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1 Introduction

In forest economics the well-known model by Faustmann 1849 has been the most often used
starting point in studies considering the optimal rotation period of forest stands. Under the
assumption of constant timber prices, constant total cost of clear-cutting and replanting as
well as constant interest rate, perfect capital markets and perfect foresight the model leads
to a constant rotation period for an even aged stand, which maximizes the present value of
forest stand over an infinite time horizon (see e.g. Clark 1976, Johannsson and Löfgren 1985
and Samuelson 1976). The representative rotation age depends on timber price, total cost of
clear-cutting and replanting, nature of forest growth as well as the interest rate.

The basic assumptions and predictions of the Faustmann model do not seem to lie in
conformity with empirical evidence (see e.g. Kuuluvainen and Tahvonen 1999). This has led
to ongoing research, which has extended the basic Faustmann model under perfect foresight to
allow for amenity valuation of timber (see e.g. Hartman 1976), the potential interdependence
of forest stands as producers of amenity services (see e.g. Koskela and Ollikainen, 2000, 2001,
and Amacher, Koskela, and Ollikainen 2003) as well as imperfect capital markets (see e.g.
Tahvonen and Salo and Kuuluvainen 2001). The resulting rotation age has been shown to
depend on the properties of amenity valuation function, the nature of stand interdependencies
and potential borrowing constraints in the capital markets. In particular, in the latter case
most of the basic properties of optimal forest harvesting become different than the ones in
the classical Faustmann model.

Finally, the perfect foresight assumption has been relaxed in studies focusing on the
implications of stochastic timber prices (see e.g. Brazee andMendelsohn 1988, Thomson 1992,
Plantinga 1998, and Insley 2002), risk of forest fire (see e.g. Reed 1984) and/or stochastic
forest growth on optimal rotation age (see e.g. Reed 1993, Miller and Voltaire 1983, Morck
and Schwartz and Stangeland 1989, Clarke and Reed 1989, 1990, Willassen 1998 and Alvarez
2003 b). The effect of uncertainties on the optimal rotation period depends on the type of
uncertainty. In the case of forest fire risk modelled as a Poisson process the rotation age will
become shorter due to the higher effective discount rate (see Reed 1984) while in the presence
of timber price and/or forest growth risk usually the reverse happens; higher volatility in price
or in age-dependent growth will tend to lengthen the rotation period by lowering the effective
discount rate. The reason for this finding is that even though increased volatility increases
the expected net present value of the harvesting yield, it also raises the value of waiting
by increasing the expected net present value of future harvesting opportunities. Since the
latter effect dominates the former, higher volatility will unambiguously increase the optimal
rotation period (see e.g. Clarke and Reed 1989, Willassen 1998 and Alvarez 2003 b).

This rotation literature has covered several interesting cases and provided useful insights.
There is, however, a very important issue, which has not yet been analyzed. To our knowledge
in all the research associated with optimal rotation periods of forest stands the assumption
of constant interest rate has been sticked to. As we know from empirical research, interest
rates fluctuate over time and the implications of this empirical finding for the term structure
of interest rates, asset pricing etc. have been one of the major research areas in financial
economics (for an up-to-date empirical survey in the field see Cochrane 2001, chapter 20;



see also Björk 1998, chapter 17 for an extensive treatment of interest rate modelling). If
the investment projects would be very liquid ones, then interest rate fluctuations would not
necessarily matter very much. In the case of forestry, however, the situation is different. Given
the relatively slow growth rate of forests, investing in replanting is a long-term investment
project, over which the expected behavior of the interest rate as the opportunity cost will be
important. Similarly, since many real investments are productive over a considerably long
time period, we are tempted to argue that the variability of interest rates should play a key
role in the rational valuation and exercise policies of real irreversible investment opportunities
as well. Ingersoll and Ross 1992 have analyzed the effect of interest rate uncertainty on the
timing of investment but they model the interest rate process as a martingale (i.e. as a
process which has no drift). Alvarez and Koskela 2003 generalizes their findings by allowing
for stochastic interest rate of a mean reverting type.

In this paper we analyze the unexplored issue of what is the impact of variable and
stochastic interest rate on optimal forest rotation. Since our main emphasis is to consider
the impact of a stochastic interest rate on the optimal rotation policy, we first model the
underlying interest rate dynamics as a general one factor diffusion process without explicit
parametrization of the model. In this way, we plan to establish robust results valid for most
well-established one factor interest rate models appearing in the financial literature (cf. Björk
1998 chapter 17, Black and Karasinski 1991, Cox, Ingersoll, and Ross 1980, 1981, 1985, In-
gersoll and Ross 1992, Merton 1973, 1975, and Vasiček 1977). We provide a mathematical
characterization of the two-dimensional optimal stopping problem and show among others in
the presence of amenity valuation that allowing for interest rate uncertainty will increase the
optimal rotation period under the natural condition when the value of the optimal policy is
convex in terms of the initial interest rate and present plausible conditions under which this
holds. We also establish that increased interest rate volatility will increase the value of the
optimal policy and move the exercise date further, meaning that the rotation period becomes
longer. Finally, modelling interest rate uncertainty as a mean-reverting process and forest
value as a geometric Brownian motion, we abstract from amenity valuation and provide an
explicit solution for the two-dimensional path-dependent optimal stopping problem. Numer-
ical illustrations indicate that interest rate volatility has a significant nonlinear quantitative
importance on the optimal rotation policy.

We proceed as follows: In section 2 we present a framework to study theWicksellian single
rotation problem in the thus far unexplored situation of stochastic interest rate variability
in the presence of amenity valuation. Since the problem is more general than the constant
discounting case, we first provide a mathematical characterization of the optimal rotation
policy and its value, and then state the main results. In section 3 we abstract from amenity
valuation and provide a solvable model when we specify interest rate uncertainty as a mean
reverting process and forest value as a geometric Brownian motion. Section 4 presents some
concluding remarks.
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2 The Wicksellian Rotation Problem under Interest
Rate Uncertainty

In this section we formulate the Wicksellian rotation problem in the presence of amenity
valuation in more general terms than usually by allowing stochastic interest rate variability.
We proceed as follows. First we provide a set of sufficient conditions under which the optimal
rotation problem admits a unique solution and under which the value of optimal policy can
be obtained from an associated boundary value problem subject to standard value matching
and smooth fit (or smooth pasting) conditions. Second, we analyze the relationship between
increased volatility and the optimal rotation period.

In what follows, we model the stochastic interest rate dynamics as a general one factor
diffusion model without explicitly parametrizing the drift of the underlying dynamics. This is
because our purpose is to explore the impact of interest rate uncertainty on optimal rotation
under very general assumptions in order to be able to establish robust results which would
be valid for most well-established one factor interest rate models appearing in the literature
of financial economics (cf. Björk 1998 chapter 17, Black and Karasinski 1991, Cox, Ingersoll,
and Ross 1980, 1981, 1985, Ingersoll and Ross 1992, Merton 1973, 1975, and Vasiček 1977).
In line with these arguments, we assume that the interest rate process {rt; t ≥ 0} is defined
on a complete filtered probability space (Ω, P, {t}t≥0, ) satisfying the usual conditions and
that rt is described on R+ by the (Itô-) stochastic differential equation

drt = α(rt)dt+ σ(rt)dWt, r0 = r, (2.1)

whereWt denotes standard Brownian motion, the drift coefficient α : R+ 7→ R is continuously
differentiable with a Lipschitz continuous derivative, and the volatility coefficient σ : R+ 7→
R+ is a sufficiently smooth mapping for guaranteeing the existence of a solution for (2.1)
(at least continuous; cf. Borodin and Salminen 2002, pp. 46—48). In order to avoid interior
singularities, we also assume that σ(r) > 0 for all r ∈ (0,∞), that ∞ is a natural boundary
for the diffusion rt (non-explosive paths), and that 0 is either unattainable or exit for rt (cf.
Borodin and Salminen 2002, pp. 14—21). It is worth observing that if both boundaries are
unattainable and Z ∞

0

m0(y)dy <∞,

where m0(r) = 2/(σ2(r)S0(r)) denotes the density of the speed measure m of the diffusion rt
and

S0(r) = exp
µ
−
Z
2α(r)

σ2(r)
dr

¶
denotes the density of the scale function of the diffusion rt, then rt will tend towards a long
run steady state distributed according to the stationary distribution with density (cf. Borodin
and Salminen 2002, pp. 35—37, see also Merton 1975)

p(r) =
m0(r)R∞

0
m0(y)dy

.
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Having presented the dynamics describing the evolution of the interest rate, we now
specify the deterministic dynamics for the forest value as follows

dXt = µ(Xt)dt, X0 = x ∈ R+, (2.2)

where µ : R+ 7→ R is a known Lipschitz-continuous mapping measuring the growth rate of
the forest value. It is now clear that given our assumptions on the underlying dynamics the
differential operator associated with the two-dimensional process (Xt, rt) now reads as

Aσ =
1

2
σ2(r)

∂2

∂r2
+ µ(x)

∂

∂x
+ α(r)

∂

∂r
.

Given the stochastic interest rate dynamics (2.1) and the deterministic forest value dy-
namics (2.2) we next consider the following Wicksellian stochastic single rotation problem
(an optimal stopping problem)

Vσ(x, r) = sup
τ

E(x,r)

·Z τ

0

e−
R s
0 rtdtπ(Xs)ds+ e−

R τ
0 rsdsg(Xτ)

¸
, (2.3)

where τ is an arbitrary Ft-stopping time, g : R+ 7→ R+ is a continuously differentiable
and non-decreasing mapping denoting the payoff accrued from exercising the irreversible
harvesting opportunity. In (2.3) the mapping π : R+ 7→ R+ measures the monetary flow of
returns accrued from leaving the harvesting opportunity unexercised, and it is assumed to be
non-negative and continuous in terms of the forest value. Moreover, in order to guarantee the
finiteness of the objective, we also assume that both the expected present value of the exercise
payoff g(x) and the expected cumulative present value of the flow π(x) from the present up
to an arbitrarily distant future are bounded for all states. Put formally, we assume that

E(x,r)

h
e−

R t
0 rsdsg(Xt)

i
<∞ for all (t, x, r) ∈ R3+

and that

E(x,r)

Z ∞

0

e−
R s
0 rtdtπ(Xs)ds <∞ for all (x, r) ∈ R2+.

The value function is denoted as Vσ(x, r) in order to emphasize the relationship between
volatility and the value of the optimal rotation policy. We can now restate the optimal
rotation problem (2.3) by decomposing it into the immediate exercise payoff and the early
exercise premium as is indicated by the observation

Vσ(x, r) = g(x) + Fσ(x, r),

where

Fσ(x, r) = sup
τ

E(x,r)

Z τ

0

e−
R t
0 rsds [π(Xt) + µ(Xt)g

0(Xt)− rtg(Xt)] dt (2.4)

denotes the early exercise premium in the presence of interest rate uncertainty.
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Our main objective is to present a characterization of the comparative static properties
of the optimal rotation policy and its value as functions of the volatility of the underlying
interest rate process. To this end, we assume that the interest rate process {r̂t; t ≥ 0} is
described on R+ by the (Itô-) stochastic differential equation

dr̂t = α(r̂t)dt+ σ̂(r̂t)dWt, r̂0 = r, (2.5)

where σ̂ : R+ 7→ R+ is again a sufficiently smooth mapping for guaranteeing the existence
of a solution for (2.1) (at least continuous; cf. Borodin and Salminen 2002, pp. 46—48) and
satisfies the inequality σ̂(r) ≥ σ(r). Put somewhat differently, r̂t can be interpreted as a
diffusion evolving at the same rate as rt but subject to greater stochastic fluctuations than rt.
We emphasize that although in most analyzes the comparison is between different versions
(in terms of volatility) of a given underlying interest rate process, we also consider the cases
where these processes may be different. In line with our previous notation, we denote as
Vσ̂(x, r) the value of the optimal rotation policy and as Fσ̂(x, r) the early exercise premium
in the presence of the more volatile interest rate dynamics r̂t.

Along the lines indicated by previous studies considering the impact of increased volatility
on the value of contingent contracts (cf. Alvarez 2001 b, 2003 a, 2003 c, Bergman, Grundy,
and Wiener 1996, El Karoui, Jeanblanc-Picqué, and Shreve 1998, Hobson 1998, and Janson
and Tysk 2003) the convexity of the value function plays a key role in the determination of
the sign of the relationship between increased volatility and the value of the optimal rotation
policy. Hence, it is important to ask: under what conditions the value Vσ(x, r) of the optimal
policy under interest rate uncertainty is a convex function of the initial interest rate. Before
establishing our main characterization of the sign of the relationship between volatility and
the optimal rotation policy, we present the following result characterizing both the convexity
of the expected revenues and their dependence on the volatility of the underlying interest
rate process.

Lemma 2.1. Assume that either σ(r) = σr and that α(r) is concave or that the interest rate
model is affine (i.e. that both α(r) and σ2(r) are linear). Under these assumptions, the total
expected present value of the future harvesting yield in the presence of amenity valuation

Gσ(t, x, r) = E(x,r)

·Z t

0

e−
R s
0 rtdtπ(Xs)ds+ e−

R t
0 rsdsg(Xt)

¸
is a decreasing and convex function of the initial interest rate. Moreover, increased volatility
of the underlying interest rate process increases its value.

Proof. See Appendix A.

Lemma 2.1 states a set of conditions under which the total expected present value of
the future harvesting yield in the presence of amenity valuation is a decreasing and convex
mapping of the initial interest rate. Moreover, it also establishes that given its assumptions,
higher interest rate volatility unambiguously increases the value of the future harvesting yield
in the presence of amenity valuation. These findings are essentially based on the observation
that given the assumptions of Lemma 2.1 the initial values of zero coupon bonds maturing
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at arbitrary future dates are decreasing and convex mappings of the initial interest rate and
increased volatility increases their value for all maturities.

Our main result characterizing the sign of the relationship between increased volatility
and the optimal rotation policy and its value is now summarized in the following.

Theorem 2.2. Assume that the conditions of Lemma 2.1 are satisfied. Then, Vσ̂(x, r) ≥
Vσ(x, r) and Fσ̂(x, r) ≥ Fσ(x, r) for all (x, r) ∈ R2+, and {(x, r) ∈ R2+ : Vσ(x, r) > g(x)} ⊂
{(x, r) ∈ R2+ : Vσ̂(x, r) > g(x)} so that increased volatility increases both the value and the
early exercise premium of the irreversible policy and, therefore, prolongs the optimal rotation
period by expanding the continuation region where harvesting is suboptimal.

Proof. See Appendix B.

Theorem 2.2 demonstrates that given the conditions of our Lemma 2.1, increased in-
terest rate volatility unambiguously increases the value of the harvesting opportunity in the
presence of amenity valuation and, consequently, postpones the optimal harvesting decision
by expanding the continuation region where harvesting is suboptimal. This observation is
essentially based on the fact that increased interest rate volatility increases both the expected
present value of the exercise payoff and the expected cumulative present value of amenities
while leaving the exercise payoff unchanged. This means that the required exercise premium
increases which, in turn, postpones the rational exercise of the harvesting opportunity (cf.
Dixit and Pindyck 1994, chapter 5).

3 A Solvable Single Rotation Model

In this section we provide an explicit solution for the two-dimensional path-dependent optimal
stopping problem and illustrate our findings also numerically. More specifically, we abstract
from amenity valuation and model the stochastic interest rate dynamics as an explicitly
parametrized mean-reverting process (which lies in conformity with empirical evidence, see
e.g. Cochrane 2001, chapter 19) and forest value in a simpler way as a geometric Brownian
motion.

Consider the following (path-dependent) optimal rotation problem

V (x, r) = sup
τ
E(x,r)

h
e−

R τ
0 rsdsXτ

i
, (3.1)

where the underlying processes (Xt, rt) evolve according to the dynamics described by the
following stochastic differential equations

drt = αrt(1− γrt)dt+ σrtdWt, r0 = r (3.2)

and

dXt = µXtdt+ βXtdŴt, X0 = x, (3.3)
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where α, β, σ, γ, µ ∈ R+ are known exogenously given constants and Wt and Ŵt are poten-
tially correlated Wiener processes (under the objective probability measure P) with a known
correlation coefficient ρ ∈ [−1, 1].

Having characterized the underlying stochastic dynamics and the considered Wicksellian
optimal rotation problem, we are now in position to state the following.

Lemma 3.1. The Wicksellian two-dimensional path-dependent single rotation problem (3.1)
can be re-expressed as a path-independent optimal stopping problem

V (x, r) = xr−
1
αγ sup

τ
Er

·
e−θτ r̂

1
αγ
τ

¸
, (3.4)

where

θ =
1

γ
− µ− σ2

2αγ

µ
1 +

1

αγ

¶
+

σβρ

αγ

can be interpreted as a "risk-adjusted" discount rate and the interest rate r̃t evolves according
to the dynamics described by the following stochastic differential equation

dr̃t =

µ
α+ βσρ− σ2

αγ
− αγr̃t

¶
r̃tdt+ σr̃tdWt, r̃0 = r. (3.5)

Proof. See Appendix C.

It is worth emphasizing that the findings of Lemma 3.1 are important since they demon-
strate how the original path-dependent single rotation problem can be transformed into an
ordinary path-independent optimal stopping problem of a linear diffusion. Our main result
in this section is now summarized in the following

Theorem 3.2. Assume that the risk-adjusted discount rate is positive (i.e. θ > 0) guarantee-
ing the finiteness of the value of optimal policy. Then the value of the single rotation problem
(3.1) reads as

V (x, r) = xr−
1
αγψ(r) sup

y≥r

"
y

1
αγ

ψ(y)

#
=

(
x, r ≥ r∗

x
¡
r∗
r

¢ 1
αγ ψ(r)

ψ(r∗) , r < r∗

where

ψ(r) = rηM

µ
η, 2η +

2a

σ2
,
2αγ

σ2
r

¶
,

η = 1
2
− a

σ2
+
q¡

1
2
− a

σ2

¢2
+ 2θ

σ2
> 0, a = α+βσρ− σ2

αγ
, and M denotes the standard confluent

hypergeometric function (see e. g. Dixit and Pindyck 1994, p. 163). Moreover, the optimal
interest rate exercise threshold r∗ is the unique root of the ordinary first order condition
ψ(r∗) = αγr∗ψ0(r∗). Especially, r∗ > µ for all σ > 0 and r∗ = µ when σ = 0.

Proof. L(r) = supτ Er

·
e−θτ r̃

1
αγ
τ

¸
is an ordinary path-independent optimal stopping problem

of a linear diffusion and, therefore, can be solved by relying on ordinary variational inequali-
ties. The alleged result is then a direct implication of Theorem 3 in Alvarez 2001 a.
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Theorem 3.2 interestingly demonstrates that the path-dependent optimal rotation prob-
lem (3.4) is explicitly solvable whenever the absence of speculative bubbles condition θ > 0,
which guarantees the finiteness of the value of the optimal rotation policy, is satisfied. It is
worth noticing that in the absence of uncertainty the condition θ > 0 can be simply expressed
as 1/γ > µmeaning that the steady-state interest rate exceeds the growth rate of forest value.
On the other hand, under uncertainty about the interest rate and forest value the absence of
speculative bubbles condition θ > 0 can also be re-expressed as

1

γ
> µ+

σ2

2αγ

µ
1 +

1

αγ

¶
− σβρ

αγ
.

Thus, we naturally find that the condition θ > 0 is strengthened by the presence of uncer-
tainty whenever the correlation ρ between the two driving Brownian motions is non-positive
and is weakened whenever the correlation is positive. Moreover, and importantly, higher
volatility increases the required exercise premium and thus prolongs the expected length of
the optimal rotation period.

Remark: It is worth noticing that since

dXb
t =

µ
bµ+

1

2
β2b(b− 1)

¶
Xb

t dt+ bβXb
t dŴt,

the result of Theorem 3.2 can be applied for solving the associated optimal stopping problem

H(x, r) = sup
τ
E(x,r)

h
e−

R τ
0 rsdsXb

τ

i
, (3.6)

where b ∈ R is a known parameter measuring the curvature of the mapping xb. As is clear
from Theorem 3.2, in that case we find that provided that the absence of speculative bubbles
condition θ̃ = 1

γ
− bµ − 1

2
β2b(b − 1) − σ2

2αγ

³
1 + 1

αγ

´
+ σbβρ

αγ
> 0 is satisfied the value of the

stopping problem (3.6) reads as

H(x, r) = xbr−
1
αγ ψ̃(r) sup

y≥r

"
y

1
αγ

ψ̃(y)

#
=

(
xb, r ≥ r̃

xb
¡
r̃
r

¢ 1
αγ ψ̃(r)

ψ̃(r̃)
, r < r̃

where

ψ̃(r) = rη̃M

µ
η̃, 2η̃ +

2ã

σ2
,
2αγ

σ2
r

¶
,

η̃ = 1
2
− ã

σ2
+
q¡

1
2
− ã

σ2

¢2
+ 2θ̃

σ2
> 0, and ã = α + bβσρ − σ2

αγ
. Now, the optimal exercise

threshold r̃ is the unique root of the ordinary first order condition ψ̃(r̃) = αγr̃ψ̃
0
(r̃).

Finally, we characterize the quantitative significance and more precise role of the volatility
coefficient σ by numerical illustrations. Assume that γ = 25, α = 0.07, ρ = 0 and µ = 0.01
(implying that for θ > 0 the upper bound under which the absence of speculative bubbles
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condition is satisfied is σ∗ = 0.2585). Then, the optimal threshold r∗ and required exercise
premium r∗ − µ as a function of the underlying volatility coefficient are

σ 0.1 0.2 0.25 0.258
r∗ 1.1% 1.58% 2.77% 4.37%

r∗ − µ 0.1% 0.58% 1.77% 3.37%

Table 1

According to the findings presented in Table 1 the required exercise premium increases
from 0.1% to 3.37% as volatility increases from 0.1 to 0.258. In order to illustrate our results
in the negative correlation case, we assume that γ = 25, α = 0.07, ρ = −0.5 and µ = 0.01
(implying that now σ∗ = 0.2286). Then the optimal threshold and required exercise premium
as a function of the underlying volatility coefficient are

σ 0.1 0.2 0.22
r∗ 1.1% 1.86% 2.62%

r∗ − µ 0.1% 0.86% 1.62%

Table 2

Thus, we find that the required exercise premium increases from 0.1% to 1.62% as volatil-
ity increases from 0.1 to 0.22. According to these numerical illustrations, higher interest rate
volatility has a very big effect on the required exercise premium, thus implying a signifi-
cantly longer optimal rotation period. In fact, numerical calculations seem to indicate that
the expected length of the optimal rotation period increases at a faster rate than interest
rate volatility so that the relationship between the expected length of the optimal rotation
period and interest rate volatility seems to be nonlinearly positive even in the presence of risk
neutrality. Consequently, even a small change in the volatility of the underlying interest rate
dynamics may result into a disproportionate impact on the expected duration of a rotation
cycle. Thus, our findings demonstrate that destabilizing polices will result in the mean into
longer rotation periods (this question has been raised in a different context, cf. Dixit and
Pindyck, 1994, p. 14).

4 Conclusions

There is currently an extensive literature about the determination of optimal forest rotation
under various circumstances when amenity valuation of forest stands matters, when capital
markets are imperfect so that landowners might be subject to borrowing constraints or when
there is uncertainty about timber prices and/or forest growth or about risk of forest fire.
Undoubtedly this literature has provided useful insights about the potential determinants
of optimal forest rotation. There is, however, an important issue, which has not yet been
analyzed. To our knowledge all the literature makes a simplifying but in the forestry case an
unrealistic assumption that the interest rate is constant. Clearly the irreversible harvesting
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decision of forest stands is a decision subject to a relatively long time horizon. Hence, given
the relatively slow growth rate of forests, thinking about harvesting and investing in replanting
is a long-term investment project over which the behavior of interest rates as the opportunity
cost should matter a lot.

In this paper we have used the Wicksellian single rotation framework to extend the ex-
isting studies to cover the unexplored case of variable and stochastic interest rate in the
presence of amenity valuation. Since the problem is more general than the constant discount-
ing case, we first provided a mathematical characterization of the optimal rotation policy as
a two-dimensional path-dependent optimal stopping problem.

From an economic point of view we have established several new findings. First, we have
demonstrated in the presence of amenity valuation that allowing for interest rate uncertainty
will increase the optimal rotation period under the condition that the value of the optimal
policy is convex in terms of interest rate. Second, under the plausible assumptions that the
diffusion term in the (Itô-) stochastic differential equation for the interest rate is sufficiently
smooth as a function of the interest rate and the drift term is concave function of the in-
terest rate, higher interest rate volatility will increase the value of waiting and prolong the
optimal rotation period in the absence of amenity valuation. Third, modelling interest rate
uncertainty as a mean-reverting process and forest value as a geometric Brownian motion, we
have provided an explicit solution for the two-dimensional path-dependent optimal stopping
problem. Numerical illustrations indicate that interest rate volatility has a significant quan-
titative importance on the optimal rotation policy. In particular, the expected length of the
optimal rotation period will increase proportionally more than interest rate volatility even in
the presence of risk neutrality.

Whether our conclusions remain valid in the Faustmann’s ongoing rotation problem is
an open question beyond the scope of the present study. However, given the close connection
of impulse control problems and optimal stopping theory (impulse control problems can be
viewed as sequential stopping problems; cf. Alvarez 2003 b), we are tempted to conjecture
that most probably our conclusions would remain valid with only minor modifications in the
ongoing rotation case as well at least for some class of amenity valuation functions. Of course,
the verification of this claim is still an open and challenging problem left for future research.
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A Proof of Lemma 2.1

Proof. Consider first the case where α(r) is concave and σ(r) = σ̄r, where σ̄ > 0 is a known
exogenously given constant. We follow the proof of Theorem 2 in Alvarez 2001 b. Denote
now as rt(i), t ≥ 0, the solution of the stochastic differential equation (2.1) subject to the
initial condition r0 = i ∈ R+. Given our smoothness assumptions rt(i) can be expressed in
the (Itô-) form

rt(i) = i+

Z t

0

α(rs(i))ds+

Z t

0

σ̄rs(i)dWs, (A.1)

where rt(i) constitutes a continuously differentiable mapping of i (this is based on the flow
nature of the solution of a stochastic differential equation; cf. Protter 1990, Theorem V. 38
and 39). Define now the process {Yt; t ≥ 0} as Yt = ∂rt(i)/∂i. It is then well-known that (cf.
Protter 1990, Theorem V. 39)

Yt = 1 +

Z t

0

α0(rs(i))Ysds+
Z t

0

σ̄YsdWs. (A.2)

Applying Itô’s theorem to the mapping y 7→ ln y then implies that the solution of the sto-
chastic differential equation (A.2) can be expressed as

Yt =
∂rt(i)

∂i
= exp

µZ t

0

α0(rs(i))ds
¶
Zt, (A.3)

where, given our assumptions, the process {Zt; t ≥ 0} defined as Zt = exp (σ̄Wt − σ̄2t/2) is
a positive martingale starting at date 0 from 1 for any possible i ∈ R+. The concavity of
the drift α(r) then implies that α0(r) is non-increasing in r and that α0(rs(ρ)) ≤ α0(rs(i)) for
all ρ ≥ i and s ∈ [0, t]. Consequently, we find that ∂rt(i)/∂i is non-increasing in i, proving
the alleged concavity of the solution rt(i) as a function of i. Since a decreasing and convex
transformation of an increasing and concave mapping is decreasing and convex, we observe
that the discount factor e−

R t
0 rsds is a decreasing and convex function of the initial interest

rate. Hence, the mapping

Gσ(t, x, r) = E(x,r)

·Z t

0

e−
R s
0 rtdtπ(Xs)ds+ e−

R t
0 rsdsg(Xt)

¸
is a decreasing and convex function of the initial interest rate r as well. It remains to establish
that increased volatility increases the value of Gσ(t, x, r). To accomplish this task, we first
observe that the functional Gσ(t, x, r) can be re-expressed as

Gσ(t, x, r) =

Z t

0

ps(r)π(Xs)ds+ pt(r)g(Xt),

where
pt(r) = Er

h
e−

R s
0 rtdt

i
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denotes the value at time 0 of a zero coupon bond maturing at t. It is now clear form
our results above that pt(r) is a decreasing and convex function of the initial interest rate
r. Define now for all t ∈ [0, T ] the bounded and twice continuously differentiable mapping
P T : [t, T ]×R+ 7→ [0, 1] as (cf. Björk 1998, chapter 16)

P T (t, r) = Er

h
e−

R T
t rsds

i
and observe that P T (T, r) = 1 and that P T (0, r) = pT (r). Since P T (t, r) satisfies the bound-
ary value problem (by the Feynman-Kač-formula; see, for example, Duffie 1988, p. 226 and
Øksendal 2003, p. 143)

∂P T

∂t
(t, r) + α(r)

∂P T

∂r
(t, r) +

1

2
σ2(r)

∂2P T

∂r2
(t, r)− rP T (t, r) = 0

P T (T, r) = 1,

we find by applying Itô’s theorem to the mapping P T (t, r) that

Er

h
e−

R T
t r̂sdsP T (T, r̂T )

i
= P T (t, r) +Er

Z T

t

e−
R s
t r̂ydy

1

2
(σ̂2(r̂s)− σ2(r̂s))P

T
rr(s, r̂s)ds

≥ P T (t, r).

Since P T (T, r̂T ) = 1 we observe that P̂ T (t, r) ≥ P T (t, r), where

P̂ T (t, r) = Er

h
e−

R T
t r̂sds

i
.

Hence, we find that increased volatility increases the current (date 0) value of the zero coupon
bonds pt(r) and, therefore, that Gσ(t, x, r) ≤ Gσ̂(t, x, r).

It remains to consider the impact of higher interest volatility in the presence of an affine
term structure. It is well-known that in that case the price of zero coupon bonds read as
pT (t, r) = eA(t,T )−B(t,T )r (cf. Björk 1998) implying the monotonicity and convexity of the price
of zero coupon bonds. The alleged positivity of the sign of the relationship between interest
rate volatility and the expected cumulative present value of the harvesting yield now follows
from the analysis above.

B Proof of Theorem 2.2

Proof. As was established in Lemma 2.1, the discount factor e−
R t
0 rsds is decreasing and convex

as a function of the initial interest rate r. Given this observation, define now the increasing
sequence {Vn(x, r, y)}n∈N iteratively as

V0(x, r, y) = sup
t≥0

E(x,r,y)

h
e−

R t
0 rsdsg(Xt) + Yt

i
Vn+1(x, r, y) = sup

t≥0
E(x,r,y)

h
e−

R t
0 rsdsVn(Xt, rt, Yt)

i
,
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where the process Yt evolves according to the dynamics described by the differential equation
(cf. Øksendal 2003, pp. 222-223)

dYt = e−
R t
0 rsdsπ(Xt)dt, Y0 = y.

It is known that the sequence of mappings Vn(x, r, y) converges towards the value function
V̄ (x, r, y) satisfying the condition V̄ (x, r, 0) = Vσ(x, r) (cf. Øksendal 2003, p. 210). It is again
clear from Lemma 2.1 that, given the assumed positivity of the monetary flow of returns π(x),
Yt is a decreasing and convex function of the initial interest rate r. Similarly, the positivity
of the exercise payoff g(x) implies that the expected present value of the exercise payoff is
a decreasing and convex function of the initial interest rate r as well. Since the sum of
decreasing and convex functions is itself a decreasing and convex function and the maximum
of a convex function is convex, we find that V0(x, r, y) is convex and decreasing as a function
of the initial interest rate r. Consequently, all elements in the sequence {Vn(x, r, y)}n∈N are
decreasing and convex as functions of r. Since Vn(x, r, 0) ↑ Vσ(x, r) as n→∞ (cf. Øksendal
2003, p. 210) we find that for all λ ∈ [0, 1] and r, ρ ∈ R+ we have that

λVσ(x, r) + (1− λ)Vσ(x, ρ) ≥ λVn(x, r, 0) + (1− λ)Vn(x, ρ, 0) ≥ Vn(x, λr + (1− λ)ρ, 0).

Letting n → ∞ and invoking monotone convergence then implies that λVσ(x, r) + (1 −
λ)Vσ(x, ρ) ≥ Vσ(x, λr+(1−λ)ρ) proving the convexity of Vσ(x, r). The alleged monotonicity
of the value function can be established in a completely analogous way.

It remains to establish that higher volatility increases the value and, therefore, postpones
optimal rotation by expanding the continuation region where exercising the harvesting op-
portunity is suboptimal. To see that this is indeed the case, we first observe that Lemma 2.1
implies that V0(x, r, y) ≤ V̂0(x, r, y) where

V̂0(x, r, y) = sup
t≥0

E(x,r,y)

h
e−

R t
0 r̂sdsg(Xt) + Ŷt

i
and

dŶt = e−
R t
0 r̂sdsπ(Xt)dt, Ŷ0 = y.

Consequently, we find that V̂n(x, r, y) ≥ Vn(x, r, y) for all n ∈ N, where

V̂n+1(x, r, y) = sup
t≥0

E(x,r,y)

h
e−

R t
0 r̂sdsV̂n(Xt, r̂t, Ŷt)

i
.

Combining this observation with the monotonicity of the sequence {V̂n(x, r, y)}n∈N, letting
n ↑ ∞, and invoking monotone convergence finally implies that Vσ̂(x, r) ≥ Vσ(x, r). The
inequality Fσ̂(x, r) ≥ Fσ(x, r) now follows from the definition of the early exercise premium.
Finally, if (x, r) ∈ Cσ = {(x, r) ∈ R2+ : Vσ(x, r) > g(x)}, then Vσ(x, r) ≥ Vσ(x, r) > g(x)
proving that (x, r) ∈ Cσ̂ = {(x, r) ∈ R2+ : Vσ̂(x, r) > g(x)} as well and, therefore, that
Cσ ⊂ Cσ̂.
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C Proof of Lemma 3.1

Proof. It is well-known that the forest value process can in the case of our study be expressed
as

Xt = x exp((µ− β2/2)t+ βŴt).

Moreover, applying Itô’s theorem to the mapping r 7→ ln r yields

ln(rt/r) =

µ
α− 1

2
σ2
¶
t− αγ

Z t

0

rsds+ σWt

which in turn implies

e−
R t
0 rsds =

³rt
r

´ 1
αγ

e
(σ2−2α)t

2αγ
−σWt

αγ .

Hence, we observe that the present value of the forest stand reads as

e−
R t
0 rsdsXt = x

³rt
r

´ 1
αγ

e
−
³
1
γ
−µ− σ2

2αγ (1+
1
αγ )+

σβρ
αγ

´
t
Mt,

where
Mt = e

βŴt− σ
αγ

Wt+
³
σβρ
αγ
−1
2
β2− σ2

2α2γ2

´
t

is a positive exponential Ft-martingale. Consequently, we find that the path-dependent Wick-
sellian optimal rotation problem (3.1) can be re-expressed as an ordinary path-independent
optimal stopping problem

V (x, r) = xr−
1
αγ sup

τ
E(x,r)

·
e−θτr

1
αγ
τ Mτ

¸
, (C.1)

where

θ =
1

γ
− µ− σ2

2αγ

µ
1 +

1

αγ

¶
+

σβρ

αγ

can be interpreted as a "risk-adjusted" discount rate. Defining the equivalent measure Q as
dQ
dP =Mt then implies that we can now re-express (C.1) as

V (x, r) = xr−
1
αγ sup

τ
EQ(x,r)

·
e−θτr

1
αγ
τ

¸
. (C.2)

However, given the strong uniqueness of a solution for the stochastic differential equation

drt =

µ
α+ βσρ− σ2

αγ
− αγrt

¶
rtdt+ σrtdW̃t, r0 = r

where W̃t is a standard Brownian motion under the equivalent measure Q, we finally find
that the rotation problem (3.1) can be rewritten in the path-independent form (3.4) defined
under the objective measure P.
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