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1 Introduction

Expectations continue to play a key role in macroeconomic research. Since its introduction by Muth

[25] and Lucas [21], [22], the Rational Expectations Hypothesis (REH) has been the dominant paradigm

in expectations formation. According to the REH, agents form expectations using the mathematical

expectations operator conditioned upon available information. In modelling, economists usually assume

that agents posses perfect knowledge of the market equilibrium equations and use these to form their

expectations.

Two main objections to the REH come from the literature on bounded rationality. The first is that

it may be unreasonable to assume that agents have perfect knowledge of the market equilibrium. The

literature has suggested that we allow agents to form expectations from less sophisticated schemes as in

Bray and Savin [6], Evans and Honkapohja [11], and Hommes and Sorger [19]. The second objection

to the REH is that with heterogeneous expectations, economic outcomes depend upon expectations of

all participants. Hence, agents using rational expectations not only possess perfect knowledge of the

market equilibrium, but they also posses perfect knowledge of the beliefs of all agents in the economy.

The literature has also discussed expectation formation schemes with heterogeneity, e.g. in Evans and

Honkapohja [10], Evans, Honkapohja, and Marimon [12], Honkapohja and Mitra [20], Giannitsarou [16],

and Guse [17].

Recent work has also considered a different approach to expectation formation by including predictor

choice as an economic decision.1 In Evans and Ramey [13] agents choose whether or not to use a costly

algorithm to update beliefs every period. This is later extended in Evans and Ramey [14] where

they allow agents to pay a resource cost for the privilege to use a mechanism that directly calculates

expectations. Sethi and Franke [27] consider a model where agents have the choice between using a

costless adaptive expectations rule or using rational expectations which incurs a cost. In this paper,

predictor decision is dictated via an evolutionary process. Brock and Hommes [7] use an approach they

call the Adaptively Rational Equilibrium Dynamics (A.R.E.D.) to examine predictor decision. They

consider a cobweb model with a finite set of predictors that each incur a cost for use. In each period,

agents choose a predictor based on the performance of each predictor in the previous period. They

conclude that when the set of predictors are a stable predictor, rational expectations, and an unstable

1The works of Arthur [1], De Grauwe, DeWachter, and Embrechts [9], and Sethi [26] present numerical results for this
type of research.
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predictor, naive expectations, the dynamics of the system may not settle down to an equilibrium.

However, this instability result disappears when the set of predictors available increases. Branch [4]

examines Brock and Hommes’ model and finds that the set of predictors available affects the local

stability properties of the system.

Previous literature on predictor choice has ignored two topics that should be examined. First,

the models studied have a unique equilibrium. Multiple equilibria has been examined extensively

in many papers including Azariadis [2], Cass and Shell [8], Azariadis and Guesnerie [3], and Farmer

[15]. One could question how a model with multiple equilibria would act in an environment such as

the A.R.E.D discussed in Brock and Hommes [7]. Second, the models examined in the literature are

purely deterministic. Random shocks always occur to the economy due to unpredictable events such

as changes in weather. The bounded rationality literature examines stochastic models with boundedly

rational predictors. Here, multiple equilibria is a well discussed topic (e.g. Evans and Honkapohja [11]).

With heterogeneity, multiple equilibria, and adaptive learning with more than one available updating

rule, a model can be constructed where agents not only learn the equilibrium but also learn the quality

of each predictor.

The purpose of this paper is to incorporate predictor choice into a model with heterogenous ex-

pectations, multiple equilibria, and adaptive learning. In the previous adaptive learning literature,

the assumed level of heterogeneity has been exogenous and in this sense, ad hoc. An ad hoc level of

heterogeneity may produce a result where many agents are using an obviously inefficient predictor due

to the form of the parameter equilibrium. Agents who notice this efficiency disparity could form better

expectations by switching to using the most efficient predictor. In this manner, agents not only learn

the parameters of the model, but they also learn the best way to learn these parameters. Therefore, in

this paper, heterogeneity will now be determined endogenously from a type of “social learning.”

Marimon and McGratton [23] show that there is an isomorphism between adaptive learning and

evolutionary learning. As heterogeneity is expressed as a proportion of agents in this paper, it is only

natural to use evolutionary learning as the mechanism for social learning in the dynamic system. The

speed of the two learning mechanisms will differ as social learning should be slower than parameter

learning. The concept of “fast-slow” learning where agents learn the parameters much faster than the

quality of the predictors creates an easy way to analytically determine stability of the dynamic system.
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The technique used in this paper will provide a tool for a test of robustness of learnability of

equilibria under homogeneous expectations. A rational expectations equilibrium (REE) is commonly

considered to be relevant if it is stable under learning, or expectationally stable (E-stable). However,

some models produce multiple equilibria where many solutions may be E-stable. A natural question

would be: If more than one solution (predictor) is available to the agents of an economic model and

agents can choose a predictor based on past performance, what solution, or solutions, would be used

by these agents?2 Furthermore, would the resulting (stable) Nash solution, under the predictor choice

model, involve homogeneous or heterogeneous expectations? Conditions for stability under predictor

choice and learning may be more strict than E-stability conditions for homogeneous expectations.

This technique may also provide for further available solutions when heterogeneity is considered in an

economic model with forward expectations. As suggested by the above paragraph, the predictor choice

model may result in a Nash solution where heterogeneous expectations exist asymptotically. Even when

only one REE is E-stable under homogeneous expectations, this may not guarantee that this solution

is the only stable solution under heterogeneity and predictor choice. Therefore, further problems may

arise if there exists multiple Nash solutions under heterogeneous expectations and predictor choice that

are stable under learning and evolutionary behavior.

This paper presents a self-referential linear stochastic model with the possibility of multiple equilib-

ria. Guse [17] discusses the stability results under learning of such a model when agents have different

perceptions of the true equilibrium. In this paper, the model in Guse [17] is expressed as a game where

agents benefit from using the most efficient predictor of the economy. I examine the stability properties

of the equilibria in the game under RE and under least squares learning. When the model is expressed

as a game with predictors, only some Nash equilibria are shown to be evolutionary stable when dis-

turbed by mutant populations. Furthermore, only some Nash equilibria are evolutionary stable with

a corresponding learnable parameter equilibrium. Stability conditions are found for both homogenous

and heterogeneous expectations. The central conclusion is that homogeneity and heterogeneity results

depend on the initial level of heterogeneity and parameter values in the model. The stability path

dependence disappears when the cost of using the expensive predictor is sufficiently high and leads to

all agents asymptotically using the more parsimonious, or Minimum State Variable (MSV), updating

2One could consider sunspot equilibria as well, but this paper only considers non-sunspot equilibria as potential predictor
choices.
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rule.

2 The Model and E-stability

In this paper, I use a self-referential linear stochastic macroeconomic model with the possibility of

multiple REE, as presented in Taylor [28] and discussed in the learning literature, e.g. Evans and

Honkapohja [11] and Heinemann [18]. It is a linear stochastic model with real balance effects consisting

of four parts: aggregate demand, aggregate supply, money demand, and a fixed money supply. The

reduced form is as follows:

yt = α+ β0E
∗
t−1yt + β1E

∗
t−1yt+1 + vt (1)

where E∗ denotes a not necessarily rational expectation and vt is a linear combination of stochastic

shocks where vt ∼ N
¡
0, σ2

¢
. Although it may be any variable that is affected by expectations, think

of the variable yt to be the inflation rate at time t. Assume that agents have the choice of using one of

two predictors:

PLM1 : yt = a1 + vt

PLM2 : yt = a2 + b2yt−1 + vt.

where agents recursively estimate the coefficients of their PLM to form expectations. If a proportion

of µ agents uses PLM1, then the actual law of motion (ALM) is:

yt = α+ µa1(β0 + β1 + β1(1− µ)b2) + (1− µ)a2(β0 + β1 + β1(1− µ)b2)

+[(1− µ)b2(β0 + (1− µ)β1b2)]yt−1 + vt (2)
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The above system defines a mapping from the PLM to the ALM as follows:

T (φ) = T


a1

a2

b2



=


α+µa1(β0+β1+β1(1−µ)b2)+(1−µ)a2(β0+β1+β1(1−µ)b2)

1−(1−µ)b2(β0+(1−µ)β1b2)

α+ µa1(β0 + β1 + β1(1− µ)b2) + (1− µ)a2(β0 + β1 + β1(1− µ)b2)

(1− µ)b2(β0 + (1− µ)β1b2)

 (3)

The resulting equilibria are expressed as :

a1 =
α

1− b2 − µλ− (1− µ) (1− b2)λ
,

a2 =
(1− b2)α

1− b2 − µλ− (1− µ) (1− b2)λ
, and (4)

b2 =
1− (1− µ)β0
(1− µ)2β1

or

a1 =
α

1− β0 − β1
,

a2 =
α

1− β0 − β1
, and (5)

b2 = 0

where:

λ = 1 + β1 + µβ0.

Equilibrium (4) is referred to the AR(1) mixed expectations equilibria (MEE).3 In this equilibrium,

the proportion of agents using PLM1 are underparameterizing the model when they are forming their

expectations. Therefore, prediction errors for PLM1 will tend to be larger, on average, in this equilib-

rium. Equilibrium (5) is referred to as the minimum state variable (MSV) MEE. In this equilibrium,

prediction errors will be the same for each PLM as they produce the same prediction. Although the

3Branch and McGough [5] refer to such an equilibrium as the Heterogeneous Expectations Equilibrium (HEE). The
MEE includes the REE when µ = 0 or µ = 1.
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equilibria expectations in the MSV solution are homogenous, it will be considered heterogeneous expec-

tations since two predictors are used to form expectations. The equilibria are referred to as “mixed”

because they are generated from more than one predictor.

Under the two MEE’s, economic agents have a great deal of knowledge of the economy. It is com-

mon to ask whether these equilibria are robust when agents form expectations using less sophisticated

schemes than RE. Suppose that the agents act like econometricians and construct forecasts using their

econometric model that they update every period when new information becomes available. The con-

dition for an equilibrium to be (locally) stable under such a learning rule is known as Expectational

Stability (E-stability):

Definition 1: E-stability is the condition of local asymptotic stability of φ̄ under the differential equation4

dφ

dτ
= T (φ)− φ,

where T is the mapping from the perceived law of motion, φ, to the implied actual law of motion, T (φ)

and τ denotes “notional” or “artificial” time.

It is commonly known that, under least squares learning, an E-stable equilibrium is learnable.

Learnability of an equilibrium may be regarded as a necessary condition for the relevance of that

equilibrium. Guse [17] presents the E-stability conditions for a fixed proportion of heterogeneity, µ, in

the following proposition:

Proposition 1: E-stability conditions for the above linear stochastic model with heterogeneous expecta-

tions.

1. All MSV MEE in the set

ES1 =

½
(β0, β1) |β0 <

µ
1

1− µ

¶
, β0 + β1 < 1

¾

are E-stable. All MSV MEE outside of this set are E-unstable.

4 In the homogenous expectations case, φ = (a1) if all agents use PLM1 and φ =

µ
a2
b2

¶
if they use PLM2.
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2. All AR(1) MEE in the set

ES2 =

½
(β0, β1) |

1

1− µ
< β0 <

1

1− µ
− (1− µ)β1, β1 < 0

¾

are E-stable. All AR(1) MEE outside of this set are E-unstable.

For the Taylor [28] real balance model, the parameter restrictions are β1 = −β0 and β0 6= 0.

Therefore, either solution, MSV or AR(1) may be E-stable under heterogeneous expectations, depending

on the parameter values of the model. E-stability of the two solutions may change when the level of

heterogeneity, µ , is allowed to change. When µ is allowed to change, Guse [17] presents the condition

for E-stability for any µ:5

Proposition 2: Let

A = {(β0, β1) |β0 < 1, β0 + β1 < 1}

and

S =

½
(β0, β1) |β0 > 1, β1 < −

1

4
β20

¾
.

If (β0, β1) ∈ A ∪ S, then for each µ ∈ [0, 1] exactly one of the two MEE is E-stable.

Within this set, if µ changes for some reason, the other MEE may become E-stable, but there is no

µ such that both solutions are E-unstable. The set A is where only the MSV equilibrium is E-stable for

all µ ∈ [0, 1]. The set S is the set where the two equilibria exchange E-stability at µ = 1− 1
β0
. When

determining stability of the system with both social learning and parameter learning, I will assume that

(β0, β1) ∈ A∪S. I will focus on the set S where stability of each equilibrium is determined by the level
of heterogeneity, µ, however, I will also discuss stability properties when (β0, β1) ∈ A.

3 Evolutionary Stability

Next, focus on the AR(1) and MSV processes and ignore E-stability for the time being. Suppose that

the agents have the ability to change their PLM if they believe that the other PLM is doing a better

job at predicting the economic variable. Agents observe the Mean Squared Error of the predictor at

5This proposition is a combination of two propositions presented in Guse [17].
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each time period and decide whether to continue using their current predictor or switch to using the

other predictor. Assume the following utility function for an agent using predictor i:

Ui =
1

MSEi
− cost of using predictor i

To solve for the Nash equilibria of the game and simplify the math, I will use the MSE of each predictor

that corresponds to the MEE of the current value of µ. The MSE’s are written as MSE1 and MSE2

and can be found in the appendix. Assume that the cost of using the AR(1) process is greater or equal

to the cost of using the MSV process, so, without loss of generality, the cost of using the MSV process

will be normalized to zero.6

3.1 The Model Expressed as a Game with a Continuum of Players

Assume that there are many agents where each agent’s decision does not affect the state of the economy.

For simplicity, assume that there is a continuum of players. Let ([0, 1] ,B) be the underlying space where
[0, 1] is the player set and B is the σ-algebra of Borel subsets of [0, 1]. Let Si = {PLM1, PLM2} be
the set of strategies for each player. In this artificial game, assume that the agents will know the

equilibrium values based on their predictor choice.

Suppose that each player receives a payoff from choosing either strategy in the following manner:

vi (si, µ) =
1

MSE1
= U1 if si = PLM1

=
1

MSE2
− k = U2 if si = PLM2

where k ≥ 0 is the cost of using the AR(1) predictor and the population state at time t is:

xt = (µt, 1− µt) .

The associated population payoff average is then

v(µ, µ) = µ ∗ v1 + (1− µ) ∗ v2 = µ

MSE1
+ (1− µ)

µ
1

MSE2
− k

¶
.

6This can be done since agents will only consider differences in utility and not the differences in the estimated parameter
values.
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This utility function defines the utility an agent receives for playing a mixed strategy of µ, given that

everyone else plays an average of µ. In the framework of the paper, we are not concerned with mixed

strategies, but the average payoff with agents using one of two pure strategies must be considered. The

above function will be used for this purpose.

3.1.1 The Nash equilibria of the game

Next, I solve for the Nash equilibria for the above game. Since there are two possible solutions, MSV

and AR(1), I solve for the Nash equilibria associated with each solution.

For the MSV solution, it turns out that ∀µ ∈ [0, 1], MSE1 = MSE2 = σ2. If k = 0, agents

are indifferent in which PLM they use, so the Nash equilibria consists of B, the set of all possible
combinations of heterogeneous expectations. If 0 < k ≤ (σ2)−1, the Nash equilibrium is µ = 1 where

all of the agents choose to use PLM1.7

There are several Nash equilibria for the AR(1) solution. This is solved for v1 = v2 for µ ∈ (0, 1),
v1 > v2 for µ = 1, and v2 > v1 for µ = 0. This is where no agents will want to deviate from their

current PLM. If k = 0, then there are two Nash equilibria which are

µ = 0

µ = 1− 1

β0
.

If 0 < k ≤ k1, then the three Nash equilibria are:

µ = 0

µ = µ2

µ = µ3.

7An upper bound for the cost parameter is not necessary since the Nash equilibria are the same. The case where the
cost is higher than the upper bound is an uninteresting case since the utility for an agent using PLM2 is always negative.
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where

µ1 = 1 +
β0 +

q
β20 + 4β1

√
kσ2

2β1
√
kσ2

µ2 = 1 +
β0 −

q
β20 + 4β1

√
kσ2

2β1
√
kσ2

µ3 = 1−
β0 −

q
β20 − 4β1

√
kσ2

2β1
√
kσ2

k1 =
(1− β0)

2

β21σ
2

k2 =
β40

16β21σ
2

If k1 < k < k2 and β0 > 2, then there are three Nash equilibria, these are

µ = µ1

µ = µ2

µ = µ3.

If k1 < k ≤ k2 and 1 < β0 ≤ 2, then the Nash equilibria are:

µ = µ2

µ = µ3.

When k = k2 and β0 > 2, then the two Nash equilibria are:

µ = µ1 = µ2 = 1−
2

β0

µ = µ3.

Finally, when k > k2, there is only one Nash equilibrium, which is

µ = µ3.
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3.1.2 Evolutionary Stability of the Nash Equilibria

Evolutionary game theory considers a pure or mixed strategy and determines whether this strategy is

stable when the population is disturbed by some “mutant strategy.” The game described above does

not allow mixed strategies, but the population average of those choosing PLM1, µ, will be considered

a “mixed strategy.” To determine stability in the context of the above game, consider all “mixed” and

pure equilibria for the population and determine if it will be beneficial for some agents to switch from

using their current PLM to using the other PLM. If some “mutant” population strategy is allowed

to enter, will the given (equilibrium) population strategy be stable to this given mutant if agents are

allowed to switch strategies? Following Weibull [29], Evolutionary Stability is defined as follows:

Definition 2: x ∈ ∆ is an evolutionary stable strategy (ESS)8 if for every strategy y 6= x, there exists

some ε̄y ∈ (0, 1) such that
v (x, εy + (1− ε)x) > v (y, εy + (1− ε)x) (6)

holds for all ε ∈ (0, ε̄y).

Under an evolutionary stable strategy, if a small proportion of agents “mutate” from using one

predictor to the other predictor, then they will not receive more utility than before the mutation.

Furthermore, no other agents will wish to follow the “mutants.” When there exists a selection criterion

for the population, the population will tend to move to the evolutionary stable strategy.

A best response function can be drawn to present evolutionary stability. x ∈ ∆ is evolutionary

stable if:9

v (s1, εy + (1− ε)x)− v (s2, εy + (1− ε)x) ≶ 0 if y ≷ x

The only potential strategies that can be evolutionary stable are the Nash equilibria. The set of ESS

will thus be a subset of the Nash equilibria. Formally, ∆ESS ⊂ ∆NE.

Consider the Nash equilibria for the MSV solution to the above model set in the game. For the MSV

solution where k = 0, if µ0 is allowed to change, there is equality for equation (6) for any µ0 ∈ [0, 1].
Therefore, all the Nash equilibria in this case fail to be evolutionary stable strategies. This results from

the fact that utility from each updating rule is the same for all µ ∈ [0, 1]. I will assume that k > 0 for

8∆ denotes the set of potential strategies. In this particular continuous framework, x = (µt, 1− µt) ∈ [0, 1]2.
9Note that µ ∈ [0, 1], so for pure strategies, we only have to increase or decrease µ depending on which strategy we are

considering.
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the MSV MEE to ignore this uninteresting result. Next, consider the Nash equilibrium for the MSV

solution when 0 < k < 1
σ2
. When a small proportion of agents use PLM2, inequality (6) always holds.

Therefore, the Nash equilibrium of µ = 1 for the MSV solution where 0 < k < 1
σ2 is an evolutionary

stable strategy.

Next, consider the Nash equilibria for the AR(1) solution. Figures 1-3 depict the best response

functions used to determine evolutionary stability. Figure 1 shows the best response function when

0 ≤ k ≤ k1. The three Nash equilibria are µ = 0, µ = µ2, and µ = µ3 where µ2 ≤ µ̄ ≤ µ3. The first

and third of these Nash equilibria are ESS’s, but the second solution is not an ESS.10 Figure 2 presents

the best response function when k1 < k ≤ k2 and β0 > 2. The Nash equilibria are µ = µ1, µ = µ2

µ = µ3. The first and third of these three Nash equilibria are ESS, while the second solution is not.
11

One can also use figure 3 to observe the case where k1 < k ≤ k2 and 1 < β0 < 2 by moving the origin

between µ1 and µ2. Here, only µ3 is ESS since µ1 < 0. Finally, when k > k2, the Nash Equilibrium is

µ = µ3. This solution is ESS as shown in figure 3.

FIGURE 1. Best Response Function for AR(1) Solution when 0 ≤ k ≤ k1.

10When k = 0, there are only two Nash solutions, µ = 0 and µ = µ2 = µ3 = µ̄. In this case, µ = 0 is the ESS.
11When k = k2, there are only two Nash solutions, µ = µ1 = µ2 and µ = µ3. In this case, µ = µ3 is the ESS.

13



FIGURE 2. Best Response Function for AR(1) Solution when 2 < β0 < 4 and k1 < k < k2.

FIGURE 3. Best Response Function for AR(1) Solution when k > k2.

These results bring forward a natural question, “Are there any evolutionary stable Nash equilibria

with E-stable MEE’s?” The most interesting candidates are the Nash MEE defined with 0 < µ < 1.
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The following proposition states that these candidates can be evolutionary stable with E-stable solutions

as long as the cost parameter is contained in a specific range of values.

Proposition 3: If k1 < k < k2 and 2 < β0 < 4, then there does exists a Nash equilibrium with µ ∈ (0, 1)
that is evolutionary stable with an E-stable MEE. For any k < k1 or k > k2, there does not exist a

Nash equilibrium with µ ∈ (0, 1) that is evolutionary stable with an E-stable MEE.

4 The Replicator Dynamics and Evolutionary E-stability

Since I have defined utility functions for both of the estimators, I now define the replicator dynamics for

µ. There are two elements of evolutionary game theory: a mutant mechanism which provides variety

and a selection criterion that favors one variety over another. The replicator dynamics provides the

role of selection. Following Weibull [29], define the replicator dynamics as follows:

µt =

µ
ζ + U1

ζ + µt−1 ∗ U1 + (1− µt−1) ∗ U2

¶
∗ µt−1 (7)

The replicator dynamics directs the population to use the parameter updating rule that awards a higher

utility at time t− 1. Brock and Hommes [7] and others assumed that the role of selection was dictated
by a multinomial logit law of motion. With a multinomial logit, convergence to a single predictor

is not necessarily attainable unless the expected value of utility from each predictor, except one, is

equal to zero. The replicator dynamics will provide a tool to produce the possibility of convergence

to homogeneous expectations due to the exponential nature of the replicator dynamics. However, this

does not guarantee convergence to a single predictor as it may be that U1 = U2 for some µt−1. The

ζ variable can be used for two purposes: first, it will determine the speed of convergence for real time

dynamics, and second, it can be used to make sure that both the numerator and denominator of the

replicator dynamics are positive. Since µt is allowed to vary through time, it must be that each PLM

is a reasonable choice within the model. Therefore, assume that the AR(1) solution is stationary for

all µ ∈ £0, 1− β−10
¢
, or (β0, β1) ∈ S ∪A as defined above.
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4.1 Fast-Slow Dynamics

For mathematical purposes, I will assume that the MSE that agents observe will be the MSE corre-

sponding to the MEE for the current value of µ. This will be from a process of fast parameter learning

dynamics with slow replicator dynamics, or “fast-slow” learning.12 The agents will fully learn the MEE

corresponding to the current value of µ before each period when µ is updated by the replicator dynam-

ics. Therefore, the speed of the learning is infinitely faster than the speed of the replicator dynamics.

I make this assumption in order to theoretically evaluate for evolutionary E-stability defined below.13

4.2 Evolutionary E-stability

Now, I will examine when a Nash solution is stable given β0, β1, α, and a cost parameter, k. Here, I

introduce a concept I will call evolutionary E-stability:

Definition 3: Assume that the model is updated using fast parameter learning dynamics with slow repli-

cator dynamics. An MEE or REE, φ∗ (µ∗), is Evolutionary E-stable, under the defined game above,

if for all µ ∈ [0, 1] sufficiently close to µ∗ (1) µt → µ∗ under the replicator dynamics and (2) φ (µt) is

E-stable for all µt.

Here, φ (µ) refers to an E-stable MEE that is determined by the level of heterogeneity, µ, and φ∗ (µ∗)

is the MEE determined by the Nash solution of µ∗. Under evolutionary E-stability, if a mutation occurs

to change the level of heterogeneity, then the system will return to the evolutionary E-stable MEE or

REE. Furthermore, at each µ in the neighborhood of µ∗, the corresponding MEE is E-stable. Like E-

stability, this is a local condition, but unlike E-stability, the boundary of attractive may be determined

under the replicator dynamics for each Nash solution.

12One could also investigate slow-fast dynamics, but here I focus on fast-slow dynamics because of its appealing theoretical
results.
13When agents compute the MSE as MSEi,t = MSEi,t−1 + t−1((yt − z0t−1φi,t)

2 −MSEi,t−1), simulations show that
the results are comparable to the results below. Where i = 1 or 2 corresponding to PLM’s 1 and 2. Simulations are not
included as they do not provide any additional conclusions.
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FIGURE 4. The Replicator Dynamics for an AR(1) Evolutionary E-stable REE.

4.3 AR(1) Evolutionary E-stability

First, consider the AR(1) REE where all agents use the AR(1) predictor. Figure 4 presents the

replicator dynamics for the AR(1) REE when there is a deviation to µ0 < 1 − β−10 = µ̄. If the

population begins at a µ to the left of the intersection point of µt = µ2 of the replicator dynamics, then

the replicator dynamics will direct the entire population to using the AR(1) predictor. If µ is to the

right of this intersection point, then the replicator dynamics will direct the agents away from using the

AR(1) predictor. This result will be explained later with MSV Dominance. The following proposition

presents the conditions for stability for the AR(1) REE under the replicator dynamics:

Proposition 4: Under fast-slow dynamics, the AR(1) REE is stable under the replicator dynamics for

all

0 ≤ µ0 < µ2

if

0 ≤ k < k1.

17



Note that this stability result is path dependent. It must be that the initial level of heterogeneity

must be contained in the above limits stated in the proposition. Evolutionary E-stability conditions

for the AR(1) REE come from the previous proposition.

Corollary 1: The AR(1) REE is Evolutionary E-stable for

0 ≤ k < k1.

4.4 MSV Evolutionary E-stability

FIGURE 5. The Replicator Dynamics for an MSV Evolutionary E-stable REE.

Next, I examine when the MSV REE is evolutionary E-stable. It turns out that it can not be

Evolutionary E-stable when the cost of using the second predictor is zero since both of the MSE’s are

equal to σ2. The replicator dynamics in this case would be µt+1 = µt. Since the MSV predictor is easier

to use, suppose that there is a preference of using the MSV predictor so that k > 0. Figure 5 shows

the replicator dynamics for MSV evolutionary E-stability which gives us the following proposition:
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Proposition 5: Under Fast-slow dynamics, the MSV REE is Evolutionary E-stable if k > 0. Further-

more, the solution is always stable under the replicator dynamics for all

1− 1

β0
< µ0 ≤ 1 if β0 > 1

0 < µ0 ≤ 1 if β0 < 1

if k > 0.

Figure 5 shows the replicator dynamics for the case where β0 < 1, i.e. where (β0, β1) ∈ A. For

(β0, β1) ∈ S, one can look at figures 4 and 6 to the right of µ = µ̄ = 1 − 1
β0
. When the MSV MEE

is E-stable, both updating rules provide the same MSE. Therefore, as long as k > 0, the replicator

dynamics will direct the population to all use the MSV predictor. As the cost of using the AR(1)

predictor, k, increases, the replicator dynamics becomes more bowed out from the line µt = µt−1. This

will create a result of MSV dominance which is discussed below.
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4.5 Evolutionary E-stability for the AR(1) MEE

FIGURE 6. The Replicator Dynamics in the Case of an Evolutionary E-stable MEE.

Finally, for some k > 0, it is possible for an MEE to be simultaneously evolutionary stable and

E-stable. Figure 6 shows the replicator dynamics when the evolutionary stable AR(1) MEE exists.

Here, the stable Nash solution is µ1. As long as 0 < µ0 < µ2, the replicator dynamics will direct the

population to using a mix of predictors described by µ1. If µ0 > µ2, then the replicator dynamics will

direct the population away from using the AR(1) predictor. The result here will be discussed later in

MSV dominance. The following proposition states the conditions for the existence of an evolutionary

E-stable MEE.
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Proposition 6: Under fast-slow dynamics, the AR(1) MEE, µ1, is always stable under the replicator

dynamics when

2 < β0 < 4

and

0 < µ0 < µ2

if

k ∈ (k1, k2) .

These stability conditions for the replicator dynamics give the condition for Evolutionary E-stability

of the AR(1) MEE, µ1.

Corollary 2: The AR(1) MEE, µ1, is Evolutionary E-stable for

k ∈ (k1, k2) .

The fact that the agents form expectations of the variable in time t + 1 produces this result of an

evolutionary E-stable MEE. The agents that are using the AR(1) PLM are looking in the future also

take in account what they predicted for the variable at time t. The agents using the MSV PLM are

predicting the variable in time t+ 1 not taking into account that the process is AR(1) at time t. This

leads to an MSE that is increasing when µ is small and is decreasing when µ is larger. The increasing

function is a result of the process of not updating the t+1 variable. The MSE then becomes decreasing

as more agents use the MSV predictor, so the AR(1) solution appears more like the MSV solution. The

equilibria then exchange stability when the solution for b2 in PLM2 reaches b2 = 0.

4.6 MSV Dominance

There is one more question to answer. From propositions 4 and 6, if k is large enough, then the AR(1)

REE, is not evolutionary E-stable and there is no evolutionary E-stable AR(1) MEE. What happens

in this case? It turns out that the solution converges to the MSV REE and all agents switch to using

the MSV predictor. I refer to this phenomenon as minimum state variable dominance.

Definition 4: Minimum state variable (MSV) dominance is said to occur if a model begins at an AR(1) E-
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stable MEE and converges to an MSV E-stable REE with homogenous expectations under the replicator

dynamics.

MSV dominance is shown in figures 4 and 6. If µ2 < µ0 < 1− 1
β0
= µ̄, the AR(1) MEE is E-stable

and the MSV MEE is not, however, the replicator dynamics are directing the population away from

using the AR(1) updating rule. As more agents use the MSV updating rule, the AR(1) MEE solution

becomes more like the MSV MEE. In fact, when µ = µ̄, both solutions are the same where14

a1 = a2 =
α

1− β0 − β1

b2 = 0.

At µ > µ̄, the AR(1) MEE is no longer E-stable, however, the MSV MEE is E-stable. Now the

population is in the area of MSV evolutionary E-stability and the replicator dynamics will continue to

direct all agents to use the MSV predictor. Therefore, the relevant branch for the replicator dynamics in

figures 4 and 6 is the one corresponding to the MSV solution. The E-stable MEE was initially the AR(1)

solution, but due to the replicator dynamics, all agents asymptotically switched to the MSV updating

rule which corresponds to the new E-stable MEE. The following proposition gives the conditions for

MSV dominance:

Proposition 7: If

0 < k ≤ k2

and

µ2 < µ0 < 1−
1

β0
= µ̄,

and the MEE is an E-stable AR(1) solution, then MSV dominance will occur. If

k > k2

and

0 < µ0 < 1−
1

β0

14The solution is, however, not E-stable. Simulations suggest this does not present a problem as long as b2 is sufficiently
near zero when µ = µ̄.
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and the MEE is an E-stable AR(1) solution, then MSV dominance will always occur.

4.7 Global Stability, MSV Dominance, and Path Dependence

FIGURE 7. Evolutionary E-stability Conditions

In the previous section, the system converged to the Nash equilibrium was dependent upon the

initial population level, µ0. Figure 7 presents the Nash solution for every corresponding µ0 and k for

2 < β0 < 4. The curve in the figure represents µ1 and µ2 for the corresponding cost, k. Recall that

these Nash solutions did not exist for some (β0, β1, k) . This curve will shift to the left as β0 decreases

and disappear when β0 < 1, the case where the MSV REE is evolutionary E-stable for all µ0 ∈ [0, 1].
When µ0 is to the left of this curve, the resulting Nash solution of the system is µ = 0 for k < k1 and

µ = µ1 for k1 < k < k2. Therefore, the corresponding parameter equilibria are the AR(1) REE and the

AR(1) MEE respectively. When µ0 is to the right of this curve, the resulting Nash solution is µ = 1

with the corresponding MSV parameter equilibrium. The resulting Nash solutions are path dependent

when the cost of using the AR(1) predictor is below k2. However, when k > k2, for all µ ∈ (0, 1], the
model is MSV dominant. Therefore, path dependence of the Nash solution no longer exists when the

cost of the AR(1) predictor is sufficiently high.
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MSV dominance provides an interesting result to consider the relevance of the two solutions of

the above model. McCallum [24] shows that if a model is “well formulated”,15 parameters are such

that expectations do not have implausible discontinuities, then the MSV solution should be E-stable

for a specific self-referential linear stochastic model with an endogenous lag term. However, in the

above model, a endogenous lag term does not exist. Following McCallum (2002), for homogeneous

expectations,

Et−1yt =
α

1− β0
+

1

1− β0
β1Et−1yt+1.

One may believe that for the model to be well formulated, it must be that β0 < 1. However, under the

only REE solution of
³

α
1−β0−β1 , 0

´
=
³

α
1−β1 , 0

´
, when β0 = 1, it follows that

Et−1yt = Et−1yt+1 =
α

1− β0 − β1

so that expectations here are well defined.16 For this model, a reasonable condition for the model

to be well formulated is that β0 + β1 < 1. Note that for every possible (β0, β1) ∈ A ∪ S, it follows
that β0 + β1 < 1.17 Therefore, the model discussed in this paper is well formulated, and under both

homogenous and heterogeneous expectations, the MSV solution is E-unstable for some (β0, β1) ∈ A∪S.
With MSV dominance, even the existence of a single agent who believes that the law of motion is MSV,

will provide a result of asymptotic homogeneity of the MSV predictor provided the cost parameter is

large enough. This result provides a reasonable situation where the MSV solution may be the relevant

solution even when it is not initially learnable.

5 Conclusion

This paper introduces the use of evolutionary learning to further evaluate REE under learning. Fur-

thermore, it investigates the possibility of more equilibria defined under heterogeneous expectations.

Evolutionary and adaptive learning are combined so agents not only learn the parameter values of a

15My objective in discussing this somewhat controversial term is not to defend its use, but to show that a “well formulated
model” does not guarantee that the MSV solution is E-stable.
16Neither solution is E-stable, so one must assume that agents believe that the model is such that β0 6= 1 for homogeneous

expectations and that β0 6= 1
1−µ for heterogeneous expectations. This assumption is common in the literature.

17 In fact, the condition for the model to be stationary for every E-stable AR(1) solution is a stronger condition than the
condition for a well formulated model.
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perceived equilibrium, they also learn the “best” equilibrium to learn.

The paper investigates a well discussed model with the possibility of multiple equilibria and shows

that each solution may be stable under the combined evolutionary-adaptive learning dynamics. In these

equilibria, one of the two predictors is always superior to the other, so the superior predictor is used

by all agents. I also discover that there is a possibility of convergence to an equilibrium where both

predictors have the same quality of prediction. It turns out that the for a large enough cost of using the

AR(1) predictor, the less parsimonious predictor becomes the unambiguously preferred predictor. This

results in a global convergence of the minimum state variable (MSV) as long as at least one individual

initially believes the model to be of this form. This result suggests that the MSV solution, of the above

model, may be the universally relevant solution even when it is not initially learnable.

I believe that this type of modelling may be useful in macroeconomic literature such as monetary

policy and business cycles. The combination of adaptive learning and evolutionary learning produces

interesting dynamics that can be studied in some economic models. In one application, the parameter

values of a model may change over time due to exogenous or endogenous shocks. As a result, there

may not be convergence to a single equilibrium as found in this paper, but instead there may be a

non-converging dynamic system. This is a topic of current research.

6 Appendix

6.1 Proofs

Proof of Proposition 3

For k /∈
³
(1−β0)2
β21σ

2 ,
β40

16β21σ
2

´
the only evolutionary stable Nash MEE with µ ∈ (0, 1) is the AR(1) Nash

solution µ = µ3. For this value of µ, we find that β0 < 1
1−µ . The AR(1) solution is not E-stable

at this value. For k ∈
³
(1−β0)2
β21σ

2 ,
β40

16β21σ
2

´
and 2 < β0 < 4, there exists two evolutionary stable Nash

equilibria with µ ∈ (0, 1). These two solutions are µ = µ1 and µ = µ3. We find that

β0 <
1

1− µ3
,
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so this solution is not E-stable. We also find that

β0 >
1

1− µ1
,

so this solution is evolutionary stable with an E-stable MEE.

Proof of Proposition 4

When 0 ≤ k < (1−βo)2
β21σ

2 , solutions to the replicator dynamics are:

µt = 0

µt = 1 +
β0 −

q
β20 + 4β1

√
kσ2

2β1
√
kσ2

= µ2

µt = 1−
β0 −

q
β20 − 4β1

√
kσ2

2β1
√
kσ2

= µ3

µt = 1

For µ1 and µ2, we must see when these solutions are between zero and one. For k = 0, it turns out

that

µ2 = µ3 = 1−
1

β0
,

so here both solutions are between zero and one. For k =∞, we see that

µ3 = 1

and µ1 is an imaginary number. Therefore, µ3 ∈
³
1− 1

β0
, 1
´
for all k > 0, and µ /∈ [0, 1] for some

k > 0. However, it turns out that µ2 ∈ [0, 1] when 0 ≤ k < (1−β0)2
β21σ

2 . As k increases, we see that µ2

becomes smaller and µ3 becomes larger. The four solutions of the replicator dynamics are as follows:

0 < µ2 ≤ µ3 < 1 for 0 ≤ k <
(1− β0)

2

β21σ
2

In the above region for k, the slope of the replicator dynamics,

0 <
∂µt
∂µt−1

|µ=0 < 1
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and
∂µt
∂µt−1

|µ=µ2 > 1.

So if µ0 < µ2, then the system will converge to µ = 0 and if µ0 > µ2, the system will diverge away

from µ = 0. Therefore the replicator dynamics are stable under the above conditions.

Proof of Corollary 1

Proposition 1 shows the stability properties for the replicator dynamics. For the AR(1) solution to

be E-stable, it must be that:

1

1− µ
< β0 <

1

1− µ
− (1− µ)β1

β1 < 0.

We have assumed that (β0, β1) ∈ S ∪A, so that

β0 <
1

1− µ
− (1− µ)β1

and

β1 < 0.

Also note that µ2 ≤ 1 − β−10 , so for any µ0 sufficiently close to µ = 0, it must be that β0 > 1
1−µ0 .

Therefore, the AR(1) REE is evolutionary E-stable for

0 ≤ k <
(1− β0)

2

β21σ
2
.

Proof of Proposition 5

The only solution to the replicator dynamics under the MSV MEE is

µ = 1.

It can be shown that
∂µt
∂µt−1

|µ=1 < 1,

27



so the replicator dynamics are stable here. Also, as long as

µ0 > 1−
1

β0
,

the MEE, for all µt, is E-stable. Therefore, the MSV REE is Evolutionary E-stable and the replicator

dynamics are always stable for all

1− 1

β0
< µ0 ≤ 1 if β0 > 1

0 < µ0 ≤ 1 if β0 < 1

if k > 0.

Proof of Proposition 6

When 2 < β0 < 4, solutions to the replicator dynamics in this case are the following:

µ = 0

µ = 1 +
β0 +

q
β20 + 4β1

√
kσ2

2β1
√
kσ2

= µ1

µ = 1 +
β0 −

q
β20 + 4β1

√
kσ2

2β1
√
kσ2

= µ2

µ = 1−
β0 −

q
β20 − 4β1

√
kσ2

2β1
√
kσ2

= µ3

µ = 1

For µ1 ∈ [0, 1], it must be that
(1− β0)

2

β21σ
2
≤ k ≤ β40

16β21σ
2
.

The derivative of the replicator dynamics at µ = 0, µ = µ1, and µ = µ2 are as follows:

∂µt
δµt−1

|µ=0 > 1

∂µt
δµt−1

|µ=µ1 < 1

∂µt
δµt−1

|µ=µ2 > 1.
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Therefore, the AR(1) MEE is stable under the replicator dynamics for the stated above values..

Proof of Corollary 2

Proposition 6 shows the stability properties for the replicator dynamics. For the AR(1) solution to

be E-stable, it must be that:

1

1− µ
< β0 <

1

1− µ
− (1− µ)β1

β1 > 0.

We have assumed that (β0, β1) ∈ S ∪A, so that

β0 <
1

1− µ
− (1− µ)β1

and

β1 < 0.

Also note that µ2 ≤ 1 − β−10 , so for any µ0 sufficiently close to µ = µ1, it must be that β0 >
1

1−µ0 .

Therefore, the AR(1) MEE is evolutionary E-stable for

k ∈
Ã
(1− β0)

2

β21σ
2

,
β40

16β21σ
2

!
.

Proof of Proposition 7

There is only one Nash solution in this case, µ = µ3. The derivative of the replicator dynamics is

∂µt
∂µt−1

|µ=µ3 < 1.

In this case the replicator dynamics move µ toward µ = µ3 > 1 − 1
β0
. We also see that the MEE

solutions as µ→ 1− β−10 are:

lim
µ→(1−β−10 )−

1− (1− µ)β0
(1− µ)β1

= 0

lim
µ→(1−β−10 )−

Aα

A− µλ− (1− µ)Aλ
=

α

1− β0 − β1
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This means that as µ→ 1−β−10 , the MEE goes from the AR(1) solution to the MSV solution. Since we
assumed fast-slow dynamics, the replicator dynamics move µ slow enough, and b2 and a2 will be such

that b2 ∈ nbhd(b2 = 0) and a2 ∈ nbhd(a2 =
α

1−β0−β1 ). When the dynamics move us to µ > 1 − β−10 ,

we are in the area of MSV E-stability. The fast-slow dynamic assumption leads us to know that

b2 ∈ nbhd(b2 = 0) and a2 ∈ nbhd(a2 =
α

1−β0−β1 ), so the MSV solution is E-stable. The inequality

above implies that k > 0, so the MSV REE is stable under the replicator dynamics. Therefore, MSV

dominance has occurred.

6.2 Calculation of the MSE for both of the PLM’s

6.2.1 MSE for the first PLM

PLM1:

MSE1 = E(y − a1)
2

= E(Ta2 + Tb2yt−1 + vt − a1)
2

= E(T 2a2) +E(T 2b2y
2
t−1) +E(v2t ) +E(a21) + 2E(Ta2Tb2yt−1)− 2E(Ta2a1)− 2E(a1Tb2yt−1)

= a22 + b22E(y
2
t−1) + σ2v + a21 + 2a2b2a1 − 2a1a2 − 2a21b2

= a22 +
b22

1− b22
(a22 + 2a1a2b2 + σ2v) + σ2v + a21 + 2a1a2b2 − 2a1a2 − 2a21b2

= (a22 + 2a1a2b
3
2 + σ2v)

1

1− b22
+ a21 + 2a1a2b2 − 2a1a2 − 2a21b2

If b=0 then the MSE from the first predictor becomes:

MSE1 = σ2v

When we enter the MEE values in for the MSE1 we get the following solution:

MSE1 =
(1− µ)4σ2β21

(1− µ)4β21 − (1− (1− µ)β0)
2
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6.2.2 MSE for the second PLM

PLM2:

MSE2 = E(y − a2 − b2yt−1)2

= E(Ta2 + Tb2yt−1 + vt − a2 − b2yt−1)2

= a22 + b22E(y
2
t−1) + σ2v + a22 + b22E(y

2
t−1) + 2a1a2b2 − 2a22 − 2a1a2b2

−2a1a2b2 − 2b22E(y2t−1) + 2a1a2b2
= σ2v

So the mean square error for the second predictor will always be σ2v as long as y follows a stationary

process. This means that the MSE1 ≥ MSE2 for all E-stable stationary values of α, β0, and β1.

This intuitively makes sense because the AR(1) predictor is always unbiased while the MSV predictor

is unbiased only when b2 = 0.
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