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Biodiversity Conservation in Boreal Forests:  Optimal Rotation Age 

and Volume of Retention Trees 
 
Abstract 
This paper examines the economics of biodiversity conservation at the stand level. We 
extend the Hartman model to take into account green tree retention as a means of 
creating new structural elements of old and decaying wood, capable of supporting 
variety of species, in commercial forests. In this framework we first characterize 
qualitatively the socially optimal choice of harvest volume and rotation age, and their 
dependence on exogenous parameters. We then assess empirically the optimal volume 
of retention trees and optimal rotation ages in a simulation model calibrated to Finnish 
forestry for pine. We find that biodiversity conservation may increase the socia lly 
optimal rotation age far beyond the Faustmann rotation age. The optimal volume of 
retention trees is, naturally, sensitive to timber price and biodiversity valuation being 
about ten cubic meters per hectare under Finnish biodiversity valuation estimates and 
current timber prices.  
 
Keywords: rotation, tree retention, biodiversity management. 
JEL classification:  D62, H21, Q23.  
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1. Introduction 
 

The Convention on Biological Diversity (UNCED 1992) implies multiple dimensions 

for biodiversity maintenance in forestry. Species, habitats and genetic diversity must 

be conserved at many scales: at the stand level, landscape level, and the level of larger 

forest regions (Hunter 1999).  At all these levels forest ecosystems are hierarchical and 

it should be treated so. Disturbance dynamics has a crucial role for the diversity of 

species and habitats and it should be mimicked in forestry management. (Franklin 

1993, Holling 2001, Bergeron et al. 2002, Kuuluvainen 2002). 

 

Understanding forests as hierarchical and structural landscapes stresses a need to 

manage forests as a connected network (see Lindenmayer and Franklin 2002). At the 

landscape level this network consists of different types of forests and stands. Entirely 

preserved forest areas are the core of the biodiversity conservation network. Around 

this core should be built a pattern of buffer zone forests, commercial forests with 

restricted management and regular commercial forests in which biodiversity 

conservation is actively taken into account. All parts of the network are linked to each 

other so as to ensure the interconnection and continuum of forest landscapes (see also 

Franklin and Forman 1987).1 

 

Given that the preserved core of the network is of limited size (preservation becomes 

increasingly costly), biodiversity management in commercial forests is necessary for a 

successful biodiversity maintenance network. In commercial forests, harvesting and 

                                                                 
1 The most popular models of the hierarchical structure of forests are (i) the corridor-patch-
matrix model (Forman 1995) and (ii) the landscape continuum model (McIntyre and Hobbs 
1999). The corridor-patch-matrix model constructs the forest landscape with the help of three 
concepts: habitat patches, corridors connecting them and the surrounding areas that are 
unsuitable for species in question. This model draws on the theory of island biogeography (see 
MacArthur and Wilson 1967), but has been supported recently by the theory of metapopulation 
(see e.g. Hanski 1999). This model has a variety of applications to biod iversity management 
in commercial forests, for instance, in the U.S. and in Scandinavian countries. The landscape 
continuum model treats the landscape with the help of environmental factors as a forest cover, 
which changes smoothly in terms of its structure. This model suits well to forests where 
different habitat patches are not distinct. This situation holds true, especially, in naturally 
developed forest areas (Wiens 1997). 
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management has substituted for natural disturbances typical to virgin forests. 

Prevailing harvesting and thinning methods, aiming at producing valuable timber, 

traditionally take away altogether the old tree generation and create a new even-aged 

stand. Biodiversity maintenance in the management of commercial forests implies a 

focus on the structural elements, such as the volumes of dead and decaying wood, on 

the distribution of all tree species, and on the biodiversity benefits of lengthened 

rotation ages. Moreover, biodiversity conservation requires application of multiple 

harvesting methods so as to mimic more closely forest structure and disturbance 

dynamics.2 Selective harvesting and design of small clearing areas are the means of 

keeping spatially heterogeneous and uneven-aged forestry structures and at ensuring 

forest cover continuum. 

 

The above-mentioned aspects concern both management at the stand level and 

management of bundles of stands, that is, structuring the stands in a landscape. While 

the analysis at the landscape level is crucial on the economics of biodiversity 

networks, it must be based on stand level analysis, which is enlarged to cover spatial 

aspects (that can be analyzed within the framework of stand interdependency). Thus 

far the stand level analysis has been missing in forest economics literature, where 

biodiversity is usually analyzed within the confines of species preservation in site 

selection models or within the ecosystem management and other interdependence 

models.3  

 

In this paper we will examine the economics of biodiversity conservation in 

commercial forests at the stand level. We specifically focus on green tree retention as 

the basic means of promoting structural elements vital to biodiversity promotion in  

                                                                 
2 Traditional clear-cutting retains its role, as it works like strong forest fires. However, given 
that forest fires with very strong impacts are not as common as previously thought, other 
methods are needed as well. 
3 Most of the stand-based literature focuses on species preservation in the site selection 
framework, see Ando et al. 1998 for general approach, and Stockland 1997 and Juutinen et al. 
2004 for applications to forestry. Another strand of the literature is ecosystem management in 
forestry, see for instance, Montgomery et al. 1994, Hopf and Raphael 1993, Haight 1995, 
Haight and Travis 1997, Bevers and Hof 1999. For interdependece literature, see Swallow and 
Wear 1993, Swallow et al. 1997, Koskela and Ollikainen 2001b and Amacher et al. 2004.  
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even-aged forest management. The term “retention trees” refers to trees that are 

permanently left unharvested to die and decay in the forest to provide habitats to many 

kinds of species. Leaving retention trees has been recently adopted in some countries 

like Finland, Sweden and the U.S. Together with enlarged rotation ages and, possibly, 

selective harvesting methods retention trees are the important means for biodiversity in 

commercial forests.  

 

Our extension of the Hartman model leads to the following research questions: at what 

age and in what volume a stand should be harvested so as to bring harvest revenue and 

biodiversity benefits?  To provide answers to these questions, we analyze a 

simultaneous choice of the rotation age and the amount of retention trees, that is, trees 

left unharvested. For simplicity we assume that biodiversity benefits are additive in the 

rotation age of trees becoming harvested, and in the age and volume of retention trees. 

We solve the socially optimal rotation age and the volume of retention trees, and 

compare them with the private solutions when the landowner behaves according to the 

Faustmann or Hartman mode l. By using Finnish forestry data we also assess 

empirically the socially optimal volumes of retention trees and biodiversity-adjusted 

rotation ages, and compare them to conventional Faustmannian commercial harvesting 

solution. This is carried out to a typical pine stand in Finland by using a complex 

forestry simulation model.  

 

To anticipate the results, we show that the socially optimal rotation age is longer and 

the volume of unharvested trees larger than in the private optimum, where the private 

optimum plausibly does not entail retention trees at all. In our empirical application to 

the Finnish forestry we demonstrate that biodiversity conservation increases the 

optimal rotation age relative to the Faustmann age. The difference in rotation ages 

depends on the chosen interest rate, varying from 10 years for 1% interest rate to 6 

years for 4% interest rate. Under our Finnish estimate of biodiversity valuation in 

commercial forests, i.e., outside forest conservation areas, the volume of retention 

trees per ha is 10 cubic meters and consists of about 30 trees. The optimal green tree 

retention increases (decreases) rapidly with biodiversity valuation (timber price). 
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The rest of the paper is structured as follows. Section 2 deals with our description of 

the retention trees and their decaying process and provides an analysis of both the 

socially optimal choice of rotation age and retention trees. In Section 3 we provide a 

numerical application for the case of Finnish forestry. Finally, there is a brief 

concluding discussion in Section 4. 

 

2. Biodiversity Management in Boreal Forests: the Social Optimum   
 

In this section we introduce biodiversity benefits into the Hartman model (for its 

general properties, see Hartman 1976, Strang 1893, Bowes and Krutilla 1985, 1989, 

Koskela and Ollikainen 2001a). We focus first on a case, where the landowner has an 

initial stand of age A , and examine how the original choice of the volume of retention 

trees and of the rotation age should be made. Although the time span even between the 

first and the next choices of harvesting is very long, and research knowledge on the 

development of biodiversity benefits is scarce, we start by focusing on the steady state 

considerations following the logic of conventional rotation analysis. Throughout this 

section we analyze the socially optimal biodiversity management. 

 

2.1 Modeling Biodiversity Benefits 

  

Consider a forest plot comprising an original growing stand, of age A . In order to 

promote biodiversity, in addition to harvest revenue, the social planner wishes to 

create structural elements, such as decaying and dead trees and increasing tree species 

diversity, in stand management. This can be made by creating green tree retention 

(G ), that is trees left unharvested, in the forest area and letting it to decay. This green 

tree retention serves as a simplified aggregate description of the structural elements. 

Depending on the properties of biodiversity benefits, the volume of tree retention may 

be small or high – thus creating a continuum of selective harvesting, small clearing 

areas, and traditional clear-cutting.  
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In order to simplify the analysis, we assume that the decay of retention trees, which 

have achieved financial maturity and approach their biological maturity, takes place 

during one (the second) rotation period, while the other trees are harvested and new 

trees are planted after harvesting. The problem of choosing harvest volume, in addition 

to rotation age, also deals with the land use, because it means that part of the forest 

land is allocated to unharvested retention trees. We illustrate this in Figure 1, where 

the whole land area is divided into three parts and denoted by their sum, .10 GGL ++  

 

Figure 1: Green tree retention as a land use decision 
 
 
 

 

 

Originally, the whole area is under forest cover with one stand of age A . The choice 

of the first harvest time and the volume of retention trees ( 0G ) divides this land area 

into two parts: (i) bare land ( 1GL + ) and (ii) an area of trees of age T ( 0G ). When the 

new rotation period has elapsed the following holds: 0G  has entirely decayed, and the 

rest of the area ( 1GL + ) has a stand of age T . The planner leaves new retention trees 

( 1G ), harvests the rest, and plants the harvested and decayed areas ( 0GL + ). While not 

specified in the model we assume that based on the site-specific characteristics, the 

choice of the location of retention trees is chosen spatially optimally. 

 

Next we model biodiversity benefits from rotation age and retention trees as a simple 

way by modifying the felicity function of the basic Hartman model. More specifically, 

we assume that biodiversity benefits can be expressed as a sum of the benefits 

accruing from the stand becoming harvested, and benefits from the unharvested 

retention trees which reach their biological maturity and decay during the next 

(second) rotation period. We denote the current values of rotation age and retention 

tree by T and G , respectively. Thus biodiversity benefits, BB , can be expressed as 

 

G0 

 
 
G1 

     
                L 
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∫ ∫ −− +=+=
T T

T

rxrx dxeGxBdxexFGTvTaBB
0

2

),()(),()(      (1) 

The first term in equation (1), ∫ −=
T

rxdxexFTa
0

)()( , is conventional amenity valuation 

but is here applied to biodiversity. The properties of this amenity valuation function 

have been thoroughly discussed in the previous literature. Because our focus is on 

biodiversity, we may legitimately assume that older stands yield higher biodiversity 

benefits.4 Thus we assume that 0)( >′ TF .5  

 

The second term, ∫ −=
T

T

rxdxeGxBGTv
2

),(),( , is our new extension. It describes the 

biodiversity benefits from retention trees, chosen during the current rotation period and 

accruing during the next rotation period. Reflecting the long rotation periods in 

northern boreal forests, the time between T  and T2  is assumed to be long enough for 

the retention trees to decay to a point where they provide biodiversity benefits but their 

land area can, nevertheless, be replanted. 6 Thus, biodiversity considerations make an 

explicit link between two stands and thereby two rotation periods.  

 

We make the following assumptions concerning biodiversity benefits: 

 

[ ] 0),(),2(),,(ˆ >−≡= −− GTBeGTBerGTBv rTrT
T    (2a) 

0),,(ˆ <= rGTBv TTT        (2b) 

                                                                 
4 See Calish et. al (1978) for examples of cases where valuation of younger stands might be 
relevant. 
5 In what follows, derivatives of a function with one argument are denoted with primes, while 
partial derivatives of functions with more than one argument are denoted by subscripts. 
6 Actually, for instance, pine can stay alive and standing over several rotation ages. Allowing 
for additional rotation ages would be straightforward to do. It does not change qualitative 
results, however, but would considerably increase the number of terms in the analysis. In our 
simulation model we have a more explicit and detailed description of the dying and decaying 
process of the trees, so that this is allowed to affect over a higher number of subsequent 
rotations.  
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0),(
2

>= ∫ −
T

T

rx
GG dxeGxBv ; 0),(

2

<= ∫ −
T

T

rx
GGGG dxeGxBv    (2c) 

[ ] 0),(),2( >−== −− GTBeGTBevv G
rT

G
rT

GTTG ,                (2d) 

 

where [ ])),()),2(),2((2ˆ GTBGTrBGTBeeB TT
rTrT

T −−= −−   

 

Interpretation of the derivatives of biodiversity benefit function is as follows. Marginal 

biodiversity benefit in (2a) is defined as a positive difference in diversity value of 

green retention between the beginning and the end of the second rotation period. 

Together assumptions in (2a) and (2b) are conventional meaning that intertemporal 

benefits from the age of retention trees over the second rotation have decreasing 

marginal benefits. According to (2c), the same is assumed to hold true for marginal 

benefits from the volume of green tree retention, G . We neglect here the possibility of 

threshold effects, i.e., a discontinuous increase in biodiversity benefits due to reserved 

trees, which may be important in some cases. Finally, the cross-derivative assumption 

in (2d) indicates that increasing the number (volume) of standing trees increases the 

marginal utility derived over time from these trees.  

 

2.2 Biodiversity Management at the Stand Level 

 

In this section we analyze biodiversity management both in the steady state and in the 

case where society has an old growth initial stand. While the former case is relevant 

for regeneration practices that promote developing biodiversity, the latter is highly 

important for the very current policy aiming at conserving the existing biodiversity 

tied to old growth forests. 

 

A. Social Planner’s Problem in the Steady State 

 

In the steady state, the social planner starts with bare land, which, however, has a 

given amount of retention trees G . The volume of timber as a function of rotation age 
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(with is calendar age in the steady-state) is defined by the forest growth function 

)(Tf . Let p denote timber price, r  real interest rate and c  regeneration costs, which 

we assume to be constant like in the Faustmann and Hartman models. The social 

planner’s economic problem includes now two decision variables: (i) the choice of the 

rotation age T and (ii) the determination of the volume of retention trees, G, so as to 

maximize the following objective function 

 

[ ] 1
2

0

)1(),()()( −−−−− −







++−−= ∫∫ rT

T

T

rx
T

rxrT edxeGxBdxexFcGTfpeSW .  (3) 

 

The first-order conditions for this problem read as 

 

0),(
2

=+−= ∫ −−
T

T

rx
G

rT
G dxeGxBpeSW       (4a) 

[ ] 0),(),2()()()( =−−++−−′= − rSWGTBeGTBTFGTfrpTfpSW rT
T  (4b) 

 

Equation (4a) can be interpreted as follows. The volume of retention trees is chosen so 

as to equate the present value of the marginal loss of the harvest revenue with the 

present value of sum of the marginal utility of retention trees over their whole 

decaying process. According to equation (4b), the optimal rotation age is chosen so 

that the marginal return of delaying the harvest by one unit of time equals the 

opportunity cost of delaying the harvesting. While the former is defined by the sum of 

the harvest revenue and biodiversity benefits during the first and the second rotation 

period, the latter includes the interest cost on standing timber and on land.  It is clear  

that equations (4a) and (4b) differ in many ways from the Faustmann and Hartman 

rotation analysis. We shall return to this question in section 2.3. 

 

Using the notation for marginal biodiversity benefits from green retention adopted in 

equation (2a), the second-order conditions can be expressed as 
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0)),(
2

<∫= −
T

T

rx
GGGG dxeGxBSW                   (5a) 

[ ] 0),,(ˆ)()()( <+′+′−′′= − rGTBTFTfrpTfpeSW T
rT

TT     (5b) 

      02 >−= TGTTGG SWSWSWD ,        (5c) 

 

where [ ] 0ˆ >+== −
G

rT
GTTG BrpeSWSW , and [ ] .0),(),2(ˆ >−= − GTBeGTBB G

rT
GG  

We assume that (5a) – (5c) hold.  

 

Now we turn to analyze the qualitative properties of the volume of retention trees and 

rotation age in terms of exogenous parameters. Comparative statics will differ partly  

from the conventional rotation analysis, as now we have 2x2 equation system with 

symmetrical and positive cross-derivatives between the rotation age T  and the volume 

of retention trees .G   However, it turns out that in terms of the rotation age we have 

qualitatively similar outcomes as in conventional rotation models. We characterize the 

steady state comparative statics of the model in terms of timber price p , regeneration 

cost c and interest rate r. 

 

The effects of timber price can be expressed as follows: 

 

{ } 01 <+−=
∂

∂ −
∗

TGTpTTGp SWSWSWSWD
p

G
      (6a) 

{ } 01 <+−=
∂

∂ −
∗

GTGpGGTp SWSWSWSWD
p

T
     (6b) 

 

where 0<−= −rT
Gp eSW  and [ ] 1)1()(()( −−−−−′= rT

Tp eGTfrTfSW .  Using the first-

order condition (4b) we get  [ ] =−−−′ −− 1)1()(()( rTeGTfrTf  

[ ] 0)1()),,(ˆ())(( 11 <−−−−−− −−− rTecrHrGTBrETFp , where the adopted notation is 

∫−= −−−
T

rxrT dxexFeE
0

1 )()1(  and 





∫∫ +−= −−−−
T

T

rx
T

rxrT dxeGxBdxxFeH
2

0

1 ),()()1(  
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We know from Koskela and Ollikainen (2001a) that 0))(( >− rETF  if and only if 

0)(' >TF , and we can show in an analogous way that 0),,(ˆ >− rHrGTB . Thus, 

0<TpSW  and we have from (6b) that the rotation age shortens and from (6a) that the 

amount of retention trees decreases. The latter effect results from the fact that higher 

timber price increases the profitability of harvesting and makes it more costly to 

conserve timber for biodiversity purposes.  

 

The comparative statics of regeneration costs is: 

 

{ } 01 >=
∂

∂ −
∗

GTTc SWSWD
c

G
       (7a) 

{ } 01 >−=
∂

∂ −
∗

GGTc SWSWD
c

T ,       (7b) 

 

where 0)1( 1 >−= −−rT
Tc erSW  (note that 0=GcSW ). Hence, higher regeneration costs 

make timber production less profitable and, therefore, increase biodiversity 

maintenance in the form of higher volume of reserved trees and longer rotation period. 

 

Finally, the effects of real interest rate can be described as  

 

{ } 01 <+−=
∂

∂ −
∗

TGTrTTGr SWSWSWSWD
r

G
     (8a) 

{ } 01 <+−=
∂

∂ −
∗

GTGrGGTr SWSWSWSWD
r

T
.     (8b) 

 

In (8a) and (8b) 0),2())(( <



 −−−−−= −− SW

dr
d

SWeGTTBGTfpeSW rTrT
Tr , and 

∫ −=∫−= −−−
T

T

rx
G

T

T

rx
G

rT
Gr dxeGxBxTdxeGxxBpTeSW

22
),()(),( , where we have used 
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the first-order condition (4a). GrSW  is clearly negative because it starts from negative 

value at T2  and approaches zero at .T  

 

In the expression of TrSW  the first two terms are clearly negative, but also the last two 

terms are negative (see e.g. Johansson and Löfgren 1985 and Koskela and Ollikainen 

2001a). Thus, from (8b), a higher real interest rate increases the marginal benefits of 

delaying harvests more than its opportunity costs. This implies a shorter rotation 

period like in conventional Faustmann and Hartman models. In (8a ), a higher interest 

rate increases the present value of the opportunity cost of green tree retention, tending 

thus to decrease its volume. This is reinforced by a decrease in the present value 

marginal biodiversity benefits. Thus, the overall outcome leads to smaller green tree 

retention. 

 

Next we focus on the case where the society has an initial old growth stand with 

existing high level of forest biodiversity. This is an important issue for the current  

policy aiming at conserving the existing biodiversity associated with the current old-

growth forests.  

 

B. Social Planner’s Problem under an Initial Stand 

 

Let us denote the growth function of the original stand of age A  by )( AQ . The 

increase of the volume of this stand to the point of the first harvest is )( ATQ − , and 

the volume that is harvested can be expressed as a difference between the overall 

volume and the volume of reserved trees, [ ]GATQ −− )( . Differing from the case of 

the steady state, the initial biodiversity benefits can be expressed over time as a sum of 

the whole existing stand 

 

∫ −−−=
T

A

Axr dxeAxUBB )(0 )( ,       (9) 
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where we use U instead of F  to reflect the fact that, because there are no retention 

trees, initial stand covers a larger land area than subsequent steady-state stands. 

 

The social planner’s economic problem includes, again, the choice of two decision 

variables: the rotation age and the volume of retention trees. Given the original stand, 

this problem has to be studied in two phases. First, the society decides upon the use of 

the original stand. Then, from that onwards the choice reduces to conventional steady-

state choice of rotation age and reserved trees. The steady-state rotation age and 

retention tree problem was defined in equation (3).  

 

The objective function of the social planner for the initial choice of the optimal 

rotation age and of the volume of retention trees is given in   

 

     [ ] SWedxeAxUGATQpeSW ATr
T

A

AxrATr )()()(0 )()( −−−−−− +−+−−= ∫  (10) 

 

Equation (10) accounts for the fact that the sooner the initial harvest is made, the 

sooner the harvest benefits from subsequent rotations become. 7 The difference ( AT − ) 

tells how long the society will wait for the first harvesting time (naturally, if it turns 

out that AT <  the n the stand is harvested immediately). 

 

The first-order conditions for the initial choices of the volume of rotation trees and 

rotation age are 

 

0)1(),( 1
2

0 =−+−= −−−∫ rT
T

T

rx
GG edxeGxBpSW     (11a) 

[ ] 0)()()(0 =−⋅+−⋅−⋅′= rSWUGQrpQpSWT     (11b) 

 

                                                                 
7 Note that the choice of the first G  will marginally affect the regeneration cost c , which from 
that onwards remains constant. For simplicity we, however, abstract from this feature.  
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Equation (11a) can be interpreted as follows. The amount of retention trees is chosen 

so that the harvest revenue lost from the last cubic meter equals to present value of the 

sum of savings in regeneration costs and the marginal utility of biodiversity generated 

by this volume. Note that even though the marginal benefits are derived during the 

next rotation period, they affect the original decision phase. From (11b) we can 

conclude that the optimal rotation age is chosen so that marginal return of delaying the 

harvest by one unit of time equals the opportunity cost of delaying the harvesting. 

While the former is defined by the sum of the harvest revenue and biodiversity 

benefits, the latter include the interest cost on standing timber and on the land. From 

(11b), retention trees affect the rotation age at the margin, by changing both marginal 

return and the opportunity cost of harvesting. 

 

Comparative statics of the initial stand will not differ qualitatively from that of the 

steady state (see Appendix, which also reports the second-order conditions). Therefore, 

we just condense the results here as 

 

),,(0

+−−
= crpTT          (12a) 

),,(0

+−−
= crpGG .        (12b) 

 

Thus, at the interior solution, the comparative static effects of price, real interest rate 

and regeneration costs on the optima l rotation age T are conventional. The effects of 

these variables on the volume of retention trees G  are natural. Higher timber price and 

interest rate make timber production more profitable relative to biodiversity benefits 

and decrease the volume of retention trees, while a higher regeneration costs will 

increase it. 
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2.3. Private landowners’ behavior 

 

How do private landowners value forest amenities? Traditionally two hypotheses have 

been presented and used. The most common assumption is that landowner maximizes 

the present value of harvest revenue from timber production over infinite series of 

rotations. In this case the landowner behaves as described in the Faustmann rotation 

model. An alternative approach – which lies in conformity with some indirect 

empirical evidence (see e.g. Binkley 1981 and Kuuluvainen et al. 1996) -  is to assume 

that the landowner maximizes the present value of the sum of harvest revenue and 

amenity services over infinite time horizon, behaving thus like the landowner in the 

Hartman model. 

 

For the purpose of this paper, we ask: is there evidence on a possibility that 

landowners value biodiversity from their own point of view? Unfortunately there are 

no empirical studies concerning this issue. While landowners may sometimes put 

value on some species or land areas, it is plausible to think that typically they do not 

take into account the whole spectrum of biodiversity. Given these considerations we 

will here focus on both basic types of private landowner preferences in this section. 

Thus, landowners are assumed to behave either in the Faustmannian or Hartmanian 

way. 

 

When the landowner follows the Faustmann model, he maximizes the present value of 

harvest revenue from timber production over infinite cycles of rotations. Thus the 

objective function in the steady state can be written as  

 

 1)1)()(( −−− −−= rTrT ecTfpeV       (13) 

 

The solution to this problem is well-known (see e.g. Johansson and Löfgren 1985). 

The following first-order condition characterizes the privately optimal rotation age: 

.)()('0 rVTrpfTpfVT −−==  Thus the Faustmann behavior produces a solution pair 
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),( FF GT , for which it holds that .0=FG  Comparing this to equations (4a) and (4b) 

suggests *TT F <  and *0 GG F <=  where the variables with asterisk refer to the 

socially optimal choices. 

 

Under the Hartman behavior, the landowner maximizes the present value of the sum of 

harvest revenue and monetary value of amenity services over infinite time horizon. 

The objective function is now given by 

 

 1

0

)1)()()(( −−−− −+−= ∫ rT
T

rxrT edxexAcTfpeW     (14) 

 

In (14) we denote the private valuation of amenities by )(xA  to indicate that this 

valuation function may not be related to age dimension of biodiversity but other types 

of amenities. The first-order condition for the private optimum is now 

.0)()()(' =−+−= rWTATrpfTpfWT This condition implicitly defines the solution 

pair ),( HH GT  for which it also holds that 0=HG . Therefore, also in the Hartman 

framework we have that *0 GG H <=  and, if the landowner values young stands, we 

also have that *TT H < . However, if the landowner values old stands the Hartman 

rotation age may be longer or shorter than the biodiversity benefits based rotation age 

depending on how biodiversity (age) valuation function F(T) and the private amenity 

valuation function A(T) relate to each other. To conclude, both solutions fail to achieve 

the socially optimal rotation age and the socially optimal volume of retention trees. 

Thus there is scope for government intervention.  

 

Our theoretical analysis of the socially optimal choice of rotation age and retention 

trees in our framework has now been completed. We ask next: How does our model 

behave empirically, i.e. how great is the optimal amount of retention trees, how does 

the socially optimal rotation age relate to private rotation age under plausible 

description of actual forestry and social valuation of biodiversity. These are the issues 

we study in the next section by using a complex forestry simulation model. 
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3. An Empirical Application to Finnish Forestry 

 

In this section we illustrate our model by using a complex numerical simulation 

developed for Finnish Forestry. First, we describe the model and drawing on Finnish 

empirical studies develop our estimates of biodiversity valuation. We then assess 

empirically the length of the rotation period and the volume of retention trees, and 

their behavior when exogenous parameters change. 

 

3.1 The numerical simulation – optimization system 

 

A simulation – optimization system was developed for numerical optimization of the 

rotation length and amount of retention trees. The simulation system calculates the 

value of the objective function with the combination of our decision variables, while 

the optimization system gradually modifies the values of decision variables based on 

the feedback from the simulation system, and eventually finds the optimal rotation 

length and basal area of retention trees. The algorithm developed by Hooke and 

Jeeves, and adopted from Osyczka (1984), for non-linear derivative-free optimization 

was used (see Pukkala and Miina 1997 for more details). 

 

Simulation of stand development is based on individual trees. The simulation begins 

with bare land with no retention trees and no deadwood. The stand establishment is 

predicted with the models of Miina and Saksa (2004). The models predict the number 

of surviving planted trees per hectare, as well as the amount of na turally regenerated 

pine, spruce, birch, and hardwood coppice. Stand development is simulated in 5-year 

time steps. Various Finnish models are used to predict the juvenile height growths and 

diameters of seedlings from the seedling stage to the sapling stage (dbh 5 cm), after 

which the individual-tree growth models of Nyyssönen and Mielikäinen (1971) are 

used. A tending treatment is simulated at a stand age of 5 to 20 years (depending on 

site and planted tree species). It removes all coppices and regulates the frequencies of 

other trees. The stand establishment and tending costs, used in the simulator, are based 

on cost statistics. 
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The self -thinning models of Pukkala and Miina (1997) are used to calculate the 

maximum stand density for a given mean tree diameter. Mortality occurs when this 

limit is passed, creating one or several cohorts of standing deadwood (snags). During a 

time step, a part of a snag cohort forms a down-wood cohort, its relative frequency 

being equal to the probability of falling down. Both snag and down-wood cohorts 

decompose with time, the decomposition rate being clearly higher for down-wood than 

for snags. 

 

Stand development is simulated until the rotation age is reached, after which a final cut 

is simulated. Retention trees may be left to continue growing, depending on the current 

input value of the retention tree parameter. The roadside value of the removed volume 

(gross income) is calculated using user-supplied unit prices of different timber 

assortments. The assortment volumes are ca lculated using the taper functions of 

Laasasenaho (1982). The harvesting cost is calculated with the models of Valsta 

(1992).  

 

Simulation is continued for three additional rotations, keeping the deadwood cohorts 

and retention trees of the previous rotation(s). The simulation is otherwise similar as 

during the first rotation except that there are now initial retention tree cohorts and 

initial deadwood. The growth of retention trees is simulated using the growth models 

of Nyyssönen and Mielikäinen (1971). A part of a retention tree cohort is wind-thrown 

and another part may die of senescence during a time step, the relative frequencies of 

these new cohorts depending on the probabilities of these events. Dead retention tree 

cohorts decompose with the same rate as the other deadwood cohorts. A standing 

deadwood cohort originating from a retention tree cohort falls down with the same 

probability as other snags. 

 

Retention trees are assumed to reduce the growing space that is available to the other 

trees: their effect to the other growing stock is simulated through an area multiplier. 

The share of growing space taken by retention trees is equal to the ratio of the basal 
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area of retention trees to the maximum stand basal area that the site can sustain. If the 

basal area of retention trees decreases due to mortality, the growing space available to 

other trees increases creating accelerated growth. It is assumed that the other trees can 

fully utilize the growing space left by dead retention trees. This kind of simulation is 

reasonable when retention trees occur in dense and small groups, which is the current 

practice. 

 

In addition to costs and incomes, the simulator calculates a biodiversity index for the 

stand at every time point. The biodiversity index is as a weighted sum of scaled values 

of various structural elements present in the stand. The structural elements are: 

volumes of different tree species, volumes 10-cm diameter classes, and volumes 

deadwood components (standing deadwood and down-wood of different tree species). 

Each element increases the index fast up to certain level (“satisfactory amount”) after 

which its additional contribution becomes very small.  

 

The monetary value (? ha-1a-1) of the maximum biodiversity index is a user-supplied 

parameter. We used Finnish estimates for valuation of biodiversity conservation as a 

part of normal practices in commercial forestry. A contingent valuation study by 

Rekola and Pouta (1999) suggests that the mean of WTP for an increase of retention 

trees from current 15 to 30 would be 40 euros. We calibrate our quadratic biodiversity 

valuation function to reflect this estimate as follows. The value (VAL) of biodiversity 

index was calculated from equation VAL = WTP(BD/BDmax), where WTP is the value 

of the maximum biodiversity index  (BDmax) of the stand.  

 

The forestry simulation model was operated as follows. In a steady state optimization, 

the objective function value was calculated from the last simulated rotation, which was 

assumed to be repeated to the infinity. The other rotations were used to initialize the 

steady-state amounts of deadwood and retention tree cohorts, present in the beginning 

of the last rotation. 
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3.2 Simulation Results 

 

Our results are solved for pine under typical growth conditions in Southern Finland 

without thinning treatment. We report first our commercial reference point: the 

rotation age, harvested timber volume and net income solved from the Faustmann 

rotation model in Table 1.  We report our results for a set of real interest rates ranging 

from 0. 01 to 0.04. 

  

Table1. The privately optimal rotation age in the Faustmann model 
 
 
 r = 1% r = 2% r = 3% r = 4% 
Rotation Age 76 66 60 56 
Retention m2/ha 0 0 0 0 
Mean annual harvest 4.43 4.42 4.21 3.90 
Mean annual net income 179 170 150 135 
Timber benefit 11135 3298 984 106 
BD benefit 0 0 0 0 
Total benefit (SEV) 11135 3298 984 106 
 
 

Using the value of 0.03 as our benchmark interest rate, in the absence on biodiversity 

(any amenity) valuation, the socially optimal rotation age is 60 years. Under our forest 

growth function, this implies 4.2 cubic meters as the mean annual harvest and 150 

euros/ha as the respective net income. The total site expectation value is 984 euros per 

ha. Naturally, the volume of retention tree is zero in the Faustmann model. The 

privately optimal rotation age decreases in the real interest rate, as the model suggests. 

Note, finally, that relative to current forestry practice the rotation ages in Table 1 (and 

also in subsequent Tables 2 and 3) are rather short. One reason for this is that, 

following our theoretical models, we omit commercial thinning, which tends to 

postpone the optimal age for final felling (see e.g. Pukkala et al. 1998). 

 

Table 2 provides result of the empirical counterpart of our biodiversity model.  
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Table 2. The socially optimal rotation age and retention volume 

 
 r = 1% r = 2% r = 3% r = 4% 
Rotation age  86 71 64 62 
Retention m2/ha 1.3 1.1 0.8 0.1 
Mean annual harvest 4.24 4.29 4.20 4.14 
Mean annual net income 177 168 157 147 
Timber benefit 10403 3027 945 54 
BD benefit 2252 618 246 148 
Total benefit (SEV) 12655 3644 1191 202 
 
 

We use, again, the value of 0.03 of the real interest rate as our benchmark. The socially 

optimal rotation age is 64 years being longer than the privately optimal age. The most 

important difference between Tables 1 and 2 is, naturally, that the amount of retention 

trees is now positive, being 0.8 m2/ha. Multiplying it by 10 gives roughly the retention 

volume and assuming that the diameter size is about 21 centimeters (which both reflect 

adequately forest statistics) gives about 25 retention trees. Thus, given that at the final 

felling there are 800-900 trees per ha, this means that 3% of wood biomass is left to 

stand in small groups in the area. The mean annual harvest slightly decreases because 

retention trees, but the mean annual net income slightly increases because of increased 

size of harvested timber due to longer rotation age (recall, the Faustmann solution lies 

below the MSY, hence longer rotation implies higher volume). The site expectation 

value is higher reflecting the fact that the social value of forests is higher than private 

valuation. The difference to Table 1 is 207 euros per ha. Biodiversity benefits account 

about 25% of timber benefits. Like in Table 1, the optimal rotation age is decreasing in 

the interest rate as long as the value of land remains positive. Also, retention tree 

volume is decreasing in the interest rates, as was demonstrated in the theoretical 

model.  

 

We conducted sensitivity analysis with respect to timber prices, biodiversity valuation 

and regeneration costs. The most illuminating results are collected in Table 3. They are 

calculated by using 3% interest rate as our basic choice.  
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Table 3. Sensitivity analysis: biodiversity valuation, prices and costs 

 
 BD-valuation 

 80 E 
1.2(timber price) 1.2 (regener. 

cost) 
Rotation age 67 63 65 
Retention m2/ha  2.7 0.01 1.0 
Mean annual harvest 3.85 4.23 4.20 
Mean annual net income 150 201 154 
Timber benefit 826 1472 739 
BD benefit 1288 206 255 
Total benefit (SEV) 2113 1678 995 

 
 
 
 
All variables affect the socially optimal rotation age and retention volume as one could 

expect in the light of the theoretical model. A considerably higher biodiversity 

valuation increases the socially optimal rotation age by 3 years and the volume of 

green retention becomes more than  three times higher – turning to about 80 trees per 

ha, which means that about 9-10% of the wood biomass is left to stand in the final 

felling. Both the mean annual harvest and mean annual net income decreases relative 

to Table 2, because a considerable part of the growing space is used by retention trees. 

Biodiversity benefits account for half of the overall benefits. Hence, we can conclude 

naturally that the more biodiversity valuation increases, the more one approaches the 

case of selective harvesting and small amounts of harvested timber. 

 

The effect of a 20% increase in timber price has dramatic effects on retention volume, 

which goes down, almost to zero, remaining though positive. Hence, the socia lly 

optimal volume of retention is very sensible to timber price. As expectable, harvest 

volume and net income are now higher than in Table 3. A higher regeneration cost 

may increase the  rotation age, or retention tree volume, or both. In the example 

reported in Table 3, higher regeneration costs will increase the rotation age leaving the 

volume of retention trees the same as in Table 2. The total economic benefits are, 

however, lower than in Table 2.  
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Findings reported in Table 3 have an important implication. Given that biodiversity 

conservation is very sensitive to timber price, changes in market demand may quickly 

undermine efforts to conserve biodiversity in commercial forests – unless the valuation 

of biodiversity increases with higher timber prices. This result stresses the role on 

entirely preserved forest areas as the core of the biodiversity conservation network. 

 

4. Conclusion 
 

We have analyzed biodiversity conservation at the stand level by extending the 

standard Hartman model to account for the biodiversity effects of retention trees left at 

final felling. This volume of retention tree creates new structural elements in 

commercial forests in the forms of old and decaying trees, and deadwood, which 

promote species diversity. Depending on the properties of biodiversity benefits, the 

volume of tree retention may be small or very high – thus creating a continuum of 

selective harvesting, small clearing areas, and traditional clear-cutting. 

 

In theoretical analysis preliminary answers were provided to the following questions: 

at what age and in what volume a stand should be harvested so as to bring harvest 

revenue, amenity services and biodiversity benefits. By assuming that biodiversity 

benefits are additive in the rotation age and in trees left unharvested, we showed that 

biodiversity maintenance requires a simultaneous choice of the rotation age and trees 

left unharvested. We solved the socially optimal rotation age and the volume of 

retention trees, and compared them with the private solution when the landowner 

behaves according to either Faustmann or (the basic) Hartman model. 

 

In our empirical application to the Finnish Forestry we demonstrated that biodiversity 

conservation increases the optimal rotation age relative to the Faustmann case, the 

difference varying from 20 to 4 years depending on the chosen interest rate. Under our 

empirical estimate of biodiversity valuation in commercial forests, i.e., outside forest 

conservation areas, the volume of retention trees per ha is almost 10 cubic meters and 
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consists of about 25 trees. Moreover, the optimal green tree retention increases 

(decreases) rapidly with biodiversity valuation (timber price). 

 

Our extension raises many interesting research topics. First, extending our stand level 

analysis to cover biodiversity management at the landscape level is an interesting, but 

demanding challenge. This extension could be made by introducing interdependency 

between stands for instance along the lines, presented in Amacher et al. (2004), 

Koskela and Ollikainen (2001b) , Swallow and Wear (1993) and Swallow et al. (1997). 

Second, it would be important to analyze what kind of policy instruments our model 

suggests the social planner should use to promote biodiversity conservation in 

commercial forests.  
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Appendix: Second-order conditions of the initial stand case 
 
 
The second-order conditions are 
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conditions A1a – A1c are qualitatively similar to those reported for the steady state.            
Hence, it suffices to ascertain that by perturbing the first-order conditions with respect 
to exogenous variable yields qualitatively similar marginal effects. By differentiation 
we have 
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Comparing A2 – A4 with the respective derivatives reported in equations 6 – 8 
confirms our result. 
 
 

 

 

 


