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Rational expectations competitive storage theory postulates that commodity prices are 
determined by expected futures prices, commodity stocks and the cost of carry. This paper 
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whilst the out-of sample-results cast doubt concerning practical efficacy. 
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1 Introduction
A large number of low-income less-developed countries (LDCs) derive effectively
all of their export revenue from the sale of just a few primary commodities. Ta-
ble 1 presents some rather alarming statistics on export reliance on primary
commodities in Sub-Saharan Africa. The statistics are particularly grim for
Zambia with respect to copper and Rwanda, Uganda and Ethiopia in the case
of coffee. Presumably macroeconomic policy is tantamount to understanding
the dynamics of commodity prices when a single commodity generates between
99.7 to 56.9 percent of a country’s total export revenue. Decision making is
hampered by poor visibilty, which may produce long standing detrimental ef-
fects. For instance the current debt crisis plaguing LDCs largely traces its roots
to unwarranted optimism in the late 1970’s concerning the future evolution of
commodity prices.

Table 1: Export Dependence in Sub-Saharan Africa
Percent of Total Export Earnings

Zambia copper 98
Rwanda coffee 73
Uganda coffee 95
Ethiopia coffee 66
Sudan cotton 42
Tanzania coffee 40
Ghana cocoa 59
Kenya coffee 30
Zimbabwe tobacco 20
Source: Oxfam (1993)

Commodity price processes are highly unstable, which augments problems
stemming from export reliance. This paper concentrates on base metals, which
are an important sub-group of primary commodities. Metal commodity prices
exhibit many salient features of primary commodities such as persistence and
severe volatility. The price processes between 1976-2009 of aluminium, copper,
nickel, zinc, lead and tin are shown in Figure 1. The processes follow a sequence
of sharp peaks and subsequent shallow troughs culminating in the financial crisis.
The figure shows the flight to commodities from other asset classes in the initial
stages of the financial crisis and the subsequent vehement bust. For instance
the price of nickel rose from a historical mean of 9559 to an unprecedented high
of 52179 in July 2008 only to collapse back to the historical mean. The other
base metals sustained analogous extremes.

Theoretical work on commodities has a long standing history based on the
theory of storage and its implications for equilibrium price evolution. The syn-
thesis of Gustafson’s (1958) work on the optimal demand for commodity stocks
and Muth’s (1961) rational expectations hypothesis may be seen as constituting
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rational expectations competive storage theory. Samuelsson (1971), Danthine
(1977), Schechtman and Escudero (1977), Kohn (1978), Newbery and Stiglitz
(1981, 1982), Scheinkman and Schechtman (1983), Salant (1983), Wright and
Williams (1982, 1984), Hart and Kreps (1986) and Williams and Wright (1991)
provided subsequent refinements. Deaton and Laroque (1992, 1996) implement
a dynamic structural model of inventory behaviour although they are able to
observe only commodity prices.

Essentially competitive storage theory postulates commodity prices as pro-
cesses driven by arbitrage behaviour determined by commodity stocks, expected
future prices and the cost of carry. The equilibrium pricing process may be mod-
elled as a functional equation where competitive speculators increase or decrease
stocks in anticipation of arbitrage subject to costs of carry.

A rich data set composed of information on metal commodities listed in the
London Metal Exchange (LME) enables empirical examination of the validity of
competitive storage theory. The data set contains information on all variables
deemed pertinent by competitive storage theory for modelling commodity price
processes. The data contains spot prices, futures prices and inventories. Given
rational expectations, futures prices should make an excellent proxy for expected
future spot prices. LME spot prices and inventories are in effect global market
prices and stocks given the preeminent position of the LME as a forum for
metals exchange.

A vector autoregressive model (VAR) loaded with theory prescribed variables
is taken to the LME data to examine the empirical applicability of the theory.
On account of nonconstant variances and since the series are found to be first
order difference stationary the levels data is transformed into returns form. In-
sample validity is examined via Granger and Instantaneous causality tests. The
causality tests find evidence in support of the theory for all variables except for
the cost of carry variable. Cost of carry is proxied by the USD Libor rate.

The storage hypothesis is evaluated using what Stock and Watson (2008)
refer to as a pseudo out-of-sample evaluation. A rolling window scheme is ap-
plied with respect to each base metal where the window length is kept fixed
throughout the recursive procedure. The addition of a new observation to the
estimation window results in the elimination of the last observation. Addition-
ally the model skeleton is kept fixed whilst parameters are reestimated at each
iteration. The degrees of freedom is therefore held constant so that the forecast
errors may be subjected to statistical testing.

One-step-ahead forecasts from the VAR are pitted against forecasts from a
“no change” model, a seasonal autoregressive integrated moving average model
(SARIMA) and the exponential smoothing model (ETS). Both SARIMA and
ETS models have proved to be effective forecasting tools in the macroeconomet-
ric and time series literatures. Model accuracy is appraised by computing root
mean squared forecast errors (RMSFE) and p values from Diebold-Mariano test
of equal predictability (1995). The out-of-sample results don’t support the stor-
age hypothesis as the VAR fails to outperform either the benchmark no change
model or the univariate models.

The article is organized as follows. Section 2 presents a standard if very
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basic variant of a rational expectations competitive storage model. Section 3
discusses the metal commodities data set. Section 4 develops the VAR indicated
by storage theory and discusses the causality results. Section 5 presents the
simulated out-of-sample framework and the results of the model horse race.
Section 6 concludes.

2 A basic rational expectations competitive stor-
age model

This section contains a simple rational expectations competitive storage model.
Although the model is simple it contains all the necessary information from the
point of view of empirical validation. In other words theoretical refinements do
not generally perturb the set of variables. Assume that time t is discrete and the
price of a commodity p is normalized with respect to some numeraire. There are
two types of agents that have a demand for the commodity. Producers demand
the commodity for production purposes whilst speculators carry inventories for
arbitrage purposes.

Each period an amount zt is supplied to the market. The literature often
refers to zt as a harvest. The equilibrium price is then determined as the price
that clears the market D (pt) = zt. Now denote the inverse demand function as
P (zt) and note that in the absence of inventories pt = P (zt). Next introduce
costly inventories It with cost of carry rt. Then the expected profit on inven-
tories will be [(1− rt)Etpt+1 − pt] It. The appropriate control variable for a
commodity speculator is then the level of inventories to hold and intertemporal
profit maximization yields

It = 0 if (1− rt)Etpt+1 < pt

It ≥ 0 if (1− rt)Etpt+1 = pt
(1)

Inventories will not be held if the expected profit from holding stocks yields
a negative payoff. If speculators perceive an arbitrage opportunity they will
demand inventories until parity is established between expected payoffs from
holding inventories and not holding inventories. In equilibrium supply at time t
and inventories carried over It must be equal to demand at time t and inventories
to be carried over to time t+ 1.

zt + It−1 = D (pt) + It. (2)

Therefore combining (1) and (2) the equilibrium price is

pt = max [(1− rt−1)Etpt+1, P (zt + It−1)] (3)

and equilibrium inventories can be retrieved by inserting the equilibrium
price into the equations in (1). The competitive storage hypothesis hence as-
serts that a commodity price pt is determined by the variables Etpt+1,rt and
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It. Furthermore if rational expectations hold then the futures price of the com-
modity ft should reflect Etpt+1. Hence one is able to test the theory of storage
by jointly modeling the evolution of the set of variables yt = {pt, ft, It, rt}

3 Commodities data
The LME traces its lineage as a major international trade forum up to the
late Victorian era. Currently it is the largest pure commodity exchange in
Europe and the World’s tenth largest futures exchange. Trading features all of
the important metal commodities: aluminium, aluminium alloy, copper, nickel,
zinc, lead, tin and silver. Watkins and McAleer (2004) provide the following
description of the exchange: The LME is used worldwide by producers and
consumers as a center for spot, futures and options trading in non-ferrous metals.
The LME offers three primary functions. Firstly, market participants can hedge
against the risk of price volatility. Secondly, the LME settlement prices are used
as reference prices around the world. For instance, approximately 95 % of the
world trade in copper futures takes place in the LME making it the de facto
world market price. Thirdly, the LME offers the services of a global warehouse
network for settlements resulting in physical delivery.

The metals data-set therefore contains all the necessary ingredients to test
rational expectations competitive storage theory. Spot prices are in effect equi-
librium prices, futures prices reflect expectations of future prices and LME in-
ventories match the stocks held forward due to the the exchange’s position as
the premier forum for metal commodities exchange.

Figure 1 depicts the evolution of monthly metal spot and futures prices for
the period 1.1976-2.2009. The series were constructed from daily data by taking
the last observation of each month. Copper is the longest series stretching from
1.1976 yielding almost 400 observations whilst lead constitutes the shortest series
starting from 1.1993 and therefore contributing nearly 200 observations. Metals
prices were listed in sterling prior to 1989. Therefore prices listed prior to 1989
are converted into dollar denominated series using USD-GBP exchange rates.

The dashed line indicating three month futures prices is practically indis-
tinguishable from the solid line representing spot prices in Figure 1. Table 1
reports the summary statistics for the spot prices and gives an indication of price
volatility in addition to giving insight to the magnitude of the price bubble prior
to the financial crisis evident at the end of the sample. For instance nickel was
traded at a high of over 50 000 USD per tonne compared to the median price
of 7000 USD per tonne. The heights reached prior to the financial meltdown
are all the more impressive given the lack of a clear trend in most of the price
series.

The variables suggested by storage theory yt = {pt, ft, It, rt} were inspected
for unit root nonstationarity by implementing the Augmented Dickey-Fuller
(ADF), Phillips-Perron (PP) and Elliot-Rothenberg-Stock (ERS) tests. The
tests strongly indicate that all variables are best characterized as first order
integrated processes. All variables also exhibit variance-nonconstancy. Hence
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Figure 1: Metal Spot Prices
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all variables were converted to differences of natural logarithms, i.e. from levels
to returns form.

Al Cu Ni Zn Pb ld
Obs 245 398 356 244 194 237

Mean 1688 2460 9564 1375 869 7144
Median 1550 1889 7096 1100 612 5828

Max 3086 8775 50898 4390 3690 23588
Min 1045 1144 3226 735 363 3705
Sd 476 1609 7578 730 665 3670

Table 2: Summary Statistics Metal Spot Prices

4 Tests of Causality
Since equilibrium spot prices are characterized as arising from an arbitrage re-
lation determined by of futures prices, inventories and interest rates the theory
is tested using a multivariate model. One of the most successful and flexible
multivariate models in time series and macroeconometrics is the VAR model.
VAR models tend to outperform both univariate and more elaborate simultane-
ous systems of equations in terms of forecasting and description. For a textbook
presentation and S-PLUS implementation see Zivot and Wang (2002).

As denoted earlier yt = (pt, ft, It, rt)′ . Then the p-lag VAR or VAR(p) can
be expressed as

yt = µ+ Γ1yt−1 + ...+ Γpyt−p + ut

where Γi are (4× 4) coefficient matrices for i = 1, ..., p , µ is a constant term
and ut is a K-dimensional error process with E (ut) = 0 and time invariant
positive definite covariance matrix E

(
utuT

t

)
= Σu. A VAR(2) of the differenced
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The selection of lag length p is generally determined by minimizing an informa-
tion criterion such as the Akaike (AIC), Schwartz-Bayesian (BIC) or Hannan-
Quinn (HQ) information criterion. An information criterion generally takes the
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form
IC (p) = ln

∣∣∣∣∑̂ (p)
∣∣∣∣+ cT · ϕ (n, p)

where
∑̂

(p) = T−1
∑T

t=1 ûtû
′
t is the residual covariance matrix and ψ (n, p) is

a function that penalizes overfitting. The idea is to estimate a large number
of VAR models i.e. VAR(p), such that p = 1, ..., P and choose p such that it
minimizes a prespecified information criterion. The lag length of the VAR(p)
to be used in both the in-sample and out-of-sample analysis was chosen by
minimizing the BIC criterion. The specification is done such that the last three
years are withheld for out-of-sample analysis. All in-sample evaluation and
model specification is done using only the in-sample portion of the data.

The competitive storage hypothesis indicates spot prices, futures prices, in-
ventories and interest rates should be able to explain commodity dynamics. If
that is the case then each variable in the system should Granger cause the en-
tire system of equations. Table 3 reports the p values from the Granger and the
Instantaneous causality tests with respect to each base metal. Granger causal-
ity is found with respect to all variables except the interest rate. Therefore
the in-sample results for the most part lend support to the competitive storage
hypothesis.

Al Cu Ni Zn Pb Sn
Gra Ins Gra Ins Gra Ins Gra Ins Gra Ins Gra Ins

4pt 0.00 0.00 0.09 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.00
4ft 0.00 0.01 0.09 0.02 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00
4It 0.01 0.00 0.87 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.01 0.00
4rt 0.78 0.11 0.30 0.82 0.58 0.77 0.09 0.77 0.61 0.49 0.70 0.55

Table 3: Granger and Instantaneous Causality p values

5 Forecasting Results
Quite possibly a more stringent test of competitive storage theory lies not in
in-sample analysis, but rather in out-of-sample performance. Hence a simu-
lated out-of-sample framework is constructed to provide an additional metric to
examine the validity of the storage hypothesis.

The simulated out-of-sample forecast exercise takes the form of rolling win-
dow forecasting. The idea is to simulate a real world scenario where policy-
makers produce forecasts in real time. After every new obervation policymakers
reoptimize model parameters and then generate a new one step ahead forecast.
The number of forecasts is 36 since the out-of-sample period amounts to three
years. The model skeletons and the degrees of freedom for each model are kept
fixed so that forecast errors may be subjected to statistical testing. This is
achieved by specifying the number of parameters ex-ante by minimizing the
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BIC using only the in-sample period. Additionally the length of the estimation
window is held constant by dropping the earliest observation upon the addition
of the most recent observation.

The VAR model is pitted against a benchmark model and a number of ver-
satile univariate models that have in general proved successful in a number of
out-of-sample forecasting applications such as the M3 competition (see Makri-
dakis and Hibon (2000)). As is standard in the literature the benchmark model
is taken to be the random walk (RW) or “no change” model. The competing uni-
variate models are the seasonal autoregressive integrated moving average model
(SARIMA) and the exponential smoothing model (ETS). The idea in using uni-
variate models is that they represent the alternative view where the information
in storage models is judged to be of no importance and hence is excluded from
the model specification.

The ETS models are relatively simple and robust models where past observa-
tions are weighed exponentially less. The ETS modelling methodology is taken
from Hyndman et al. (2002) and Hyndman et al. (2008). The idea is to model
the ETS along three dimensions; the trend, the errors and seasonality. Each
component may enter the model either additively or multiplicatively yielding a
total of eight ETS combinations.

Forecast performance is evaluated by computing the root mean squared fore-
cast error (RMSFE), the relative RMSFE and the Diebold-Mariano test of equal
forecast accuracy for the one-step-ahead forecast of each model. The forecast
errors are converted from returns form back into levels form prior to computing
measures of forecast accuracy. Measures of accuracy are reported in Table 3.
The first column relates the RMSFE of the benchmark model for all six series.
Then the RMSFE, relative RMSFE and the p value of the Diebold-Mariano
test are reported for each of the three models with respect to the six base metal
series. The relative RMSFE is obtained by dividing the RMSFE of the model in
question with the RMSFE of the benchmark model. Hence a score less (greater)
than one indicates that the model in question outperformed (underperformed)
the benchmark model. Similarly the columns labeled DM report the p-value of
a two sided pairwise Diebold-Mariano test of equal predictability of the stated
model vis-à-vis the benchmark model.

The results of the out-of-sample simulation exercise do not corroborate the
in-sample causality findings as the VAR model performs poorly with respect to
the competing models and the benchmark model. In fact in only one case (zinc)
out of six does a VAR specification outperform the benchmark model. The
Diebold-Mariano tests indicate that the forecasting ability of the VAR model is
statistically indistinguishable from the benchmark model except in the case of
copper. Similarly the VAR is unable to generate better forecasts than either of
the univariate models. The lacklustre out-of-sample performance of the VAR
counsels against operationalizing an econometric model with variables indicated
by competitive storage theory.
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RW SARIMA ETS VAR
Relative Relative Relative

RMSFE RMSFE RMSFE DM RMSFE RMSFE DM RMSFE RMSFE DM
Al 150.23 149.34 0.99 0.41 148.75 0.99 0.30 150.50 1.00 0.98
Cu 765.64 765.64 1.00 1.00 767.73 1.00 0.67 780.78 1.02 0.02
Ni 3496.23 3496.23 1.00 1.00 3497.65 1.00 0.97 3575.89 1.02 0.06
Zn 365.58 347.09 0.95 0.64 344.91 0.94 0.69 352.83 0.97 0.37
Pb 313.60 313.60 1.00 1.00 307.76 0.98 0.62 321.90 1.03 0.40
Sn 1229.01 1155.75 0.94 0.00 1179.03 0.96 0.49 1332.81 1.08 0.57

Table 4: Out-of-sample Statistics: Spot Prices

6 Conclusion
Econometric modeling of commodities prices is important given the degree of ex-
port dependency in a large number of LDCs, particularly in Sub-Saharan Africa.
To address this issue theoretical insights from competitive storage models were
incorporated by estimating a vector autoregression using metal commodities
data on spot prices, futures prices and inventories. Granger and Instantaneous
causality tests indicated that the inclusion of theory relevant variables improved
the in-sample performance of the VAR. The in-sample results were somewhat
negated by the poor out-of-sample performance of the VAR versus a benchmark
model of no change.

Given the results of the simulation exercise one has to be cautious concern-
ing the practical efficacy of implementing competitive storage models. However,
this paper tested one potential formulation of the competitive storage model.
Naturally alternate modelling specifications may prove viable and hence the
results of this paper may be taken as indicative of the potential merit of incor-
porating storage theory prescribed variables in estimating models of primary
commodities. For instance variables indicated by competitive storage theory
such as inventories might be used as threshold variables in regime switching
models of commodity prices. Such possibilities will be the subject of future
enquiry.
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