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1 Introduction

The optimal timing problems of a discrete action constitute an important class of stochastic control
problems in economics and finance including optimal investment threshold decisions and optimal
exercise rules for financial options (for textbook treatments of these issues, see Dixit and Pindyck
(1994) and Björk (1998)). Optimal timing problems of this sort also arise and have been studied
in environmental and renewable resource economics including forest economics. In this paper our
focus is in renewable resource issues. First, we provide a brief survey of what has been done in this
literature and after that we present a new research question concerning the rational management of
a stochastically fluctuating renewable resource in the presence of stochastic price dynamics.

Pindyck (1984) has studied the implications of stochastic fluctuations in the renewable resource
stock on the return required to keep a unit of stock in situ and thereby the relationship between
the extraction and volatility of the renewable resource stock when harvesters are risk neutral. He
shows that stochastic fluctuations affect the optimal extraction rate via different channels which run
counter to each other. In Pindyck (2000) the real option theory is applied to explore the optimal
environmental policy in a framework with two stochastic variables, one which captures uncertainty
over future costs and benefits of reduced environmental degradation and the other that captures
uncertainty about the evolution of an ecosystem, which interact with two irreversibilities, namely
sunk costs associated with environmental regulation and sunk benefits of avoided environmental
degradation. In Pindyck (2002) the continuous time model of environmental policy adopted in
Pindyck (2000) is extended and generalized by focusing on how irreversibilities and uncertainties
interact in terms of timing of policy adoption.

In a different framework and with a different focus Bentolila and Bertola (1990) have analyzed
the implications of labor adjustment costs - linear hiring costs per new employees and linear firing
costs per dismissed workers - on risk-neutral firms’ employment policy under stochastic product
demand which follows a geometric Brownian motion process. Their results suggest that highly reg-
ulated labor markets constrain the flexibility of firms’ employment policies because hiring a worker
is a risky proposition and the degree of uncertainty about the future is an important parameter in
terms of firms’ decision making.

In stochastic harvesting and forest rotation models the distinction between price and stocks
has not been usually done, but studies have mainly focused on the impact of stochastic forest stand
value on the harvesting threshold and the expected rotation length (see e.g. Alvarez (2004), Alvarez
and Koskela (2004), Sødal (2002) and Willassen (1998)). The early papers on optimal harvesting
under stochastic timber prices typically assume that the underlying timber price evolves according
to a geometric Brownian motion (cf. Clarke and Reed (1989), Reed and Clarke (1990), Morck et.
al (1989) and Thomson (1992)). Plantinga (1998) is an example of a paper which examines mean-
reverting prices numerically. See also Gjolberg and Guttormsen (2002). Insley (2002) contrasts the
implication of geometric Brownian motion and mean reverting process of timber prices on harvesting
decisions in the single rotation framework. The paper by Insley and Rollins (2004) extends this model
to an ongoing rotations framework under mean reverting timber prices with the bare land value
determined endogenously. They elaborate forest stand value by postulating stochastic timber prices
and deterministic wood volume. Their focus is, however, on numerical illustrations associated with
the Ontario forest sector. Saphores (2003) has assumed a concave utility function for the resource
manager and studies the issue that allows for partial harvests and accounts for the risk of extinction
and for biological assets with the size-dependent stochastic growth. He derived a generalized version
of the Faustmann formula both for general growth functions and for harvesting cost specifications.
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In this paper we separate the stochastic price and the stochastic stock dynamics and analyze the
optimal harvesting policy and its determinants both theoretically and by using explicit numerical
illustrations. We derive several new results. First, we characterize the circumstances under which
the immediate depletion of the harvested stock is optimal and state a set of weak conditions under
which the optimal harvesting policy can be characterized by a single harvesting threshold, below
which harvesting is suboptimal. Moreover, and importantly, we demonstrate how the value of the
optimal harvesting policy can be decomposed into the monetary value of the current stock and
the expected yield accrued from the future harvesting opportunities resulting from the unharvested
stock. Since the instantaneous depletion of the entire stock is an admissible harvesting policy
the latter part of the presented decomposition of the value can be interpreted as the excess return
accrued from following the optimal policy and leaving part of the stock unharvested (hence the excess
return generated by the optimal policy can also be interpreted as the value of waiting). Second,
we show that both the value of the optimal harvesting policy and the value of the associated single
harvesting opportunity (an optimal depletion policy) can be expressed in a separable form where
only the current price and the expected per capita growth of the price process affect the threshold
while under risk neutrality the volatility of price dynamics will have no effect. Third, and naturally,
the optimal harvesting threshold under stochastic price and stock dynamics exceeds the threshold
characterizing the optimal policy in the deterministic case. This means that uncertainty will make
waiting valuable and postpone the rational exercise of harvesting opportunities compared with the
deterministic case. Thus, our results are in line with the findings of the modern literature on
irreversible investment under uncertainty (cf. Dixit and Pindyck (1994)). Fourth, we show that the
value of sequential harvesting opportunity dominates the value of the associated optimal depletion
problem and that the optimal harvesting threshold is higher when harvesting can be exercised only
once than in the sequential case. This observation is based on the intuitively clear property that
the required exercise premium is higher when harvesting can be exercised only once than in the case
where it can be repeated later on in the future. Fifth, and interestingly, our results indicate that
higher flexibility of admissible harvesting policies does not only increase the value of the optimal
harvesting policy but also increases the rate at which the value grows as a function of the harvested
stock. Finally, we present explicit numerical illustrations by modelling the stochastic price as a
standard geometric Brownian motion and the stock dynamics as a stochastic mean reverting process.
Under these assumptions we analyze the relationship between the stock volatility and the optimal
harvesting threshold both in the single and in the sequential harvesting cases. We also study the
impact of stock dynamics volatility on the value of the optimal harvesting policy and the optimal
depletion policy.

We proceed as follows. In section 2 we present a framework to study the harvesting problem
when both price and resource stock are stochastic and demonstrate several new analytical results.
Section 3 illustrates our theoretical findings explicitly through numerical calculations. Finally, there
is a concluding section.

2 The Harvesting Problem

In this section we characterize the optimal harvesting problem both in terms of harvesting size and
timing in a general framework under stochastic price and stochastic stock dynamics. We proceed
as follows: First, we specify the underlying resource stock and price dynamics. Second, we provide
a set of weak conditions under which the optimal harvesting policy can be characterized by a single
harvesting threshold. Moreover, we provide alternative characterizations of the value of the optimal
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harvesting policy by decomposing it into the monetary value of the current stock and of the expected
yield accrued from the future harvesting opportunities resulting from the unharvested stock. Third,
under these conditions we characterize both the value of the optimal sequential harvesting policy
and the value of the associated single harvesting opportunity as the separable form in terms of the
impact of the current price and the expected per capita growth rate on the harvesting threshold.
Finally, we characterize the properties of the optimal harvesting policy and compare the value of
the sequential harvesting opportunity both to the value policy of the associated optimal depletion
policy and to the deterministic case.

We assume that the stochastic dynamics of the underlying harvested stock are described by the
Itô stochastic differential equation

dXZ
t = µ(XZ

t )dt + ησ(XZ
t )dWt − dZt, XZ

0 = x, (2.1)

where η ≥ 0 is an exogenously given constant multiplier and Wt is Brownian motion. We assume
that the volatility coefficient σ : R+ 7→ R+ is positive at all states (i.e. that σ(x) > 0 for all x ∈ R+)
and that both the drift coefficient µ : R+ 7→ R and the volatility coefficient σ(x) are sufficiently
smooth (at least continuous) mappings guaranteeing the existence of a solution for (2.1). We call
an irreversible harvesting policy Z admissible if it is non-negative, non-decreasing, right-continuous,
and {Ft}-adapted, and denote the set of admissible harvesting policies as Λ. We denote as Xt the
controlled stochastic resource stock dynamics in the absence of harvesting (i.e. when Z ≡ 0) and
assume that the upper boundary ∞ is natural for Xt. We also assume that the lower boundary 0 is
either natural, exit, or regular for Xt. In case it is regular, we assume that is killing (see Borodin
and Salminen (2002), pp. 14–20, for a thorough characterization of the boundary behavior of linear
diffusions).

Having characterized the stochastic dynamics of the harvested stock modelling the stochastically
fluctuating renewable resource, we now assume that the price of a harvested unit of stock evolves on
the state-space R+ according to the diffusion characterized by the following stochastic differential
equation

dpt = αptdt + β(pt)ptdW̃t, p0 = p ∈ R+, (2.2)

where the expected per capita growth rate α ∈ R+ is an exogenously given constant, W̃t is Brownian
motion which is assumed to be independent of Wt driving the stochastic dynamics in (2.1), and
β : R+ 7→ R+ is a sufficiently smooth mapping satisfying the standard Novikov condition (cf.
Øksendal (2003), p. 162). This assumption implies that, although the volatility coefficient of
the diffusion characterizing the underlying price dynamics may be non-linear, the price is always
expected to grow at an exponential rate, that is, E[pt] = peαt. We also assume that both 0 and ∞
are natural boundaries for the price process pt and, therefore, that even though pt may tend towards
the boundaries of its state space it never attains these boundaries in finite time.

Given these assumptions, we now investigate the optimal sequential harvesting problem (a
singular stochastic control problem)

V (x, p) = sup
Z∈Λ

E(x,p)

∫ τZ
0

0
e−rspsdZs, (2.3)

where τZ
0 = inf{t ≥ 0 : XZ

t ≤ 0} denotes the first date at which the harvested stock is depleted
and becomes extinct. For the sake of comparison, we also consider the associated optimal depletion
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problem

J(x, p) = sup
τ<τ0

E(x,p)

[
e−rτpτXτ

]
, (2.4)

where τ0 = inf{t ≥ 0 : Xt ≤ 0} denotes the first date at which the harvested stock vanishes. It is
worth noticing that problem (2.4) can be interpreted as the determination of the date at which a
single harvesting opportunity should be exercised. Since this depletion policy belongs into the class
of admissible harvesting policies Λ, we observe that the value J(x, p) can always be attained in the
sequential harvesting case while the opposite result is naturally not true. Before stating our first
result on the optimal harvesting policies and their values, we first define the mapping π : R+ 7→ R
measuring the growth rate of the expected net present value of the harvested stock as

π(x) = µ(x)− (r − α)x.

We will assume throughout this study that the expected cumulative net present value of the flow
π(x) from the present up to an arbitrarily distant future exists and is finite. We can now establish
the following.

Lemma 2.1. Assume that the expected net present value of the harvested stock is non-increasing.
Then, the optimal policy is to instantaneously deplete the entire stock. Put formally, if µ(x)+αx ≤
rx for all x ∈ R+, then V (x, p) = J(x, p) = px, Z0 = x, τZ

0 = 0, and τ = 0.

Proof. See Appendix A.

Lemma 2.1 characterizes those circumstances under which the immediate depletion of the har-
vested stock is optimal. As intuitively is clear, postponing the harvesting decision into the future
is suboptimal whenever the expected rate of return associated with the deferral of the irreversible
decision falls short of its opportunity cost at all states. Consequently, this means that in the case
of Lemma 2.1 the excess return associated with the deferral of the harvesting decision further into
the future is zero.

Having considered the case where the instantaneous depletion of the harvested stock is optimal,
we now proceed to analyze the more complex cases where waiting is valuable and, therefore, where
the immediate depletion of a renewable resource is not optimal. In order to accomplish that task,
we now assume that the discount rate dominates the percentage growth rate of the price, that is,
that r > α, and denote as ψη(x) the increasing fundamental solution of the ordinary differential
equation (cf. Borodin and Salminen (2002), pp. 17–19)

1
2
η2σ2(x)u′′(x) + µ(x)u′(x)− (r − α)u(x) = 0. (2.5)

Our main result characterizing the optimal sequential harvesting policy for a broad class of processes
modelling the stochastic dynamics of the underlying harvested stock is now summarized in the
following.

Theorem 2.2. Assume that the growth rate of the expected net present value of the harvested stock
satisfies the conditions limx→∞ π(x) < 0 and that

(i) if 0 is unattainable for Xt then there is a unique threshold x̂ ∈ (0,∞) such that π(x) is
increasing on (0, x̂), decreasing on (x̂,∞), and limx↓0 µ(x) ≥ 0;
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(ii) if 0 is attainable for Xt then there is a unique threshold x̂ ∈ [0,∞) such that π(x) is increasing
on (0, x̂), decreasing on (x̂,∞) and limx↓0 µ(x) > 0.

Then, the value of the optimal harvesting policy reads as

V (x, p) =

{
px + pπ(x∗η)

r−α x ≥ x∗η
pψη(x)
ψ′η(x∗η) x < x∗η,

(2.6)

where the optimal harvesting threshold x∗η = argmin{ψ′η(x)} > x̂ is the unique root of the ordinary
necessary first order optimality condition ψ′′η(x∗η) = 0. Moreover, Vx(x, p) ≥ p and Vxx(x, p) ≤ 0 for
all (x, p) ∈ R2

+.

Proof. See Appendix B.

Theorem 2.2 states a set of weak conditions under which the optimal harvesting policy can
be characterized by a single harvesting threshold below which harvesting is always suboptimal.
Especially, Theorem 2.2 proves that the value of the optimal policy can be expressed in the separable
form

V (x, p) = p sup
Z∈Λ

Ex

∫ τZ
0

0
e−(r−α)sdZs.

Thus, we observe that in the present example only the current price and its expected per capita
growth rate affect the optimal harvesting threshold and its value while the volatility of the price
dynamics has no effect on the optimal policy. This observation is naturally based on the assumed
risk neutrality of the resource manager. It is also worth noticing that Theorem 2.2 proves that the
optimal harvesting threshold x∗η exceeds the threshold x̂ at which the growth rate of the expected
net present value of the harvested stock is at its maximum. Since x̂ is the threshold at which the
harvesting opportunity is exercised in the deterministic case, we find that in the present case the
stochasticity of the dynamics of the harvested stock makes waiting valuable and thus postpones the
rational exercise in comparison with the deterministic case.

It is worth noticing that the conditions of Theorem 2.2 are relatively weak, since no strong
concavity properties are required for the validity of the conclusions of our theorem. However, it is
clear that most models subject to mean reversion (for example, models subject to pure compensation;
cf. Clark (1976), section 1.1) satisfy the conditions of Theorem 2.2. This result is established in the
following.

Corollary 2.3. Assume that the drift coefficient µ(x) is continuously differentiable, strictly concave,
and satisfies the boundary conditions µ(0) = 0 and limx↓0 µ′(x) > r − α > limx→∞ µ′(x). Then the
conditions of Theorem 2.2 are satisfied and the value of the optimal harvesting policy reads as in
(2.6).

Proof. Under assumptions of our corollary π(x) is continuously differentiable, strictly concave, and
satisfies the boundary conditions π(0) = 0 and limx↓0 π′(x) > 0 > limx→∞ π′(x). Thus, the continu-
ity and monotonicity of the derivative π′(x) implies that the mapping π(x) attains a unique global
maximum at x̂ ∈ R+. Moreover, for all x ≥ y > x̂ it holds

π(x) ≤ π(y) + π′(y)(x− y)

proving that π(x) ↓ −∞ as x → ∞. Thus, the conditions of Theorem 2.2 are satisfied and the
alleged result follows.
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Corollary 2.3 states a set of regularity conditions under which the conditions of Theorem 2.2
are satisfied and, therefore, under which the optimal harvesting threshold can be characterized by a
single harvesting threshold at which harvesting should be irreversibly initiated. It is worth noticing
that since the optimal threshold is attained on the set where the expected growth rate of the net
present value of the harvested stock is decreasing we have the inequality µ′(x∗η) + α ≤ r so that
at the optimum the marginal rate of return from a harvested unit has to fall short its opportunity
cost. A second important implication of Theorem 2.2 presenting the value of the optimal harvesting
policy in terms of the value of instantaneous depletion of the harvested stock and the value of the
future harvesting potential is now summarized in the following.

Corollary 2.4. Assume that the conditions of Theorem 2.2 are satisfied. Then, the value of the
optimal harvesting policy can be re-expressed on the set (0, x∗η) where harvesting is suboptimal as
V (x, p) = px + pK(x), where

K(x) = (Rr−απ)(x)− (Rr−απ)′(x∗η)
ψ′η(x∗η)

ψη(x),

measures the expected cumulative stock of the future harvesting opportunities and

(Rr−απ)(x) = Ex

∫ τ0

0
e−(r−α)sπ(Xs)ds

describes the expected cumulative present value of the flow π(x) from the present up to a potentially
infinite future.

Proof. See Appendix C.

Corollary 2.4 presents an alternative characterization of the value of the optimal harvesting
policy compared with (2.6) in Theorem 2.2. According to this representation the value can be
expressed in terms of the monetary value of the current stock and the expected yield accrued from
the future harvesting opportunities resulting from leaving a part of the stock unharvested. Hence,
the formulation of the value of the optimal harvesting policy presented in Corollary 2.4 can be
interpreted as an intertemporal decomposition of the values of the harvesting opportunities available
to the harvester. Moreover, since px measures the monetary value of the current stock, we find that
the term pK(x) can be interpreted as the excess monetary return accrued by following the optimal
policy and leaving part of the stock unharvested. A third important implication of Theorem 2.2
characterizing the marginal value of the harvesting opportunity (and, therefore, Tobin’s marginal q;
for an excellent survey of the classical q-theory of investment, see Abel 1990 and Caballero 1999) is
now stated in our next corollary.

Corollary 2.5. Assume that the conditions of Theorem 2.2 are satisfied. Then, the marginal value
of the optimal harvesting policy can be re-expressed as

Vx(x, p) = pψ′η(x) inf
y≥x

[
1

ψ′η(y)

]
= p + p(Rr−απ)′(x)− pψ′η(x) inf

y≥x

[
(Rr−απ)′(y)

ψ′η(y)

]
. (2.7)

Especially, if µ(x) and σ(x) are continuously differentiable with Lipschitz-continuous derivatives and
σ′(x) is bounded, then (2.7) can be re-expressed as

Vx(x, p) = p sup
τ<τ̂0

Ex

[
e
∫ τ
0 π′(X̂s)ds

]
, (2.8)
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where the process X̂t evolves according to the stochastic dynamics described by the stochastic differ-
ential equation

dX̂t = (µ(X̂t) + σ′(X̂t)σ(X̂t))dt + σ(X̂t)dŴt, X̂0 = x,

and τ̂0 = inf{t ≥ 0 : X̂t ≤ 0}.
Proof. See Appendix D.

Corollary 2.5 demonstrates that the marginal value of the optimal harvesting policy can be
expressed in terms of an associated non-linear programming problem. Thus, Corollary 2.5 proves
that the optimal harvesting policy does not only maximize the expected cumulative present value of
the harvesting yield from the present up to a potentially infinite future, but it simultaneously also
maximizes the rate at which this value grows (and, therefore, the marginal value of a harvested unit
of stock). Interestingly, our results indicate that under a set of sufficient smoothness conditions the
marginal value of the harvesting opportunity can be interpreted in terms of an associated optimal
timing problem. A fourth interesting implication of the findings of Theorem 2.2, demonstrating how
the flexibility of an admissible harvesting policy affects the maximal attainable expected cumulative
present value of the future harvesting yields, is now summarized in the following.

Corollary 2.6. Assume that the conditions of our Theorem 2.2 are satisfied. Then the value of the
optimal harvesting strategy satisfies the inequality V (x, p) ≥ Ic(x, p), where

Ic(x, p) = sup
ν∈Γ

E(x,p)

N∑

k=1

e−rτk [pτk
Xν

τk− − c]

denotes the value of the associated stochastic impulse control problem, c ≥ 0 is a known exogenously
given constant measuring the harvesting costs, Γ is the set of admissible harvesting strategies char-
acterized by the potentially infinite joint sequence ν = {(τk, ζk)}N

k=1, N ≤ ∞, where {τk}N
k=1 denotes

an increasing sequence of harvesting dates and {ζk}N
k=1 denotes a sequence of non-negative harvests

exerted at the corresponding harvesting dates, and

Xν
t = x +

∫ t

0
µ(Xν

s )ds +
∫ t

0
σ(Xν

s )dWs −
K∑

j=1

ζj , t ∈ [τK , τK+1).

Proof. See Appendix E.

Corollary 2.6 demonstrates the intuitively clear result that increased flexibility increases the
value of the harvesting opportunity. More precisely, according to Corollary 2.6 the value of the
associated discrete impulse control problem (which is known in forest economics as a Faustmannian
ongoing rotation problem) is smaller than the value of the considered sequential optimal harvesting
problem.

Having presented the main implications of our main theorem characterizing the optimal har-
vesting policy and its value, we now plan to analyze the comparative static properties of the optimal
policy and, especially, the impact of increased volatility in the harvested stock on the optimal policy
and its value. Our main conclusion on this topic is now summarized in the following.

Theorem 2.7. Assume that the conditions of Theorem 2.2 are satisfied. Then increased volatil-
ity decreases the value V (x, p) and increases the optimal exercise threshold x∗η. More precisely,
∂V (x, p)/∂η < 0 and ∂x∗η/∂η > 0.
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Proof. See Appendix F.

Theorem 2.7 demonstrates that given the conditions of Theorem 2.2 higher volatility in the
harvested stock decreases the value of the optimal harvesting policy and postpones the rational
exercise of the harvesting opportunity by increasing the optimal harvesting threshold at which the
harvesting opportunity should be exercised. The negativity of the sign of the relationship between
stock volatility and the value of the harvesting opportunity is a natural implication of the concavity of
the value of the optimal policy. The positivity of the sign of the relationship between stock volatility
and the optimal harvesting threshold, in turn, follows from the monotonicity of the growth rate of
the expected net present value of the harvested stock. More precisely, since increased stock volatility
decreases the value of the harvesting opportunity while leaving the monetary value of the current
stock unchanged, we find that higher stock volatility decreases the excess return associated to the
optimal policy as well. Since this excess return can be expressed on the harvesting region in terms of
the growth rate of the expected net present value of the harvested stock and this rate is decreasing
on the set where harvesting is optimal we find that increased stock volatility will unambiguously
decelerate harvesting by increasing the threshold at which the harvesting opportunity should be
irreversibly exercised.

Our main result on the associated optimal depletion problem modelling the valuation of a single
harvesting opportunity is now summarized in the following.

Theorem 2.8. Assume that there is a threshold x0 ∈ R+ such that π(x) T 0 whenever x S x0.
Then, the value of the optimal harvesting policy reads as

J(x, p) = pψη(x) sup
y≥x

[
y

ψη(y)

]
=

{
px x ≥ x̃η

p
ψη(x)
ψ′η(x̃η) x < x̃η,

(2.9)

where the optimal harvesting threshold x̃η > x0 is the unique root of the first order optimality
condition ψη(x̃η) = x̃ηψ

′
η(x̃η). Moreover, the value of the optimal harvesting policy can be re-

expressed as J(x, p) = px + pL(x), where

L(x) = (Rr−απ)(x)− ψη(x) inf
y≥x

[
(Rr−απ)(y)

ψη(y)

]

measures the early exercise premium.

Proof. See Appendix G.

Theorem 2.8 states a set of weak conditions under which the optimal depletion policy can be
characterized in terms of a single harvesting threshold at which the considered single harvesting
opportunity should be irreversibly exercised. As in the case of Theorem 2.2, we again find that the
growth rate of the expected net present value of the harvested stock is the principal determinant
of the optimal harvesting policy and its value. Along the lines of Theorem 2.2, Theorem 2.8 proves
that the value of the optimal depletion policy can be expressed in the separable form

J(x, p) = p sup
τ

Ex

[
e−(r−α)τXτ

]
.

Theorem 2.8 also states a decomposition of the value into a term capturing the monetary value of
the current stock and the value accrued from postponing the harvesting decision into the future.
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Interestingly, according to this decomposition the excess return pL(x) accrued from following the
optimal policy reads in the continuation region (0, x̃η) where harvesting is suboptimal as

L(x) = (Rr−απ)(x)− ψη(x)
(Rr−απ)′(x̃η)

ψ′η(x̃η)
.

This expression resembles the excess return associated to the continuous singular harvesting strategy
considered in Theorem 2.2. However, it does not coincide with that value as is established in our
following theorem characterizing the relationship between the value of the sequential and the single
harvesting opportunity.

Theorem 2.9. Assume that the conditions of Theorem 2.2 are satisfied. Then, x̃η > x∗η, V (x, p) ≥
J(x, p), Vx(x, p) ≥ Jx(x, p), Vp(x, p) ≥ Jp(x, p), and Vxp(x, p) ≥ Jxp(x, p) for all (p, x) ∈ R2

+.

Proof. See Appendix H.

Theorem 2.9 proves that the value of the sequential harvesting opportunity dominates the value
of the associated optimal depletion problem. This result is intuitively clear, since the instantaneous
depletion of the harvested stock is an admissible policy in the sequential case as well. It is the ability
to leave part of the stock unharvested and in this way postpone the depletion of the stock into the
future which creates the excess return capturing the value of the future harvesting opportunities
and, therefore, measuring the value of waiting. In accordance with this observation, Theorem 2.9
also proves that the optimal harvesting threshold is higher in the case where the harvesting can be
exercised only once than in the sequential case. Interestingly, Theorem 2.9 also demonstrates that
increased flexibility of the class of admissible policies does not only increase the value of the optimal
policy, it also increases the rate at which this value increases (cf. Alvarez and Virtanen (2004)).

3 Illustration

In section 2 we demonstrated several new theoretical results on the general harvesting problem
in the presence of both stochastic timber price and harvested stock dynamics in the case when
harvesting can be exercised only once and in the sequential case when the harvesting opportunity
can be repeated later on in the future. We now illustrate these results explicitly by characterizing
the underlying stochastic price dynamics as a standard geometric Brownian motion and the stock
dynamics as a stochastic mean reverting process. We elaborate the relationship between stock
volatility and the optimal harvesting threshold both in the single and in the sequential harvesting
cases and show how higher volatility raises the optimal harvesting threshold. Moreover, we illustrate
the impact of the volatility of stock dynamics on the value of the optimal sequential harvesting policy
and on the value of the optimal depletion policy. Higher volatility decreases the value of sequential
harvesting policy while its effect is ambiguous on the value of optimal depletion policy.

In order to illustrate the results of our previous section explicitly we now assume that the unit
price pt evolves according to a standard geometric Brownian motion and, therefore, that β(p) = βp,
where β > 0 is an exogenously given constant. In order to introduce mean reverting stock dynamics,
we assume that µ(x) = µx(1 − γx) and that σ(x) = σx, where µ, γ, σ ∈ R+ are exogenously
determined constants.

It is now clear that if µ ≤ r − α then the conditions of Lemma 2.1 are satisfied and the
instantaneous depletion of the stock is optimal. However, if µ > r − α then the conditions of part

9



(i) of our Theorem 2.2 is satisfied since 0 is a natural boundary for the considered mean reverting
diffusion and π′(x) = µ(1− 2γx)− (r − α) T 0 when x T (µ− r + α)/(2γ). In this case,

ψσ(x) = xθσM

(
θσ, 2θσ +

2µ

σ2
,
2µγ

σ2
x

)
,

where

θσ =
1
2
− µ

σ2
+

√(
1
2
− µ

σ2

)2

+
2(r − α)

σ2
∈ (0, 1)

denotes the positive root of the characteristic equation σ2a(a − 1)/2 + µa − (r − α) = 0, and M
denotes the confluent hypergeometric function (cf. Abramowitz and Stegun (1968), pp. 555-566).
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Figure 1: The optimal harvesting thresholds

Figure 1 describes the optimal harvesting thresholds as a function of the resource stock dynamics
volatility. Naturally, higher volatility postpones the rational exercise of the optimal harvesting
opportunity both in the sequential case and in the case where harvesting will be exercised only
once. According to Figure 2 higher volatility decreases the value of the optimal sequential harvesting
policy due to the concavity of the value of optimal policy. Figure 3 describes the relationship between
volatility and the value of the optimal depletion policy. Now the relationship is ambiguous due to
the fact that the optimal depletion threshold is attained on the region where the value function is
convex.
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Figure 2: The Impact of Increased Volatility on the Value V (x, 1)
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Figure 3: The Impact of Increased Volatility on the Value J(x, 1)

4 Conclusions

In this paper we have analyzed optimal harvesting policy and its determinants both theoretically and
by using explicit numerical illustrations in a general framework where both price and stock dynamics
are stochastic and resource manager is risk neutral. We have derived several new results. First, we
specified the circumstances under which the immediate depletion of the harvested stock is optimal
and stated a set of weak conditions under which the optimal harvesting policy can be characterized by
a single harvesting threshold. Second, we have shown that both the value of the optimal harvesting
policy and the value of the associated single harvesting opportunity can be expressed as a separable
form in such a way that only the current price and the expected per capita growth rate affect the
threshold while under risk neutrality the volatility of price dynamics will have no effect. Moreover, we
demonstrated how the value of the optimal harvesting policy can be decomposed into the monetary
value of the current stock and of the expected yield accrued from the future harvesting opportunities
resulting from the unharvested stock. Third, the optimal harvesting threshold under stochastic price
and stock dynamics exceeds the threshold of the deterministic case meaning that stochasticity makes
waiting valuable and postpones the rational exercise compared with the deterministic case. Fourth,
we demonstrated that the value of sequential harvesting opportunity dominates the value of the
associated optimal depletion problem and that the optimal harvesting threshold is higher in the case
where harvesting can be exercised only once than in the sequential case. Fifth, and interestingly,
our findings indicate that higher flexibility of admissible policies does not only increase the value
of optimal policy but also increases the rate at which the value increases. Finally, we used explicit
numerical illustrations by specifying a standard geometric Brownian motion for stochastic price
and a stochastic mean reverting process for stock dynamics to elaborate the relationship between
stock volatility and optimal harvesting threshold both in the single and sequential harvesting cases
and the impact of volatility on the value of optimal harvesting policy and optimal depletion policy.
The optimal harvesting thresholds depend positively on the volatility of stock dynamics both in
the sequential case and in the case where harvesting will be exercised only once. Moreover, higher
volatility increases the value of the sequential harvesting policy while the relationship between
volatility and the value of the optimal depletion policy is ambiguous.

Even though the preset study analyzes a relatively general class of harvesting problem, there are
two potentially interesting directions towards which the analysis could be extended. First, it is not
clear how relaxing the assumed geometric nature of the local expected growth of the underlying price
dynamics affects the optimal harvesting decision and its value. Second, given the length of the con-
sidered planning horizon, assuming constant discounting overlooks the potentially significant role of
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interest rate variability and, especially, of interest rate uncertainty. Unfortunately, the introduction
of such generalizations is out of the scope of the present study and, therefore, left for future research.
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A Proof of Lemma 2.1

Proof. In order to establish the validity of the alleged result, we first present the following lemma
stating a set of sufficient conditions needed for the verification of the optimality of a proposed
admissible sequential harvesting strategy.

Lemma A.1. Assume that there is a twice continuously differentiable mapping H : R2
+ 7→ R+

satisfying the conditions

(i) Hx(x, p) ≥ p for all (x, p) ∈ R2
+,

(ii) (GηH)(x, p) ≤ rH(x, p) for all (x, p) ∈ R2
+, where

Gη =
1
2
σ2(x)

∂2

∂x2
+

1
2
β2(p)p2 ∂2

∂p2
+ µ(x)

∂

∂x
+ αp

∂

∂p

denotes the differential operator associated with the two-dimensional diffusion (Xt, pt).

Then, H(x, p) ≥ V (x, p) for all (x, p) ∈ R2
+.

Proof. Assume that a mapping H(x, p) satisfies the conditions of our Lemma. Then, the generalized
Itô theorem implies that

E(x,p)[e
−rTN H(XZ

TN
, pTN

)] = H(x, p) + E(x,p)

∫ TN

0
e−rs((GηH)(XZ

s , ps)− rH(XZ
s , ps))ds

−E(x,p)

∫ TN

0
e−rsHx(XZ

s , ps)dZc
s +

∑

s≤TN

e−rs(H(XZ
s−, ps)−H(XZ

s , ps)),

where TN = inf{t ≥ 0 : XZ
t 6∈ (N−1, N)} ∧ inf{t ≥ 0 : pt 6∈ (N−1, N)} ∧ N ∧ τZ

0 is an almost
surely finite stopping time converging towards τZ

0 as N → ∞ and Zc
t denotes the continuous part

of the admissible harvesting policy Zt. The continuous differentiability of H(x, p), the mean value
theorem, and inequality (i) implies that H(XZ

s−, ps)−H(XZ
s , ps) ≤ −ps∆Zs, where ∆Zs denotes the

jump part of the admissible harvesting policy. Combining this observation with the non-negativity
of the value H(x, p) and inequality (ii) finally implies that for all (x, p) ∈ R2

+ and all admissible
harvesting policies it holds

H(x, p) ≥ E(x,p)

∫ TN

0
e−rspsdZs.

Letting now N ↑ ∞ and applying the Fatou theorem then yields

H(x, p) ≥ E(x,p)

∫ τZ
0

0
e−rspsdZs.

Since this inequality is valid for all admissible harvesting policies, it is valid for the optimal as well
and, therefore we find that H(x, p) ≥ V (x, p).

Given the proof of the verification Lemma A.1 we notice that the twice continuously differ-
entiable mapping H(x, p) = px satisfies the condition Hx(x, p) = p and (GηH)(x, p) − rH(x, p) =
pπ(x) ≤ 0 for all (x, p) ∈ R2

+. Consequently, the conditions of Lemma A.1 are satisfied and
V (x, p) ≤ px. However, since this value can be attained by choosing the admissible harvesting
strategy Z0 = x (implying that τZ

0 = 0) we find that V (x, p) ≥ px which finally demonstrates that
V (x, p) = px. The identity J(x, p) = px and optimality the of the stopping time τ = 0 now follows
from the inequality (GηH)(x, p)− rH(x, p) = pπ(x) ≤ 0 for all (x, p) ∈ R2

+.
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B Proof of Theorem 2.2

Proof. As was established in Alvarez (2004) the uniform integrability of the flow π(x) implies that

1
2
η2σ2(x)

ψ′′η(x)
S′η(x)

= (r − α)
∫ x

0
ψη(y)π(y)m′

η(y)dy − π(x)
ψ′η(x)
S′η(x)

, (B.1)

where

S′η(x) = exp
(
−

∫
2µ(x)dx

η2σ2(x)

)

denotes the density of the scale function Sη(x) and m′
η(x) = 2/(η2σ2(x)S′η(x)) denotes the density

of the speed measure mη of the underlying diffusion Xt (cf. Borodin and Salminen (2002), p. 17).
It in now clear that our assumptions imply the existence and uniqueness of a threshold x0 > x̂ such
that π(x0) = 0. Letting x ↑ x0 in (B.1) now yields

1
2
η2σ2(x0)

ψ′′η(x0)
S′η(x0)

= (r − α)
∫ x0

0
ψη(y)π(y)m′

η(y)dy > 0,

since our assumptions imply that π(x) > 0 for all x < x0. Moreover, as was established in Alvarez
(2001) the right hand side of (B.1) is non-increasing (non-decreasing) on the set where the mapping
π(x) is non-decreasing (non-increasing). Thus, if the conditions of part (ii) our theorem are satisfied
then

lim
x↓0

[
(r − α)

∫ x

0
ψη(y)π(y)m′

η(y)dy − π(x)
ψ′η(x)
S′η(x)

]
= −π(0)

ψ′η(0)
S′η(0)

< 0

proving the existence and uniqueness of x∗η = argmin{ψ′η(x)} ∈ (x̂, x0) in that case. On the other
hand, if the conditions of part (i) are satisfied then (B.1) can be re-expressed as

1
2
η2σ2(x)

ψ′′η(x)
S′η(x)

= (r − α)
∫ x

0
ψη(y)(π(y)− π(x))m′

η(y)dy

which, in turn, implies that ψ′′η(x) < 0 for all x ∈ (0, x̂) and, therefore, proves the existence
and uniqueness of x∗η = argmin{ψ′η(x)} ∈ (x̂, x0) in that case as well. Moreover, since ψη(x)
satisfies the ordinary second order linear differential equation (2.5) we find by letting x → x∗η that
µ(x∗η)ψ′η(x∗η) = (r − α)ψη(x∗η).

Denote now the proposed value function as V̄ (x, p). Given the observations stated above we im-
mediately find that V̄ (x, p) is twice continuously differentiable and satisfies the variational inequality
V̄x(x, p) ≥ p for all (x, p) ∈ R2

+. Moreover, since (GηV̄ )(x, p) = rV̄ (x, p) for all (p, x) ∈ R+ × (0, x∗η)
and (GηV̄ )(x, p) − rV̄ (x, p) = p(π(x) − π(x∗η)) ≤ 0 for all (p, x) ∈ R+ × (x∗η,∞) (since the optimal
threshold is attained on the set where π(x) is decreasing) we find that the proposed value function
satisfies the conditions of our auxiliary lemma A.1 and, therefore, dominates the value of the optimal
policy, that is, V̄ (x, p) ≥ V (x, p). However, since the proposed value can be attained by applying
the admissible singular control policy (a local time push; cf. Harrison (1985))

Zt =

{
(x− x∗η)+ t = 0
L(t, x∗η) t > 0,

where L(t, x∗η) denotes the local time of the process Xt at the state x∗η we find that V (x, p) ≥ V̄ (x, p)
proving that V (x, p) = V̄ (x, p). Finally, since ψ′′η(x) < 0 for all x ∈ (0, x∗η), we find that Vxx(x, p) ≤ 0
for all (x, p) ∈ R2

+.
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C Proof of Corollary 2.4

Proof. Given the assumed uniform integrability of the flow π(x) we know that the expected cu-
mulative present value of the flow π(x) from the present up to a potentially infinite future can be
expressed as

(Rr−απ)(x) = B−1ϕη(x)
∫ x

0
ψη(y)π(y)m′

η(y)dy + B−1ψη(x)
∫ ∞

x
ϕη(y)π(y)m′

η(y)dy, (C.1)

where ϕη(x) denotes the decreasing fundamental solution of the ordinary linear second order differ-
ential equation (2.5) and B = (ψ′η(x)ϕη(x)−ψη(x)ϕ′η(x))/S′η(x) > 0 denotes the constant Wronskian
of the fundamental solutions (cf. Borodin and Salminen (2002), pp. 17–19). Standard differentiation
of (C.1) now yields that

ψ′η(x)
S′η(x)

(Rr−απ)(x)− (Rr−απ)′(x)
S′η(x)

ψη(x) =
∫ x

0
ψη(y)π(y)m′

η(y)dy. (C.2)

Combining this observation with the identity

ψη(x)
S′η(x)

− x
ψ′η(x)
S′η(x)

=
∫ x

0
ψη(y)π(y)m′

η(y)dy (C.3)

now implies that

(Rr−απ)′(x) + 1
ψ′η(x)

=
(Rr−απ)(x) + x

ψη(x)
(C.4)

and, therefore, that
d

dx

[
(Rr−απ)(x) + x

ψη(x)

]
= 0.

Hence, combining these observations now prove that for all x ∈ R+ it holds that

(Rr−απ)(x) + x

ψη(x)
=

(Rr−απ)(x∗η) + x∗η
ψη(x∗η)

=
(Rr−απ)′(x∗η) + 1

ψ′η(x∗η)
(C.5)

from which the alleged result follows.

D Proof of Corollary 2.5

Proof. The first representation of the marginal value follows from the inequality ψ′′η(x) S 0 when

x S x∗η. On the other hand, applying (C.1) now yields

d

dx

[
(Rr−απ)′(x)

ψ′η(x)

]
=

2S′η(x)
η2σ2(x)

[
(r − α)

∫ x

0
ψη(y)π(y)m′

η(y)dy − π(x)
ψ′η(x)
S′η(x)

]
= ψ′′η(x).

Hence,
d

dx

[
(Rr−απ)′(x)

ψ′η(x)

]
S 0, x S x∗η = argmin

{
(Rr−απ)′(x)

ψ′η(x)

}

from which the latter representation follows. The associated optimal stopping problem can then be
derived as in Alvarez (2001).
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E Proof of Corollary 2.6

Proof. As was established in the proof of Theorem 2.2 the value of the optimal harvesting policy
satisfies the conditions (a) V ∈ C2(R2

+), (b) (GηV )(x, p)− rV (x, p) ≤ 0 for all (x, p) ∈ R2
+, and (c)

Vx(x, p) ≥ p for all (x, p) ∈ R2
+. Standard integration of the inequality (c) over the set [x, x − ζ]

yields V (x, p)− V (x− ζ, p) ≥ pζ ≥ pζ − c. Therefore, we find that the value V (x, p) satisfies for all
(x, p) ∈ R2

+ the quasi-variational inequality

V (x, p) ≥ sup
ζ∈[0,x]

[pζ − c + V (x− ζ, p)]

which finally proves that V (x, p) ≥ Ic(x, p).

F Proof of Theorem 2.7

Proof. Denote the value of the optimal harvesting policy defined with respect to the more volatile
dynamics characterized by the parameter η̂ > η as V̂ (x, p). The concavity and twice continuous
differentiability of V (x, p) now implies that for all (x, p) ∈ R2

+ it holds

(Gη̂V )(x, p)− rV (x, p) ≤ ((Gη̂ − Gη)V )(x, p) =
1
2
σ2(x)(η̂2 − η2)Vxx(x, p) ≤ 0.

Since Vx(x, p) ≥ p for all (x, p) ∈ R2
+ as well, we find that V (x, p) satisfies the conditions of

the verification Lemma A.1 and, therefore, satisfies the inequality V (x, p) ≥ V̂ (x, p). In order to
establish that increased volatility increases the optimal harvesting threshold we observe that on
(max(x∗η, x∗η̂),∞) we have V (x, p)− V̂ (x, p) = p(π(x∗η)− π(x∗η̂))/(r − α) ≥ 0 implying that x∗η ≤ x∗η̂
since the optimal threshold is attained on the set where π(x) is decreasing.

G Proof of Theorem 2.8

Proof. Equation (C.3) implies that

d

dx

[
x

ψη(x)

]
=

S′η(x)
ψ2

η(x)

∫ x

0
ψη(y)π(y)m′

η(y)dy. (G.1)

Thus, we observe that x/ψη(x) is increasing as long as x ≤ x0 since π(x) > 0 for all x ∈ (0, x0).
Assume now that x > k > x0. Then, the standard mean value theorem for integrals implies that

∫ x

0
ψη(y)π(y)m′

η(y)dy =
∫ k

0
ψη(y)π(y)m′

η(y)dy +
π(ξ)
r − α

[
ψ′η(x)
S′η(x)

− ψ′η(k)
S′η(k)

]

and, therefore, that

lim
x→∞

∫ x

0
ψη(y)π(y)m′

η(y)dy = −∞

since ψ′η(x)/S′η(x) → ∞ as x → ∞ and π(ξ) < 0. This proves that x/ψη(x) attains at least one
maximum on the set (x0,∞). Uniqueness now follows from the inequality

d

dx

∫ x

0
ψη(y)π(y)m′

η(y)dy = ψη(x)π(x)m′
η(x) T 0, x S x0.
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Denote now as J̄(x, p) the proposed value function. Since

J̄(x, p) = pEx

[
e−(r−α)τx̃η Xx̃η

]
,

where x̃η = inf{t ≥ 0 : Xt ≥ x̃η} denotes the potentially optimal harvesting date we immediately
find that J(x, p) ≥ J̄(x, p). To prove the opposite inequality, we first observe that the proposed value
function is continuously differentiable on R2

+, twice continuously differentiable outside the harvesting
threshold x̃η, and satisfies the conditions J̄xx(x̃η+, p) = 0 ≤ J̄xx(x̃η−, p) = pψ′′η(x̃η)/ψ′η(x̃η) < ∞.
Moreover, since (GηJ̄)(x, p) = rJ̄(x, p) on R+ × (0, x̃η) and (GηJ̄)(x, p) − rJ̄(x, p) = pπ(x) ≤ 0
on R+ × (x̃η,∞) we notice that J̄(x, p) constitutes a r-excessive majorant of the payoff px for the
diffusion (Xt, pt) and, therefore, that J(x, p) ≤ J̄(x, p) which proves that J(x, p) = J̄(x, p). Finally,
the representations of the value function follow from (G.1) and from (C.5).

H Proof of Theorem 2.9

Proof. Since x∗η ∈ (x̂, x0) and x̃η > 0 we immediately find that x∗η < x̃η. The inequality Vx(x, p) ≥
Jx(x, p) for all (x, p) ∈ R2

+ now follows directly from the identity x∗η = argmin{ψ′η(x)} and the
monotonicity of ψ′η(x) on (x∗η,∞). Since limx↓0 V (x, p) = limx↓0 J(x, p) = 0 we find by integrating
the inequality Vx(x, p) ≥ Jx(x, p) that V (x, p) ≥ J(x, p) for all (x, p) ∈ R2

+. Finally, the inequalities
Vp(x, p) ≥ Jp(x, p) and Vpx(x, p) ≥ Jpx(x, p) follow from the inequalities Vx(x, p) ≥ Jx(x, p) and
V (x, p) ≥ J(x, p) and the separability of the values.
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