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Abstract

Using New Keynesian models, we compare Friedman’s k-percent

money supply rule to optimal interest rate setting, with respect to de-

terminacy, stability under learning and optimality. First we review the

recent literature: open-loop interest rate rules are subject to indeter-

minacy and instability problems, but a properly chosen expectations-

based rule yields determinacy and stability under learning, and im-

plements optimal policy. We show that Friedman’s rule also can gen-

erate equilibria that are determinate and stable under learning. How-

ever, computing the mean quadratic welfare loss, we find for calibrated

models that Friedman’s rule performs poorly when compared to the

optimal interest rate rule.
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1 Introduction

The recent literature on monetary policy has focused on policy rules in which
the interest rate is the chosen policy instrument, and a major finding is that
the form of the interest-rate rule is crucial for inducing key desirable prop-
erties of the economy. For example, setting the interest rate based only
on exogenous fundamental variables leads to instability problems if in fact
private agents do not a priori have rational expectations (RE) but instead
form expectations using standard adaptive learning rules. This was recently
demonstrated by (Evans and Honkapohja 2003) in the context of the New
Keynesian model that has become a standard framework in recent research
on monetary policy.1 Another difficulty with such interest-rate rules is that
they imply indeterminacy of rational expectations equilibria (REE). In other
words, there exist other REE near the “fundamental” REE, which can depend
on extraneous factors solely through private expectations, see e.g. (Bernanke
and Woodford 1997) and (Woodford 1999b). (Evans and Honkapohja 2002a)
provide a survey of the recent literature on learning, determinacy and mon-
etary policy.

Interest-rate rules that react only to observable exogenous variables can
be viewed as “open-loop” policies, since they do not respond to variables that
are endogenous to the economy. Making the interest rate depend on lagged
endogenous variables, including possibly the lagged interest rate itself, may
or may not provide a remedy to these problems. On this point see (Evans and
Honkapohja 2002b) for the case optimal monetary policy under commitment
and (Bullard and Mitra 2002), (Bullard and Mitra 2001) for the case of
instrument (or Taylor) rules. (Evans and Honkapohja 2003) and (Evans and
Honkapohja 2002b) have argued that interest-rate setting should react to
private forecasts of the endogenous variables, i.e. to inflation and output gap
forecasts. (Evans and Honkapohja 2002b) show that a reaction function of
this type, with appropriately chosen parameters, can implement the optimal
policy under commitment in a way that ensures both stability under learning

1(Howitt 1992) raised earlier the same concern, but did not emply the New Keynesian
model.
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and determinacy of the desired solution. In this paper we first review the
results for this “expectations-based” policy rule.

Our recommended implementation of optimal policy is, by its nature, a
“closed-loop” policy that requires considerable information. In particular,
our policy rule depends on obtaining accurate measurements of both private
expectations and exogenous shocks, and is based on a correct specification of
the structural model and known values of key structural parameters.2 These
demanding requirements suggest that it may be worth considering alternative
open-loop policies. Are all open-loop policies subject to indeterminacy and
learning instability? If these problems can be avoided, how satisfactory are
these alternative policies in terms of achieving the policy objectives? To
investigate this issue we here focus on a venerable, simple open-loop policy,
namely Friedman’s k−percent money supply rule.

Our results are easily summarized. Based on numerical calculations for
calibrated New Keynesian models, we find that the Friedman k−percent rule
appears to induce both determinacy and stability under learning. Thus this
open-loop money supply rule does meet some key requirements for a desir-
able monetary policy. We then turn to consideration of its performance in
terms of the usual policy objective function based on expected quadratic loss.
Comparing its welfare loss to that of the optimal policy, we find substantially
poorer performance of the k−percent rule. Thus Friedman’s rule appears un-
satisfactory in this standard model incorporating monopolistic competition
and price stickiness.

2 The Model

We use the standard log-linearized New Keynesian model as the analytical
framework, see e.g. (Clarida, Gali, and Gertler 1999) for details and refer-
ences to the original nonlinear models that lead to this linearization. The
model contains two behavioral equations of the private sector:

xt = −ϕ(it − E∗

t
πt+1) + E∗

t
xt+1 + gt, (1)

is the “IS” curve derived from the Euler equation for consumer optimization
and

πt = λxt + βE∗

t
πt+1 + ut, (2)

2(Evans and Honkapohja 2002a) indicate how many of these problems can be treated.
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is the price setting rule for the monopolistically competitive firms. Here xt

and πt denote the output gap and inflation for period t, respectively. it
is the nominal interest rate. E∗

t
xt+1 and E∗

t
πt+1 denote the private sector

expectations of the output gap and inflation next period. Since our focus
is on learning behavior, these expectations need not be rational (Et without
∗ denotes RE). The parameters ϕ and λ are positive and β is the discount
factor of the firms so that 0 < β < 1.

For simplicity, the shocks gt and ut are assumed to be observable random
shocks, where (

gt

ut

)
= V

(
gt−1

ut−1

)
+

(
g̃t

ũt

)
, (3)

where

V =

(
µ 0
0 ρ

)
,

0 < |µ| < 1, 0 < |ρ| < 1 and g̃t ∼ iid(0, σ2g), ũt ∼ iid(0, σ2u) are independent
white noise. gt represents shocks to government purchases and as well as to
potential output. ut represents any cost push shocks to marginal costs other
than those entering through xt. To simplify the analysis, we also assume
throughout the paper that shocks µ and ρ are known (if not, these parameters
could be made subject to learning).

It remains to specify how monetary policy is conducted.3 There are two
natural possibilities for the choice of the monetary instrument: the interest
rate and the money supply. We consider each in turn, starting with the
former.

3 Optimal Interest-Rate Setting

We consider an interest-rate policy that is derived explicitly to maximize a
policy objective function. This is frequently taken to be of the quadratic loss
form, i.e.

Et

∞∑
s=0

βs
[
(πt+s − π̄)2 + αx2t+s

]
, (4)

3As is common, we leave hidden the government budget constraint and the equation for
the evolution of government debt. This is acceptable provided fiscal policy appropriately
accommodates the consequences of monetary policy for the government budget constraint.
The interaction of monetary and fiscal policy can be important for the stability of equilibria
under learning, see (Evans and Honkapohja 2002c) and (McCallum 2002).
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where π̄ is the inflation target. This type of optimal policy is often called
“flexible inflation targeting” in the current literature, see e.g. (Svensson
1999) and (Svensson 2001). α is the relative weight on the output target
and strict inflation targeting would be the case α = 0. The policy maker
is assumed to have the same discount factor β as the private sector.4 We
remark that the presence of the two shocks gt and ut makes the problem
of policy optimization non-trivial, since policy has only a single instrument,
the interest rate or the money supply, under its control. The ut shock is
particularly troublesome as it leads to a trade-off between the variability of
the output gap and the variability of inflation.

The literature on optimal policy distinguishes between optimal policy un-
der commitment and discretion, e.g. compare (Evans and Honkapohja 2002b)
and (Evans and Honkapohja 2003). Under commitment the policy maker can
do better because commitment can have effects on private expectations be-
yond those achieved under discretion. Solving the problem of minimizing (4),
subject to (2) holding in every period, leads to a series of first order condi-
tions for the optimal dynamic policy. This policy exhibits time inconsistency,
in the sense that policy makers would have an incentive to deviate from the
policy in the future. However, this policy performs better than discretionary
policy.

Assuming that the policy has been initiated at some point in the past and
setting π̄ = 0 without loss of generality, the first-order condition specifies

λπt + α(xt − xt−1) = 0 (5)

in every period.5 In contrast the corresponding policy under discretion spec-
ifies λπt + αxt = 0. We will focus on the commitment case, which delivers
superior performance.

Condition (5) for optimal policy with commitment is not a complete spec-
ification of monetary policy, since one must still determine an it rule (also
called a “reaction function”) that implements the policy. It turns out that
a number of interest-rate rules are consistent with the model (1)-(2), the
optimality condition (5), and rational expectations. Some of the ways of
implementing “optimal” monetary policy make the economy vulnerable to

4It is well known that the objective function (4) can be interpreted as a quadratic
approximation to the utility function of the representative agent.

5Treating the policy as having been initiated in the past correspond to the “timeless
perspective” described by (Woodford 1999a) and (Woodford 1999b).
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either indeterminacy or instability under learning or both, while other im-
plementations are robust to these difficulties. For an overview see (Evans
and Honkapohja 2002a).

Expectations-based optimal rules are advocated in (Evans and Honkapohja
2002b), who argue that observable private expectations should be appropri-
ately incorporated into the interest-rate rule. If this is done, it can be shown
that the REE will be stable under learning and thus optimal policy can be
successfully implemented. The desired rule is obtained by combining the IS
curve (1), the price setting equation (2) and the first-order optimality con-
dition (5), treating the private expectations as given. Eliminating xt and πt
from these equations, but not imposing the rational expectations assumption,
leads to an interest-rate equation

it = δLxt−1 + δπE
∗

t πt+1 + δxE
∗

t xt+1 + δggt + δuut (6)

under commitment with coefficients

δL =
−α

ϕ(α + λ2)
,

δπ = 1 +
λβ

ϕ(α + λ2)
, δx = ϕ−1,

δg = ϕ−1, δu =
λ

ϕ(α+ λ2)
.

Given the interest-rate rule (6) we can obtain the reduced from of the
model and study its properties. The reduced form is

(
xt
πt

)
=

(
0 − λβ

α+λ2

0 αβ

α+λ2

)(
E∗

t xt+1
E∗

t πt+1

)
+ (7)

(
α

α+λ2
0

αλ

α+λ2
0

)(
xt−1
πt−1

)
+

(
0 − λ

α+λ2

0 α

α+λ2

)(
gt
ut

)
.

Defining

yt =

(
xt
πt

)
and vt =

(
gt
ut

)
the reduced form (7) can be written as

yt = ME∗

t yt+1 +Nyt−1 + Pvt (8)
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for appropriate matrices M , N and P .
We are interested in the determinacy (uniqueness) of the stationary RE

solution and the stability under learning of the REE of interest. The next sec-
tion outlines these concepts and the methodology for assessing determinacy
and stability under learning for multivariate models such as (7).

3.1 Methodology: Determinacy and Stability under

Learning

3.1.1 Determinacy

The first issue of concern is whether under rational expectations the system
possesses a unique stationary REE, in which case the model is said to be
“determinate.” If instead the model is “indeterminate,” there exist multiple
stationary solutions and these will include undesirable “sunspot solutions”,
i.e. REE depending on extraneous random variables that influence the econ-
omy solely through the expectations of the agents.6

Formally, in the determinate case the unique stationary solution for the
model (8) takes the “minimal state variable” (or MSV) form

yt = a+ byt−1 + cvt, (9)

for appropriate values (a, b, c) = (0, b̄, c̄). In the indeterminate case there are
multiple stationary solutions of this form, as well as non-MSV REE. The
general methodology for ascertaining determinacy is given in the Appendix
to Chapter 10 of (Evans and Honkapohja 2001). The procedure is to rewrite
the model in first-order form and compare the number of non-predetermined
variables with the number of roots of the forward looking matrix that lie
inside the unit circle.

For reduced form (7) we make use of the fact that the second column

of N is zero. Writing M =

(
m11 m12

m21 m22

)
and N =

(
n11 0
n21 0

)
, assuming

rational expectations, introducing the new variable xLt ≡ xt−1, and noting
that for any random variable zt+1 we have Etzt+1 = zt+1+εzt+1 where Etε

z
t+1 =

6The possibility of interest rate rules leading to indeterminacy was demonstrated in
(Bernanke andWoodford 1997), (Woodford 1999b) and (Svensson andWoodford 1999) and
this issue was further investigated in (Bullard and Mitra 2002), (Evans and Honkapohja
2003) and (Evans and Honkapohja 2002b).
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0, we can rewrite (8) as
 1 0 −n11

0 1 −n12
1 0 0





 xt

πt
xLt


 =


 m11 m12 0

m21 m22 0
0 0 1





 xt+1

πt+1
xLt+1


+ other,

where “other” includes terms that are not relevant in assessing determinacy.
Assuming n11 �= 0 this can be rewritten as

 xt
πt
xLt


 = J


 xt+1

πt+1
xLt+1


+ other (10)

where

J =


 1 0 −n11

0 1 −n12
1 0 0



−1

 m11 m12 0
m21 m22 0
0 0 1


 .

Because this model has one predetermined variable, i.e. xLt , the condition
for determinacy is that exactly two eigenvalues of J lie inside the unit circle
and one eigenvalue outside. If one or no roots lie inside the unit circle (with
the other roots outside), the model is indeterminate.

3.1.2 Stability Under Learning

The second basic issue for models of the form (8) concerns stability under
adaptive learning. If private agents follow an adaptive learning rule, will the
RE solution of interest be stable, i.e. reached asymptotically by the learning
process? If not, the REE is unlikely to be reached because the specified policy
is potentially destabilizing.7 As is usual in the literature, we specifically
model learning by agents as taking the form of least squares estimates of
parameters that are updated recursively as new data are generated.

To examine stability under least squares learning we treat (9) as the
Perceived Law of Motion (PLM) of the agents, i.e. as the form of their
econometric model, and assume that agents estimate its coefficients a, b, c
using the available data. (9) is a vector autoregression (VAR) with exogenous
variables vt, and the estimates (at, bt, ct) are updated at each point in time

7This is the focus of the papers by (Bullard and Mitra 2002), (Bullard and Mitra 2001),
(Evans and Honkapohja 2003), (Evans and Honkapohja 2002b) and others.
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by recursive least squares. Using these estimates, private agents form expec-
tations according to E∗

t yt+1 = at+ bt(at+ btyt−1+ ctvt)+ ctV vt (where we are
assuming for convenience that V is known), and yt is generated according to
(8). Then at the beginning of t+ 1 agents use the last data point to update
their parameter estimates to (at+1, bt+1, ct+1), and the process continues. The
question is whether over time (at, bt, ct) → (0, b̄, c̄). It can be shown that the
E-stability principle gives the conditions for local convergence of least squares
learning. In what follows, we exploit this connection between convergence of
learning dynamics and E-stability.8

To define E-stability we compute the mapping from the PLM to the
Actual Law of Motion (ALM) as follows. The expectations corresponding to
(9), for given parameter values (a, b, c), are given by

E∗

t yt+1 = a+ b(a + byt−1 + cvt) + cV vt, (11)

where we are treating the information set available to the agents, when form-
ing expectations, as including vt and yt−1 but not yt. (Alternative informa-
tion assumptions are straightforward to consider). This leads to the mapping
from PLM to ALM given by

T (a, b, c) =
(
M(I + b)a,Mb2 +N,M(bc+ cV ) + P

)
, (12)

E-stability is determined by local asymptotic stability of REE (0, b̄, c̄) under
the differential equation

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c), (13)

and the E-stability conditions govern stability under least squares learning.
The stability conditions can be stated in terms of the derivative matrices

DTa = M(I + b̄) (14)

DTb = b̄′ ⊗M + I ⊗Mb̄ (15)

DTc = V ′ ⊗M + I ⊗Mb̄, (16)

where ⊗ denotes the Kronecker product and b̄ denotes the REE value of b.
The necessary and sufficient condition for E-stability is that all eigenvalues
of DTa − I, DTb − I and DTc − I have negative real parts.9

8(Evans and Honkapohja 2001) provides an extensive analysis of adaptive learning and
its implications in macroeconomics.

9We are excluding the exceptional cases where one or more eigenvalue has zero real
part.
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3.2 Results for Optimal interest-rate Setting

Monetary policy that is based on the optimal interest-rate rule (6) will lead to
both determinacy and stability and learning. (Evans and Honkapohja 2002b)
prove the following results to this effect.

Proposition 1 Under the expectations-based reaction function (6) the REE
is determinate for all structural parameter values.

It is clearly a desirable property of our proposed monetary policy rule
that it does not permit the existence of other suboptimal stationary REE.
However, having a determinate REE does not ensure that it is attainable
under learning and we next consider this issue for the economy under the
interest-rate rule (6).

Proposition 2 Under the expectations-based reaction function (6), the op-
timal REE is stable under learning for all structural parameter values.

We remark that the expectations-based rule (6) obeys a form of the Taylor
principle since δπ > 1. Partial intuition for Proposition 2 can be seen from the
reduced form (7). An increase in inflation expectations leads to an increase in
actual inflation that is smaller than the change in expectations since αβ/(α+
λ2) < 1, where the dampening effect arises from the interest-rate reaction to
changes in E∗

t πt+1 and is a crucial element of the stability result.10

4 Friedman’s Money Supply Rule

Friedman’s rule stipulates that the nominal money supply is increased by a
constant percentage k from one period to the next. In logarithms the nominal
money supply Mt must thus satisfy

Mt = M + kt+ wt, (17)

where M is a constant, k is the percentage increase in money supply and
wt denotes a random noise term, which is assumed to be white noise for
simplicity.

10We remark that an alternative information assumption, which allows forecasts to be

functions also of current endogenous variables, is sometimes used in the literature. Stability

under the expectations-based reaction function continues to hold for this case.
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The demand for real balances is assumed to depend positively on the
output gap xt and negatively on the nominal interest rate it and a possible
iid random shock et. The money market equilibrium or LM curve can then
be written as

M + kt+ wt − pt = θxt − η−1it + et,

where pt is the log of the price level. This yields the formula

it = ηθxt + ηpt − ηkt− ηM + η(et − wt) (18)

for the nominal interest rate. Substituting (18) into the IS curve (1) leads to
the expression

xt = −ϕηθxt − ϕηpt + ϕE∗

t πt+1 (19)

+ϕηkt + E∗

t xt+1 + ϕηM − ϕη(et − wt) + gt,

which together with the New Phillips curve (2) and the definition of the
inflation rate

pt = πt + pt−1 (20)

yield the model to be analyzed.
We first consider the perfect foresight steady state when there are no

random shocks. It is easily computed as

xt = λ−1(1− β)k, πt = k and pt = a+ kt,

where a = M − θλ−1(1− β)k.
The next step to write the model in deviation form from the non-stochastic

steady state. Using the same notation xt, πt and pt for the deviated variables
we have the matrix form

 1 + ϕηθ 0 ϕη
−λ 1 0
0 −1 1





 xt

πt

pt


 (21)

=


 1 ϕ 0

0 β 0
0 0 0





 E∗

t xt+1
E∗

t πt+1

E∗

t pt+1


+


 0 0 0

0 0 0
0 0 1





 xt−1

πt−1

pt−1


+


 ḡt

ut
0


 ,

where ḡt = gt − ϕη(et −wt). The inverse of the matrix on the left hand side
of (21) is 

 r −ϕηr −ϕηr
λr (1 + ϕηθ)r ϕληr
λr (1 + ϕηθ)r (1 + ϕηθ)r


 ,
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where r−1 = 1 + ηϕ(θ + λ), and so we get the system
 xt

πt

pt


 =


 r rϕ(1− βη) 0

rλ r[λϕ+ β(1 + ηθϕ)] 0
rλ r[λϕ+ β(1 + ηθϕ)] 0





 E∗

t xt+1
E∗

t πt+1

E∗

t pt+1


 (22)

+


 0 0 rηϕ

0 0 rηλϕ
0 0 r(1 + ηθϕ)





 xt−1

πt−1

pt−1




+


 r −ηϕr

λr (1 + ηϕθ)r
λr (1 + ηϕθ)r


(

ḡt
ut

)
.

Introducing the vector notation

zt =


 xt

πt

pt


 ,

we write (22) in the general form

zt = FE∗

t zt+1 +Gzt−1 +Hvt. (23)

4.1 Determinacy

Analysis of determinacy of the model can be done using the same general
methodology that was outlined in Section 3.1.1 for study of the model with
interest-rate setting. Examining the reduced form (22) we note that the
model has one predetermined variable pt−1. Thus we introduce a new variable
qt = pt−1 and write (22) as


1 0 0 −rηϕ
0 1 0 −rηλϕ
0 0 1 −r(1 + ηθϕ)
0 0 1 0







xt
πt

pt
qt


 (24)

=




r rϕ(1− βη) 0 0
rλ r[λϕ+ β(1 + ηθϕ)] 0 0
rλ r[λϕ+ β(1 + ηθϕ)] 0 0
0 0 0 1







E∗

t xt+1
E∗

t πt+1

E∗

t pt+1
E∗

t qt+1




12



or in symbolic form
Aŷt = BE∗

t ŷt+1,

where ŷt = (xt, πt, pt, qt)
′ and the matrices A and B are those specified by

(24). Determinacy obtains when exactly three eigenvalues of the matrix
A−1B are inside the unit circle.

It is evident from (24) that it would be difficult to obtain general theo-
retical results on determinacy, and we thus examine the issue numerically.11

We use two different sets of the calibrated parameter values, respectively sug-
gested by (Woodford 1996) and (McCallum and Nelson 1999). Thus consider
the examples:

Calibrated Examples:

W: η = 0.053, θ = 1, ϕ = 1, λ = 0.3, β = 0.95.

MN: η = 0.090, θ = 0.930, ϕ = 0.164, λ = 0.3, β = 0.99.

For the shocks we assume that µ = ρ = 0.4 and that there are no monetary
shocks. For the W and MN parameter values the eigenvalues of A−1B are:
W: 0, 0.563, 0.950 and 1.687;
MN: 0, 0.843, 0.902 and 1.284.
We conclude:

Result 3 The Friedman k−percent rule leads to determinacy of equilibria.

We have expressed this as a “result” rather than a proposition because it
has been verified only for the two calibrated examples.

4.2 Stability Under Learning

As discussed above in Section 3.1.2, we can focus on E-stability of the (de-
terminate) REE in model (22) to determine the stability of the REE under
adaptive learning.

We first derive convenient expressions for the REE. Since the model has
only one lagged endogenous variable pt−1 we guess that the MSV REE takes

11The Mathematica routines are available on request.
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the form12

zt = Czt−1 +Kvt, (25)

C =


 0 0 cx

0 0 cπ
0 0 cp


 .

Guessing that the REE has this form, we obtain that the REE must satisfy
the equations

cx = rcxcπ + rϕ(1− βη)cπcp + rηϕ,

cπ = rλcxcπ + r[λϕ+ β(1 + ηθϕ)]cπcp + rηλϕ, (26)

cp = rλcxcπ + r[λϕ+ β(1 + ηθϕ)]cπcp + r(1 + ηθϕ)

and
[I − (I ⊗ FC)− (V ⊗ F )]vecK = vecH,

where vec refers to vectorization of the matrix. For the calibrated examples
above the stationary RE solution is for W calibration

c̄x = 0.592837, c̄π = 0.407163, c̄p = 0.592837,

K̄ =


 1.17984 −0.76523

0.35156 0.76523
0.35156 0.76523




and for MN calibration

c̄x = 0.169118, c̄π = −0.221386, c̄p = 0.778614,

K̄ =


 1.49239 −0.28026

0.54389 0.54389
0.54389 0.54389


 .

To study E-stability one postulates that the agents in the economy have
perceived law of motion (PLM) that takes the form

zt = a+ Czt−1 +Kvt,

12Note that the shocks can be written as vt since the monetary shocks were assumed

away.
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where the parameter vector a and the matrices C and K are in general not
equal to the REE values. Agents forecast using the PLM, which leads to
forecast functions13

E∗

t
zt+1 = (I + C)a + C2zt−1 + (CK +KV )vt.

This forecast function is substituted into (23), which yields the temporary
equilibrium given the forecasts or the actual law of motion (ALM)

zt = F (I + C)a+ (FC2 +G)zt+1 + [F (CK +KV ) +H]vt.

The E-stability condition is that all eigenvalues of the matrices

F (I + C̄), C̄ ′ ⊗ F + I ⊗ FC̄ and I ⊗ FC̄ + V ⊗ F

have real parts less than one. ⊗ again denotes the Kronecker product.
Analytical results on E-stability cannot be obtained in view of the com-

plexity of the model. We thus evaluated numerically the eigenvalues of these
matrices using the calibrated examples specified above. For W calibration
the eigenvalues of F (I + C̄) are −7.85046 × 10−17, 0.576656 and 0.913702.
The eigenvalues of C̄ ′ ⊗ F + I ⊗ FC̄ are −0.661714, 0.307057± 0.0595477i,
3.44306 × 10−16 and four eigenvalues equal to zero. The eigenvalues of
I ⊗ FC̄ + V ⊗ F are 0.21117, −0.01206 and 0 where each of these is a
double root. For MN calibration the eigenvalues of F (I + C̄) are 0, and
0.868719 ± 0.0490926i. The eigenvalues of C̄ ′ ⊗ F + I ⊗ FC̄ are −0.27847
(twice), 0.645542±0.0717222i, and five eigenvalues equal to zero. The eigen-
values of I ⊗ FC̄ + V ⊗ F are 0.27627, 0.251457 and 0 where each of these
is a double root.

We conclude:

Result 4 Under the Friedman k−percent rule the REE is stable under learn-
ing.

4.3 Welfare Comparison

We now compare the performance of the Friedman rule to optimal policy
under commitment. (The Appendix below outlines the method of calculating

13As was done earlier, it is assumed that the agents do not see the current value of zt
when they form expectations. This is a standard assumption in the literature.
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welfare losses.) In this comparison we assume that the monetary shocks are
both zero. Monetary shocks would feed into the behavior of output gap and
inflation through the term ḡt in (21) under the Friedman rule. In contrast,
monetary shocks play no role under an interest-rate policy, since both money
demand and supply are then endogenous but do not affect the welfare loss.

We need to fix some additional parameters for this computation and
choose α = 0.1, σ2g = 1 and σ2u = 0.52. For the two calibrations we get
following values for the loss function under the Friedman rule (denoted as
WFr) and under the optimal expectations-based rule with commitment (de-
noted as WEB)

W : WFr = 0.423826,WEB = 0.172182

MN : WFr = 0.830019,WEB = 0.169408.

Compared to the optimal policy the Friedman rule delivers quite poor welfare
results, at least for these calibrations.14

5 Concluding Remarks

We began by reviewing the results on optimal interest-rate policy, and pre-
sented an implementation that achieves both determinacy and stability under
learning of the optimal REE. This optimal policy rule relies on strong feed-
back from the expectations of private agents, and also requires knowledge of
key structural parameters for the economy. Clearly, these are strong infor-
mational requirements. However, simpler open-loop interest-rate rules, for
example those depending only on exogenous shocks, fail to be stable under
learning and also suffer from indeterminacy problems.

Friedman’s money supply rule has a major advantage in terms of sim-
plicity. We first examined whether the Friedman k−percent money supply
rule leads to determinacy of equilibria. Due to the complexity of the model,
analytical results were not obtainable. However, numerical analysis indicated
that Friedman’s rule does lead to determinate equilibria. We then consid-
ered whether the unique stationary REE is stable under learning. Here we
employed the concept of E-stability which is known to provide necessary and

14In fact even the optimal discretionary policy does much better than the Friedman rule

for these parameter settings, yielding welfare losses of W = 0.205592 and W = 0.20999

for theW andMN calibrations, respectively.
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sufficient conditions for convergence of least squares learning rules. Again,
numerical analysis showed that Friedman’s money supply rule delivers an
REE that is stable under learning.

Finally, we studied the performance of Friedman’s rule in terms of the
quadratic objective function that can approximate the welfare loss of the
economy. In both calibrations of the model, Friedman’s rule leads to high
welfare losses relative to those that are attained when monetary policy is
conducted in terms of the optimal interest-rate rule.

We conclude that, while Friedman’s money supply rule performs well in
terms of determinacy and stability under learning, its performance is rela-
tively poor in terms of welfare loss. According to these results, the choice of
the monetary instrument presents a dilemma. If a simple open loop policy
is desired, the money supply provides a superior instrument relative to the
interest rate since the latter fails the basic tests of determinacy and learnabil-
ity. Yet in terms of welfare loss, an open loop money supply policy delivers
poor results. There may exist simple money supply feedback policies that
are much better in terms of attained welfare, but whether they would pass
the basic tests of determinacy and learnability is a question that would need
to be explicitly examined.
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6 Appendix: Welfare Computation

We calculate the expected welfare loss of the stationary REE, which is 1/(1−
β) times

W = E(αx2
t
+ π2

t
).

In the case of the interest-rate rule (6) the REE solution yt = b̄yt−1+ c̄vt can
be written as (

yt

vt

)
=

(
b̄ c̄V
0 V

)(
yt−1

vt−1

)
+

(
c̄
I

)
ṽt,

where ṽt = (g̃t, ũt)
′ and b̄ and c̄ are the REE values under the specified

interest-rate rule, or
ζ
t
= Rζ

t−1
+ Sṽt ,

where ζ ′
t
= (y′

t
, v′

t
). Letting Σ = V ar(ṽt) denote the covariance matrix of the

shocks ṽt, the stationary covariance matrix for ξ
t
satisfies

V ar(ζ
t
) = RV ar(ζ

t
)R′ + SΣS ′

or in vectorized form

vec(V ar(ζ
t
)) = [I −R⊗R]−1vec(SΣS ′). (27)

The variance of output gap and inflation can be read off from (27).
In the case of the money supply rule (17) we instead use the MSV solution

(25) with C = C̄ and K = K̄, so that

(
zt
vt

)
=

(
C̄ K̄V
0 V

)(
zt−1
vt−1

)
+

(
K̄
I

)
ṽt

and ζ̂
′

t
= (z′

t
, v′

t
) is used in place of ζ ′

t
in the computations.
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