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1. Introduction

Semicollusion refers to explicit and implicit non-price agreements among brand producing firms
intended to weaken price competition. For many years, researchers of Industrial Organizations
have been debating for example whether research joint ventures should be allowed and to what
extend they generate price increases above the competitive levels. In this paper we examine
the effects of colluding on refund levels. In principle, colluding on refunds should be more
alarming than ordinary semicollusive practices since refunds can be viewed as a component of the
price. Under this interpretation, collusion on refunds can be viewed as full collusion rather than
semicollusion. The purpose of this paper is to explore precisely the issue whether collusion on
refunds is harmful to consumers, and to what degree it can substitute for direct price collusions.

In the present paper, we formally introduce competition into industries that either utilize
advance booking systems where some consumers do not show up when the service is delivered,
or retail industries where some consumers wish to return the product and obtain some refund.
Our purpose is investigate whether industry-wide collusion on a joint refund policy can weaken
price competition and therefore harm the consumers. Our analysis can be applied to two types of
industries. First, to industries providing services like travel arrangements (airline, train, bus, hotel,
car rental), or repair, maintenance, education, and so on. These industries are characterized by
services that are time dependent and non-storable. This means that both buyers and sellers must
commit to a certain predetermined time at which the service is set to be delivered. Therefore,
service providers tend to utilize advance reservation systems as part of their business and marketing
strategies. Second, our analysis applies also to retailers selling experience goods where some
consumers discover after purchase that there are unsatisfied with the product they have fully paid
for. For this reason, our model allows for multiple strategies where service providers or retailers
can choose their refund policy in addition to setting prices.

In the Economics literature there are a few papers analyzing the refundability option as a
means for segmenting the market or the demand. Most studies have focused on a single seller.
Those studies that analyze industries with multiple sellers generally assume that prices are fixed,
thus leaving firms to compete on capacity allocation only. Contributions by Gale and Holmes
(1992, 1993) compare a monopolist’s advance bookings with socially-optimal ones. Gale (1993)
analyzes consumers who learn their preferences only after they are offered an advance purchase
option. On this line, Miravete (1996) and more recently Courty and Li (2000) further investigate
how consumers who learn their valuation over time can be screened via the introduction of
refunds. Courty (2003) investigates resale and rationing strategies of a monopoly that can sell
early to uninformed consumers or late to informed consumers. Dana (1998) also investigates
market segmentation under advance booking made by price-taking firms. Finally, Ringbom and
Shy (2004) analyze partial refunds set by price-taking firms.

The papers analyzing a duopoly market structure include Gale (1993) who analyzes a duopoly
setting with consumers who learn their preferences over time. Macskasi (2003) analyzes duopoly
with product differentiation where each consumer gets an ex ante signal of her preferred location
and only then learns the true location. The present paper adds to the duopoly literature by
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focusing on the incentive to (semi) collude on a joint industry-wide refund policy.

The paper is organized as follows. Section 2 sets up a basic model of service providers who
compete in prices and the amount of refunds given to consumes who are either not satisfied with
a product, or do not show up at the time when the service is scheduled to be delivered. Section 3
solves for a noncooperative equilibrium. Section 4 analyzes collusion on refund levels and its
welfare consequences. Section 5 analyzes shipping and handling charges. Section 6 investigates
incentives to collude when consumers view the advance reservations systems as differentiated
brands (in addition or in place of viewing only the services as differentiated). Section 7 summarizes
the findings of this paper.

2. A Model of Competition and Refunds

Consider a service industry with two imperfectly-competitive service providers, selling two dif-
ferentiated products/services. The difference between the present model and other models of
product differentiation is that in the present model some consumers request refunds on their
booking of the service or their purchase of products.

2.1 Services and products: Interpreting the model

Our model can be interpreted and applied to capture two types of markets:

Services : Where consumers make reservations, prepay for the service, and then request (partial)
refund in the event that they cancel or simply do not show up (with some probability
1 − σ) for the delivery of the service. Under this interpretation, consumers show up with
probability σ.

Products : Where consumers fully pay for a product, but then are not satisfied with the product
(with some probability 1−σ) and utilize the store’s refund option. Under this interpretation,
there is a probability σ that a customer is satisfied with the product after the purchase.

The first interpretation applies to transportation services such as the airline industry, whereas the
second interpretation fits general retailing business.1 In order to avoid excessive writing, we will
be using the service interpretation in some models and the product interpretation for others, but
the reader should bear in mind that our intention is to cover both types of industries.

1We abstract from moral hazard issues generated by excessive refunds. In our setting, the probabilities of
showing up are exogenously given.
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2.2 Service providers

There are two service providers labeled by j = A,B. Let pA and pB be the prices they charge for
providing the service, and rA and rB the refund they each promise to any consumer who pays for
the service but later cancels or simply does not show up. Thus, in addition to setting prices, each
service provider utilizes a refund policy where each provider must inform consumers how much
of the prepayed price is refundable in the event that the customer does not show up during the
time when the service is delivered, or if the customer is simply unsatisfied the product.

Service providers bear two types of per-customer costs. Let k ≥ 0 denote the service provider’s
capacity production cost or the cost of making a reservation for one customer. Note that this
cost could be significant if the provider does not have any alternative use (no salvage value)
for an unused capacity. Alternatively, it may not exist if capacity has an immediate alternative
use upon no shows of consumers. In addition, service providers bear a per-customer cost of
operation which we denote by c ≥ 0. The difference between the capacity cost and the operation
cost is that the latter is borne only if the customer actually shows up for the service, whereas
the capacity/reservation cost is borne regardless of whether the customer shows up. Finally, we
assume that both service providers always buy a sufficient amount of capacity to accommodate
all reservations. Abstracting from overbooking complications enables us to generalize our results
to any number of consumers in the market.

2.3 Consumers

Consumers are differentiated along two dimensions: Location preference and probability of show-
ing up to collect a reserved service. We assume that there are nH consumers who show up for
the delivery of the service (or are satisfied with the product) with probability σH . Similarly there
are nL consumers whose probability of showing up is σL. We assume that 0 < σL < σH < 1.
The nH and nL consumers are indexed by x (0 ≤ x ≤ 1) that measures the distance (disutility)
from service provider A, whereas (1 − x) measures the distance from B. Thus, x serves as the
standard Hotelling index of differentiation. We assume that the (expected) utility of a consumer
indexed by (σi, x) ∈ {σH , σL} × [0, 1] is given by

U(σi, x)
def
=

{
σi(β − τx)− pA + (1− σi) rA buying service A

σi[β − τ(1− x)]− pB + (1− σi) rB buying service B.
(1)

The parameter β measures consumers’ basic utility from the service, and τ measures the degree
of service differentiation, which is inversely related to the degree of competition between the two
service providers. That is, competition becomes more intense when τ takes lower values. The
utility function (1) reveals that the benefit β (net of the transportation cost) is collected only if
the consumer shows up (with probability σi). Section 6 analyzes an alternative formulation where
consumers bear transportation costs by making a reservation regardless of whether they actually
end up showing up at the service delivery time.
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2.4 Profits of service providers

Let qA and qB denote the endogenously determined number of consumers who each book (buy)
one unit of service from providers A and B, respectively. Since not all consumers end up showing
up at the service delivery time (alternatively, since some consumers are not satisfied and end up
returning the product) we denote by sA and sB the expected number of consumers who show
up at the service delivery time. Clearly, 0 < sj < qj for all j = A,B. Therefore, the (expected)
profit of each service provider j is given by

πj(pj, rj) = (pj − k)qj − csj − rj(qj − sj), j = A,B. (2)

The first term measures the revenue net of the reservation cost (cost of producing the product
under the second interpretation). The second term measures the operation cost borne only if
consumers actually show up to be served. The last term is the expected total refunds to consumers
who don’t show up for the service they have paid for.

3. Equilibrium Prices and Refunds

Consider the following two-stage game. In Stage I, both service providers determine the refunds
(rA and rB) to be given to all consumers who do not show up at the service delivery time. In
Stage II, both providers take refunds as given and determine the prices pA and pB. As we show
in Proposition 3 below, a reversal of stages I and II yields identical equilibrium prices and refund
levels. Thus, the chosen order of the strategic decisions is irrelevant under imperfect competition
(but clearly not under collusion, as shown later in Section 4).

3.1 Stage II: Equilibrium prices

Suppose that both service providers are already committed to the amount of refund they give on
no-shows. Formally, let rA and rB be given. The utility function (1) implies that a type i consumer
who is indifferent between booking serviceA andB is determined by σi(β−τ x̂i)−pA+(1−σi)rA =
σi[β − τ(1− x̂i)]− pB + (1− σi)rB. Hence,

x̂i =
pB − pA + (1− σi)(rA − rB) + σiτ

2σiτ
for each type i = H,L. (3)

Thus, the fractions of A and B buyers increase with the amount of refunds rA and rB, respectively.
Clearly, this difference between the proportions x̂H and x̂L disappears when σL → 1 and σH → 1
since in this case all buyers always show up meaning that no one asks for any refund.

¿From (3) we can compute the number of bookings (number of customers) made with each
provider, and the expected number of show-ups:

qA = nH x̂H + nLx̂L qB = nH(1− x̂H) + nL(1− x̂L) (4)

sA = nHσH x̂H + nLσLx̂L sB = nHσH(1− x̂H) + nLσL(1− x̂L).
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Substituting (3) into (4), and then into (2), maximizing πA with respect to pA, and πB with
respect to pB yields

pj = k + γ(c+ τ) + (1− γ)rj, where 0 < γ
def
=
σHσL(nH + nL)

nHσL + nLσH

< 1, (5)

for service providers j = A,B. Second-order conditions for maxima are easily verified by com-
puting ∂2πj/∂p

2
j = −(nHσL + nLσH)/(σHσLτ) < 0. Next, observe that

pB − pA =
(rB − rA)[nHσL(1− σH) + nLσH(1− σL)]

nHσL + nLσH

.

Thus,

Observation 1
The firm committed to a higher refund ends up charging a higher price. Formally, pB ≥ pA if
and only if rB ≥ rA.

3.2 Stage I: Equilibrium refunds

In the first stage, each service provider chooses her refund level knowing how the committed
level of refund will affect the equilibrium prices as given in (5). Substituting (5) for pA and
pB into (2), and then maximizing πA with respect to rA, and πB with respect to rB yields the
best-response functions rA = (rB + c + τ)/2 and rB = (rA + c + τ)/2. Thus, refunds are
strategically complements. Second-order conditions are satisfied as ∂2πj/∂r

2
j = −nHnL(σH −

σL)2/[τ(nHσL + nLσH)] < 0. Therefore, the subgame perfect equilibrium refunds, prices, and
profit levels are given by

rA = rB = c+ τ, pA = pB = c+ k + τ, πA = πB =
τ(nHσH + nLσL)

2
. (6)

Equation (6) implies the following proposition.

Proposition 2
In a subgame perfect equilibrium, the refund to customers who do not show up consists of the
entire price net of the capacity cost. Formally, rA = pA − k and rB = pB − k.

In other words, competitive refunds consist of the operation cost saving on a no-show, c, plus the
duopoly price markup τ . This implies that service providers do not make any profit on customers
who cancel. Hence, all profits are extracted only from consumers who do show up for the service
(or are satisfied with the product under the second interpretation given in Section 2.1).
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3.3 Robustness to the order of decisions

Our equilibrium so far was computed under the assumption that service providers must commit
to their refund policies before price competition begins. A natural question to ask at this point
is whether the calculated equilibrium is robust to changes in the order of the decisions. To
investigate this issue let us suppose now that both service providers first announce and commit
to their prices pA and pB, and only later announce their refunds on no shows rA and rB.

We follow the same optimization as in Section 3.1, but in a reverse order. More precisely,
Substituting (3) into (4), and then into (2), maximizing πA with respect to rA, and πB with
respect to rB, and solving the system of the two best-response functions yields

rj = ψ (pj − k − c− τ) + c+ τ, where ψ
def
=

nHσL(1− σH) + nLσH(1− σL)

nHσL(1− σH)2 + nLσH(1− σL)2
> 1, (7)

set by each service provider j = 1, 2. Second-order conditions are satisfied by ∂2πj/∂r
2
j =

−[nHσL(1− σH)2 + nLσH(1− σL)2]/(σHσLτ) < 0. Notice that (7) implies that the amount of
refund rA depends only on the price pA (and not on pB), and rB depends only on pB (and not
on pA).

Next, substituting rA and rB from (7) into the profit functions, solving the two first-order
conditions yield

pA = pB = c+ k + τ hence rA = rB = c+ τ. (8)

Comparing (8) with (6) yields the following proposition.

Proposition 3
In markets for differentiated services where service providers compete in prices and the amount
of refunds on no-shows, the subgame perfect equilibrium outcome where both commit first on
refunds and then on prices, is the same as when they first decide on prices and then on refunds.

3.4 Welfare under competition

We define consumer surplus as the sum of consumers’ utilities (1) evaluated at the equilibrium
prices and refund levels. Formally,

CS
def
=

∑
i=H,L

ni

0.5∫
0

[σi(β − τx)− pA + (1− σi)rA] dx

+
∑

i=H,L

ni

1∫
0.5

{σi[β − τ(1− x)]− pB + (1− σi)rB} dx. (9)

Substituting the equilibrium prices and refund levels (6) into (9) yields

CS =

(
β − c− 5τ

4

)
(nHσH + nLσL)− k(nH + nL). (10)
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Social welfare is defined by the sum of consumer surplus (10) and aggregate industry profit (6).
Therefore,

W
def
= CS + πA + πB =

(
β − c− τ

4

)
(nHσH + nLσL)− k(nH + nL). (11)

As expected, social welfare is the sum of basic utility net of operation cost and the average
transportation cost, all multiplied by the expected number of consumers who show up, minus
reservation costs for the entire consumer population.

4. Collusion on Refund Levels

In this section we proceed with our main investigation which is to characterize the conditions
under which service providers have incentives to jointly agree on either higher or lower refund
levels as compared with the noncooperative levels characterized in the previous section.

Proposition 3 demonstrated that under imperfect competition the subgame-perfect equilibrium
outcome is invariant with respect to the order at which decisions are made (refunds versus prices).
However, as we demonstrate below, when firms are able to collude on refunds, the order of
decision making does matter. For this reason, Section 4.1 analyzes collusion on refunds before
price competition begins, whereas Section 4.2 analyzes collusion on refunds after service providers
compete in prices.

4.1 Collusion on refunds in the first stage

In the second stage both service providers compete in prices, given their commitments on the
amount of refunds on no-shows. The price competition equilibrium as a function of firms’ refund
levels was already computed in the previous section and is given in (5). Substituting (5) into
(4) and (3), and both into (2) and rearranging the terms yields the following linear-quadratic
semi-collusive joint profit function

πA + πB =
nHnL(σH − σL)2

2(nHσL + nLσH)

{
1

τ
[rA, rB]

[
−1 1

1 −1

] [
rA

rB

]
+ [rA, rB]

[
1
1

]
− 2c

}
+
σLσH(nH + nL)2 τ

(nHσL + nLσH)
(12)

Next, we observe that πA + πB is linear quadratic with respect to the refund levels, where the
quadratic part is negative semi-definite with a maximum value of 0 along rA = rB, and where
the linear part is upward sloping in the direction rA = rB.2 Geometrically, the collusive profit is a
ridge surface in the refunds, sloping upward in the direction rA = rB. Therefore, industry profit

2det∇2 (πA + πB) = 0 and ∇ (πA + πB)|rA=rB
=

nHnL(σH − σL)2

2(nHσL + nLσH)
·
[

1
1

]
> 0.
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is maximized when the firms agree on a common refund. For any collusive refund level satisfying
r = rA = rB, the profits are

πA = πB =
nHnL(σH − σL)2(r − c) + σLσH(nH + nL)2 · τ

2(nHσL + nLσH)
. (13)

Clearly, the industry profit increases with the collusive refund level r. Thus, the reader may
conclude that without assuming reservation utility, service providers will agree on raising r with
no bound. However, in what follows we demonstrate that this is not necessarily the case if we
restrict the refund level not to exceed the price of the service.

The noncooperative equilibrium prices p = pA = pB corresponding to the collusive refund
rate r is obtained by substituting the refund rate into equation (5). Hence,

p = k + γ(c+ τ) + (1− γ)r, (14)

where the parameter γ is defined in (5). Comparing the equilibrium price when firms collude on r
(14) to the equilibrium prices under no collusion (6), reveals that (14) is a linear combination of
the marginal operation cost plus duopoly mark up and the refund level r. Next, industry profit
(as a function of r) can be expressed in the following transparent form

πA + πB = (nH + nL)[p− k − δ c− (1− δ)r], where 0 < δ
def
=
σLnL + σHnH

nL + nH

< 1, (15)

is the average showing up probability in the population.

Equation (14) postulates the exact relationship between the collusive refund level and the
noncooperative equilibrium price which is plotted in Figure 1. Thus, the collusive refund levels

-

6 p = r
(14)

p

r
r̄

p̄

r < p r > p (rulled out by Assumption 1)

Figure 1: Noncooperative equilibrium price as a function of the colluded refund levels.

are lower than the noncooperative price when the refunds are sufficiently low. In addition, the
price is linearly increasing in refunds with a slope smaller than one. Therefore, there exist a
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unique refund level where the prices and refunds coincide, which we denote by p̄ = r̄, that can
be solved directly from equation (14) to take the form

p̄ = r̄ =
k

γ
+ c+ τ (16)

Figure 1 shows that all refund levels exceeding r̄ are greater than the purchase price. At these
levels, refunds can be viewed as a partial subsidy to those consumers who do not show up. We
would like to rule out this “subsidy option” with the following assumption.3

Assumption 1
Service providers are prohibited from offering refunds on no-shows (cancelations) larger than the
price for which the service/product is sold for. Formally, rj ≤ pj for j = A,B.

The following proposition summarizes our results on the effects of collusion on refunds.

Proposition 4
Under Assumption 1,

(a) The collusive refund level and the resulting noncooperative equilibrium prices are finite,
uniquely determined, and are given by (16).

(b) The difference between the collusive refund and the noncooperatively-determined refund is
proportional to the capacity cost parameter k.

(c) If the observed refund levels exceed the sum of the operation cost and the duopoly market,
that is r > c+ τ , then we know that the firms are colluding.

Part (a) is rather remarkable, as some may argue that without assuming a reservation utility,
service providers may be tempted to set rA = rB = +∞, thereby artificially raising their cost
before price competition begins. Here we show that under Assumption 1 firms will collude on a
finite refund level.

Proposition 4(b) can be verified by subtracting the collusive refund level (16) from the nonco-
operative equilibrium level (6), to obtain k/γ. Hence, the collusive refund and the noncooperative
refund levels coincide when the capacity cost is k = 0. Therefore, we can infer that collusion on
a joint refund policy is more likely to be observed in industries with large capacity costs.

Proposition 4(c) proposes a method for detecting collusion on refunds by observing the full
prices pA and pB, and then comparing prices with the marginal operation cost, the differentiation
parameter, and the observed refund levels. Of course, if the refund policy is clearly observable, one
can detect the collusion on refunds by comparing the observed refund levels to the imperfectly-
competitive level obtained in (6).

3Obviously, an introduction of a reservation utility could further limit the maximal feasible value of r̄. However,
an introduction of a reservation utility would unnecessarily complicate our model.
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On the consumer side, collusion has two opposing effects on consumer welfare. First, collusion
raises consumer welfare since it increases the refund in the event of a no-show. Second, higher
refunds increase prices, thereby reducing consumer welfare. To compute the net effect of collusion
on refunds on consumer welfare, substitute (5) into (9) as well as r for rA and rB, and then
differentiating with respect to r yields,

∂CS

∂r
= −nHnL(σH − σL)2

nHσL + nLσH

< 0. (17)

According to (17), an increase in refunds lowers consumer welfare. Therefore,

Proposition 5
Colluding on refund levels reduces consumer welfare only if the capacity cost is strictly positive.
Formally, the change in consumer surplus resulting from the collusion is given by

CS collude − CS compete = −k
γ

nHnL(σH − σL)2

nHσL + nLσH

< 0.

Thus, the change in consumer surplus is equal to the loss from the price increase, (1/γ − 1)k,
paid by consumers who show up, plus the additional refunds k/γ paid to consumer who do not
show up. Notice that the loss in consumer surplus equals the gain in industry profits.

Finally we observe that the industry profit under the collusive refund level (16)

πA + πB = (nH + nL)[δ(r̄ − c)− k]. (18)

4.2 Collusion on refunds in the Second stage

Now consider a reversed order of decisions where service providers first compete in prices knowing
that in the second stage they will collude on the amount to be refunded upon no-shows. Consider
the second stage where service providers collude on mutual refund levels r = rA = rB, taking
the prices pA and pB as given. Substituting (3) and (4) into (2), setting r = rA = rB yields
∂(πA + πB)/∂r = nH(σH − 1) + nL(σL − 1) < 0. Hence,

Proposition 6
In a market structure where firms first compete in prices and then collude on refund levels, the
collusive refund level is rA = rB = 0. That is, no refunds will be given on no-shows.

This result can be deducted logically considering the fact that once prices are fixed in the first
stage, service providers minimize costs by refusing giving any refunds on no-shows. Thus, Propo-
sition 6 demonstrates that once prices are fixed, strictly positive refunds can be realized only as
an outcome of competition.

Clearly given prices, the collusion on no refunds reduces consumer welfare. However, it
remains to investigate how equilibrium prices are affected by firms’ decision on providing no
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refunds. Substituting rA = rB = 0 into (3) and (4) and then all into (2), solving 0 = ∂πj/∂pj

for j = A,B yields the noncooperative equilibrium prices

pA = pB =
(c+ τ)σHσL(nH + nL) + k(nHσL + nLσH)

nHσL + nLσH

, (19)

and the resulting profit levels

πA = πB =
σHσLτ(nH + nL)2 − c nHnL(σH − σL)2

2(nHσL + nLσH)
. (20)

Finally, to obtain the consumer surplus when firms collude on not giving refunds, substitute
rA = rB = 0 and the equilibrium price (19) into (9) to obtain

CS =
(n2

H + n2
L)σHσL(4β − 5τ) + nLnH [4β(σ2

H + σ2
L)− τ(σ2

H + 8σHσL + σ2
L)]

4(nHσL + nLσH)
. (21)

We are now ready to investigate how collusion on no-refunds affects consumers and service
providers. Comparing profit levels (20) with (6), and consumer welfare (21) with (10) yields the
following proposition.

Proposition 7
The ability to collude on refunds after service providers compete in prices reduces their profits
whereas consumer welfare is enhanced.

The reason why firms “lose” from colluding on refund levels after the price competition stage, is
that price competition is intensified when firms know that they will collude on no refunds in the
second stage of the game. In other words, since noncooperative competition on refund levels in
the second stage results in strictly positive refund levels, service providers set higher prices in the
first stage taking into account the expected costs associated with giving refunds to consumers
who do not show up. In contrast, since collusion results in an agreement on no refunds, prices
competition in the first stage generates lower prices since the cost of providing refunds disappears.
This suggests the question why firms want collude on refund levels at the second stage?

Corollary 8
In a market structure where service providers have the option to collude on a joint refund policy
after prices are determined, (a) service providers will collude on giving no refunds if prices are
exogenously fixed. Otherwise, (b) if this option exists, firms will not utilize the opportunity to
collude on a joint industry-wide refund policy.

5. Shipping and Handling (s&h) Charges

Shipping and handling charges (as opposed to refunds) are widely observed in some industries,
most notably, in all mail-order companies. Shipping and handling can be interpreted as a portion
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of the price which is not refunded under any circumstance. Formally, let hA and hB denote these
charges. The utility function (1) is now given by

U(σi, x)
def
=

{
σi(β − τx− pA)− hA buying service A

σi[β − τ(1− x)− pB]− hB buying service B,
(22)

for each consumer of type i = H,L. The profit functions (2) are now modified to

πj(hj − k)qj + (pj − c)sj, j = A,B, (23)

where qj and sj maintain the same definitions as before (number of reservations and the number
of those who show up).

5.1 Noncooperative equilibrium s&h charges

Consider a two-stage game where in Stage I both providers compete in s&h charges, and then
in Stage II compete in prices. The computations of the present game are identical to those of
Section 3 so there is no need to repeat them step-by-step. Thus, the solution to the second stage
(price competition) is given by

pj(hj) =
c(nHσH + nLσL)− hj(nH + nL) + k(nH + nL) + τ(nHσH + nLσL)

nHσH + nLσL

. (24)

Therefore, a rise in the s&h charge hj results in a compensatory price reduction during the price
competition stage. The corresponding profit levels πj(hj, h`) where j, ` = A,B as functions of
given refund levels are then given by

πj(hj, h`) =
nHnL(σH − σL)2

[
k(hj − h`)− h2

j + hjh`

]
+ σHσLτ

2(nHσH + nLσL)2

2σHσLτ(nHσH + nLσL)
. (25)

Moving to the first stage, from (25), maximizing πA with respect hA and πB with respect
hB, solving for the two first-order conditions, and then substituting into (24) and (25) yields

hj = k, pj = c+ τ, πj =
τ(nHσH + nLσL)

2
, for j = A,B. (26)

We summarize our results on noncooperative s&h charges with the following proposition.

Proposition 9
(a) The noncooperative equilibrium s&h charges equal the reservation cost parameter k, whereas

the refundable price equals the unit operation cost and the duopoly markup. Hence,

(b) The s&h and the refund noncooperative games generate identical profit levels and consumer
surplus.

Proposition 9(b) follows directly by comparing (26) with (6), and Proposition 2.
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5.2 Collusion on s&h charges

Suppose now that both firms can agree on a common industry-wide s&h charges denoted by
h = hA = hB, before price competition begins. In order to compute the collusive s&h charges,
substitute the noncooperative equilibrium prices (24) into the profit function (25), and then
setting hA = hB = h yields that πA = πB = (nHσH + nLσL)τ/2, which is independent of h.
Therefore,

Proposition 10
Profit of firms is invariant with respect to the collusive level of the s&h charge. Thus, firms will
not collude on an industry-wide s&h charge.

Proposition 10 can be explained by observing how the noncooperative price adjusts when the
collusive s&h charge varies. More precisely, (24) shows that increasing h by, say, $1 would result
in a price reduction of (nHσH +nLσL)/(nH +nL) which is the expected revenue from those who
show up for the service (those who are satisfied with the product under the second interpretation).
Hence, the increase in the s&h revenue is exactly offset by the decline in price revenues. Incidently,
we obtain this “collusion-invariance” result also in Section 6 where we analyze consumers have
preferences over reservation systems.

6. Preference Over Advance Reservation Systems

All the consumer utility functions analyzed so far (1) and (22) share the common assumption
that consumers view the services provided by the two firms as differentiated. However, in some
services, in particular in services where consumers must make advance reservations long before
the service is provided, it seems that consumers view the advance reservation systems themselves
as differentiated in addition or instead of viewing the services as differentiated. More precisely,
let us assume that the utility function of a consumer indexed by (σi, x) ∈ {σH , σL} × [0, 1] is
now given by

U(σi, x)
def
=

{
σiβ − pA + (1− σi)rA − τx book service A

σiβ − pB + (1− σi)rB − τ(1− x), book service B.
(27)

Comparing (27) with (1) reveals that now the differentiation (location) disutilities τx and τ(1−x)
are not multiplied by the showing up probabilities σH and σL. This means that this disutility
is borne by consumers at the time the reservations are made and not later at the time when
the services are actually delivered. Another interpretation for the utility function (27) is that
consumers must travel to the place where reservations are made, or that this type of service
requires two visits, one as a preliminary engagement such as a medical checkup and a second
visit which involves the actual service. Under this interpretation, consumers bear (or pay) the
disutility τx or τ(1− x) on their first visit, but still maintain the uncertainty regarding showing
up for the second visit with probabilities σH and σL.
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6.1 Imperfect competition

The problem here is the same as in the previous sections. The solution follows the same steps as
before, when we solved for the two-stage subgame-perfect equilibrium. The proportion of type i
consumers who book with service provider A becomes

x̂i =
pB − pA + (1− σi)(rA − rB) + τ

2τ
, i = L,H, (28)

which is different from the corresponding expression (3). The expected number of customers and
the expected number of show-ups are the same as in (4), as well as the profit function (2). We
proceed step by step as in section 3.1 by first solving for the noncooperative equilibrium prices.
That is, substitute (28) into (4) and thereafter into (2) to obtain the appropriate profit functions
πA and πB. The noncooperative equilibrium prices pj, j = A,B, are then given by

pj = k + τ + rj + δ(c− rj), (29)

where δ is the average showing up probability in the population, already defined in (15). Second-
order conditions are verified by observing that ∂2πj/∂p

2
j = −(nH +nL)/τ < 0 . Next, maximizing

profit using the equilibrium prices (29), we obtain the noncooperative refund levels

rA = rB = c. (30)

The second order condition, evaluated at the equilibrium prices (29), is given by ∂2πj/∂rj)
2 =

−nHnL(σH − σL)2/τ < 0. Consequently, equilibrium prices, refund levels, the corresponding
profits under imperfect competition are

rA = rB = c, pA = pB = c+ k + τ, and πA = πB =
τ(nH + nL)

2
. (31)

Comparing the equilibrium in the present model (31), to the equilibrium of our benchmark model
(6), we can state the following differences.

Proposition 11
Service providers (a) set lower refunds (b) earn higher profits, and (c) charge the same price,
when consumers have preferences over the reservation systems as compared with preferences over
the services only.

Proposition 11 predicts that higher refunds are likely to be observed in industries such as car
rentals where consumers have preferences over the services themselves (e.g., the specific car
models rented out) and not over the reservation systems only.

6.2 Collusion on refunds

The analysis of collusion here follows the same steps as in Section 4.1. Substituting the prices
(31) into (28) and then into (4) and thereafter into (2) we obtain

πA + πB =
nHnL(σH − σL)2

2(nH + nL)τ
[rA, rB]

[
−1 1

1 −1

] [
rA

rB

]
+ (nH + nL) τ. (32)
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This quadratic form is negative semidefinite with a maximum value of 0 at a “ridge” along
rA = rB. However, in contrast to the joint profit function (12) where the ridge was upward
sloping in the direction rA = rB, this ridge is horizontal. This difference is crucial when comparing
maximum of (32) with the non-cooperative solution (31) we observe that the industry profit
cannot be improved upon colluding on refunds. Hence,

Proposition 12
When consumers view the reservation systems as differentiated, service providers have no incen-
tives to collude on refund levels.

Using an alternative interpretation, when consumers always pay the transportation cost τx and
τ(1− x) independently of whether they actually end up showing up at the service delivery time,
firms cannot enhance their profits by agreeing on refund levels. This result was also obtained in
Proposition 10 under collusion on s&h charges. Here, any change in raising refunds is offset by
a corresponding increase in price. Thus, the equilibrium level rA = rB = c (refund equals unit
operation cost) is also the collusive level.

7. Conclusion

The purpose of our research was to identify situations where industry-wide explicit or implicit
agreements on joint refund policies weaken price competition and reduce consumer welfare. Our
major finding is that no general conclusions can be drawn on the nature of collusion on industry-
wide refund policies. The precise refund levels that maximize joint industry profit is highly sensitive
to the order in which firms make their decisions.

If service providers can commit to refund levels before they compete in prices, they will raise
refund levels above the competitively-determined refund levels. In this case, collusion on refunds
reduces consumer welfare. In contrast, service providers will collude on no refunds whenever prices
cannot be changed. The latter case occurs either under imperfect price competition prior to
colluding on refunds, or in a price-regulated industry. Under price competition prior to colluding
on refunds, consumers benefit from this collusion since under no refunds price competition is
more intense than under positive refunds levels. Altogether, what we have learned is that by
simply observing industries’ refund policies one cannot conclude whether consumers benefit or
are harmed by firms’ refund policies, and whether these policies are driven by competition or
collusive agreements.

We also found out that the amount of refunds as well as the incentives to collude depend on
whether consumers prepay for their transaction cost or a disutility cost for a good or a service. In
markets where all consumers pay a disutility (or transaction) cost for participating in the market,
for example, mail order of goods, the refunds cover only the operation cost, c, when the firms
compete, but collusion on refunds is not profitable. In markets where only those who show up
are paying the disutility or transaction cost like car rentals or cinemas, the refunds cover the
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operation cost, c, plus a markup equal to the product differentiation parameter τ . Under these
circumstances the firms have incentives to collude on refunds.

Our analysis demonstrates why we observe high refunds on car rentals, whereas the refunds
are surprisingly low for items delivered via mail orders. One reason for the low refund on mail
orders is that they do not have any incentives to refund the profit generated by the duopoly
markup τ . A profit maximizing mail order firm should announce a “full money back guarantee”
only on the operation part of the cost, and include the capacity cost as well as the profit margin
τ in their announced “shipping and handling” charges.
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