’s welfare.

7.3 The political equilibrium

Each local planner j tries to affect the central planner by its contributions Rj.

The contribution schedules are therefore functions of the central planner’s

policy variables, the emission quotas mj:

Rj(q1, ..., qn), j = 1, ..., n. (58)

The central planner maximizes its utility function (57) by (q1, ..., qn), given

the contribution schedules (58). A subgame perfect Nash equilibrium for this
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game is a set of contribution schedules Rj(q1, ..., qn) and policy (q1, ..., qn) such

that the conditions (i)− (iv) in subsection 6.3 hold, with (m1, ..., mn) being

replaced by (q1, ..., qn). Thus, it must be true that ∆j ≥ 0 and

(q1, ..., qn) ∈ arg max
q1,...,qn

G
(
q1, ..., qn, R1(q1, ..., qn), ..., Rn(q1, ..., qn)

)
; (59)

(q1, ..., qn) = arg max
q1,...,qn

∆j
(
Rj(q1, ..., qn), q1, ..., qn

)
. (60)

G
(
q1, ..., qn, R1(q1, ..., qn), ..., Rn(q1, ..., qn)

)

≥ max
q1,...,qn

G
(
q1, ..., qn, R1(q1, ..., qn), ..., Rj−1(q1, ..., qn), 0,

Rj+1(q1, ..., qn), ..., Rn(q1, ..., qn)
)
.

Noting (56), the conditions (60) are equivalent to

0 =
∂∆j

∂Rj

∂Rj

∂qk

+
∂∆j

∂qk

= −1

r

∂Rj

∂qk

+
∂∆j

∂qk

for all j and k,

and

∂Rj

∂qj

= r
∂∆j

∂qj

= p +
qj − rmaγjϑj

m′ ∑n
`=1 aγ`

,
∂Rj

∂qk

= r
∂∆j

∂qk

=
qj − rmaγjϑj

m′ ∑n
`=1 aγ`

for k 6= j,

(61)

which suggests that in equilibrium the change in the lobby’s contribution

(Rj) due to a change in quota mj is equal to the change in the lobby’s rent

∆j due to this same fact, holding the contribution Rj constant.

Given (1), (3), (51) and (54), it is true that mj = m, m−j = (n − 1)m,

lj = l, zj = z = L− l, ϑj = ϑ and P = nm. In the stationary state, all these

variables must be kept constant over time. Given (54) and (55), the ratio

n∑
j=1

qj

/ n∑

`=1

aγ` = m

is then kept constant over time. This is true, if qj = maγj for all j. Thus, in

the vicinity of the stationary state, from (51), (54) and (61) it follows that

∂

∂qk

n∑
j=1

Rj =
∂Rk

∂qk

+
∑

j 6=k

∂Rj

∂qk

= p +
qk − rmaγkϑk

m′ ∑n
`=1 aγ`

+
∑

j 6=k

qk − rmaγkϑk

m′ ∑n
`=1 aγ`

= p +
n∑

j=1

qk − rϑkmaγk

m′ ∑n
`=1 aγ`

= p +
n∑

j=1

(1− rϑ)maγk

m′ ∑n
`=1 aγ`

= p + (1− rϑ)
m

m′
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= p +

[
1− r

1 + (1− a)λ(L− l)

]
m

m′ = p +
(1− a)λ(L− l)

1 + (1− a)λ(L− l)

m(p)

m′(p)
. (62)

Noting (58) and (60), the central planner’s utility function (57) becomes

G(q1, ..., qn)
.
= G

(
q1, ..., qn, R1(q1, ..., qn), ..., Rn(q1, ..., qn)

)

=
1

r

n∑
j=1

Rj(q1, ..., qn) +
n∑

j=1

ζj max
q1,...,qn

∆j
(
Rj(q1, ..., qn), q1, ..., qn

)
. (63)

Noting (62) and (63), the equilibrium conditions (59) are equivalent to

∂G
∂qk

=
1

r

∂

∂qk

n∑
j=1

Rj = p +
(1− a)λ(L− l)

1 + (1− a)λ(L− l)

m(p)

m′(p)
= 0.

Thus, the equilibrium price p is determined by

pm′(p)

m(p)
=

(a− 1)λ(L− l)

1 + (1− a)λ(L− l)
.

Given (7), local planner j’s first-order conditions (52) and (53) become

ξ
(m

l

)
=

mfm(l,m)

f(l, m)
= δ

m

P
+

pmP δ

f
=

δ

n
+

pmP δ

f(l,m)
>

δ

n
, (64)

1− ξ
(m

l

)
=

lfl(l, m)

f(l, m)
=

(a− 1)λl

r + (1− a)λ(L− l)

[
1− pmP δ

f(l, m)

]

=
(a− 1)λl

r + (1− a)λ(L− l)

[
1− ξ

(m

l

)
+

δ

n

]

,

l =
r + (1− a)λL

(a− 1)λ

1− ξ(m/l)

δ/n
<

r + (1− a)λL

(a− 1)λ

(n

δ
− 1

)
. (65)

The comparison of the equilibrium in the case of laissez-faire, (20) and (21),

to that in the case of emission trade, (64) and (65), shows the following.

First, l is equal to

r + (1− a)λL

(a− 1)λ

(n

δ
− 1

)
(66)

in the case of laissez-faire, but smaller than (66) in the case of emission trade.

Second, in the case of no emission policy, the function ξ(m/l) is equal to δ
n
,

but in the case of emission trade, it higher than δ
n
. Because ξ′ > 0 (< 0)

for σ > 1 (0 < σ < 1) by (7), it follows that m/l is bigger (smaller) with

emission trade than in with laissez-faire for σ > 1 (0 < σ < 1). These results

can be rephrased as follows:
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Proposition 6 In the lobbying equilibrium with emission trade,

(a) the level of employment in production, l, is lower, but the growth rate

z = L− l higher,

(b) the level of emissions, m, is lower when labor and emissions are gross

complements (i.e. 0 < σ < 1),

(c) the emissions-labor ratio m/l is higher when labor and emissions are

gross substitutes (i.e. σ > 1),

than with laissez-faire.

With emission trade, one more unit of R&D costs less in terms of lost output.

Thus, emission trade boosts R&D and decreases labor in production. When

labor and emissions are gross complements, a smaller labor input in produc-

tion leads to smaller emissions as well. When labor and emissions are gross

substitutes, labor transferred from production into R&D is partly replaced

by emissions and the emissions-labor ratio increases.

Finally, given (23), l is bigger and the growth rate z = N − l smaller in

the case of lobbying with emission trade than in at Pareto optimum if and

only if

r + (1− a)λL

(a− 1)λ

1− ξ

δ/n
>

r + (1− a)λL

(a− 1)λ

(1

δ
− 1

)
.

This is equivalent to n > (1 − δ)/(1 − ξ). The proportion of emissions

in technology, ξ
.
= mfm/f , is very likely less than 1

2
, and the elasticity of

output with respect to pollution through abatement, δ, cannot be greater

than one. Thus, with a large enough number of countries, n, it is true that

n > 2(1− δ) ≥ (1− δ)/(1− ξ) and I conclude:

Proposition 7 In the lobbying equilibrium with emission trade, the growth

rate z is sub-optimal.

Because with emission trade the levels of emissions are decided at the level of

countries rather than at the level of the union, the externality through pol-

lution cannot be internalized. Consequently, the growth rate is then smaller

than at the Pareto optimum.
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8 Conclusions

A higher level of centralization decreases the level of output, but increases

the growth rate, increases emissions per labor input, when labor and emis-

sions are gross substitutes, and decreases the level of emissions unambigu-

ously, when labor and emissions are gross complements. A higher level of

centralization helps to internalize the effect of pollution. In that case, a

local planner alleviates pollution by transferring resources from production

into R&D. This will speed up economic growth. When labor and emissions

are gross substitutes, the transfer of resources from production into R&D

is partly outweighed by higher emissions so that the emissions-labor ratio

in production rises. When labor and emissions are gross complements, the

decrease of labor in production decreases emissions as well.

In Pareto optimum, the union of countries behaves as if there were only

one jurisdiction. Given the result above, the level of output is then at the

lowest, but the growth rate at the highest level in Pareto optimum. Further-

more, increases emissions per labor input are at the highest level, when labor

and emissions are gross substitutes, but the level of emissions at the lowest

level, when labor and emissions are gross complements in Pareto optimum.

In the case of lobbying with given emission quotas, the emissions-labor

ratio, the growth rate, total consumption and pollution are the same as in

the case of Pareto-optimal policy. The introduction of the central planner as

a decision maker for emissions eliminates the externality through pollution.

This effect is the same for both a benevolent and a self-interested central

planner. On the other hand, the welfare is lower in the case of lobbying with

given emission quotas than in the case of Pareto-optimal policy. In the case

of lobbying, the countries pay political contributions, while in the case of

Pareto-optimal policy, there are no such contributions. If the central planner

consists of different households than the rest of the population (even partly),

political contributions are a waste from the viewpoint of the latter.

With emission trade, one more unit of R&D costs less in terms of lost

output. Thus, emission trade boosts R&D and decreases labor in production.

When labor and emissions are gross complements, a smaller labor input in

production leads to smaller emissions as well. When labor and emissions

are gross substitutes, labor transferred from production into R&D is partly
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replaced by emissions and the emissions-labor ratio increases. Because with

emission trade the levels of emissions are decided at the level of countries

rather than at the level of the union, the externality through pollution cannot

be internalized. Consequently, the growth rate is then smaller than at the

Pareto optimum.

References:

Aghion, P., and Howitt, P. Endogenous Growth Theory. MIT Press (Cam-
bridge, Massachusetts, 1998).

Corsetti, G. “A portfolio approach to endogenous growth: equilibrium and
optimal policy.” Journal of Economic Dynamics and Control, 21 (1997):
1627–1644.

Dixit, A., and Pindyck, K. Investment under Uncertainty. Princeton Uni-
versity Press (Princeton, 1994).

Dixit, A., Grossman, G.M. and Helpman, E. “Common agency and coordina-
tion: general theory and application to management policy making.” Journal
of Political Economy, 105 (1997): 752-769.

Grossman, G.M. and Helpman, E. “Protection for sale.” American Economic
Review, 84 (1994a): 833-850.

Grossman, G. and Helpman, E. Innovation and Growth. MIT Press (Cam-
bridge, Massachusetts, 1994b).

Michel, P., and Rotillon, G. “Disutility of pollution and endogenous growth.”
Environmental and Resource Economics, 6 (1995): 25–51.

Palokangas, T. “Emission Policy in an Economic Union with Poisson Tech-
nological Change.” Applied Mathematics and Computation (2008): 589–594.

Smith, W.T. “Feasibility and transversality conditions for models of portfolio
choice with non-expected utility in continuous time.” Economic Letters, 53
(1996): 123–131.

Soretz, S. “Stochastic pollution and environmental care in an endogenous
growth model.” The Manchester School, 71 (2003): 448–469.

Turnovsky, S.J. Methods of Macroeconomic Dynamics. MIT Press (Cam-
bridge, Massachusetts, 1995).

Turnovsky, S.J. “On the role of government in a stochastically growing econ-
omy.” Journal of Economic Dynamics and Control, 104 (1999): 275–298.
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