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Yrjö Vartia, University of Helsinki, Department of Economics 

Whole and its parts: The micro foundations of macro 
behavior1 

1. Introduction 
 
The views of parts and the whole, of analysis and synthesis, have divided philosophy 
and science for two thousand years. Do the parts determine the whole or is the whole 
more than the sum of its parts? Can analysis and synthesis be integrated also in 
humanities as they are in natural sciences?  Of the general philosophy see e.g. Wilson 
(1998) and Monod (1971). The schemes of unified science (three m's, both Latin and 
Greek ones) generally, in economics E and in chemistryC are 
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    The actual topic of a research area (its macro level) is on the top, a meaningful 
micro level at the bottom and denotes mathematical - logical methods in their 
integration, as illustrated by Vartia (2008a). Quantitative and exact methods of 
chemistry )(C differ from those of econometrics )(E . The micro )(Cm of 
chemistry is, of course, also part of particle physics )(PFM . We use chemistry as our 
example from natural sciences. 
 
From Wikipedia: “Chemistry is the science concerned with the composition, 
structure, and properties of matter, as well as the changes it undergoes during 
chemical reactions. It is a physical science for studies of various atoms, molecules, 
crystals and other aggregates of matter whether in isolation or combination, which 
incorporates the concepts of energy and entropy in relation to the spontaneity of 
chemical processes. Modern chemistry evolved out of alchemy following the chemical 
revolution (1773).” As we see the macro and micro aspects of chemistry are strongly 
interrelated. 
 
We continue citing Wikipedia: “Chemistry is the scientific study of interaction of 
chemical substances that are constituted of atoms or the subatomic particles: protons, 
electrons and neutrons. Atoms combine to produce molecules or crystals. Chemistry is 
often called "the central science" because it connects the other natural sciences, such 
as astronomy, physics, material science, biology, and geology… 
 
The periodic table of the chemical elements is a tabular method of displaying the 
chemical elements. Although precursors to this table exist, its invention is generally 
credited to Russian chemist Dmitri Mendeleev in 1869. Mendeleev intended the table 
to illustrate recurring ("periodic") trends in the properties of the elements. The layout 

                                                
1 An extended version of a paper presented in the 3rd Helsinki- Tartu Symposium in Economics, 
Helsinki 13-14.5.2005 
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of the table has been refined and extended over time, as new elements have been 
discovered, and new theoretical models have been developed to explain chemical 
behaviour.  
 
The periodic table is now ubiquitous within the academic discipline of chemistry, 
providing an extremely useful framework to classify, systematize and compare all the 
many different forms of chemical behaviour. The table has also found wide 
application in physics, biology, engineering, and industry. The current standard table 
contains 117 elements as of 27 January 2008 (elements 1-116 and element 118).” 
 
These citations show the close connections between the micro )(Cm  and macro 

)(CM aspects of chemistry. The periodic table explains the atomic reasons for 
recurring similarities of different compounds. The special mathematics and physics of 
integrating the micro and macro chemistry )(C are described in Wikipedia as 
follows: 
 
“Theoretical chemistry is the study of chemistry via fundamental theoretical 
reasoning (usually within mathematics or physics). In particular the application of 
quantum mechanics to chemistry is called quantum chemistry. Since the end of the 
Second World War, the development of computers has allowed a systematic 
development of computational chemistry, which is the art of developing and applying 
computer programs for solving chemical problems. Theoretical chemistry has large 
overlap with (theoretical and experimental) condensed matter physics and molecular 
physics.”…“Computational chemistry is a branch of chemistry that uses computers to 
assist in solving chemical problems. It uses the results of theoretical chemistry, 
incorporated into efficient computer programs, to calculate the structures and 
properties of molecules and solids. While its results normally complement the 
information obtained by chemical experiments, it can in some cases predict hitherto 
unobserved chemical phenomena. It is widely used in the design of new drugs and 
materials.” 
  
We see that the mathematics and more generally the methodology of integration of 
micro and macro aspects in chemistry are highly specialized and technical subjects. 
The periodic table and similar simplified theories tell however qualitatively what kind 
of results can be expected.  
 
Lagerspetz (1966, a Finnish professor of zoology) poses the question of reductionism 
of water molecule. Is it possible to derive properties water (say that its density is 
highest at +4 degrees of Celcius) from the properties of hydrogen and oxygen? 
According to him “the whole is more than the sum of its parts” is a relative property 
of theories. The whole can be “more than its parts” only with respect to some theory; 
the additivity or non-additivity of the wholes and the emergency of their properties are 
relative concepts. It makes sense to speak of “the emergency” of properties only if we 
announce in respect to what theory these properties are emergent (Lagerspetz 1966, p. 
42-43). The extraordinary behavior of water density in the temperature interval 0 … 4 
requires hard mathematics and apparently quantum theoretical effects to be explained. 
 
Also Ketonen (a Finnish professor of philosophy, 1976, pp. 148-155) considers what 
“whole” and “parts” mean and what means that “the whole is equal to or else than the 
sum of its parts”. If 11 g of hydrogen gas is burned in 89 g of oxygen we get 100 g of 
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water. In this case we agree that the whole, water, which however in respect to its 
weight is the sum of its parts, in terms of the properties is else than the sum of its parts 
hydrogen and oxygen. The whole has essentially different properties than its parts, 
Ketonen (1976, p. 149). … The concept “sum” or “addition” in these considerations is 
clear only in mathematics and formal logic. Even there the concept “sum” has 
different meanings according to what kind of objects we are summing. The sum of 
natural numbers and positive quantities comes usually to mind when sums are 
considered. But in mathematics and logic sums of complex numbers, vectors, 
matrixes and classes are talked about. … “The whole is the sum of its parts” is in all 
these cases a logical truth, because the sum is so defined that it has this property. 
 
Ketonen goes on analyzing cases when this additivity does not hold. If there is no 
theory according to which the properties of a whole W can be derived from the 
properties of its parts nPPP ,...,, 21 , we can say, that the whole is different to (or more 
than) the sum of its parts. Ketonen defends the argument that new and better theories 
narrow the scope of such strongly emergent or non-additive wholes W. In philosophy 
parts and the whole appear as analysis and synthesis, see Niiniluoto (1983, 156-165). 
Latin translations of these Greece terms are resolution and composition. Reductionism 
is considered in Niiniluoto (1983, 255, 289-296). 
 
As a specific example of the level of difficulties modeling and integration of atomic 
and ordinary macro scales a good example is the density anomaly of water at 4 C , 
see e.g. “Density of water and ice”, “Dipolar nature of water”  and “Water model” 
from Wikipedia. Integration of the different scales of observation is ordinarily a 
complicated modeling enterprise and more difficult than describing the facts of these 
scales separately. However, in natural sciences macro and micro scales are well 
integrated and the macro phenomena can be reduced to micro phenomena and their 
interactions. 
 
This ends our excursion to natural sciences and chemistry, where micro and macro 
levels are so strongly mixed that their boundaries have almost disappeared from sight. 
Economics is not yet at the stage that its micro and macro aspects are so strongly 
integrated. Now we turn to economics and statistics. 
 
The paper is organized as follows. The general motivation reviews the basic concepts 
and introduces them in terms of descriptive statistics and basic mathematics, 
especially function theory. Third chapter introduces the Analysis operator, which 
represents all the relevant micro information. The next chapter is about the Synthesis 
operator, which maps the micro level information on the macro scale mean of its 
outputs. Linearity of the Analysis and Synthesis operators makes it possible to 
decompose Actual Behavior as the sum Common Behavior + Heterogeneity Effects. 
Furthermore, Common Behavior decomposes to Representative Behavior + Non-
linearity Effects. Special emphasis is directed to affine behaviors, where Non-linearity 
Effects vanish and to parallel behaviors, where Heterogeneity Effects vanish. Chapter 
4 discusses approximations of Actual Behavior for small changes of input variables. It 
is conjectured that normally both Non-linearity and Heterogeneity Effects are frozen 
and thus practically constant. Thus for small changes and normal conditions changes 
in Actual Behavior and Representative Behavior are approximately the same even 
without affine and parallel behaviors. Appendix represents these ideas in a condensed 
and hopefully more readable form. 
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2. The general motivation 
 
Aggregation becomes extremely messy, if explicit functional forms and rather 
elementary mathematical methods are used. It becomes too abstract and also hard to 
follow, if more general mathematical methods (such as Function Theory, Functional 
Equations, Abstract Algebra, Index Number Theory) are applied. Therefore, both 
elementary and abstract approaches would give rise to difficulties. Aggregation is a 
difficult subject! We have to follow both routes –elementary parametric functional 
forms for concreteness as in Vartia (2008b) and general mathematics with some new 
concepts and techniques for generality. New mathematical concepts, such as the A- 
and S-operators, are needed to see the forest from the trees. In these operators, more 
accurate notation to separate functions and their arguments is required to operate with 
different heterogeneous behaviors and contingent conditions which the agents may 
have and experience. The former approaches have mostly been either too narrow 
(specialized) or too wide. Some writers considered the general function theoretic 
possibilities of aggregation and some other the two related problems of aggregation 
and estimation at the same time. These are only some of limiting cases of the wider 
possibilities.  
 
The interplay between concrete cases and new mathematical notation and methods is 
crucial and cannot be avoided. It is unfortunate, that the reader cannot be guided and 
motivated in every detail –that would make the journey too long. 
 
Chipman (1976) considered the aggregation problem using generalized Moore-
Penrose inverses in his 220 pages monograph. He refers to more than 25 
distinguished mathematicians, statisticians and economists who have tried to make 
sense in the aggregation problem during roughly 40 years in his 24 pages long 
reference list. Five of them have got a Nobel Price in Economics so that inputs 
allocated to these questions are considerable. After 40 years of intensive research on 
the area, writers gave up and withdrew from it roughly 30 years ago. Evidently, the 
problem was considered as unsolvable or too difficult to solve. Most of the 
“solutions” were negative ones: aggregation is normally impossible. It is possible only 
under conditions, which are usually described as very restrictive. But practical 
economists went on assuming representative agents and behaviors as if that would 
have been the outcome and suggestion of the researchers. Their suggestions were 
exactly the opposite. There must have remained something important undiscovered in 
the issue. 
 
We consider units (parts, agents, atoms, molecules) all reacting to their circumstances 
in their given way. How can this be formalized? Consider a given partition of a set 
 
  )()(

1
iAiAA n

i
 

 
representing both the “the whole” and its “parts”. It divides A into its constituent non-
intersecting subsets. Let the outputs (“reactions”) ))(( iAyyi  be numerically given 
variables, either scalars or vectors. 
 
Extensive measurement is an important special case. Then the sum 

))((...))1(( nAyAyY has a concrete meaning or makes sense. Actually this total 
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makes sense already for quantitative variables measured on interval scale, see Vasama 
and Vartia (1980). Absolute zero does not exist on interval scale (say in ordinary 
temperature measurement) unlike for ratio scale variables (length, weight, 
consumption, etc). In economics, such variables ))(( iAy are often current or fixed 
price values of )(iA . 
 
Similarly, let ))((...))1(( nAxAxX be such a total value and Q  

))((...))1(( nAqAq , where ))(( iAq = frequency of some basic units in )(iA . There 
are several possible choices for these basic units; say persons/households/ 
apartments/blocks/customer codes for people and atoms/molecules/cells for 
organisms. We use some convenient units to count frequencies ))(( iAq of parts or 
agents in )(iA . More generally, we call any frequency valued variables (say number of 
children for families or protons for molecules) as counters. 
 
Some twenty years ago a Finnish economist Eetu Tuomainen wrote columns in the 
Talouselämä (an Economic Magazine in Finland). He asked once the readers to think 
what they would take with them to a desert island. Only one wish is granted. A Swish 
knife? A spade? Nothing of that kind. Eetu Tuomainen would take the mean! Without 
that nobody could manage in such harsh conditions: how could one decide without it 
what is the proper way to act, not too much or too little. We require benchmarks for 
which the possible choices are compared. This is the Golden Mean or Rule of ancient 
times.  
 
Thus consider means of real variables or vectors. All means such as  
 

))((/))((/ iAqiAyQYy  
QXx /  

 
are expressed as corresponding per capita values in these basic units. Note that 
 

 

))(())((
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in self-explanatory notation. Here ))((/))(())(( jAqiAqiAw  are normalized 
frequencies, which sum to unity. All means QXx / can be expressed as either w- or 
q- weighted means over conditional means ))((/))(())(( iAqiAxiAx . This is the law 
of iterated means. The same weights apply equally to all quantitative variables.  
 
For example, x and y may be income and consumption and let frequencies count 
households. Then x and y are income and consumption per household, i.e. similar per 
capita figures.  
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Complete accuracy is not required in these matters as frequencies in terms of different 
parts or units are normally slowly changing structural variables and more or less 
proportional to each other. Instead of households one may count consumption units 
(on some equivalence scale). Then all means per consumption unit would be exactly 
proportional to previous means per household. The proportionality factor is the ratio 
of household and consumption unit frequencies (or its inverse). We have 
 
  xQQQXQQQXx )/()/)(/(/  
 
More generally, weighted means can be shown to be rather insensitive for minor 
changes in the weighting. 
 
Transformations from on choice of unit to another are by no means trivial operations 
and people not familiar with accounting systems, sampling techniques and ratio 
estimators in sampling surveys should not jump to hasty conclusions by intuition. 
Important more difficult applications in weighting occur in regression analysis 
(weighted regression in case of heteroscedastic errors), in sampling (stratified and 
cluster sampling) and almost everywhere in index number theory.  
 
We have given above a short and intuitive review of most basic things in weighting. It 
hopefully motivates our choice to consider some partition 2 )()(

1
iAiAA n

i
of 

the basic units (parts, agents or objects) and treat its frequencies ))(( iAq as constants 
in weighting, at least in preliminary. If all subsets are singletons or sets with one unit 
only, )()( iaiA , then )(),...,1( naaA and 1))(())(( iaqiAq . This is the ideal 
case, where all intended units are observed and measured separately and the weighting 
reduces to uniform or equal weighting niaw /1))((  and ))((/ 1 iaynYy n . 
Equally weighted mean y  is called also an unweighted average, somewhat 
illogically.  
 
Starting from this ideal case, we return to the q-weighted means above, if instead of 
the atomistic partition to singletons our observations are from some more general 
partition )(iAA . This situation resembles in many ways the stratified sampling 
scheme in the case of proportional allocation.  
 

3. The Analysis operator A  
 
Consider all functions if mapping any set to output space Y; they form a function 
space denoted by )( Y . We take the output space Y as some linear space over 
real scalar multipliers. Scalar multiplication and addition are defined in Y and they 
obey their ordinary rules3. Then the linear combination Yyy 2211  
whenever Yyy 21, and s´ are real numbers. This is sufficient to make also 

                                                
2 The sigma-notation (instead of the union-notation) shows that we are considering a partition. 
3 We apply freely mathematical results from standard textbooks such as Apostol (1963), Lehto (1969, 
1971) and Kolmogorov and Fomin (1970). 
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)( Y a linear space of functions. More explicitly, if )(, Ygf are two 
such functions, then also gf defined by )()())(( xgxfxgf  belongs 
to )( Y . Clearly also )( Yf for any R . Note that no structure is 
needed for the input space for these results to hold. More concrete special cases of 
this are functions of )( LR , where KR . Dimensions (K, L) , the number of 
input and output variables, can be arbitrary. Real functions of real variables 

)( RRf defined for all real numbers make the mathematically simplest case. 

Exercise 1: Consider the case )( R when Rb,0  and n = 10. 
Interpret bx ,0  as income and take the 10 agents in )10(),...,1( aaA  as families 
having roughly the same background variables (say married couple, one child of age 
between 5 and 7 years, both working, living in southern Finland in a town, etc) and 

))((())(( iaxfiay i  are possible consumption functions for them. They just show how 
consumption could be related to their income. If you are given 10 actual consumption 
– income points for them for 2004 (evidently yearly figures), these determine only 
one point for every family. How should you continue the graphs of the 10 
consumption functions to nearby incomes? How do you interpret the 10 curves or 
functions, if they are to be continued for the whole range of incomes bx ,0 ? Do 
you take them as choices or possibilities for other years or as alternatives for 2004? 
Would you like to add or remove some background variables? Do you think that the 
whole task does not make much sense? What else should be done? Would you like to 
widen the input space by the background variables and add other families? Why? 

Exercise 1 shows that there are several obstacles and questions to get even started. We 
are not prepared to discuss such basic problems of describing actual things with 
numbers in this paper concerning aggregation. We just note that the researcher 
himself should give some sensible meaning for his behavioral functions, say for the 
consumption functions ))((())(( iaxfiay i  above. In opinion, the consumption 
function should aim at answering what would have happened if matters had been 
differently. Evidently there are many problems and controversies, because only few 
seem to have thought these questions seriously – or do see any reasons to do it.  

As technical point, we note that our behavioral functions should be continued not only 
in the surrounding of some observed or imagined points, but for their whole definition 
set. Functions should be defined for all the points of their definition sets, because 
otherwise they are not functions. We suppose this being done, in one or another way. 
How this I done or for what reasons, does not interest us here. We take it for granted 
that the functions have some sensible role to start with. We are not discussing 
estimation or other even more general and diffuse modeling problems. General 
motivations for our setup have been given in our previous paper Vartia (2008b). 

We shall investigate in the paper what kind of macro behavior the given micro 
behaviors produce whatever their inputs happen to be –of course assuming that they 
have some sensible meaning to start with. The problem of the paper is shortly as 
follows: What follows from the given micro behaviors. This is intended to be 
primarily a mathematical study. 
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After the implications of this setup have been cleared, we can restrict the arguments of 
the functions to smaller changes around some observed points. 

To avoid problems of input space averaging, we consider in this introductory paper 
only the case of singleton subgroups )()( iaiA  for some conventional choice of 
elements or units )(ia , say employees, households, firms, apartments, areas, business 
premises, elementary aggregates in index calculations etc. We assume that similar 
type of behavioral functions if make sense for them and take these as known.  

Example 1: Typically if )( LR , where KR . For instance, in demand 

studies of Finnish households we may have pmfd RRN01,0 . Here d = the 
maximum number of “dummies” or indicators, f = the maximum number of counters 
and (m, k) give the maximum number of quantitative unrestricted and non-negative 
input variables, respectively. Examples of counters are the number of children and 
cars, which can be either zero or some natural number. They get values 
in ,...1,00N . Their upper limits are fixed for convenience to remove ridiculous 
values, say more that 230 children in a household. Inclusion in 

pmfd RRN01,0  instead of equality allows that. Thus behaviors may have K 
= d + f + m + p input variables (several dummies4 and counters in addition to the 
quantitative inputs) and also vector outputs. Such definition sets are very 
complicated sets of KR . Indicators and counters get only integer values and that makes 
the whole Cartesian product (and thus ) a non-convex subset of KR . This means that 
the mean values of two points in – the straight lines connecting them - do not 
normally belong to it. This is quite awkward, especially when we want to calculate 
means of the input vectors over agents. They would normally lie outside of , though 
all individual inputs lie in it. 

The simplest way to remove these problems seems to make the input set convex by 
extending it to its convex hull. At the same time all agent-functions are extended (by 
interpolation) to get some reasonable values in the previous “holes” or areas between 
the actual integer values of the discrete inputs. This means treating the discrete inputs 
for mathematical convenience as if they were continuous. It is a standard method to 
treat discrete variables as continuous when they get large values, as e.g. the size of a 
population in an area. We extend this practice also for small values. Discrete variables 
can keep on getting their natural integer values only; just their functions are extended 
to all real values between them. 

After such a convexation an awkward pmfd RRN01,0 is turned to a wider 
definition set Kc R  having no more holes in it. All previous functions 

if )( LR are interpolated to the widened function space )( Lc R . After 

                                                
4 Indicators/dummies code qualitative properties by zeros and ones, which are in fact logical truth-
values. Here quality changes to quantity in aggregation: the mean values of indicators are relative 
frequencies (or probabilities) which are quantitative variables. Thus indicators can be considered both 
as qualitative and quantitative, depending on the point view. Fuzzy Logic and Probability Theory are 
both based on this, from different angles. Any more comments on them are avoided in this introductory 
paper. 
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this we can take any means of the inputs x  also as inputs5 and calculate values such 
as )(xfi . We call this treating the discrete inputs as if they were continuous. The idea 
of this trick is getting the means of the inputs inside the function. 

For 700 commodity groups L = 700. Usually we consider output components (say 
quantities of different commodities bought) one by one, which amounts to setting L = 
1. Nothing hinders the number n of households being a realistic number, say several 
millions. Unless otherwise stated, the functions if  are allowed to be arbitrary: for 
instance, only piecewise continuous, locally affine or nonlinear, such as any piecewise 
defined locally cubic functions of the quantitative inputs.  

Estimation problems6 are not discussed in the paper: we concentrate on the 
aggregation of the behaviors from micro to macro level. Our approach is that of 
general mathematics and our main methods are function theory, abstract algebra and 
functional equations. We allow arbitrary constant weights 0))(())(( iaqiAq . The 
simplest of them is the equal weighting 1))(( iaq , which would result in 

njaqiaqiaw 1))((/))(())((  .The same set of weights is assumed to apply all the 

time. Normalized weights ))((/))(())(( jaqiaqiaw sum always to unity. 
 
Now consider some )( Yfi  ( ni ,...,1 ) as the behavioral functions of the n 
agents or units )(ia . They define the whole micro system as follows: 
 
   )))((())(( iaxfiay i   “One by one description” 
 
where ))(( iax input and ))(( iay output for )(ia in their respective spaces. Inputs 

))(( iax may get any values in independently of each other and outputs move in 
their linear output space Y  as determined by if . 
 
Addition and scalar multiplication for any functions )(, Ygf are defined as 
normally by point-wise addition and multiplication: )()())(( xgxfxgf  
and ))(())(( xfxf . Thus gf and f become functions of )( Y . 
 
Similarly functions )( Yfi determine the average behavior f as follows 

                                                
5 If some x-variable denoted by z is either an indicator or counter, all its actual values are integers 
starting from zero. We may say that its averaging process changes quality to quantity. Means z  may 
concretely be 0,735 or 73,7 % for an indicator like “having an internet connection” and 1,414 for 
“number of children”. Such intermediate values would appear as actual observations on semi-macro 
levels. For convenience of representation, micro behaviors are supposed be defined by interpolation 
also for such intermediate values. Such values do not appear as micro observations, but they naturally 
appear for their means. On a more philosophical level most of our concrete observations – say of a 
table – appear as means and “quantities” although tables are “mostly full of holes” according to atom 
theory. We have the habit of ignoring these questions in daily life. 
6 Actually indicators are often superfluous in the analysis, because they are often agent-constant (say 
gender) and can in those cases be imbedded in the agent-specific behaviors. On the other hand, marital 
status and home location really are variables. Indicators are so popular in the estimation that we have 
included them here. Note that we do not assume that “dummies” have only intercept effects: they can 
affect behaviors more profoundly, say any “slopes”. 
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 for all x . 

 
This is a crucial definition and the reader should clear it out e.g. in the case of 

)( R of the exercise 1. Note that this definition alters the arguments x in no 
way, so that e.g. all dummy inputs act exactly as before. Only outputs are averaged 
and that makes sense, when Y is a linear space. As a linear combination of sfi ´  
also )( Yf . The average behavior f has an important role both in the macro 
and micro behaviors. It has an important role, but it is not the only actor in the macro 
behavior, contrary to what most macro texts in economics try to defend. The 
researchers of the aggregation problem seem to have concentrated on two polar 
questions:  
 
 1) When the average behavior f really is and  
 2) why it supposedly is not “in general” or ”in reality”  
 
the sole actor in the show. 
 
The quarrel could continue indefinitely long, because the participants are putting their 
approximations in different places and do not want to take into account the arguments 
of the other side. That could reveal weaknesses in their approach. It could cast too 
much light on their previous contributions and more generally on their paradigms, see 
the preface of Fisher (1992). This is a typical way how personal interests hinder 
scientific progress. It seems to be a good time to break the 30 years silence in 
economics. 
 
Next we separate all different constituents of the micro system and order them agent-
wise in their appropriate vectors. Using simplified notation for the inputs ))(( iaxxi  
and outputs ))(( iayyi , we have fewer brackets and more sub-indices in )( iii xfy . 
The column vectors are in terms of these 
 
 

   n

n

Y

y

y

y

1

,    n

nx

x

x

1

,   n

n

Y

f

f

f )(

1

 

 
Next write all the micro equations in terms of these vectors and the A-operator: 
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The Analysis operator A (shortly A-operator) separates the function symbols from 
their arguments agent by agent and outputs their “outcomes” iiii xfxf )( , a formal 
product actually. This product interpretation ii xf  is mostly applied in Linear Algebra 
for linear functions and their arguments. A-operator is both a notational and 
conceptual trick. It reveals the logical parts of the micro system. In addition to its 
traditional one by one -description, the micro system can now be expressed very 
shortly and elegantly: 
 
   ),( xfAy   The Basic Micro View (Eight Symbol Formula) 
 
It takes some time to get accustomed to this new notation and to realize its 
importance. The analysis operator in ),( xfAy  is best read backwards. It shows, 
how the outputs are explained in terms of its constituent parts: all the behaviors f and 
inputs x. It gives the Analysis of the micro system. Reading forwards from behaviors 
and inputs to outputs may first make this A-notation look unnecessary, ”as everything 
has been said already in )( iii xfy ”. No, it is not; we need it. In raises the behaviors 
to the front and separates them from the inputs. 
 
The A-operator is like integration, summation and derivation linear in its functional 
arguments:  
 For all sequences of behaviors nYgf )(, and all real 
multipliers R21,  
 
   ),(),(),( 2121 xgAxfAxgfA . 
 
This holds identically for all possible input sequences nx . 
 
We leave it for the reader to verify. It is a simple exercise in general algebra and you 
would not appreciate it, if we wrote it down for you. Note how difficult its discovery 
would have been without proper notation. 
 
Next make an important connection with the macro behavior by writing 
 
  iii ffffff )(  or )()()( xfxfxf ii . 
 
This pulls heterogeneous behaviors )(xfi aside and brings average behaviors )(xf to 
the front. Inserting actual inputs gives 
 
   )))((()))((()))((())(( iaxfiaxfiaxfiay ii  
 
which reads for all agents together 
 
   ),(),1( xfAxfAy  Summary of micro behaviors. 
 
This follows immediately from the linearity of A and from the identity fff 1 . 
Note that )1,...,1(),...,(1 ffff means “ f applied for every unit or agent”.  
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Average behaviors act like benchmarks against which all behaviors are compared. 
How else could we effectively describe e.g. 2 million different consumption functions, 
which is a typical case in a small country? Should we tell two million stories without 
any comparisons? Actually the heterogeneous behaviors mostly cancel each other 
away at the macro level. But this does not occur “necessarily”, which has caused the 
controversy mentioned above. We will show after a while when and why. 
 
 4. The Synthesis operator S 
 
We first mention that the average output was defined in the general motivation as the 
w-weighted mean 
 
   n

i
iayiawyy

1
))(())(( . 

 
Now insert ),( xfAy which is in component form ))((())(( iaxfiay i : 
 
   n

i i ixfiawxfAy
1

))(())((),(  
 
In accordance with the A-operator and the chosen weighting scheme, define finally the 
synthesis operator S by 
 
   ),(),( xfAxfS . 
 
These definitions are completely synchronized: The synthesis operator maps the 
inputs to the average output: yxfS ),( . The linearity of the A-operator transforms 
immediately also to the S-operator: 
For all sequences of behaviors nYgf )(, and all real multipliers R21,  
 
   ),(),(),( 2121 xgSxfSxgfS . 
 
This holds identically for all possible input sequences nx .  
This is a remarkable fact, though its proof is self-explanatory: 
 

   

),(),(
),(),(

),(),(

),(),(

),(),(

21

21

21

21

2121

xgSxfS
xgAxfA

xgAxfA

xgAxfA

xgfAxgfS

 

   
 
The real significance of the Summary of micro behaviors reveals itself on the macro 
level, where heterogeneous behaviors turn into Heterogeneity Effects HE(x): 
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   ),(),1(),(),1( xfSxfSxfAxfAy . 
 
Shortly   ),(),1(),( xfSxfSxfS   because fff 1  
or   )()()( xHExCBxAB . 
 
Read: Actual Behavior = Common Behavior + Heterogeneity Effects.  
 
Furthermore,  Common Behavior can be decomposed as Representative Behavior + 
Non-linearity Effects as follows: 
 
   ),1(),1(),1(),1( xfSxfSxfSxfS  or  
   )()()( xNLExfxCB  
 
These are usually very complicated mathematical functions, which depend on all the 
micro behaviors and all the circumstances (inputs), where the agents happen to be. 
But they turn out to be mathematically manageable. Their complexity can be 
compared to the Gibb´s Ensemble or Fock Space of statistical physics, where the 
phase space of many particles7 is modeled similarly. We also use similar notation for 
averages and inner products, the main mathematical tools in the area. But we have 
allowed and added heterogeneity of behaviors to all that. 
 
Note that the Common Behavior is still a complicated function for several reasons, 
though it looks simple. Its main complexity arises from the fact that the agent-inputs 
are free variables in some high dimensional space, say pmd RR1,0 : 
 
   )())((())((),1()(

1
xfiaxfiawxfSxCB n

i
. 

 
The last expression looks nice, but leads easily to misunderstandings. CB depends on 
all the behaviors. Formally ),1()( xfSxCB  maps all sequences nYf )(  

and nx to Y , just like ),()( xfSxAB  and ),1()( xffSxHE  do. They have 
both functions and ordinary arguments as their inputs. They can be called functional – 
functions. 
 
Example 1: Simplify the function space )( Y as much as possible into 

)( RR . Take all sfi´ as affine functions xiixfi )()()( . Then 
xxf )( , where aiiaw )())(( and similarly for . These give 

                                                
7 Say more than 6,022142* 2310 = the number of molecules in one mole of gas. One mole of hydrogen –
the definitely most common of all roughly 100 elements in the universe - weights only 1 gram. 
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x

x

iaxiawiaw

iaxiawiaw

iaxiawiaw

iaxiaw

xfxCB

n

i

n

i

n

i

n

i

n

i

n

i

11

11

1

1

))(())(())((

))(())(())((

))(())(())((

))(())((

)()(

 

 
The “quick and dirty-method” (which easily leads to absurdities) gives this outcome 
easily once we know the correct result: 

   

)(

)(

)()(

xfx

xfx

x

xfxCB

 

For affine heterogeneous behaviors, the common behavior depends on the 
average/representative behavior (as always) and the mean input only - and nothing 
else.  
 
This is best stated operationally: )()()( xfxfxCB . 

This is a strong result, which actually holds also in the function space 
)( LK RR for all K and L. If its functions if  are all affine (and otherwise arbitrary), 

then also )( LK RRf is affine and the Common Behavior depends on 
KRxx only: )()()( xfxfxCB . We suggest, that the reader tries to write 

these simple looking formulas using standard matrix notation, first for L = 1 and then 
for general L. It is not so simple. Before turning to the converse of these theorems, we 
add some comments. In this direction things are rather clear and “simple”. For 
instance, it is clear, that affine heterogeneous micro functions always generate affine 
average behaviors. Can an affine average behavior arise otherwise? Yes, but only 
occasionally, for some restricted agent-arguments, where their behaviors “looks like 
affine”. Affine average behavior can arise generally (i.e. for all possible micro 
arguments) only if all micro behaviors are also affine. 

Example 2: Converse results of Example 1. This direction is much more difficult and 
is based on some rather deep (but well-known) results of Functional Equations, see 
Aczél (1966). We return to the simplest case )( LK RR , where K = L = 1, which 
is hard enough. Example 1 shows that for affine micro behaviors 

    )()(),1(: xfxfxfSRx n ,  
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the common behavior depends on the mean of the inputs Rxx only. Also the 

converse result holds: If the functional equation )()(: xfxfRx n  holds, then 
the function f must be affine. For n = 2 this functional equation reads 

   )
2

(
2

)()( 2121 xxfxfxf . 

Affine functions are the only minimally regular solutions of this functional equation. 

By the way, in this affine case the Heterogeneous Effect 
),cov(,)(),()( xxxfxfSxHE . It has many other equivalent 

representations:  

   xxxxx ,,),cov(),cov(),cov( .  

The deviation operator can be moved around completely freely in the statistical 
covariance-expressions but must appear at least once in the general inner product-
expression. 0),cov(,)( xxxHE  iff all agent-slopes are equal. This leaves 
all intercepts totally free, which means that intercept heterogeneity has no macro 
effects for parallel affine micro equations: xixfi )()( . This deals with affine 
functions only, but generalizes heavily.  

Actually completely generally: If if are parallel shifts from each other, called a 
parallel family, then )(xHE vanishes identically. More surprisingly, also the converse 
is valid: If )(xHE vanishes identically, then sfi ' form a parallel family. We have 

)()()( xgixfi , where both the shifts and the g-function can be arbitrary. The 
macro behavior does not change at all if all the micro behaviors are replaced by the 
same average behavior )()( xgxf . Symbolically: If sfi ' form some parallel 
family, then ),1(),( xfSxfS , and conversely. This very strong result holds in any 
function space )( Y , where Y is a linear space. 

Aczél (1966) considered carefully the Functional Equation when )(, RRgf  

   )
2

(
2

)()( yxgyfxf   The Jensen Equation. 

If both f and g are differentiable, then taking partial derivatives from both sides 
gives 2

1
2
1

2
1 ))(()( yxgxf xx  or ))(()( 2

1 yxgxf xx . The left side depends on x 
only, as the right hand side depends also on y. This is impossible unless both 
derivatives “depend on nothing” or are constants. This implies that both f and g must 
be affine and actually the same: xxgxf )()( . This clearly solves the 
equation. But in this solution of Jensen Equation we applied the differentiability 
assumption. Aczél shows that the same solution arises with minimal regularity for f 
and g, say continuity in just one point or if they are bounded in any short interval. But 
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without any such regularity, also irregular and really wild Hamel-solutions arise (in 
addition to the extremely regular affine ones). 

This generalizes: The only minimally regular solutions of 

   )()( xgxf ,   Generalized Jensen Equation GJE 

where )()( iyiwy = weighted mean with constant weights s.t. 

0)(,1)( iwiw , are mutually equal affine f and g . Thus minimally regular 
solutions of GJE are extremely regular. 
 
Thus our equation )()( xfxf implies affinity of f - if it is continuous or 

otherwise regular somewhere. Affinity of f requires affinity of all micro equations. 
The theorem generalizes also for function spaces )( LK RR . These are amazing 
converses and important results. But they are also perplexing. First they hold globally 
and exactly. This is ordinarily taken as a positive thing, but can (and should be) also 
reversed. If global and exact results are asked for, these are the results.  
 

5. Practical approximations and applications 
 
But are there any local and approximate results? Suppose that the equation 

)()( xfxf or .)()( constxfxf  needs to hold only accurately (say with an 
error at most in the tenth decimal) and for reasonable or practical inputs of the agents. 
What are the solutions then? The answer is shocking: extremely many nonlinear 
heterogeneous micro functions generate such an average non-affine behavior! If only 
approximate and local results are asked for, )()( xfxf restricts f and the micro 
behaviors considerably less and often very little indeed. This casts new light on the 
old aggregation questions.  
 
The situation is similar to the Central Limit Theorem CLT. Quite few people seem to 
know Cramér´s converse of CLT: If independent random variables produce for some 
n a sum (normalized or not), which is exactly normally distributed, then all these 
variables must themselves be normally distributed. This is a proven fact, although for 
large n the sum gets more and more normally distributed irrespective of the 
distributions of individual variables! Should we abandon CLT, because it holds 
exactly under extremely unrealistic and strange conditions only? In our opinion, 
similar abandoning is regular in the case of aggregation. 
 
Our conjecture is the following. Under wide and normal conditions (say of an 
economy) of mildly nonlinear heterogeneous behaviors in )( LK RR , the Actual 
Behavior can be approximated by 
 
   .)()()()( constxfxHExCBxAB  
 
Equivalently .)()( constxHExNLE  
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For small changes KnRh , hxx , the actual differential changes of the macro 
outputs satisfy 
 
   ),(),(),(),( hxfdhxdCBhxdCBhxdAB  
 
when the changes are uncorrelated with (orthogonal to) the base conditions (say if 

hh = uniform changes for all agents) and heterogeneity effects are frozen for them. 
 
These are vector functions having L outputs. For any output component we have more 
concretely  
 
   hxfhxfdhxdCBhxdAB llll )(),(),(),( . 
 
Above )(xf l denotes the gradient (K-vector of the partial derivatives) in respect to 
all K input variables. As a summary: The average behavior f )( LK RR - which 
need not be affine - and the means of the inputs KRhx,  transform the essential 
information concerning the conditions and changes KnRhx, of the actual macro 
behavior in this way. The reduction in dimensions is huge for large n: essentially 
dimensions reduce by factor n, say to one millionth part as only the averages 

fandhx, are needed instead of the corresponding micro level agent information. 
Non-linearity and Heterogeneity Effects may be non-zero, but they are essentially 
frozen in many normal conditions. These results are illustrated in a more concrete way 
in the Appendix. 
 
Intuitively we claim that macro objects seem to behave as if they were composed of 
equal parts behaving equally and the driving forces were the means of the relevant 
input variables. This explains the partial success of macro modeling of economies, 
were apparent differences of its agents have been deliberately ignored without 
knowing the consequences.  
 
Heterogeneity of behaviors and differences of the agent-inputs may cancel away in 
macro level in many normal conditions. These appear normally as inner dimensions 
having no or only small macro effects. But taking these inner dimensions into account 
in model building and its estimation can increase accuracy of modeling to a new level.
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Appendix: Micro Analysis and Macro Synthesis in a nutshell8 
 
We consider several micro behaviors )(xfy i , all having their own inputs )(ixx . 
Inputs and outputs are here real numbers, for simplicity, but behaviors are allowed 
first to be arbitrary agent-dependant functions. The micro system is described in 
Analysis. Synthesis deals with the overall summary of the micro system. It is 
important to forget all the practical worries of computation and estimation to see the 
aggregation problems clearly. 

Analysis 
 
Analysis one by one:   ))(()( ixfiy i , ni ,...,1  
 
Here )( RRfi = the space of all functions g from R to R . The number n of units 
or agents can be large or small. Theoretically it can be very large. Think of these 
equations telling what would happen in the micro system if we had complete 
information of it. It can be simulated routinely in a computer, when behaviors are 
given and input values are chosen. But that would be hard work and its outcomes are 
hard to follow. Thus raise the level of abstraction, hoping for some light. 
 
BV, Basic View of Analysis:  ),( xfAy . 
 
Here x and y are column vectors of nR and nRRf )( is a similar sequence of 
behaviors. An important thing is that the A-operator is linear in its functional 
argument f (for any x). 
 
What is the idea of the A-operator introduced? It shows concisely what the outputs 
depend on. Especially, it separates the functional arguments from the inputs. The first 
correspond to behaviors and the latter to the circumstances, where the agents happen 
to be. Mathematically, it maps the “abstract point” ),( xf to the correct n-dimensional 
output vector y. In my mind, it changes the micro system to an abstract high 
dimensional geometry. Its row i -component is 
 
   ))((),()( ixfxfAiy ii . 
 
This tells, that the agent )(ia is supposed to react only to its own components 

))(,( ixfi in ),( xf . Every iA  is defined for all ),( xf nnY )( , a huge space. 
For simplicity, RY here. But iA is insensitive for everything else except 

))(,( ixfi . This reflects what is done e.g. in Product Spaces of probability theory. It g2 
allows treating behaviors if  as actual “variables”, which can be changed like 
programs in computers. 
 
Figure 1. Analysis one by one and the representative behavior (marked by dots) 
 

                                                
8 Based on the presentation in the 3rd Helsinki-Tartu Symposium in Economics, Helsinki 13-14.5.2005 
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Denote average or representative behavior by ifiwff )( . 

Weights 1)(,0)( iwiw , are exogenous constants. If the micro agents are similar 
(say households instead of areas of different sizes), we can normally take niw 1)( . 
This is the vertical average for a given input value over the individual behaviors. In 
figure 1 we show four behaviors and one instance for each. The hollow point is the 
average of the instances (their point of gravity) and it lies somewhat under the 
representative curve or behavior. The main point of the paper is to explain, why the 
hollow average points deviate from the representative curve and by how much. 
 
Express iii ffffff )(  = representative plus deviation behaviors. Then 
use the linearity of A to get the following identity.  
 
SV, Summary View of Analysis: ),(),1(),1(),( xfAxfAxffAxfA . 
 
Furthermore, ),(),1(),1(),1(),( xfAxfAxfAxfAxfA . The first and third 
terms in the right hand side may be cancelled out, but do not do it, because 

)()1,1( xfxfA turns out to be the principal term from the point of view of the macro 
behavior.  
 
Figure 2. Representative and deviation behaviors 
 



 21 

Average behaviour 
and four deviation behaviours

-2

0

2

4

6

8

10

0 1 2 3 4

Input

O
ut

pu
t

S L

 
 
Small and large scatter configurations are illustrated in the figure. When actual four 
filled points are averaged or aggregated, we get points shown by larger hollow circles. 
Similar aggregation in the figure 1 gives the hollow circles near the representative 
behavior. 
 
For smooth behaviors expressed one by one we proceed as follows (where 

xxxfff iiii , ): 
 

  
)())()(('')()(')(

))(()())(()())((
2

2
1 idixxfixxfxf

ixfxfixxfxfixf

i

ii  

 
The second term vanishes in averaging and the effect of input variance arises from the 
third. Itô’s lemma is based on this very idea. Here the deviation behaviors 

))(()( ixfid i may be )(ix -independent or constants for all i. This defines a parallel 
system nRRf )( , where 0Paf ii  or fPaf ii

0 . Here axaP )(0 gives 
our notation for constant functions. For parallel systems also the fourth term vanishes 
in averaging. In the parallel limit – a common case of almost parallel behaviors - this 
is bound to happen approximately. 
 
By definition, on the vertical lines the mean of )()( xfid i  is always zero: 

GAfd , the General Annihilator. 
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These figures give a concrete view in terms of Analysis one by one, when actual 
movements are implemented somewhere. But they are too specialized and filled with 
details (which increase at the rate of n) to illustrate SV above and DMV below. The 
contrary may happen: these one to one views may be confusing in this respect. 
Summary View of Analysis and Decomposed Macro View must be expressed in terms 
of Abstract Algebra. 
 
The reader has to be willing and able to change views from elementary geometric 
ones (one by one views) to more abstract algebraic ones (SV and DMV) to understand 
our basic points. In our experience this may be quite a challenge. 

Synthesis 
Consider as macro output the weighted mean yiyiwy )()( . It is an extremely 

complicated function of all inputs nRx and behaviors nRRf )( , which can be 
any sequence of any real valued functions of a real variable. These are huge spaces, 
but manageable. Actually, it can be expressed rather simply in our notation: 
 
BMV, Basic Macro View: ),(),( xfAxfSy . 
 
Like the A-operator (and integration, summation, expectation, derivation, matrix 
multiplication etc.) also the S-operator is linear in f (for any x): 
 

 ),(),(),( 2121 xgSxfSxgfS . 
 
DMV, Decomposed Macro View: 
 
  ),()1,1(),1()1,1(),( xfSxfSxfSxfSxfS  
  )()()()( xHExNLExfxAB . 
Actual Behavior = Representative (or Average) Behavior +Nonlinearity and 
Heterogeneity Effects.  
 
This holds even for arbitrary heterogeneous (say non-continuous and wild) behaviors 
and for several input variables. For any smooth twice differentiable behaviors and 
single input variables considered in SV above, DMV reduces to the quite simple 
formula 
 
  dxxxfxfxABy ,)('')()( 2

1 . 
 
Because the first order derivative term is lacking (it vanishes identically) and the non-
linearity and heterogeneity terms are often essentially frozen, we tend to think, that 
the representative behavior )(xf is the sole actor in the macro show. In this common 
view or “guess”, all macro effects are mediated through the means of the inputs and 
only the average reactions to their changes matter. Though this “guess” or attitude is 
not valid, it fortunately contains some truth. Actually, the representative behavior and 
the means of inputs really determine most of the macro changes in “normal 
conditions”.  
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Figure 3. Heterogeneity Effects )(xHE in the Decomposed Macro View DMV for four 
agents in two situations (S = Small scatter, L = Larger scatter of inputs). 
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In Figure 3 we illustrate how the heterogeneity effect arises in two situations. For the 
small scatter case S, the mean point is very accurately on the coordinate axis. For 
larger scattering L, it moves slightly below it. The circles are really the points of 
gravity of the corresponding four two dimensional points. 
 
But sometimes )(xNLE and )(xHE  may produce real surprises, even some kind of 
tsunami effects, when special configurations happen in high dimensional micro 
spaces. 
 
The result above is an important and strong result, actually a generalization of Itô’s 
Lemma for heterogeneous behaviors. Here )()()(, izixiwxzzx is an inner 

product of n-vectors x and z. In statistical notation, )var(),cov(, xxxxx . For 

any parallel system 10 faPf  the HE-term vanishes identically, 
0)(),( xGAxfSd , where GA = the General Annihilator which turns all its 

inputs to zero.  
 
The converse is also true: If HE(x) vanishes for all inputs, then the behaviors are 
parallel. The really important thing is that HE(x) must remain small also in the 
parallel limit, at least for “normal values” of inputs. 
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This can be generalized even further. If )()( xfid i are almost x-independent or 
geometrically slowly changing functions (“almost horizontal”), then their mean 

)(xHEd is frozen. This means that for any reasonable nRx  and for small 

changes nRh : 0),()()( hxHExHEhxHE . This happens especially when 
1hh = the same small change for all the agents.  

 
Sometimes this requires transforming the input and output variables to their natural 
scales where they are stationary, especially to log-scales whenever possible. For 
instance, the simple Keynesian consumption function should be expressed in the log-
scale, where the income and consumption distributions are roughly normal and move 
by shifting (variances stay essentially constant). We may say that such variables are in 
statistical equilibrium. For them HE is normally frozen and macro relations are 
especially simple, despite of micro level heterogeneities. 
 
In many practically important cases, we may anticipate that heterogeneity effects 
really are frozen. This simplifies aggregation enormously, because most of the 
degrees of freedom in micro level have been transformed to the HE-term. If and when 
it freezes, these become inner dimensions which have only small or no macro effects. 
This occurs in normal life and physical situations all the time: most of the extremely 
complicated microstructures and inner fluctuations of ordinary objects (say 
movements of atoms) are almost completely invisible in the human scale. We need 
special experiments and equipment better than microscopes to reveal them. For us 
they really are frozen – only their average properties matter. 
 
In Figure 4 we comment finally the previous two illustrative cases S and L. The two 
situations are: a small (S) and a large (L) input scatter case. In the S-case the actual 
mean point )(xABy situates on the curve of the representative behavior )(xf . In 
the L-case, it moves somewhat below it –because of the HE and NLE-terms – and 
normally parallel to it. 
 
If all the inputs are near each other, then rather trivially the macro mean of them 
moves on the representative behavior (or very near it). But if the inputs are scattered, 
the macro output moves below the point determined by the macro mean. But it moves 
roughly parallel with the representative behavior. 
 
Figure 4: Decomposed macro view for small and large input scatters. 
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For the shown L-configuration of inputs, HE is small and negative. Also, the NLE-
term is negative because of the negative curvature of the representative behavior. But 
both of them are frozen for small changes and thus  
 
    )()( xfxABy  
 
expressed in the standard but somewhat imprecise notation. But it will communicate 
the relevant message, that under these conditions the changes of the representative 
behavior )(xf reflect accurately the changes of the Actual Macro Behavior AB.  

Summary 
 
The confusion experienced by most of us in these matters shows in our opinion, that 
we have a long and tedious road in front of us. We have shown one way to proceed 
along it in order to better understand aggregation questions and their connections to 
effectively modeling complex micro-macro systems. 


