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1 Introduction

Policies such as fuel taxes, technology programs, or even international agreements on

pollution emissions reductions are likely to entail a demand change in some important

exhaustible-resource markets. When resource sellers are strategic, they have an incentive

to distort these policies to their own advantage, potentially leading to an increased de-

pendence on the resource. To understand the seller side effort to distort the adoption of

demand-changing policies, we consider a simple framework where a monopolistic seller

(or a group of sellers coordinating actions) of an exhaustible resource faces demand from

a buyer (or a group of buyers coordinating actions) who has a substitute but there is a

time-to-build delay for the substitute. We find that in this framework the basic impli-

cations of the Hotelling model (1931) are reversed: over time the resource stock declines

but supplies increase, rather than decrease, up to the point where the buyer decides to

initiate the transition to the substitute. Under such a threat of change in the demand

infrastructure, the supply today does not reflect the true resource scarcity, but it seeks

to postpone the buyer’s decision by compensating for the future scarcity felt during the

transition time to the substitute when the buyer is still dependent on the resource.

Our research builds on Hotelling’s theory of exhaustible-resource consumption (1931),

Nordhaus’ (1973) concept of a backstop technology,1 and the extensive literature on

strategic equilibria in resource economics. Our main addition to the standard frame-

work for analysis is the inclusion of a time-to-build delay for the backstop. Previous

literature closest to our approach can be divided on the assumptions made for the strate-

gic variable on the buyer side.2 First, there is a large literature on optimal tariffs in

depletable-resource markets showing how coordinated action on the buyer side can be

1Nordhaus (1973) was the first to define and analyze the concept of backstop technology in

exhaustible-resource markets. He defined it as follows: ”The concept that is relevant to this prob-

lem is the backstop technology, a set of processes that (1) is capable of meeting the demand requirements

and (2) has a virtually infinite resource base” (Nordhaus, 1973, pp. 547-548).
2There is a large but less closely related literature focusing purely on seller power in the exhaustible-

resource framework. Hotelling himself (1931) already analyzed the monopoly case. Salant (1976) con-

sidered an oligopolistic market structure with one dominant firm, and Lewis and Schmalensee (1980)

analyzed an oligopoly where all firms have some market power. This literature has developed on two

frontiers. First, it has focused on developing less restrictive production strategies: from path strategies

as in Lewis and Schmalensee, Loury (1986) and Polansky (1992), to decision rule strategies as, for ex-

ample, in Salo and Tahvonen (2001). Second, the literature has developed more natural cost concepts

for extraction under which the resource is economically rather than physically depleted. See Salo and

Tahvonen (2001) for a discussion and contribution on this.
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used to decrease the seller’s resource rent (e.g., Newbery, 1983, Maskin and Newbery,

1990; see Karp and Newbery 1993 for a review). Hörner and Kamien (2004) provide

a general view on these models by showing that the problem faced by a monopsonistic

exhaustible-resource buyer is formally equivalent to that faced by a Coasian durable-

good monopoly. We depart from the Coasian framework because the buyer is not a pure

monopsony and has a different strategic variable (the substitute). While import tariffs

and fuel taxes are important, they are more flexible instruments as compared to the

development or adoption of substitute technologies that have a permanent effect on the

resource dependence. The latter thus creates potentially greater or at least very different

strategic threats to the seller. To be effective, optimal tariffs have to be successful in

changing the dynamic demand perceived by the seller. The degree of success obviously

depends on the precise formulation of the game, but generally the seller’s sales path still

follows a Hotelling rule modified to take into account the buyers’ tariff policy. This leads

to supplies declining over time. We believe that the technology threat potentially is a

more important determinant of how sellers perceive their future demand.

Second, there is a large but somewhat dated literature on the same bilateral monopoly

situation where the buyers’ strategic variable is to develop or adopt a substitute technol-

ogy. Early papers such as Dasgupta et al. (1983), Gallini et al. (1983), and Hoel (1983)

assume the buyer exploits a Stackelberg leadership and can commit to a deterministic

R&D program for the development of the substitute. The results provide interesting

insights into how the buyer side can extract the seller’s rent by altering the timing of

sales. Later developments analyzed the role of leadership and commitment (Lewis et al.,

1986) and, finally, probabilistic success in R&D and Markov-perfect strategies (Harris

and Vickers, 1995). None of the above papers predict that the basic Hotelling implica-

tions are reversed, although Harris and Vickers (1995) obtain a result that sales path

may be non-monotonic (but not generically increasing).3

The market structure we describe is such that not only sellers have market power but

also buyers enjoy some power so that no party is in explicit leadership. The nature of the

strategic interaction between buyers and sellers is preserved in the limiting case without

discounting, which allows an essentially static analysis and it shows the way to analyze

3It should be clear that we are focusing on how strategic relationships in the resource market shape

the supplies. There are also other ways to explain the failure of the standard Hotelling model (see

Dasgupta and Heal (1974) for the standard model), or its extensions, to match reality (see Krautkramer

(1999) for a review of the literature). And there are other ways to extend the traditional economic

growth-resource depletion model such that supplies increase over time (cf. Tahvonen and Salo 2001).
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the discounted case. Moreover, in addition to market structure assumptions, we depart

from previous literature in that we abstract from the precise instrument implementing the

structural change in demand: when action is taken, it changes the demand irreversibly

after a time lag. This abstraction simplifies the strategic variable on the buyer side while

keeping what seems essential in the relationship.

The structure of the paper is the following. In Section 2, we discuss some developments

in the oil market that motivate our study. In Section 3, we introduce the basic resource

allocation problem by considering the social optimum, consumers’ optimum, and also

by having a first look at the equilibrium. In Section 4, we introduce and analyze the

game without discounting. In Section 5, we investigate the changes to equilibrium and

robustness of overall findings under discounting. In Section 6, we conclude by discussing

alternative approaches to the problem and potential implications for the oil market.

2 Motivating example: the market for cheap oil

Our contribution is to the basic exhaustible-resource theory but we are motivated by

some recent developments affecting the oil market. First, while there is no single buyer

in the oil market, policies aiming to reduce dependence on imported oil imply a collective

action on the consumer side. Whatever the reason for policies – need to safeguard the

economy against macroeconomic risks or perhaps global warming – they are likely to

affect how oil producers perceive their future demand, influencing supplies today.4 The

results suggest that, under such a threat of structural change in oil demand, the true

resource scarcity cannot be read from the current supply.

Second, while it is clear that the world will never run out of all fossil fuel sources,

it is equally clear that we may run out of conventional, cheap oil. The ownership of

the cheapest oil reserve is extremely concentrated by any measure and concentration

is expected to increase in the near future.5 The concentration of ownership implies

that strategic management of the cheap oil stocks is likely even without a formal cartel

among producers. Cheap oil producers understand their influence on market development

and take an active role in ”demand management”; they often communicate like central

4The Stern Review on the Economics of Climate Change (2006), while being a very comprehensive

cost-benefit analysis, is also a political document illustrating the willingness to take actions changing

the demand for fossil-fuels.
5See the ”2007 Medium-Term Oil Market Report” published by the International Energy Agency for

estimates of the Core OPEC reserves. The Saudi share of the Core OPEC stocks is expected to increase

over time.

4



bankers with the market, emphasizing credibility and security of supply.6 The resource

that, for example, Saudi Arabia is controlling is unique in that it allows extraction of high

quality output with relatively little capital investment. It also allows for rapid and large

production rate changes. Reserves with such properties are at the heart of the economics

of the oil dependence because, roughly put, the remainder of the fossil fuel supply is

capital intensive and costly when used for the production of liquid fuels. In fact, what

is essential for the strategic interaction that we consider is the existence of a low-cost

but finite reserve with concentrated ownership and inelastic short-run demand; the rest

of ‘oil’ production can be seen as part of substitute fuel production, including costly

conventional oil sources, nonconventional oils, biofuels, and alternative energy sources.7

While the relationship between major oil importers and exporters is clearly not an

open bargaining situation, as explicit contracts are not conceivable in the context, it

has a flavor of bargaining taking place through markets where offers and responses are

implicit. Sellers’ focus on secure supply suggests a compensation to the importing party

for continuing potentially costly dependence. On the buyer side, trust in the relationship

is expressed by voluntary inaction, that is, postponement of actions changing the demand

structure. Our timing assumptions for strategies are perhaps better suited for capturing

what is material in this kind of relationship than those used in earlier literature.

3 The resource allocation problem

3.1 Socially optimal resource dependence

Before going to strategic interactions, we start the analysis by looking at socially optimal

resource use. This way we will introduce the basic elements of the model and pro-

vide a benchmark so that distortions introduced by strategic interactions become clear.

Throughout we assume that time is continuous.

Consider an economy starting at time t = 0 with a finite resource endowment s0

6The following citation describes this: “We’ve got almost 30 percent of the world’s oil. For us, the

objective is to assure that oil remains an economically competitive source of energy. Oil prices that are

too high reduce demand growth for oil and encourage the development of alternative energy sources”

(Adel al-Jubeir, foreign policy adviser of crown prince Abdullah of Saudi Arabia, Herald Tribune, Jan

24, 2007).
7There are different definitions of conventional and nonconventional oils, and these also change over

time; see the Hirsch Report (prepared for the U.S. Department of Energy, 2005). The report makes clear

that the important scarcity is in the reserves of high-quality conventional oil.
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that can be consumed at rate qt yielding a strictly concave utility ũ(qt). We assume no

extraction costs. The resource has a substitute that provides the same service and ends

the need to use the resource. The economy can choose to adopt the substitute by paying

one-time cost I > 0 at any t, and then wait for interval of time k, so that the alternative

supply infrastructure arrives at time t + k and provides a surplus flow ū to consumers

thereafter. Thus, after the time-to-build delay, the substitute fully replaces the resource:

by assumption, the resource is not needed after the change. We can relax this assumption,

without changing the main result, by letting the resource compete with the substitute,

or by making the change gradual and uncertain. We discuss these extensions after the

main model, and ask now the following simple question: how much of the resource should

be used before actions are taken, and how much should be left for the transition time

interval towards the substitute?

To describe the social optimum, it is useful to treat the interval of time over which

there is some resource consumption as an excursion from the long-run situation where the

substitute is present and consumers enjoy surplus ū per time unit. The consumer price

is pt = ψ(qt) = ũ′(qt), and demand is subsequently defined by qt = D(pt) = ψ−1(pt).

For interpretation, we can assume cost flow c for maintaining the alternative supply

infrastructure and define the long-run surplus flow as

ū = ũ(D(0)) − c,

but this interpretation is not necessary for the model, i.e., ū need not be linked to the orig-

inal utility formulation and then we can abstract from cost flow c. For future reference,

we separate the consumers and producers overall surplus from resource consumption.

Sellers’ profit flow is π(qt) = ψ(qt)qt and assumed to be strictly concave. Consumers’

surplus is u(qt) = ũ(qt) − π(qt), and need not be concave.8 We assume that surplus

u(qt) is everywhere nonlinear,9 differentiable, and bounded at some level above ū. The

resource can thus provide surplus above long-run level ū. Throughout the paper we as-

sume that stock s0 is large enough, so that actions to end resource consumption are not

taken immediately but at some T > 0.

We assume no discounting for now.10 We denote the seller’s stock-dependent payoff

8Consumer surplus will be a central determinant of the buyer’s investment decision, but our results

do not require a particular form for u(q). For example, under linear demand, u(q) is convex on [0, D(0)]

and constant thereafter. For constant elasticity of demand, u(q) is concave for all values of the demand

elasticity.
9That is, there is no non-empty interval (a, b), with a < b, such that u(q) is linear over (a, b).

10In Section 5, we extend the model to positive discounting. It is not obvious that the undiscounted
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by V (st) and consumers’ payoff by W (st) if there has been no investment before t. Ex-

pression V (st) measures cumulative (undiscounted) future profits while W (st) measures

cumulative surplus from the excursion above the long-run surplus from time t onwards:

V (st) =

∫ T+k

t

π(qτ )dτ (1)

W (st) =

∫ T+k

t

[u(qτ ) − u]dτ (2)

The social optimum depends on the time interval of resource use, T + k, and the

supply path qt, that maximizes total resource surplus

W(st) = V (st) +W (st) =

∫ T+k

t

[ũ(qτ ) − u]dτ (3)

Notice that we leave the investment costs out of the welfare function since, without

discounting, the timing of investment has no bearing on the net present value of its costs.11

The socially optimal supply solves a simple problem: Maximize (3) with respect to qτ and

T and subject to ṡτ = −qτ . Let variable λτ measure the marginal value of the resource.

The optimality conditions are: (i) marginal utility should equal the marginal value of the

resource; ũ′(qτ ) = λτ ; (ii) marginal value of the resource at the end point T is equal to

the extra utility it provides per extra unit of the resource, λT+k = (ũ(qT+k) − u)/qT+k,

and (iii) without discounting, the marginal value of the resource should be constant,

λτ = λ. From these three conditions, we can see that the resource surplus is linear,

W(st) = λst, and the maximization is equivalent to maximizing the average excursion

above the long-run payoff u:

λ = max
q

[ũ(q) − u]/q.

It is instructive to see Figure 1, where we can find the social optimal supply level q = q∗∗

on the curve of utility ũ(q) such that the line through (0, u) and (q, ũ(q)) has the steepest

slope.12 Recall that utility ũ(q) is concave, and thus q∗∗ must also satisfy

ũ(q∗∗) = u+ q∗∗ũ′(q∗∗).

case is the true discounted equilibrium limit (see Dutta 1991), but in our case it is, as we will verify.
11As we will see, in the case without discounting, the level of investment required does not affect

supply levels in the equilibrium. In the discounting case, it does, see (22), as costs of investments enter

negatively in the costs of waiting e−rkū−rI . For investments costs too large, I > e−rkū/r, no investment

takes place.
12We use one asterisk for equilibrium constants, and two asterisks for social optimum constants.
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q

ũ(q)

ū

ū+ qũ′(q∗∗)

q∗∗

Figure 1: Determination of socially optimal supply

Since consumer surplus is u(q) = ũ(q) − qũ′(q), we must have

u(q∗∗) = u. (4)

Proposition 1 In the social optimum, consumers receive reservation utility level u in all

stages, while producers receive all the resource surplus. Consumers do not benefit from

an increase in the resource stock, W ′(s0) = 0.

Proof. The first part of the proposition states that along the social optimal path,

the buyer side is indifferent between resource dependence and the substitute technology.

This part follows immediately from (4). The last part of the proposition then follows

from the definition of the buyer’s payoff (2).

3.2 Buyers’ first-best

Consider then what would be the first-best for the buyer side. This corresponds to a

situation where producers are perfectly competitive and the time of investment is chosen

to maximize W (st) only. Competitive sellers rationally foresee when the buyer side is

going to invest and based on this, they choose a constant supply path to equalize prices

across times before and after the investment. We can copy the template from the social

optimum to show that along consumers’ first-best path, welfare W (.) is linear, that is,

W (s) = λs for some constant λ. In figure 1, we can maximize the buyer’s value of the

resource if we find the supply level q∗ on the curve of utility surplus u(q) where the

line through (0, u) and (q, u(q)) has the steepest slope. The solution either takes the
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maximum demand level, with optimal supply q∗ = D(0),13 or otherwise, optimal supply

q∗ must satisfy

u(q∗) = u+ q∗u′(q∗). (5)

We have a simple graphical determination of the consumers’ optimum,14 which is unique

as u(.) is nonlinear everywhere. In turn q∗ determines the date of investment, by T +k =

s0/q
∗. Relative to the social optimum, consumers can increase their payoff by forcing

sellers to sell the resource faster:

Proposition 2 The resource supply in the buyers’ optimum exceeds resource supply in

social optimum: q∗ > q∗∗. The time interval of resource dependence is shortened.

Proof. From (5) and u′ > 0, it follows that u(q∗) > u, and thus q∗ > q∗∗.

The opposing interests are now clear: the seller side would like to delay investment as

much as possible (to spread supplies thinly over time as profits are concave), the social

optimum requires that consumers at least receive reservation utility, and the buyer side

prefers even faster depletion.15 It is obvious that in the equilibrium of the game supplies

and investment time must lie between the extremes identified here.

For the equilibrium, an important feature is whether q∗ is smaller than the maximal

supply that the seller is willing to provide, qm = arg max{π(q)}. Recall that a larger q∗

follows from a greater long-run surplus ū: the buyer wants to consume the resource faster

the better is the outside option. If q∗ is larger than qm, we call the substitute strong.

Definition 1 The buyer has a weak substitute if q∗ < qm. Otherwise, the substitute is

strong.

Throughout this paper, we assume that the substitute is weak, unless explicitly oth-

erwise stated.16 Thus, we assume that the cost of the substitute is high enough such that

13This is, for example, the case with a convex surplus function u(.).
14The graphical presentation of q∗ is very similar to the presentation of q∗∗ in Figure 1. The only

difference is that u(.) should substitute for ũ(.), and that u(.) need not be concave.
15These results are consistent with the common view that the seller’s market power makes the resource-

depletion path more conservative (see Hotelling 1931). Buyers’ market power speeds up consumption

both in the optimal tariff literature (see Karp-Newbery 1993) and strategic R&D and technology liter-

ature (see the papers cited in the introduction).
16For the analysis of the strong substitute cases that we do not consider in this paper, we refer to

Gerlagh and Liski (2007).

9



q∗ < qm. The assumption ensures that the buyer’s first-best is given by (5).17 For future

reference, we define the buyer’s first-best marginal value of the resource as

λ∗ = [u(q∗) − u]/q∗.

In the buyers’ optimum, the consumer share of total resource surplus V (s) + W (s0) is

λ∗s; the seller receives the remainder.

3.3 First look at equilibrium: investment indifference

As we will show formally in Section 4, the key to the equilibrium is the seller’s strategy

to keep the buyer side indifferent between the following two actions: (i) invest today and

consume the remaining stock during the transition time interval k, and (ii) postpone the

decision by one marginal unit of time, maintaining the possibility for investing tomor-

row. The seller side postpones investment as long as possible by sustaining the buyer’s

indifference. When the time interval is continuous, the indifference can be characterized,

at each time t, by

u(qt) = ū+ qtu
′(st/k). (6)

Under the postulated indifference, surplus u(qt) should cover the cost from postponing

the long-run surplus flow ū by marginal unit of time, and the cost from depleting the

stock at rate qt.
18 In view of Fig. 2, which depicts a concave surplus frontier and a

line summing up the two cost terms for a given st, we see that the supply making the

indifference to hold is uniquely defined by the intersection of the surplus curve (left-hand

side of (6) as a function of qt) and the cost curve (right-hand side for given st). As the

resource is depleted, st/k declines, which for concave u(.) causes the depletion cost to

increase. That is, the slope of the cost curve (RHS) increases and, therefore, quantity qt

needed for the indifference must increase as well:19

dqt
dst

=
qtu

′′(st/k)

k(u′(qt) − u′(st/k))
< 0 for qt < st/k,

17Since D(0) > qm, the assumption qm > q∗ implies that q∗ must be given by (5) and not by the

corner D(0).
18We immediately see that this condition closely resembles the buyer’s optimum (5). There is one

important distinction. Whereas the right-hand-side of the buyer’s optimum indifference condition (5)

takes the constant marginal value of the resource at the buyer’s optimal path and so defines a constant

q∗, the strategic buyer’s indifference condition (10) is based on the marginal value of the current resource

and so it defines a supply scheme qt that is dependent on the current resource level st.
19The main model section will describe the general case of a not necessarily concave surplus.
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q

u(q)

ū

ū+ qu′(st/k)

qt st/k

Figure 2: Determination of equilibrium qt

as the numerator is negative while the denominator is positive. Thus, to postpone the

investment, supplies must increase when the remaining resource stock declines, until the

point where the buyers’ optimum given by (5) and the indifference (6) coincide. That

is, buyers will always invest when by doing so they can implement their first best. The

resource level at which investment must take place s∗, is thus defined by buyers’ first-best

supply q∗,

s∗ = kq∗.

It follows that at the time of investment, supplies under continuation and after investment

coincide, at level q∗. The overall path of supplies is thus increasing up to the point of

investment, after which it is constant. Later on, we will be more precise about the supply

path.

4 Strategic resource dependence

There are three types of agents in the model. First, producers of the resource form a

coherent cartel (from now on, the seller). Second, large number of competitive consumers

derive utility from resource consumption or, if present, from consuming the substitute

service provided by the substitute. Third, there is the consumers’ agent who cares only

about the consumer surplus. The buyers’ agent can affect the surplus only by making

the decision to end the relationship with the seller. The decision is about changing the

demand infrastructure; we abstract from the precise policy instrument implementing the

change. Since the only strategic actions are taken by the seller and the buyer’s agent,

11



from now on we use the words ‘buyers’ agent’ and ‘buyer’ interchangeably. There is one

single market: the spot market for the resource flow.

4.1 Timing and strategies

The economy has three stages, starting in initial stage before investment, t < T , labeled

with superscript ‘0’. The next stage follows investment, T ≤ t < T + k, also called the

post-investment stage, and labeled with superscript ‘1’. The final stage starts at the

arrival of the new substitute technology, t ≥ T + k. During the pre-investment stage,

buyer and seller interact strategically such that the seller chooses a supply level q0
t , and

the buyer decides whether or not to invest, dt ∈ {0, 1}. Since the investment decision is

irreversible, the game moves to the investment stage permanently once the buyer invests.

During the post-investment stage, there are no strategic interactions. The seller can only

sell the remaining stock in interval of time k (or the monopoly quantity qm if the stock

is too large to be sold in this time span), and the buyer side can only accept what is

offered to the market. We denote the quantity sold at time t in the second stage by q1
t .

In the final stage, all resources remaining at time T + k are left unused.

Time is continuous but it proves useful to define strategies over discrete time periods,

and then let the time period converge to zero.20 All strategic interaction thus takes place

before investment; technically, we solve a stopping game. At any time t where decisions

are taken, if the game is in the pre-investment stage, we denote the seller’s supply by q0
t

and assume that there are three sub-stages with the following timing:

1. Seller chooses a supply q0
t ;

2. Buyer chooses dt ∈ {0, 1};

3. If dt = 0, market clears at q0
t . If dt = 1, the economy moves to post-investment

stage.

The seller’s initial resource stock s0 is known by the buyer side with certainty, and

we can condition strategies on the remaining stock st. We thus look for Markov-perfect

strategies of the form q0
t = η(st), and dt = µ(st, q

0
t ) ∈ {0, 1}. Note that because of the

timing assumption (the three substages above), the buyer’s Markov strategy depends not

only on the state but also on the seller’s offer.21

20We follow this approach to make the extensive form of the game clear, and to be able to use

differential methods to characterize the equilibrium.
21In this respect, a similar formulation is used in Felli and Harri (1996) and Bergemann and Välimäki
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4.2 The buyer’s problem

When buyers have taken the action to move to the substitute, the game is over: buyers

have no more decisions to make and the seller can only sell the remaining stock during

the transition time. When not yet used, the buyer’s strategic investment option will

affect the supply levels. To describe the buyer’s payoff, we need to make it contingent

on whether the strategic variable has been used or not. We define W I(st) as the value

of the excursion above the long-run payoff, measured from current from time t onwards,

immediately after investment when resource dependence still continues for k units of

time. W I(st) is unambiguously determined by the seller’s post-investment supply policy

which is just q1
t = min{qm, st/k} for the remaining sales window.22 If the buyer’s decision

is made at some time T with sT > 0, then

W I(sT ) =

{
k(u(sT/k) − ū) if sT < kqm

k(u(qm) − ū) otherwise,
(7)

It follows that for sT < kqm we have W I′(sT ) = u′(sT/k), which measures the scarcity

cost to the buyer from continued resource dependence.

The seller has a strategy q0
t = η(st), and based on the seller’s strategy we find the

strategy for the buyer to invest. The buyer’s best response to η(st) is best understood

when we consider supply constant over a small interval [t, t + ε], and let ε converge to

zero. Using the above expression for W I(st) and assuming the seller’s strategy q0
t = η(st),

we can write the expression for the payoff before the investment, W (st), when the buyer

optimizes over a short interval with length ε:

W (st) = max
dt∈{0,1}

{[εu(η(st)) − εū+W (st − εη(st))](1 − dt) +W I(st)dt}. (8)

Term εū is the direct cost from postponing the investment since the buyer side loses

long-run surplus ū for ε units of time by not investing today. As ε approaches zero, (8)

can be approximated as follows:

W (st) = max
dt∈{0,1}

{[εu0
t − εū− εq0

tW
′(st) +W (st)](1 − d) +W I(st)d}, (9)

where we use shorthands u0
t = u(η(st)) and q0

t = η(st). Thus, if choosing d = 0 is optimal,

(1996).
22Recall that profit π(q) is concave so it is optimal to allocate the remaining stock evenly, or leave

some stock left if this would imply exceeding the monopoly quantity qm. In the presence of discounting,

the sales path is not flat, but declining as in Hotelling (1931). However, it still holds that all strategic

interactions end at the investment date. See the section on discounting.
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then W (st) ≥ W I(st) and

u0
t = ū+ q0

tW
′(st). (10)

This is the key indifference throughout this paper. It says that the consumer surplus un-

der continuation of the resource dependence, u0
t , covers the direct cost from continuing,

ū, and the marginal reduction in payoff from the fact that the stock available for con-

sumption during the remaining overall time interval of resource dependence is depleted,

q0
tW

′(st).

4.3 The seller’s problem

Let V I(sT ) denote the seller’s payoff if the buyer makes the decision to end the relation-

ship at stock level sT . This value is simply given by

V I(sT ) =

{
kπ(st/k) if sT < kqm

kπ(qm) otherwise.
(11)

To consider the seller’s problem before the decision is made, let V (st) denote the value

of the remaining stock to the seller conditional on no investment before t. For short time

interval ε, and given the buyer’s strategy dt = µ(st, q
0
t ), supply in the next ε units of

time is q0
t if µ(st, q

0
t ) = 0. The economy immediately moves to the investment stage if

µ(st, q
0
t ) = 1. The seller’s best response satisfies

V (st) = max
{q0

t
}
{[επ(q0

t ) + V (st − εq0
t )](1 − µ(st, q

0
t )) + V I(st)µ(st, q

0
t )}. (12)

When ε approaches zero, this value can be approximated by (letting µ(·) = µ(st, q
0
t )):

V (st) = max
{q0

t
}
{[επ(q0

t ) − εq0
t V

′(st) + V (st)](1 − µ(·)) + V I(st)µ(·)} (13)

Given µ(st, q
0
t ), the seller can choose if there will be investment or not. If choice µ = 0

is implemented, then by (13), we must have

−q0
t V

′(st) + π(q0
t ) = 0. (14)

If choice µ = 1 is implemented, then

V (st) = V I(st). (15)

From these conditions we can immediately see that the seller always prefers to continue

the relationship irrespective of the stock level. Recall that s∗ denotes the stock level at

which the buyer’s first-best is to invest.
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Lemma 1 If q0
t ≤ st/k for all st > s∗, then the seller prefers continuation to stopping.

In particular, V (s∗) = V I(s∗), V ′(st) > V I′(st) for all st > s∗, and thus V (st) > V I(st).

Proof. Equality at s∗ follows from the buyer’s choice to invest at s∗: V (s∗) = V I(s∗).

Assuming q0
t ≤ st/k, we have

V ′(st) = ψ(q0
t ) ≥ ψ(

st

k
) > ψ(

st

k
) +

st

k
ψ′(

st

k
) ≥ V I′(st).

The first equality follows from (14), the second (weak) inequality is by assumption (q0
t ≤

st/k), the third (strict) inequality follows from a negative price slope, and the last (weak)

inequality follows from (11). By integration, V (st) > V I(st) follows.

Thus, the ‘smooth pasting’ condition does not hold for the seller for an intuitively

obvious reason: the buyer’s decision to invest implies a binding time-to-sell constraint for

the seller.23 The seller will never end the dependence before the buyer wants to end it,

as it is always profitable to extend the sales time interval beyond T +k when discounting

is absent.24 For this reason, when the stock level is public knowledge and q0
t ≤ st/k , it

will be the buyer’s indifference that determines the time to end the resource dependency.

4.4 Equilibrium

Establishing and characterizing equilibrium supply is a simple undertaking based on the

analysis of buyer’s indifference between continuation and stopping, given that the seller

side never prefers stopping. We first prove that (7) defines the buyer’s welfare any time

before investment:

Lemma 2 In equilibrium, the buyer is indifferent between continuing the resource de-

pendence and investing at any given t prior to the investment date:

W (st) = W I(st) for all st ≥ s∗ (16)

23The lemma shows that the model can easily be extended to cover the case when the seller has

the opportunity to sell its stock after the arrival of the substitute. The important feature is that the

marginal value of the resource after the arrival of the substitute must be less than ψ(q∗). Assume that

the substitute has marginal production costs mc. The marginal value of the resource after the arrival of

the substitute is thus mc. As long as marginal substitute costs are sufficiently small, mc < ψ(q∗), the

lemma will hold. Constant extraction costs do not change the trade-off between supply before and after

the arrival of the substitute.
24We will derive this same condition also with discounting but there we need restrictions on the utility

formulation.
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Proof. The proof is by contradiction. Assume W (st) > W I(st) at some st > s∗.

The inequality implies that the buyer will always choose dt = 0 in (8), irrespective of the

seller’s supply. In turn, the seller is not constrained to reduce supplies and he can extend

the time interval of resource dependence to obtain higher prices from all dates. Supply

will fall arbitrarily close to zero, the utility excursion compared to ū becomes negative for

a time interval of unbounded length, and W (st) becomes negative (2), which contradicts

W (st) > W I(st).

It is thus the buyer’s indifference that determines equilibrium supply policy, q0
t =

η(st). The buyer’s indifference condition (16) together with (10) requires

u(q0
t ) = ū+ q0

t u
′(st/k) if st < kqm (17)

u(q0
t ) = ū otherwise. (18)

This is a slightly adjusted version of (6) because W ′
t (st) = u′(st/k) when st < kqm,

but W ′
t (st) = 0 otherwise as the stock level does not affect supply if st > kqm. We

have already illustrated this indifference for a concave surplus u in Fig. 2. Recall that

the investment point satisfies q0
t = s∗/k = q∗, which is the buyer’s first-best supply as it

maximizes the buyer’s payoff from this stock level onwards. The seller cannot compensate

the buyer for continuation after the stock has fallen just below s∗ because the buyer can

implement his first-best by ending the relationship there. Alternatively put, the scarcity

cost exceeds the maximal marginal value of the resource,

W ′(st) > λ∗ = [u(q∗) − u]/q∗,

when st < s∗ and u is (locally) concave.

We describe now the general case with u not necessarily concave. Recall that the

buyer’s first-best supply q∗ satisfies

u(q∗) = ū+ q∗u′(q∗)

and that the buyer never accepts stock levels below kq∗, as buyers can always implement

their first-best from time t onwards if they end the relationship at st = kq∗. In the

following it is convenient to redefine s∗ not to be the investment point in the buyer’s first

best, but to be the equilibrium investment point. It is clear that we must have s∗ ≥ kq∗.

However, since the consumer surplus is not generally concave, the buyer may also end

the relationship at some higher stock level st > kq∗, because the scarcity cost u′(s/k)

may locally increase above λ∗ = u′(q∗) as st/k declines from s0/k towards q∗. To deal

16



with this, we define s∗ to be the first stock level below s0 such that u′(s∗/k) = λ∗. Stock

s∗ is unique for given s0, and we have by construction

u′(st/k) < u′(q∗)

for all s∗ < st ≤ kqm. By continuity of u(.), q0
t = η(st) satisfying (17) to keep the buyer

indifferent between stopping and continuing exists and varies with the remaining stock

for s∗ < st < kqm.

Proposition 3 There exists a unique Markov-perfect equilibrium with s∗ as defined above,

q0
t defined by (17)-(18), and q1

t = s∗/k.

Proof. It suffices to prove that s∗ is determined properly. Clearly, we cannot take

s∗ to be smaller as such would imply an infeasible resource supply from (17). We will

now prove that s∗ cannot be larger either. For this, it is sufficient to prove that s∗

maximizes the value of the resource to the seller. But this follows from Lemma 1: the

seller maximizes profits by continuing as long as possible.

Under nonconcave surplus, the increase in supply over time may not be monotonic as

the buyer’s scarcity cost u′(st/k) may not be monotonic (u′′ may change sign). However,

when the equilibrium path approaches the investment point, supplies must increase, so

that our main conclusion holds irrespective of the utility functional form.

Proposition 4 The equilibrium supply path q0
t is

1. constant at level u−1(ū) when st > kqm;

2. varying over time in u−1(ū) ≤ q0
t ≤ q∗ when s∗ < st < kqm, but ultimately increas-

ing to q∗ as st approaches s∗;

3. strictly increasing for all s∗ < st < kqm if consumer surplus u(.) is concave

4.5 Discussion

The assumption that it takes time to change the demand is necessary for our result

that supplies increase over time. When the time-to-build delay k is extremely short,

the buyer knows that the alternative surplus flow ū will arrive almost immediately after

investment. Then, the buyer’s outside option is just the long-run surplus, and the seller

needs to supply only u−1(ū) to keep him indifferent. The seller will receive the whole

surplus and, therefore, he will implement the first best.
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A larger k captures the idea of having capacity constraints in making a fast transition

to the substitute. The buyer will feel the scarcity cost from a decreasing stock for a longer

period and, therefore, will require a larger compensation to continue without investment.

A larger k thus means that the buyer will realize earlier that there is scarcity during the

transition period, and the upward pressure on supplies will start ealier, i.e., at higher

current stock levels. In this sense, the buyer’s outside option is more sensitive to the

stock level st, and he will be able capture larger part of the overall surplus.

The above simple formalization of the time-to-build delay captures quite well a gen-

eral idea. Let us now briefly discuss alternative but qualitatively equivalent ways of

formalizing the transition to the substitute. First, the buyer’s decision could trigger a

gradual adjustment of the demand rather than the above one-time event taking place af-

ter the time-to-build period. One way to formalize a gradual adjustment is to assume an

exogenous rate of decline for the fraction of the demand still depending on the resource.

This would change essentially nothing in our main model. Another way to proceed is

to assume that at each period after making the decision d = 1, the buyer chooses an

investment rate, i.e., how many units of demand to switch. If investment cost is linear,

the buyer can switch all units at once, which would lead an equilibrium equivalent to the

one obtained when k is almost zero in our main model. When adjustment (investment)

costs are strictly convex, possibly with a per period capacity constraint on the rate of

change, then the buyer cannot change his dependence on the resource quickly, and the

equilibrium dynamics come close to those achieved under k > 0 in our model. In this

sense, k captures adjustment costs in the demand change.

Second, uncertainty regarding the transition to the substitute can be captured in

many ways. A simple extension is to treat k as a random variable, which would not

affect the nature of our results in any material way. Alternatively, the buyer’s decision

d = 1 could trigger a random process with a downward trend for the fraction of demand

still depending on the resource. The seller would face stochastic demand over stochastic

time horizon but the ex ante values from entering this phase could still be evaluated in

a straightforward way for both players, and the strategic interaction before investment

would not essentially differ from our what we have described.

Let us then finally discuss our assumption that the resource cannot compete with

the substitute, once in place. Recall that we abstract from the substitute’s marginal

production costs and resource extraction costs. We could as well have assumed that

marginal production costs for the substitute fall short of resource extraction costs so

that the resource has no use when the substitute is in place. Even if the resource can
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compete with the substitute, the three main features that support our analysis can be

maintained.25 First, if supplied in large quantities, the buyer prefers the resource to

the substitute. This feature gives the seller some bargaining power as it ensures that

the buyer has an interest in exhausting the resource. Second, profits for the resource

owner decrease when the substitute is available compared to the situation without the

substitute. This feature ensures that the seller will try to delay the investment in the

substitute and it transfers some bargaining power to the buyer. Third, early investment

in the substitute is costly. This feature ensures that the substitute does not become

available before it is used capping the buyer’s strategic power.

5 Discounting

Discounting is an important element in resource use when the relevant time horizon is

decades at least. In the traditional Hotelling model, discounting is what distinguishes

markets at different dates, which, in the presence of market power, leads to intertemporal

price discrimination. Discounting is thus one reason to discriminate buyers at different

dates. Another reason is the buyer’s changing opportunity cost of continuing the re-

source dependence due to stock depletion, which we have identified in the undiscounted

analysis. The purpose of this section is two-fold. First, we show that the discounted

equilibrium converges to the undiscounted limit we have described. Second, we explain

how the above two distinct reasons for price discrimination evolve as the stock deple-

tion progresses. We present a situation where supplies initially decline, when the stock

is large, as in a traditional Hotelling exhaustible resource market. However, ultimately

supplies must increase, when stock declines and the buyer’s outside option starts to drive

the equilibrium dynamics as in the undiscounted case.

Let now the continuous-time discount rate be positive, r > 0. Apart from discounting,

the model is the same as before. In the post-investment phase, discounting does not

change much: for the seller, there is a unique profit-maximizing supply path, equalizing

present-value marginal revenues over the remaining sales time interval, and resulting

in an associated value function V I(sT ) at the time of investment when the remaining

resource stock is sT .

In the pre-investment time interval, at each stock level, the seller’s optimal sale q0
t is

25In the footnote after Lemma 1, we show that the equilibrium does not change qualitatively if the

substitute and the resource can compete.
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a best-response to the buyer’s stopping rule µ(st, q
0
t ) satisfying

V (st) = max
{q0

t
}
{[επ(q0

t ) + e−εrV (st − εq0
t )](1 − µ(st, q

0
t )) + V I(st)µ(st, q

0
t )}, (19)

where, as in the undiscounted equation (12), the strategies are defined over some discrete

period of time ε. In the limit of short time period ε, the value function V (st) satisfies

−q0
t V

′(st) + π(q0
t ) − rV (st) = 0. (20)

The unique seller’s supply path after investment also defines the buyer’s welfare

W I(sT ), where we note that since W I(sT ) measures only value of the excursion above the

long-run situation where flow payoff ū is achieved, the overall welfare at the investment

time is equal to W I(sT ) + ū/r −I. The buyer’s payoff before investment is now given by

W (st) + ū/r − I = max
dt∈{0,1}

{[εu(η(st)) + e−εrW (st − εη(st)) + e−εrū/r − e−εrI](1 − dt)

+W I(st)dt}. (21)

Letting ε converge to zero, we find the positive discounting equivalent of (10):

u0
t = ū− rI + rW I(st) + q0

tW
I′(st). (22)

When the buyer is indifferent between continuation and stopping, (22) holds as an

equality with obvious interpretation: waiting cost of continuation is now ū− rI and, in

addition to the depletion effect q0
tW

I′(st), buyers must receive return on the asset they are

holding (investment option), rW I(st). Assuming that the buyer’s indifference condition is

uniformly continuous in (st, q
0
t ), it is also continuously differentiable in r, and so it is clear

that for r → 0, the equilibrium uniformly converges to the zero-discounting equilibrium.

Thus, the zero-discounting equilibrium describes well the equilibrium features of a low-

discount rate equilibrium. The investment point sT = s∗ occurs when the seller cannot

compensate the buyer for any lower stock level, that is, when

u′(qT ) = W I′(sT ).

For zero discounting, we have seen that this condition is equivalent to u′(q∗) =

u′(s∗/k), q0
t = q∗, which ensures that supply (immediately) after investment s∗/k, which

we labeled as q1
T , is equal to supply immediately before investment, q0

T = q∗ = q1
T . With

positive discounting, there may be a jump up (or down) in supply at the moment of

investment if u′(q1
T ) 6= W I′(s∗). To ensure continuity, we need restrictions on demand.
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We can solve the equilibrium explicitly by assuming constant elasticity of demand

ε = − 1
1−σ

, generated by utility function, ũ(q) = qσ, with 0 < σ < 1. Thus, ψ(q) = σqσ−1,

π(q) = σqσ, and u(q) = (1 − σ)qσ. Under positive discounting, the supply qt after

investment satisfies π′(qt) = er(t−T )λ, for some λ > 0 (marginal revenues are equalized in

present value). Using this condition, some manipulation gives

V I(s) = σAsσ

W I(s) = (1 − σ)Asσ −
1 − e−rk

r
ū,

where A =
(

ω
1−e−ωk

)σ (
1−e−ωσk

ωσ

)
and ω = r

1−σ
. For the investment to yield a positive

return, we assume e−rk

r
ū− I > 0. The buyer’s indifference condition (22) becomes

qσ =
e−rkū− rI

1 − σ
+ rAsσ + qσAsσ−1. (23)

where, for convenience of notation, we substituted q for q0
t .

Notice that when r → 0, A→ k1−σ and we get

W I(s) = k[(1 − σ)(s/k)σ − ū]

V I(s) = kσ(s/k)σ

(1 − σ)qσ = ū+ qσ(1 − σ)(s/k)σ−1,

consistent with equations (7), (11), and (17).

In the appendix, we show that supply is continuous at investment point: q1
T = q∗.

This requires u′(q1
T ) = W I′(s). This finding is used to prove that the seller prefers

continuation to stopping at the investment point, which ensures that (23) holds up to

the point where investment takes place. We can then use continuity of supply and (23)

to establish the values for the resource stock and supply level at the investment point.

Given σ, assume k and r satisfy

σ(1 − e−ωk)σ > 1 − e−ωσk (24)

we then have

s∗ = [
e−rkū− rI

(1 − σ)2A
−σ

1−σ − (1 − σ)rA
]−1/σ

q∗ = A
1

σ−1 s∗

These findings lead to the following:
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qt
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Figure 3: Equilibrium supply path under discounting

Proposition 5 For constant elasticity of demand and (24) satisfied, pre-investment equi-

librium supplies first decline and then increase over time when s0 is sufficiently large.

Proof. See Appendix.

We depict the equilibrium time path for supply in Fig. 3, as well as the buyer’s

optimal path. The latter involves choosing the highest supply path such that (i) prices

are equal in present value, and (ii) the stock remaining at the investment time, T ∗, is

consumed during the technology transition time interval. The equilibrium s∗ is, like in

the undiscounted case, exactly equal to the buyer’s optimal s∗ because, due to constant

elasticity of demand, in the post-investment phase the seller supplies a competitive path

in both cases as the constant demand elasticity eliminates the possibility of price discrim-

ination at different dates after the investment (see Gilbert 1978). The two paths in Fig. 3

are therefore identical during the technology transition time interval, starting at T ∗ and

T , respectively. However, before investment, the strategic seller can discriminate buyers

at different dates according to (22) (the explicit constant elasticity of demand solution is

given in (23)) and delay the arrival of the substitute as in the undiscounted case. When

the stock is still large, supplies decrease over time as in the standard Hotelling model.

When the stock becomes smaller and approaches s∗, supplies increase over time as in the

undiscounted case because the buyer’s indifference becomes binding.
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6 Concluding remarks

In this paper, we considered strategic interactions between the seller of a depletable

resource and consumers who have interests in ending their dependence on the resource.

We modeled the situation using a framework that departs from explicit bargaining but

allows offers and responses such that neither party is in explicit leadership. The approach

seems relevant since there is significant coordination of actions on both sides of the oil

market, for example, but at the same time explicit cooperation of the two sides is not

feasible by the difficulty of enforcing international agreements. The key question in the

relationship is when to start the process ending the resource dependence, that is, when

to change the demand. The process changing the demand takes time and therefore a

potentially significant fraction of the resource has to be saved for the transition time

interval. Our insights to the problem follow from this simple allocation problem.

The main insight from our analysis is that producers’ market power is reduced over

time as continuing the relationship becomes more costly to consumers when the stock

available for the demand transition is depleted. This means that changing the demand

infrastructure becomes more relevant as a choice, leading to the conclusion that producers

must increase supplies over time to postpone the buyer’s action. In contrast with previous

approaches to such strategic dependence, the basic implications of the Hotelling (1931)

model are reversed.

What are the main lessons from these results for understanding the oil market? We

believe it is the insight that energy technology policies in oil-importing countries can act

as an increasingly effective strategic instrument, in part destroying producers scarcity

rents. While in general this insight is not new, our approach is new as it accounts for the

fact that the transition is not an immediate event, and this insight results in explicitly

increasing supplies in a stationary market environment.

There are several well-established explanations why scarcity rents do not seem to

drive supply behavior in oil or other exhaustible resource markets: declining extraction

costs due to technological progress can lead to U-shaped price paths; durability of the

final good; learning of new reserves; and imperfect competition (see Gaudet 2007) for

a review of the literature). Our explanation is complementary and distinct from any of

explanations presented in this literature.

On a theoretical level, there are some obvious extensions. As we have seen, the size

of the remaining stock is what determines the seller’s ability to entice the buyer side to

postpone actions ending the resource dependence: it is critical for the buyer to observe
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how much resource is left for the transition, otherwise the seller can take advantage of

the buyer’s imperfect information for the right timing of the demand change. Recall that

the larger is the stock, the lower is the equilibrium supply (at earlier points on the sales

path stocks are larger). In this precise sense, a large stock implies more power to reduce

supplies than a small stock. If the stock is not observed by the buyer side, a small seller

can potentially mimic large seller’s policy of reducing supplies and, thereby, extend the

investment date from what would otherwise hold for the small seller.

The above observation suggests an extension to situations where there is asymmet-

ric information about the size of the seller’s resource stock. The study of asymmetric

information in resource extraction can also be motivated by the developments in the oil

market. The core reserves of cheap oil are not managed like most productive assets in

market economies; management of cheap oil is characterized by secrecy. The dynasties of

Middle East do not disclose technical production information and make efforts to prevent

auditing of the reserves. The future availability of conventional oil is a major public

concern in oil importing countries; industry experts’ opinions on the size of economi-

cally viable stocks diverge widely.26 We have presented a preliminary analysis of the

asymmetric information equilibrium in our working paper Gerlagh-Liski (2007).

Other extensions are the following. Adding a fringe of competitive producers would

reduce the seller’s market power in a rather straightforward way; the fringe would free-ride

on the seller’s market power by selling first when the prices are high. Uncertainty about

the technology transition time interval would affect the precise timing of investment

and the level of the supply path, but not the basic insights. A less straightforward

extension is a reversed asymmetric information situation where the buyer side privately

knows whether the adoption decision has been made but the resource stock size is public

information. Alternatively, under the R&D interpretation, the buyer privately knows the

state of the technology. We leave these interesting topics open for future research.

26These concerns are reviewed in the Hirsch report. A book by Matthew R. Simmons (2005) explicates

carefully the industry experts concerns regarding the Saudi stocks. While it is hard to judge the validity

of the arguments in general, one cannot escape the fact that the market cannot evaluate the maturity

of the main Saudi oil fields; Saudi Aramco has not disclosed technical production information since the

early 1980 (Simmons).
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7 Appendix: Proof of Proposition 5

We prove Proposition 5, through a series of lemmas. The first lemma shows that supply is

continuous at investment point: q1
T = q∗. As noted in the main text, this requires u′(q1

T ) =

W I′(s). The second lemma uses this finding to prove that sellers prefer continuation to

stopping at the investment point, which ensures that (23) holds up to the point where

investment takes place. The third lemma then uses continuity of supply and (23) to

establish the values for the resource stock and supply level at the investment point. It

also shows that the slope for (s, q) defined by (23) is downwards for values of s close to

s∗, but upwards for large values of s.

Lemma 3 Under constant elasticity of demand, equilibrium supply is continuous at the

investment point.

Proof. Let q1
T refer to optimal monopoly supply immediately after investment. With

zero discounting, we had u′(q1
T ) = W I′(s∗) as q1

T equals the consumption level throughout

the post-investment phase until the substitute arrives. With positive discounting, this

equation does not always hold. Let q1
T be supply immediately after investment, so that

λ = π′(qI). Thus, when the resource stock increases by small amount ∆s, then supply

changes ∆qt satisfy π′′(qt)∆qt = er(t−T )∆λ, for some ∆λ such that
∫ T+k

T
∆qtdt = ∆s,

that is,
∫ T+k

T
er(t−T )

π′′(qt)
dt = ∆s/∆λ. For notation, let us use µt = π′(qt)

u′(qt)
= qũ′′(qt)

ũ′(qt)
+ 1. The

value of µ measures one minus the relative risk aversion.

W I′(s∗) =
∆W I′(s)

∆s
=

∫ T+k

T
e−r(t−T )u′(qt)∆qtdt∫ T+k

T
∆qtdt

=

∫ T+k

T
e−r(t−T )µtπ

′(qt)∆qtdt∫ T+k

T
∆qtdt

=

∫ T+k

T
µt∆qtdt∫ T+k

T
∆qtdt

λ =

∫ T+k

T
µt∆qtdt∫ T+k

T
µT ∆qtdt

u′(q1
T ). (25)

The difference between W I′(s∗) and u′(q1
T ) is caused by the difference between the

average value of µt over the post-investment time interval [T, T + k], and its value at

time T . It is clear that, for utility with constant relative risk aversion, W I′(s∗) = u′(q1
T ).

If utility has decreasing relative risk aversion, relative risk aversion will increase with

decreasing qt, and µt will increase, so that W I′(s∗) > u′(q1
T ). Similarly, if utility has

increasing relative risk aversion, W I′(s∗) 6 u′(q1
T ).

Lemma 4 Under constant elasticity of demand, the sellers prefer continuation to stop-

ping at the investment point.
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Proof. We will show that the seller’s value function has a kink at the time of

investment, V ′(s∗) > V I′(s∗) when W I′(s∗) = u′(q1
T ), so the sellers would always prefer

continuation rather than stopping in such a situation. Changes in k play a role in the

argument, and so we write the seller’s payoff as a function of both the stock level and the

transition time length k. We write V I(st, k) and V I(st) interchangeably, and similarly

V I
s (st, k) and V I′(st). Flow profits are concave by assumption, and supplies strictly

positive at the end of the overall sales time interval, qT+k > 0, so it is clear that the

seller’s value of the resource increases with the transition time length k, V I
k (st, k) > 0.

After investment, the value function satisfies the following Bellman equation

V I(s∗, k) = επ(q1
T ) + e−εrV (s∗ − εqI , k − ε). (26)

Taking the limit for ε→ 0 (leaving k out of notation), we get

π(q1
T ) − rV I(s∗) − q1

TV
I
s (s∗) − V I

k (s∗) = 0. (27)

Thus, π(q1
T ) > rV I(s∗) + qIV I′(s∗). This together with continuous supply implied by

Lemma 3 and value matching, V (s∗) = V I(s∗), implies V ′(s∗) > V I′(s∗).

Lemma 5 Given σ, assume k and r satisfy

σ(1 − e−ωk)σ > 1 − e−ωσk. (28)

Then,

s∗ = [
e−rkū− rI

(1 − σ)2A
−σ

1−σ − (1 − σ)rA
]−1/σ (29)

q∗ = A
1

σ−1 s∗

For s ≥ s∗ but sufficiently close to s∗, seller’s supply q0
t = η(st) is defined by (23) and

declining in st. For s sufficiently large, q0
t = η(st) is increasing in st.

Proof. We find the equilibrium s∗ in the lemma by using W I′(s∗) = u′(q), which

defines q∗, in (23) and noting that the buyer’s indifference can hold only if (28) holds;

we can focus on buyer’s indifference based on Lemma 4.

Given (28), we verify that q0
t = η(st) defined by (23) is decreasing in s for s > s∗.

Condition (23) implicitly defines two values of q given s > s∗. The equilibrium strategy

must satisfy dV ′(s)/dq < 0 where V ′(s) is given by (20) and evaluated at (s, q) = (s∗, q∗).

Condition (28) ensures that this holds and implies that the lower trajectory ending at
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(s∗, q∗) is the equilibrium strategy. Thus, equilibrium supply q0
t = η(st) defined by the

buyer’s indifference (23) is decreasing for levels of st close to s∗. The downward slope

of q0
t = η(st) continues until a point is reached where q0

t = ωst. After this point, q0
t

defined by (23) becomes increasing in st. Since, at the investment point, (28) ensures

that q∗ > ωs∗, we must have that the point with q0
t = ωst is reached for st > s∗. At

the same time, the seller’s profit maximization also defines a supply level that increases

with the stock level for reasons similar to the Hotelling rule. Thus, for large stock levels,

whether the sellers prefer to sell more than needed to prevent the buyer from investing, or

whether the buyer’s indifference condition determines supplies, for large stocks, supplies

will initially fall when the stock is depleted.

Condition (28) can be seen as a restriction on rk, the cumulative discount rate over the

entire transition time. For rk = 0, LHS=RHS=0 in (28). For rk ↓ 0, the LHS derivative

w.r.t. rk becomes infinite (the LHS is proportional to σ( rk
1−σ

)σ), while the RHS becomes

proportional to rkσ
1−σ

, thus the inequality holds. For rk large, the LHS converges to σ,

while the RHS converges to 1, thus the inequality fails. If either the discount rate r

or transition time k is sufficiently large, investment will take place immediately without

any time interval of strategic interaction. In terms of the equations, this can be seen as

follows. When (28) comes close to an equality, the denominator of s∗ in (29) goes to zero,

and so s∗ goes to infinity.

The proposition in text is now proved by Lemmas 3-5.
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