
öMmföäflsäafaäsflassflassflas 
ffffffffffffffffffffffffffffffffffff  
 

Discussion Papers 
 
 
 
 
 
 
 
 
 

Bootstrap Inference for Stationarity 

 
 
 

Biing-Shen Kuo 
National Chengchi University, RUESG and HECER 

 
and 

 
Ching-Chuan Tsong 

National Chinan University 
 
 
 
 
 

Discussion Paper No. 50 
February 2005 

 
ISSN 1795-0562 

 
  
 
 
 
 
 
 
 
HECER – Helsinki Center of Economic Research, P.O. Box 17 (Arkadiankatu 7), FI-00014 
University of Helsinki, FINLAND, Tel +358-9-191-28780, Fax +358-9-191-28781,  
E-mail info-hecer@helsinki.fi, Internet www.hecer.fi 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14912924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HECER 
Discussion Paper No. 50 

 
Bootstrap Inference for Stationarity * 
 
Abstract 
 
Tests for the stationarity null due to Kwiatkowski et al. (1992) has been an indispensable 
part of tool kits for empirical time series research. The tests however display considerable 
size distortions in the presence of highly persistent but stationary processes. Using a local-
to-unity framework, the paper offers an asymptotic explanation why the size problem 
comes into existence. The analysis shows that the tests fail to converge without a 
renormalization in the parameter space of concern. But it lends limited practical 
modifications to reducing the size bias, because of an unknown local-to-unity parameter 
that cannot be consistently estimated. We devise a parametric bootstrap scheme to 
account for the size distortions instead. Our bootstrap proposal is able to generate 
independent bootstrap re-samples, regardless of the dependence in the component 
representation of the considered series. Even in the problematic parameter space, 
simulations demonstrate that our bootstrap tests exhibit an excellent control over the 
empirical rejection probabilities, while maintaining a comparable power to the asymptotic 
counterparts, for both small and moderate sample sizes found in applications.  
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1 Introduction

Tests for the stationarity null has appeared to be an indispensable part of tool kits when

investigating time series property of aggregate variables. Information about stationarity of

the observed series coming from evidence with the tests often complements to that from

existing unit root tests. On the other hand, the spirit of testing for the stationarity null may

be more consistent with classical hypothesis testing where the hypothesis to be tested under

the null is the one that researchers believe in when testing for some economic theories. For

instance, many international macroeconomists tend to hold the view that relative price levels

between countries display at most transitory deviations from purchasing power parity, as a

result of market forces. The hypothesis that real exchange rates are mean-reverting is thus

natural to be tested under the null, and should not be rejected lightly unless strong evidence

against it is established. A partial list for available stationarity tests that possess these

features can consist of Kwiatkowski, Phillips, Schmidt and Shin (1992) (short for KPSS,

hereafter), Saikkonen and Luukkonen (1993), and Leybourne and McCabe (1994).

For inference on stationarity to be able to be drawn reliably from empirical evidence,

test statistics on which statistical decisions are based at least ought to demonstrate a robust

control over the rejection frequencies. While a minimal requirement for the test statistics,

a satisfactory size control has proved very difficult to meet when the series under test are

stationary but highly persistent processes. Caner and Kilian (2001) offer a comprehensive

account of the size problem with stationarity tests in the context. Simulations by KPSS

(1992) already revealed potential size distortions about their tests. Specifically, there have

had considerable over-rejections when the simulated data is drawn from simple autoregressive

models with the persistence parameter closer to unit root, for sample sizes that usually

encounter in practice. Moreover, an increase in samples does not help reduce but aggravate

occurrence of rejections. The latter finding runs counter to the idea of large sample theory

on which stationarity tests typically rely: asymptotic approximations yield more accuracy

as sample increases. The existence of size problem immediately calls into questions the

credibility of empirical evidence with stationarity tests. It is well understood that many

observed time series in empirical macroceconomics and international finance often exhibit

a strong persistence, and thus fall into the problematic parameter zone. In the presence of
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spurious rejections, a clear interpretation of rejections by the stationarity tests now turns

out to be a formidable task, whether or not the true processes underlying the considered

series are stationary.

The purposes of our paper are two fold. The first is to provide a theoretical underpinning

for the sources of distorted sizes in stationarity tests. We concentrate on the KPSS tests that

have been widely applied in empirical work. The popularity of the test is partly due to a much

less computation efforts required by a semiparametric correction for error autocorrelation,

compared to the parametric one used by the tests of Saikkonen and Luukkonen (1993) and

Leybourne and McCabe (1994). The ‘semiparametric’ correction is accomplished through an

estimation of the “long-run variance” accounting for a wide range of short-run dynamics. In

a way, the analysis carried out here is parallel to the development in the unit root testing. It

is well known that conventional unit root tests, such as Phillips and Perron tests (Phillips and

Perron, 1988) and their modified variants (Perron and Ng, 1996), subject to dramatic size

distortions when the autoregressive root of the error process is close to the unit circle. Thus,

the size problem with the KPSS tests shares a similar nature as that with the aforementioned

unit root tests, where the estimation of the long-run variance plays an important role in

shaping asymptotic behaviors of either class of tests. Using the local-to-unity framework,

developed by Phillips (1987), the simulation evidence about the KPSS tests is able to be

reconciled with our analytical results. Of particular concern emerging from our asymptotic

analysis is that in the presence of stationary but highly persistent process, the KPSS tests can

never converge to any sensible limit distributions without a re-normalization. Precisely, the

test statistics diverge to infinity with probability one as samples pass to infinity. This explains

why the size performance of the tests are worsened by increasing samples in simulations of

Caner and Kilian (2001).

While our analytical results are useful in explaining why the KPSS tests suffer from size

distortions, they do not lend practical solutions to reducing the problem. This is because the

asymptotics obtained for the re-scaled KPSS tests under the null still depends on unknown

local-to-unity coefficient that can not be consistently estimated. Therefore, our results are

clearly indicative of the impossibility of mitigating the size distortion based on asymptotic

arguments. Recognizing the size problem, some recent empirical studies by Cheung and

Chinn (1997), Kuo and Mikkola (1999, 2001), and Caner and Kilian (2001) corrected for the
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bias by employing size-adjusted finite-sample critical values, in place of asymptotic counter-

parts. This is a reasonable attempt to correct for the size bias, but is potentially vulnerable

to estimation risks. To compute the the size-adjusted critical values, researchers usually

start with approximating the data by stationary autoregressive models, and then simulate

the finite-sample null distributions by drawing samples from the fitted models as if they

were true. It has been shown, however, that autocorrelation estimates tend to be biased

downward, especially around the problematic parameter space of consideration (Marriott

and Pope, 1954; Shaman and Stine, 1988). On the basis of the resulting critical values, the

tests now are likely to overstate evidence in favor of the stationarity null. We conclude that

these tests with size-adjusted critical values are incapable of delivering conclusive evidence.

Alternatively, the bootstrap that often provides more accurate approximations than the

first-order asymptotic theory may constitute a useful approach to work on to improve in-

ference on stationarity. Our second purpose is thus to develop a bootstrap procedure that

can have actual finite sample rejection frequencies closer to asymptotic nominal levels. The

development of such bootstrap stationarity tests does not come as straightforward as that of

the bootstrap unit root tests. The major difficulty for doing so lies in a lack of a parametric

model for bootstrap samples to be independently generated under the null of the KPSS

tests. This is in contrast to bootstrapping the unit root tests that virtually relies on the

estimated Dicky-Fuller regression to generate bootstrap re-samples. The unobserved compo-

nent model from which the KPSS tests are derived does not directly render the possibility.

We resolve the difficulty by making use of the equivalence in second-order moments between

the unobserved component model and the parametric ARIMA model (Harvey, 1989). Thus,

in estimating the distributions of the KPSS tests, bootstrap re-samples are drawn from the

estimated ARIMA(p,1,1) obtained first from a fit to the series under study. It should be

emphasized that the bootstrap is to reproduce the behavior of the KPSS tests under the

stationarity null, whether or not the observed series comes from the null. This can now be

easily ensured by setting the moving-average root equal to one in the fitted ARIMA model

when resampling, corresponding to the null hypothesis that the variance of the random-walk

equals to zero in the component representation.

Our bootstrap tests for stationarity perform remarkably well. Through simulations, we

show that the bootstrap tests are able to have an excellent control over the size for sample
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sizes found in applications. In most experiments conducted for the parameter space of

interest, the empirical rejection frequencies for our bootstrap stationarity tests are close to

the nominal levels, in sharp contrast to the asymptotic tests. Furthermore, these results take

place at no cost of power loss, where the bootstrap stationarity tests proposed here display

a comparable power to or even minor gain over the asymptotic counterparts.

Our inquiries into the size of stationarity tests are not the first in the literature, and

some recent studies along the line deserve attentions. Müller (2002) carefully investigates

the effects of the choice of the long-run variance estimator on the size performance of the

tests. Both his and our analytical work conclude the undesirable property of stationarity

tests in the presence of highly persistent but stationary processes, at least ‘asymptotically’.

For the parametric stationarity tests of Saikkonen and Luukkonen (1993) and Leybourne and

McCabe (1994), Lanne and Saikkonen (2003) suggest a modification that corrects for the size

bias, while Leybourne and McCabe (1999) propose an improved estimator of error variance

to increase the power under the alternative. Neither paper considers the bootstrapping as a

route to account for the size problem.

The remainder of the paper is organized as follows. Section 2 reviews the test statistics

of KPSS. Our analytical results concerning the large sample behaviors of the tests in the

presence of highly persistent but stationary processes, together with relevant discussions,

are given in Section 3. Section 4 makes it clear the implementation of our bootstrap tests

for stationarity, and gauges the empirical performance in terms of size and power. Section

5 re-examines power purchasing parity using both our bootstrap and asymptotic tests for

stationarity. Section 6 concludes. All proofs are left to the appendix.

2 Test Statistics

Tests for the stationarity null mounted by Kwiatkowski et al. (1992) is derived from a

component model that consists of a deterministic component, a random walk and a stationary

error:

yt =
m∑

i=0

βit
i + rt + εt, t = 1 . . . T, (1)
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where m could be either 0 or 1 that represents intercept or both intercept and deterministic

time trend, respectively; and rt is a random walk, in which

rt = rt−1 + ζt, (2)

with fixed initial values r0 set to zero without loss of generality, and ζt being independent

stationary process. We assume that the stationary error εt =
∑∞

i=0 ψivt−i where ψ0 = 1,

vt iid(0, σ2
v) with an unknown distribution F . Let Ψ(L) = 1 +

∑∞
i=1 ψiL

i. Further, {εt} is

assumed to be invertible, i.e. Ψ(L) is non-zero on unit circle, and
∑∞

i=0 i|ψi| <∞. The class of

error processes considered therefore includes the stationary and invertible ARMA process as

a special sub-class. Under these assumptions, it is known that {εt} can have an infinite order

autoregressive representation: εt =
∑∞

j=1 φjεt−j + vt, where Φ(L) = Ψ(L)−1 = 1+
∑∞

j=1 φjL
j.

Whether the series under consideration yt is stationary however hinges on the variance

of random-walk error, σ2
ζ . Given that εt is a stationary error, when σ2

ζ > 0, yt comes to be

stationary only after differencing. Alternatively, the series is stationary around a constant

level or a trend, if σ2
ζ = 0. The hypothesis of interest thus can be formulated as

H0 : σ2
ζ = 0 versus H1 : σ2

ζ > 0 (3)

The KPSS test is derived based on the Lagrange multiplier (LM) principle. The derivation

of the test is equivalent to those considered by Nyblom (1986) and Nabeya and Tanaka

(1988) to test for random coefficients. All these statistics are LBI tests and thus possess the

optimal property that attains the highest power locally. The calculation of the LM-type test

statistics is not as complicated as the derivation. First, regress yt against an intercept (if

m = 0), or an intercept and time trend (if m = 1), and obtain the residuals, denoted by ût.

That is, ût = yt −
∑m

i=0 β̂it
i in which β̂i is OLS estimates of βi. Next, compute the partial

sum of the residuals, St =
∑t

i=1 ûi, and estimate the long-run variance of εt, based on Newey

and West (1987):

σ̂2 =
1

T

T∑
t=1

û2
t + 2

1

T

L∑
i=1

w(i, L)
T∑

t=i+1

ûtût−i (4)

where w(i, L) = 1 − i/(1 + L) is Bartlett kernel, and L is bandwidth. Here to obtain a

consistent estimate for the long-run variance, L needs to be increased as T increases. In

practice, many applications choose L = [k(T/100)]1/4, where k is constant, and [·] is the
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Table 1: Empirical Size performance of KPSSτ (k) (no trend)

T α KPSSτ (4) KPSSτ (8) KPSSτ (12)
300 0.99 0.976 0.882 0.767

0.98 0.963 0.832 0.698
0.94 0.846 0.570 0.393
0.30 0.073 0.062 0.056

600 0.99 0.995 0.957 0.887
0.98 0.986 0.901 0.774
0.94 0.847 0.575 0.382
0.30 0.071 0.056 0.053
Note:
1. The rejection frequency in each entry is cal-
culated based on a DGP yt = αyt−1 + et, with
et

iid∼ N(0, 1), using asymptotic critical value at
5% nominal level (.146) in 5000 replications.
2. The test statistic KPSSτ (k) is, as defined in
the text, calculated with a bandwidth number set
to L = [k(T/100)]1/4.

largest integer function. following from Schwert (1989). We follow the same practice for

simulations reported in the paper. The LM test statistic can then be formed by

LM = T−2σ̂−2
T∑

t=1

S2
t

We shall denote the test statistic by KPSSµ(k), and KPSSτ (k), respectively, given m = 0

or 1.

Kwiatkowski et al. (1992) establish that under the null and some regularity conditions,

the limiting representations of KPSSµ and KPSSτ can be characterized as:

KPSSµ ⇒
∫ 1

0
V 2

µ (r)dr, KPSSτ ⇒
∫ 1

0
V 2

τ (r)dr (5)

where ⇒ denotes weak convergence, Vµ(r) = W (r)− rW (1) is a standard Brownian bridge,

Vτ (r) = W (r) + (2r − 3r2)W (1) + (−6r + 6r2)
∫ 1
0 W (s)ds, and W (r) is a Wiener process.

The tests reject the stationarity null for large values of the statistics by construction. Be-

cause these distributions are not standard and free of nuisance parameters, critical values at

conventional significance levels needs to be computed via simulations, before the tests can

have practical uses.
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3 Sources of Size Distortions

It is by now well-documented that the KPSS tests subject to considerable size distortions in

the presence of highly persistent but stationary processes. Caner and Kilian (2001) illustrate

and re-affirm the points by providing systematic investigations on the tests. Before them,

Monte Carlo simulations in KPSS (1992) have revealed potential size problems of their tests.

Lee (1996) and Hobjin, Franses and Ooms (1998) focus on the effect of bandwidth selection

on both size and power of the tests. Simulations of the sort delivers immediate relevance

to interpretations of empirical evidence with the tests. It is not uncommon that aggregate

time series that have been most examined are found to be highly persistent.

To appropriately address the size problem, Table 1 replicates partial simulation results

reported in Caner and Kilian (2001), following their setup. As will be shown soon, our

asymptotic analysis has much to do with the growth rate of the bandwidth. Thus, to permit

a clear comparison, our simulations are conducted by considering three different bandwidth

numbers respectively. To save space, we will not report the simulations for the tests with

an intercept, as they share very similar qualitative outcomes as reported here. Notably, the

tests all suffer from very noticeable size bias, between .40 and .98 as opposed to 5% nominal

level, when the autoregressive coefficient is close to unit circle. To place an emphasis on the

accuracy of asymptotic approximations, we will only report simulations for sample of sizes

300 and 600, considered to be fairly large samples in time series context. We summarize two

important observations from the simulations. First, given a fixed sample size, the closer α

is to one, the larger size distortions the tests display. What stands out from the simulations

is that as α is closer to one, an increase in sample size does not help reduce but aggravate

the degree of size distortions for the tests. Second, for fixed values of α, the tests subject to

less size distortions, as the bandwidth increases.

Asymptotic theory provided by Kwiatkowski et al. (1992) does not appear to be capable

of explaining the aforementioned simulations. It is worthwhile having alternative theoretical

explanation why the size problem takes place. We will derive the local asymptotic distri-

butions for the KPSS tests in a local-to-unity framework, following the development in the

literature of the unit root testing. The asymptotics obtained from the framework has been

found to yield more accurate approximations to the finite-sample distributions, when the
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autoregressive root in the underlying process is close to unit root (see, for example, Perron

and Ng, 1996; Elliott et al., 1996; and Ng and Perron, 2001). It is expected that the finite-

sample distributions of the tests can now be better characterized by the local asymptotic

representation. Thus, in a local-to-unity setup, we define the data generating process for our

analysis as follows.

Definition 1: Let the series under test yt be generated by:

yt =
m∑

i=0

βit
i + ut, ut = (1 + c/T )ut−1 + εt (6)

where c < 0, u0 = 0 and εt is mean zero stationary error where σ2
ε = limT→∞ T−1E[

∑T
j=1 εj]

2

is nonzero and finite.

The random walk component is left out, because we are only interested in the asymptotic

distributions of the test statistics under the stationarity null. If the autoregressive coefficient

is fixed, rather than depending on sample size, the data generating process defined is then

one of special cases considered in KPSS that satisfies the assumed strong mixing conditions.

Asymptotically, an AR process with fixed coefficient would behave differently from a near-

unit-root process defined in (6). In general, the stochastic order of a near-unit-root process is

Op(
√
T ) as that of a unit root process. It is this asymptotic property that results in spurious

rejections for stationarity tests as observed from the simulations. We are now in a position

to state the asymptotics of the tests under the near unit root setup.

Theorem 1 Let yt be generated as in Definition 1. As T → ∞ and L = o(T 1/2).1 Under

the null hypothesis that H0 : σ2
ζ = 0,

1. If m = 0,

(
L

T
)KPSSµ(k) =⇒

∫ 1
0 (

∫ r
0 J̄c(s)ds)

2dr∫ 1
0 J̄

2
c (r)dr

(7)

2. If m = 1,

(
L

T
)KPSSτ (k) =⇒

∫ 1
0 (

∫ r
0 J̃c(s)ds)

2dr∫ 1
0 J̃

2
c (r)dr

(8)

1The rate is the same as adopted in the asymptotic argument of KPSS, though their simulations consider
L = [k(T/100)]1/4.
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where J̄c(r) = Jc(r)−
∫ 1
0 Jc(s)ds, J̃c(r) = Jc(r) + (6r − 4)

∫ 1
0 Jc(s)ds+ (6− 12r)

∫ 1
0 sJc(s)ds,

and Jc(r) =
∫ r
0 e

c(r−x)dW (x).

The limiting representation for the test statistics just derived is a more useful guide to the

finite-sample performance of the tests as in Table 1 than given in (5). First, we note that the

test statistics under the null has to be re-scaled before having sensible limiting distributions.

In other words, under the local-to-unity setup, KPSSi = Op(
T
L
), with i = µ, τ . This clearly

suggests that without re-normalization, the test statistics are divergent as samples increase,

but the bandwidth works in an opposite manner by slowing down the divergent speed of the

test statistics. The limit representations are now consistent with the simulation evidence in

Table 1, and thus indicative of an inadequacy of the KPSS asymptotic approximations to

the small-sample distributions of the tests in the presence of highly persistent but stationary

processes.

The sources of the size distortions of the tests can be attributed to two forces. As can be

seen from the proofs, the squared partial sums in the numerator of the tests,
∑
S2

T , have a

stochastic order of Op(T
4) in the local-to-unity context, as opposed to Op(T

2) in the standard

asymptotics. Further, similar to its asymptotic behavior under the alternative, the estimated

long-run variance in the denominator is no longer consistent (i.e. op(1)) but diverges at a

rate of Op(TL).

The limit results have an important implication for the power of stationarity tests. In-

tuitively, the test statistics make use of the properties of non-stationary data. Under the

alternative of a random walk, the partial sums of the residuals behave as those in spurious

regression (see Phillips, 1986), and converge to random variables only after re-normalization.

As established in KPSS, the tests are thus consistent under the alternative hypothesis at an

order Op(
T
L
). When the observed series is generated from a highly persistent but stationary

process, the partial sums of the residuals resemble those under the alternative in the limit.

As a result, the stochastic orders of the tests are the same for under both the alternative

of integrated process and the null of highly persistent but stationary process. Based on the

standard asymptotic critical values, rejections by the stationarity tests may well result from

an underlying process that is either difference stationary, or highly persistent but stationary.

In other words, the tests are lack of a discriminatory power between highly persistent but
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stationary process and an integrated process.

Of much practical relevance to the analytical results is the associated power loss when

using the size-corrected critical values. These critical values are calculated by first drawing

simulated samples from an estimated autoregressive model fit to the data. The simulated

distributions of the test statistics are then constructed based on the pseudo data. The

simulated distributions are to mimic the weak limit distributions in (7) or (8). Therefore, as

a reflection of the asymptotic counterparts, the simulated test distributions shift more to the

right, as the local-to-unity parameter or the persistence rate c is closer to zero. As a result

that the simulated test distributions now overlap more with that under the alternative, the

tests using the resulting critical values become less capable of detecting against any fixed

alternatives. This explains the simulation findings of Caner and Kilian (2001) where the

size-adjusted tests experience a sizable power loss, even when there is only a slightly more

persistence increase in the null process. For example, their Table 3 shows that the rejection

rate decrease from 29% to 20% when the persistence rate increases only by around .02% for a

sample of size 100. The gains from using size-controlled critical values do not come without

cost.

It is very tempting to suggest practical remedy for size distortions of the tests by making

use of the derived limiting representations. There are however difficulties for doing so.

As in the unit root testing literature, it proves implausible to consistently estimate the

local-to-unity parameter c. Even with a known c, the resulting asymptotic critical values

are only useful in situations where highly persistent and stationary series present. When

the underlying true processes are not generated from the problematic region, the standard

asymptotic counterparts remain applicable. Researchers however can not come to have

information concerning the nature of the observed series before testing.

In view of a reduction in the size bias by an increase in the bandwidth, it is a natural

question to pose what if the bandwidth increases at a speed higher than o(
√
T ). The limiting

representations of Theorem 1 in fact hold for o(T 1/4) ≤ L ≤ o(T ), not necessarily o(
√
T ),

where the rate gives the consistency of the long-run variance under the null in the standard

asymptotics (see Andrews, 1991). In particular, Müller (2002) reaches a similar conclusion

by allowing for the bandwidth grows at o(T ). More than that, his asymptotic analysis is

much concerned with other important classes of long-run variance estimators that are data-
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dependent. His theoretical results, explaining simulation evidence in Lee (1996) and Hobjin,

Franses and Ooms (1998), all show that it is still difficult to have size of the test under

good control in the presence of highly persistent but stationary process, because the limit

distributions of the tests under these data-dependent estimators do not come close to those

obtained in the standard asymptotics. Recently, Kiefer and Vogelsang (2002) suggest another

class of long-run variance estimator using bandwidth equal to sample size. Given our limit

representations, by cancelling out the re-scaling factor (L/T = 1), it would seem promising

that the tests can display satisfactory size behavior when L = O(T ). Unfortunately, the tests

are always equal to .5 for any data, one of the cases that using large bandwidth does not

work. Together, the large-sample analysis appears to be suggestive of alternative approaches

to reducing the size distortion in the problematic region for the tests.

4 A Bootstrap Re-sampling Proposal

When the asymptotics fails to yield accurate approximations to the small-sample distribu-

tions, researchers often turn to the bootstrap. There have been an increasing interest in

applying the method when testing for unit roots (for example, Ferretti and Romo, 1995;

Nankervis and Savin, 1996; Psaradakis, 2001; and Park, 2003). The motivation for em-

ploying such methods in testing for unit root is as clear as here for stationarity where the

asymptotic critical values are not so reliable as they have been promised to be. It has been

proven that the bootstrap unit root tests can provide more desirable accuracy in approxi-

mations than the asymptotic counterparts, in particular in the presence of negative moving

average errors that the asymptotic unit root tests have difficulty to deal with.

Implementation of the bootstrap unit root tests entails generating independent random

re-samples from the data for estimating the small-sample distributions of the tests. The

procedure is not difficult and is made possible by the use of an autoregressive model on

which the unit root test are built. In practice, one starts with fitting an autoregression to

the data. The small-sample distribution of the unit root test is estimated by its empirical

distribution under sampling from the fitted model. The estimated model is to capture the

dependence structure of the underlying data generating process, thereby being able to reduce

the DGP to independent random sampling. It is important because whether the bootstrap

unit root tests achieve improvements in accuracy, relative to the asymptotic approximations,
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hinges on if the bootstrap samples can be drawn independently.

The situation is not as straightforward to bootstrap the stationarity tests. Unlike the

bootstrap unit root tests that rely on autoregressive models, it is less clear how to generate

the independent random re-samples from the ‘unobservable’ component model as in (1)

from which the series under study is generated. Thus, the component model does not lend

itself readily to a parametric model to capture the autocorrelation in the series from which

re-samples can thus be independently drawn.

The problem with a lack of a suitable parametric model to generate bootstrap samples

is in fact more troublesome than it appears. It should never be over-emphasized that the

bootstrap is to estimate the null finite-sample distributions of the test statistics in the testing

context. With the autoregrssion model, the null distributions of the unit root tests to be

bootstrapped can be obtained simply by replacing the largest estimated autoregressive root

with a unit root in the process of generating bootstrap samples (see references cited above),

regardless of whether the studied series is drawn from either the null or the alternative. To

place the null constraint into re-sampling schemes is a crucial step to deliver proper size for

the test statistics bootstrapped. In the case of the unit root models, Basawa et al. (1991)

show that the sampling algorithm without considering a unit root restriction is not valid.

The idea of sampling ‘restricted’ regression errors (under the unit root null) has been also

emphasized in Nankervis and Savin (1996). But in the case of bootstrapping the stationarity

tests, it might well be an more difficult notion to put into effect to place the restriction of

zero random-walk variance, as in (3), without a parametric model for sampling.

We develop a re-sampling scheme that is able to overcome the problems when bootstrap-

ping the stationarity tests. The idea of the sampling proposal is built on the equivalence in

second-order moments between an unobservable component model and a parametric ARIMA

model (see Harvey, 1989). In other words, the ARIMA representation is a reduced form of

the structural component model. For example, for m = 0 (models with intercept only), if the

regression error εt and random-walk error ζt are iid and independent, the component model

in (1) and (2) after differenced is an MA model that can be expressed as ∆yt = (1− θL)ηt,

where ηt are iid(0, σ2
η) with σ2

η = σ2
ε/θ. The relation of the parameters between the compo-
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nent model and the ARIMA model is found to be

θ =
1

2
{
σ2

ζ

σ2
ε

+ 2− (
σ4

ζ

σ4
ε

+ 4
σ2

ζ

σ2
ε

)1/2},

where σ2
ζ/σ

2
ε is the so-called signal-to-noise ratio. Note that the stationarity null that σ2

ζ = 0

amounts to θ = 1 in the ARIMA representation, a non-invertible moving average component.

Thus testing for the stationarity null based on the component model is equivalent to testing

if there is a moving average unit root using the ARIMA model, the idea exploited in con-

structing the tests proposed by both Saikkonen and Luukkonen (1993) and Leybourne and

McCabe (1994). Thus, our re-sampling scheme is made available by making use of the cor-

responding parametric ARIMA model that can reduce the data to independent re-samples.

Furthermore, imposing a moving average unit root in the sampling procedure renders it

feasible to estimate the bootstrap null distribution of the tests.

We now spell out our re-sampling schemes.

1. Given a sample {yt}T
t=1 generated from (1) and (2), fit an ARMA(p,1) to the differenced

series ∆yt(= yt − yt−1) using the maximum likelihood principle. Specifically, if m = 0,

the model to be estimated is ∆yt =
∑p

i=1 αi∆yt−i + ηt − θηt−1, while if m = 1, ∆yt =

β +
∑p

i=1 αi∆yt−i + ηt − θηt−1. The resulting estimated parameters and residuals are

denoted by α̂i, β̂ (if m = 1), θ̂, and η̂t.

2. Center the residuals η̂t by η̄t ≡ η̂t − 1
T−1

∑T
t=2 η̂t.

3. Draw a bootstrap sample of size T without replacement from the empirical distribution

function of the centered residuals {η̄t}, and denote it by η∗t .

4. Set the initials that y∗1 = y1, · · · , y∗p = yp, and generate the bootstrap samples {y∗t }

based on the recursive relation that ∆y∗t =
∑p

i=1 α̂i∆y
∗
t−i + η∗t − η∗t−1 (m = 0), or

∆y∗t = β̂ +
∑p

i=1 α̂i + η∗t − η∗t−1 (m = 1).

5. CalculateKPSSµ(k) andKPSSτ (k) using {y∗t }T
t=1, denoted byKPSS∗µ(k) andKPSS∗τ (k),

respectively.

6. Repeat step 3 to step 4 NB times.

7. Compute the empirical distribution function (edf) for KPSS∗µ(k) or KPSS∗τ (k), and

use the empirical distribution function as an approximation to the cumulative distri-

bution function (cdf) of the bootstrap null distribution for the test statistics.

8. Compute the intended bootstrap critical values, based on the bootstrap null distribu-

tion in the preceding step.
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Some words about the scheme are worth mentioning. In step 1, based on the equiv-

alence of a reduced form to a component model in second moments, the MA part is to

re-parameterize the stationarity property of the data in the ARMA representation. On the

other hand, the AR part as an approximation to the assumed infinite-order moving average

errors is to capture the dependence structure in data. Of which entertains the highly per-

sistent but stationary processes under consideration. Note that while under the alternative

hypothesis, the maximum likelihood estimators of AR and MA coefficients are consistent by

the standard asymptotic theory, under the stationarity hypothesis when θ = 1, the consis-

tency holds still following from Potscher (1991). The lag order in general needs to increase

with sample size. In practice, the optimal lag order for a time series is usually chosen by

some information criteria. We follow this practice in the subsequent Monte-Carlo study.

Centering the residuals in step 2 is justified by two reasons. It not only takes into account

that the underlying population distribution has zero expectation, but also works to reduce

the downward bias of the autoregression coefficients in small samples (see Horowitz, 2001).

Step 4 is known to be the recursive bootstrap. There have had some comparable re-

sampling procedures to the recursive bootstrap in the literature, notably the moving block

bootstrap (Künsch, 1989) and stationary bootstrap (Politis and Romano, 1994). These

procedures are all capable of reproducing error dependence structure. In contrast to the

latter two procedures, the recursive bootstrap is of parametric nature by making use of the

autoregression model. Bühlmann (1997) and Horowitz (2001) both emphasize the merit

of the use of the recursive bootstrap when the DGP is linear as in our case. It has been

found that the recursive bootstrap appears to be the best bootstrap method that provides

significant accuracy gains from taking advantage of the knowledge of the linear structure in

the DGP. The gains will be embodied in the simulations reported below.

How can the null bootstrap distributions of the tests be estimated? Step 4 is the key to

yield such estimates. The stationarity null is now conveniently placed into the parametric

re-sampling schemes by imposing a moving average unit root, regardless of whether the

data is drawn from either the null or the alternative. The next section will show through

simulations immediately the empirical relevance for the size performance of the bootstrap

tests without imposing the constraint of a moving average unit root when re-sampling.
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5 Monte-Carlo Study

This section is devoted to access the finite-sample performance of our bootstrap testing pro-

cedures via simulations. The simulation setup under the null is the same as that in Table

1 where the DGP is an AR(1): yt = αyt−1 + et with et is nid(0,1). Under the alterna-

tive, the DGP is assumed to be yt = rt + εt, and rt = rt−1 + ζt, with εt ∼ nid(0, 1) and

ζt ∼ nid(0, σ2
ζ ). To gauge the extent to which the bootstrap tests perform, different de-

grees of persistence, signal-to-noise ratio and sample sizes are considered by varying α (=

{.0,.3,.5,.8,.82,.84,.86,.88,.90,.92,.94,.96,98 }), σ2
ζ (={ 1, .1, .01, .001,.0001}) and T (={30,

50, 100, 150, 300, 600}). Typically in applications, simple AR processes with an autoregres-

sive parameter greater than .8 are regarded highly persistent. Sample sizes ranging from 30

to 150 are those usually encountered in empirical time series studies. On the other hand,

experiments with sample sizes 300 and 600 is to investigate and to represent the perfor-

mance of the tests in large samples. The rejection rates for both the asymptotic tests and

the bootstrap tests are computed and reported at nominal 5% level. The 5% asymptotic

critical values for different models are simulated and available in KPSS (.146 for models with

intercept only, and .463 for models with both intercept and time trend). Replications for the

asymptotic tests are 5,000, while 1,000 for the bootstrap counterparts, with 100 bootstrap

re-samples in each replication. A smaller replication number considered for the latter is due

to many more computations involved in maximum likelihood estimations.

All the estimations of the autoregressive and moving-average coefficients are carried out

by the GAUSS-ARIMA procedure, and initial values of these parameters need to be given

prior to estimations. In general, the estimations depend on the choices of initial values,

yielding different local maximums of the likelihood for any particular samples. It is partic-

ularly sensitive to the choice of initial values for the boundary estimations about the unit

root moving average parameter under the null (see Kuo, 1999). Instead of performing the

grid search over the parameter spaces as in Leybourne and MaCabe (1994), our strategy in

the simulations is to select initial values to be the true values of the parameters set in the

DGP. This choice appears to be quite reasonable and less costly in computations, as our

experience with different choices of initial values indicates that a global maximum has been

most likely to be assured when the initial values are selected to be equal to or close to the
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true ones. The available distributional results concerning maximum likelihood estimations

are mostly built on the assumption of the existence of a unique global maximum over the

limit likelihood (see for example, Amemiya, 1985). As a reflection in practice, we consider it

very important locating the global maximum of the sample likelihood for correct inferences.

To achieve that, it requires experimenting various sets of starting values, though here our

simulations skip the searching process by having the ‘good’ guesses of them.

To compute the asymptotic tests, it entails selecting a bandwidth number. Again as in

Table 1, we report the associated results using three different bandwidth numbers. Another

practical consideration is how to choose an appropriate autoregression lag length in ∆yt

when computing the bootstrap tests. A correct selection of the AR order is an important

prerequisite for reproducing samples appropriately. Because researchers generally do not

have the luxury of owning information about the DGP a priori, the lag order has to be

chosen by some data-dependent methods such as AIC and BIC. We employ however only

AIC throughout simulations by setting the maximum lag order to be 5, again because of

computation considerations. We are specifically interested in examining the effects of the

lag length uncertainty. It might well be expected that simulations with BIC produce quali-

tatively similar results to those with AIC here, given a similar information structure shared

by both criterion. Therefore, for each particular replication, the bootstrap re-samples would

be generated, based on the chosen order by the criteria as if it is true. Note that three

bootstrap test statistics will be computed, using the bandwidth numbers as in computing

the asymptotic counterparts. By doing so, we want to investigate whether the finite-sample

performance of the bootstrap tests are affected by the choice of bandwidth numbers as the

asymptotic counterparts are. Based on the simulation evidence that we will present later, it

is quite evident that the finite-sample performance of the bootstrap tests are little sensitive

to the choice of bandwidth numbers, to which the asymptotic counterparts are.

The first set of simulation results is associated with the empirical size of both the asymp-

totic and bootstrap tests. Table 2 presents results for models with intercept, and Table 3

for models with intercept and time trend. It appears from tables that the size of the asymp-

totic tests is very close to the nominal level for the cases with no autocorrelation (α = 0),

regardless of sample sizes and bandwidth numbers we considered, implying good asymptotic

approximations. The cases with no autocorrelation indeed serve as a benchmark against
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which how both types of the tests perform in the presence of persistent processes will be

examined. The empirical size of the asymptotic tests is no longer closer to the nominal level

when the significance of autocorrelation is present. As the persistence in data increases, the

over-rejection problem turns increasingly severe. The size-distortion patterns of the asymp-

totic tests then repeat as documented earlier: increasing in bandwidth reduces the distortion

at a slow speed for fixed samples, yet increasing in samples does not help so but deteriorate

it for given bandwidth numbers. The distortion has gone even worse for models with both

intercept and time trend, due to an efficiency loss from estimating an additional coefficient.

The message from the tables is simply that the finite-sample distributions of the tests are

badly approximated when the persistence is high. This amounts to saying that the validity

of the standard asymptotic approximations to the tests does not hold at all in the presence

of high persistence. For the asymptotic analysis to make sense again in the presence of

significant persistence, a local-to-unity parameterization and re-scaling are both required, as

our preceding analysis has done.

Now turn to the bootstrap tests. There are a few important observations emerging from

the tables regarding the tests. Firstly, the bootstrap distributions of the tests appear to

bear a great deal closer resemblance to the finite-sample ones, implying the accuracy in the

bootstrap critical values. In sharp contrast to the asymptotic counterparts, the bootstrap

tests have a predominantly much better control of their sizes. Many instances under investi-

gations for the tests show insignificant difference between the empirical size and the nominal

one.

Next, unlike the asymptotic tests, the bootstrap tests display a better size control for

models with intercept and time trend than with intercept only. Specifically, when sample

size is small, the tests now reject slightly too little and thus are liberal in the presence of

high persistence. The under-rejections are very likely to result from the downward bias of

autoregressive coefficient estimations. The effect of the bias might be profound. Basically,

the shorter the series is, the more persistence displays in data, and the greater is the bias.

Consequently, the bootstrap re-samples are generated based on the estimates, smaller than

the true ones on average. The resulting bootstrap distribution of the tests are then to the

left of what they ought to be, creating under-rejections. Other than this, the control over

size by the tests has been very good even in the problematic region for samples of small and
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moderate size.

Thirdly, the performance of the bootstrap tests appears to be not so much more affected

by the choice of bandwidth numbers as the asymptotic ones. Notably, when the generated

data is highly persistent, the bootstrap test are quite robust to the choice of bandwidth

numbers across two models. The results might seem to be at odds with the intuition that a

larger bandwidth number is required for more persistence in data. This does not have be so

for the bootstrap tests however. The bootstrap is to estimate the finite-sample distributions

of the tests directly. So if the finite-sample distribution of the tests is dependent on some

nuisance parameters, as here probably due to not enough bandwidth, the bootstrap gives an

estimate of the finite-sample distribution, whether or not the distribution to be estimated

is free of nuisance parameters. The large-sample approximation, however, relies on the

asymptotic distribution that is free of nuisance parameters. The size robustness to the choice

of bandwidth numbers provides additional convenience in applications using the bootstrap

tests where whether having a good choice over the bandwidth need not be a major concern.

Lastly, the use of AIC appears to reduce the risk of an uncertainty in selecting the

appropriate AR order in ∆yt, to a large extent. Our simulations show that the correct order,

equal to one in the setup, can be picked up most frequently, though there are a few instances

where the estimations are overfitted. Overall, the bootstrap tests exhibit a very satisfactory

control over size, and thus subject little to size distortions.

It is important that the good empirical size performance of the bootstrap tests does not

come at the cost of power loss. We now examine the empirical power performance of the

bootstrap tests. Table 4 summarizes the results for the empirical power. As a benchmark, we

also report the empirical power of the asymptotic tests. Note the empirical power reported

for the asymptotic ones has been adjusted for the size distortions, the so-called size-adjusted

power. It is infeasible, because the finite-sample critical values of the asymptotic tests under

the null are generally unknown, and need to be computed case by case. As seen clearly

from the table, the empirical power of the bootstrap test is comparable to, or is slightly

higher than that of the asymptotic counterparts. The power superiority of the bootstrap

test to the asymptotic counterparts is to a very minor extent (between 1% and 2%), as

a result of sampling results. Furthermore, it is a numerical reflection of test consistency

when observing the empirical power of the bootstrap tests increase as sample size increases
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for fixed bandwidth, and signal-to-noise ratio. It is also obvious to find that the power

of the bootstrap tests increases as the signal-to-noise ratio increases. Although it remains

unknown whether the power of the bootstrap tests will depend on the bandwidth as the

asymptotic ones do, it is still possible to assess to what extent the bootstrap will depend on

the bandwidth via simulations. Bear in mind that the errors are iid, and it needs very small

bandwidth in computations. The results show that the traditional wisdom applies again:

choosing larger bandwidth costs the power of the bootstrap tests in a quite rapid speed. It

implies that the choice of bandwidth for the bootstrap tests requires cautions in the sense

that it may not affect the size but the power of the tests.

6 An Application to Purchasing Power Parity Debate

In this section we apply the bootstrap tests to the real exchange rates in the post-Bretton

Woods period. This is to illustrate how the bootstrap tests can perform in applications. Of

particular concern is to seek stationarity, or mean-reverting property in the real exchange

rates that corresponds to the notion of long-run purchasing power parity. The importance of

the parity comes from that it is the cornerstone assumption underlying many open macroe-

conomic models. Testing for the parity is equivalent to search for empirical supports for

implications of the theory of concern. Thus, tests for stationarity of the real exchange rates

under the null well serve the purpose. There has never been lack of empirical efforts on

whether long-run purchasing power parity holds at all in the literature. To our knowledge,

testing for purchasing power parity using a bootstrap version of the KPSS tests has not been

attempted yet. We shall apply the tests to a panel of real exchange rates in the post-Bretton

Woods. The use of this panel can be motivated for several reasons. Using the same panel

samples, the findings here based on the bootstrap tests can be compared fairly to earlier

work based on the asymptotic counterparts (for example, Culver and Papell, 1999; Caner

and Kilian, 2001). The real exchange rates time series over the panel are not long spanned,

and tend to be better characterized by a highly persistent autoregressive process This is

exactly where the asymptotic tests may have difficulty in having the size under good con-

trol. Moreover, the panel has observations of the real exchange rates available on the both

monthly and quarterly sampling frequencies. This allows our theoretical results derived in

the local-to-unity context to have something to say about the empirical evidence.
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The real exchange rates are constructed from the consumer price index series and the

exchange rate series for the price of U.S. dollars in respective currency. Data is obtained

from the IMF publication, International Financial Statistics. Monthly data is available for

the following 18 countries over the period 1973.1-1998.12: Austria, Belgium, Canada, Den-

mark, Finland, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, Portugal,

Spain, Sweden, Switzerland, the United Kingdom, and the United States. Quarterly data is

available over 1973.I - 1998.IV for Australia, Ireland, and New Zealand, in addition to the

same 18 countries as in monthly data.

Table 5 presents the results of applying both the asymptotic tests and the bootstrap tests

to each real exchange rate time series on both sampling frequencies. For all calculations,

the bandwidth number is set to L = [12(T/100)]1/4, following Caner and Kilian (2001). To

demonstrate how the size bias is related to the degrees of persistence in the real exchange

rates, we also report the largest autoregressive root from fitting ARMA(p,1) to the differenced

series from which the bootstrap re-samples are generated. Again the autoregressive lag order

is chosen by the AIC as in the Monte-Carlo study. More than half of the chosen autoregressive

order from the data is one, and some are distributed evenly over other orders up to 5. The

table also reports the bootstrap critical values at 5% and 10% levels, giving an idea how the

bootstrap critical values might deviate from the asymptotic counterparts for each series.

The results with the asymptotic tests are not much different from those presented in Caner

and Kilian (2001) using data up to 1997.4 only. At monthly frequency, the asymptotic test

now rejects the null of stationarity for 9 out of 17 countries, 8 of them same and 1 additional.

Using quarterly data, we have the same rejections by the test for 4 countries, except Sweden.

Thus, we come to observe that more rejections appear to take place for higher frequencies, as

our theoretical results predict. This is to say that many of them are spurious rejections. The

supposition appears to be reasonable because many of the rejections indeed come from series

having the largest autoregressive root in the problematic zone of significance persistence. In

other words, once applying the bootstrap tests to the data, rejections will be much fewer,

given that the tests can much correct for the size distortions. This is the case here. The

bootstrap test at monthly frequency, now only rejects for 6 of 17 countries, instead of 9 by

the asymptotic one.2 So there are 3 countries (Austria, Canada, and Spain) for which the

2Sweden is included in these 6 countires. However note that it is Sweden only among others where the
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asymptotic test reject but not the bootstrap test. The corresponding largest roots estimated

for these 3 countries are greater than .84, suggesting spurious rejections by the asymptotic

test. At the same time, it shows that correction for the size bias from the bootstrap test is

at work for these 3 countries. On the other hand, for 3 of these 6 countries for which both

two versions of the test reject (Italy, Japan and Portugal), the largest autoregressive root

estimated are found between .3 and .6, away from the problematic region. Rejections like

this may well be considered as a more conclusive evidence against long-run purchasing power

parity, implying a prevailing random-walk component. Using quarterly data, the bootstrap

test now reject for 3 of 20 countries, rather than 4 by the asymptotic one. Having the roots

lying below .7, rejections by both versions of the test is very likely to be strong evidence

against long-run purchasing power parity for all these 3 countries. The root found for

Ireland is around .82, indicating again a spurious rejection due to the size problem with the

asymptotic test. It explains already why the asymptotic test rejects but not the bootstrap

one. Summing up, the use of the bootstrap test apparently lends more credible supports

for purchasing power parity in the long-run. Many previous rejections by the asymptotic

test could just originate from the size distortions, and could not constitute strong evidence

against the mean-reverting property in real exchange rates.

7 Concluding Remarks

The paper begins with two goals. The first is to provide a large-sample explanation for

the considerable size distortions associated with the KPSS tests in the presence of highly

persistent but stationary processes. Using a local-to-unity approach, the tests are found

to be unable to weakly converge to some sensible distributions without a re-scaling. The

asymptotic distributions derived in the problematic region are dramatically different from the

standard counterparts, consequently yielding the size bias. Not only do the results explain

the sources of the size distortions, but also deliver practical implications. Of much relevance

to the power of the tests is that in the presence of highly persistent but stationary processes,

the tests possess the same stochastic order under both the null and the alternative, and thus

are lack of capability of discriminating between the hypotheses. Related to the foregone is

that the results are useful to explain why employing the size-adjusted tests may be at cost

bootstrap test rejects, but the asymptotic not.

21



of a power loss, as Caner and Kilian (2001) documented. Although the tests are ideal to

apply in some cases, the analysis however is indicative that to correct for the size bias in

applications where many time series could be highly persistent in nature, either relying on

the asymptotic approximations or employing the size-adjusted critical values is unlikely to

be useful or promising.

The second, and more important goal of the paper is to seek an alternative strategy to

correct for the distortions, given the fact that the information drawn from the tests has

been considered important and valuable. We appeal to the bootstrap version of the tests.

We overcome the difficulty in reproducing independent bootstrap re-samples, due to a lack

of appropriate parametric model that corresponds to the component representation of the

series under test. It is done simply by utilizing an equivalence relation between component

models and parametric ARIMA models. With the parametric models, it becomes feasible

and straightforward to place the null constraint of stationarity when generating the re-

samples, whether or not the series come from the null or the alternative. The procedure

is crucial for the bootstrap tests to work properly. Our simulation evidence lends excellent

credence to the use of our bootstrap tests in applications. Compared to the asymptotic

counterparts, the bootstrap tests are far less prone to the size distortions, particularly as

far as the problematic area is concerned. For sample of sizes encountered in applications,

the empirical size of the bootstrap tests has proven to be nearly away from the nominal

one. This suggests the accuracy of the bootstrap critical values. One further merit of the

bootstrap tests is their insensitivity to the choice of bandwidth numbers, affecting much the

accuracy of the asymptotic approximations.

Our bootstrap scheme is not limited to apply only to the KPSS tests. Other stationarity

tests proposed, including parametric tests of Saikkonen and Luukkonen (1993) and Ley-

bourne and McCabe (1994), have been complained by suffering the similar size distortions

problem as the KPSS tests experience. Applying the bootstrap scheme to account for the

size bias associated with the parametric tests for stationarity is more straightforward. This

is simply because to draw independent bootstrap re-samples, the bootstrap scheme counts

on an ARIMA model with an moving average unit root from which these parametric tests

are derived. Some complications, though not difficult, would be involved in applying the

bootstrap scheme to the test proposed by Choi (1994), a modified version of the KPSS tests.

22



Some research as suggested has been under way, and will be reported by the authors in the

future.

We nevertheless make no claim of the bootstrap consistency for our bootstrap proposal,

not to mention the asymptotic refinement. Theoretical work along the line is to justify the

validity and superiority of our bootstrap algorithm. This appears very difficult because the

scheme is non-linear in nature due to the ARIMA estimation. It remains unknown whether

the Edgeworth expansion is available for the model under study. A good point for the task

to start with might have been given by Park (2003) that focuses on the unit root testing.

We leave it for future research.

Appendix: Mathematical Proofs

We shall only present proofs for the case with m = 1, because that with m = 0 follows very

easily. Under the assumptions in Theorem 1, it can be established that 1√
T
(β̂0 − β0)√
T (β̂1 − β1)

 =⇒ σε(
∫ 1

0
g(r)g(r)

′
dr)−1(

∫ 1

0
g(r)Jc(r)dr)

where g(r) = [1, r]
′
. Denote A = diag(1, 1

T
) and recall that β̂0 and β̂1 are the OLS estimates

from a regression of yt on an intercept and a time trend. Given that ut is a near-unit-root

process, we can obtain

(
1√
T

)A−1

[
β̂0 − β0

β̂1 − β1

]
=

{
T−1

T∑
t=1

A

[
1
t

] [
1 t

]
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}−1
1
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T∑
t=1
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[
1
t

]
(

1√
T

)ut

=⇒ σε(
∫ 1

0
g(r)g(r)

′
dr)−1(

∫ 1

0
g(r)Jc(r)dr)

Now, let r ∈ [0, 1] and denote [Tr] the largest integer parts of Tr. The partial sum process

can be defined as S[Tr] ≡
∑[Tr]

t=1 ût, where ût ≡ yt − (β̂0 + β̂1t) are the OLS residulas. Some

calculations can give

T−3/2S[Tr] = T−3/2
[Tr]∑
t=1

ût

= T−3/2
[Tr]∑
t=1

{ut − (β̂0 − β0)− (β̂1 − β1)t}

= T−3/2
[Tr]∑
t=1

ut −
1

T

[Tr]∑
t=1

[
1 t

T

]  1√
T
(β̂0 − β0)√
T (β̂1 − β1)
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=⇒ σε

∫ r

0
{Jc(s)− g(s)′(

∫ 1

0
g(r)g(r)

′
dr)−1(

∫ 1

0
g(r)Jc(r)dr)}ds

≡ σε

∫ r

0
J̃c(s)ds

As a result,

1

T 4

T∑
t=1

S2
t =

1

T

T∑
t=1

(
St

T 3/2
)2 =⇒ σ2

ε

∫ 1

0
(
∫ r

0
J̃c(s)ds)

2dr

On the other hand, given the definition of ût, using the same line of arguments, it can

be shown that 1√
T
û[Tr] =⇒ σεJ̃c(r)(= Jc(r) + (6r − 4)

∫ 1
0 Jc(s)ds + (6 − 12r)

∫ 1
0 sJc(s)ds).

Following from the definition of the long-run variance in (4) and the arguments in KPSS

(page 168) gives

(
1

TL
)σ̂2 =⇒ (

∫ 1

−1
(1− |x|)dx)(σ2

ε

∫ 1

0
J̃2

c (r)dr)

= σ2
ε

∫ 1

0
J̃2

c (r)dr

Therefore,

(
L

T
)KPSSτ (k) =

1
T 4

∑T
t=1 S

2
t

1
TL
σ̂2

=⇒
∫ 1
0 (

∫ r
0 J̃c(s)ds)

2dr∫ 1
0 J̃

2
c (r)dr

The intended results are thus established.
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Table 2 Empirical Size Performance of KPSSµ (with intercept)

KPSSµ(4) KPSSµ(8) KPSSµ(12) KPSSµ(4) KPSSµ(8) KPSSµ(12)
T α asym. boot. asym. boot. asym. boot. T asym. boot. asym. boot. asym. boot.
30 0.980 0.573 0.031 0.304 0.030 0.033 0.037 50 0.610 0.038 0.425 0.039 0.206 0.041

0.960 0.516 0.036 0.241 0.040 0.022 0.038 0.544 0.029 0.347 0.031 0.130 0.027
0.940 0.473 0.040 0.191 0.039 0.015 0.034 0.483 0.032 0.296 0.032 0.099 0.036
0.920 0.437 0.035 0.161 0.037 0.012 0.029 0.451 0.036 0.256 0.031 0.083 0.023
0.900 0.405 0.033 0.139 0.033 0.009 0.033 0.417 0.025 0.222 0.024 0.071 0.030
0.880 0.379 0.035 0.122 0.036 0.007 0.037 0.379 0.048 0.196 0.041 0.062 0.041
0.860 0.355 0.028 0.107 0.026 0.006 0.033 0.343 0.048 0.173 0.042 0.053 0.047
0.840 0.329 0.038 0.095 0.040 0.006 0.040 0.312 0.059 0.157 0.062 0.049 0.057
0.820 0.307 0.046 0.087 0.042 0.005 0.049 0.285 0.050 0.142 0.049 0.044 0.050
0.800 0.288 0.036 0.080 0.039 0.005 0.036 0.261 0.051 0.129 0.051 0.042 0.048
0.500 0.113 0.054 0.041 0.063 0.006 0.053 0.099 0.068 0.055 0.064 0.026 0.062
0.300 0.067 0.053 0.031 0.062 0.005 0.050 0.068 0.056 0.041 0.062 0.020 0.063
0.000 0.035 0.062 0.021 0.058 0.003 0.050 0.041 0.059 0.030 0.062 0.013 0.058

100 0.980 0.711 0.031 0.495 0.029 0.366 0.026 150 0.810 0.030 0.601 0.033 0.442 0.028
0.960 0.623 0.036 0.409 0.035 0.274 0.031 0.718 0.041 0.485 0.038 0.337 0.034
0.940 0.554 0.045 0.338 0.043 0.224 0.049 0.628 0.043 0.402 0.039 0.254 0.038
0.920 0.494 0.047 0.291 0.044 0.185 0.047 0.551 0.039 0.331 0.041 0.200 0.045
0.900 0.438 0.044 0.251 0.045 0.156 0.043 0.481 0.041 0.270 0.037 0.163 0.044
0.880 0.386 0.051 0.218 0.049 0.132 0.050 0.420 0.055 0.227 0.051 0.140 0.055
0.860 0.346 0.050 0.190 0.052 0.114 0.052 0.369 0.048 0.194 0.047 0.125 0.046
0.840 0.312 0.048 0.167 0.053 0.103 0.056 0.329 0.044 0.169 0.041 0.111 0.037
0.820 0.285 0.070 0.151 0.063 0.091 0.063 0.290 0.046 0.151 0.043 0.099 0.042
0.800 0.263 0.047 0.136 0.052 0.084 0.059 0.257 0.049 0.139 0.046 0.092 0.045
0.500 0.097 0.058 0.061 0.066 0.043 0.067 0.095 0.050 0.069 0.051 0.052 0.059
0.300 0.062 0.067 0.047 0.062 0.037 0.062 0.069 0.061 0.055 0.062 0.044 0.067
0.000 0.042 0.061 0.036 0.064 0.031 0.059 0.048 0.053 0.046 0.052 0.037 0.057

300 0.980 0.868 0.032 0.682 0.031 0.532 0.034 600 0.907 0.051 0.725 0.054 0.578 0.054
0.960 0.750 0.042 0.515 0.042 0.375 0.045 0.752 0.049 0.511 0.050 0.370 0.048
0.940 0.634 0.049 0.393 0.049 0.278 0.050 0.613 0.049 0.371 0.048 0.258 0.051
0.920 0.535 0.046 0.312 0.047 0.213 0.049 0.503 0.054 0.282 0.051 0.197 0.052
0.900 0.452 0.039 0.257 0.040 0.176 0.040 0.417 0.048 0.232 0.047 0.161 0.047
0.880 0.387 0.047 0.218 0.047 0.152 0.046 0.353 0.050 0.194 0.051 0.136 0.051
0.860 0.341 0.043 0.188 0.046 0.134 0.049 0.302 0.050 0.165 0.052 0.120 0.050
0.840 0.300 0.044 0.168 0.043 0.119 0.040 0.260 0.053 0.149 0.053 0.110 0.052
0.820 0.267 0.045 0.151 0.045 0.109 0.046 0.231 0.049 0.134 0.050 0.101 0.050
0.800 0.242 0.048 0.136 0.048 0.097 0.049 0.208 0.052 0.123 0.053 0.094 0.058
0.500 0.089 0.045 0.069 0.045 0.058 0.047 0.086 0.057 0.067 0.061 0.059 0.060
0.300 0.068 0.075 0.056 0.076 0.050 0.077 0.069 0.044 0.060 0.049 0.054 0.047
0.000 0.050 0.050 0.047 0.048 0.044 0.055 0.053 0.054 0.052 0.058 0.050 0.056

Notes: The DGP is yt = αyt−1 + et with et
iid∼ N(0, 1). KPSSµ(k) and KPSSτ (k) are as defined in the text, respectively. boot.

denotes the bootstrap test, asym. the asymptotic test, and T sample sizes. The figures reported are the rejection frequencies at 5%
nominal significance level, based on 5,000 replications for the asymptotic tests, and 1,000 for the bootstrap tests with 100 re-samples.
The asymptotic critical values for 5% level is .463 for KPSSµ(k) and .146 for KPSSτ (k).



Table 3 Empirical Size Performance of KPSSτ (with intercept and time trend)

KPSSτ (4) KPSSτ (8) KPSSτ (12) KPSSτ (4) KPSSτ (8) KPSSτ (12)
T α asym. boot. asym. boot. asym. boot. T asym. boot. asym. boot. asym. boot.
30 0.980 0.497 0.048 0.203 0.060 0.141 0.057 50 0.612 0.072 0.367 0.072 0.169 0.066

0.960 0.485 0.070 0.194 0.068 0.140 0.058 0.587 0.063 0.338 0.064 0.146 0.063
0.940 0.468 0.057 0.180 0.050 0.135 0.059 0.550 0.060 0.301 0.065 0.124 0.059
0.920 0.448 0.060 0.162 0.061 0.133 0.054 0.514 0.053 0.268 0.056 0.105 0.057
0.900 0.429 0.051 0.148 0.038 0.129 0.051 0.474 0.057 0.244 0.053 0.090 0.059
0.880 0.404 0.051 0.134 0.049 0.129 0.066 0.441 0.051 0.215 0.055 0.081 0.050
0.860 0.379 0.044 0.123 0.043 0.129 0.047 0.407 0.041 0.192 0.047 0.071 0.051
0.840 0.363 0.039 0.112 0.043 0.128 0.054 0.374 0.049 0.171 0.051 0.067 0.047
0.820 0.337 0.058 0.103 0.041 0.127 0.052 0.347 0.039 0.154 0.039 0.064 0.038
0.800 0.320 0.050 0.094 0.053 0.130 0.058 0.316 0.055 0.141 0.050 0.061 0.059
0.500 0.122 0.050 0.051 0.060 0.185 0.061 0.115 0.051 0.058 0.044 0.050 0.058
0.300 0.072 0.061 0.043 0.060 0.213 0.059 0.067 0.051 0.044 0.057 0.050 0.056
0.000 0.041 0.056 0.036 0.053 0.246 0.056 0.040 0.062 0.034 0.058 0.046 0.048

100 0.980 0.802 0.056 0.547 0.056 0.384 0.053 150 0.906 0.042 0.714 0.042 0.475 0.039
0.960 0.750 0.043 0.471 0.045 0.322 0.046 0.854 0.055 0.613 0.054 0.383 0.050
0.940 0.696 0.055 0.409 0.052 0.266 0.057 0.787 0.051 0.519 0.052 0.304 0.055
0.920 0.632 0.045 0.350 0.048 0.215 0.046 0.718 0.054 0.435 0.057 0.248 0.053
0.900 0.574 0.047 0.301 0.049 0.181 0.047 0.655 0.057 0.372 0.057 0.201 0.054
0.880 0.520 0.049 0.259 0.048 0.154 0.050 0.590 0.056 0.316 0.057 0.170 0.056
0.860 0.472 0.055 0.225 0.051 0.135 0.056 0.531 0.055 0.274 0.053 0.148 0.053
0.840 0.422 0.051 0.197 0.053 0.117 0.054 0.470 0.055 0.236 0.056 0.128 0.058
0.820 0.379 0.057 0.175 0.052 0.105 0.054 0.423 0.054 0.208 0.059 0.113 0.057
0.800 0.344 0.057 0.159 0.056 0.097 0.052 0.377 0.055 0.182 0.056 0.103 0.055
0.500 0.110 0.046 0.068 0.048 0.048 0.048 0.112 0.063 0.073 0.059 0.054 0.064
0.300 0.070 0.075 0.053 0.067 0.041 0.063 0.072 0.051 0.057 0.051 0.046 0.067
0.000 0.044 0.063 0.040 0.065 0.036 0.063 0.045 0.059 0.044 0.068 0.041 0.070

300 0.980 0.964 0.035 0.820 0.035 0.670 0.032 600 0.986 0.053 0.894 0.052 0.753 0.051
0.960 0.908 0.043 0.682 0.047 0.500 0.046 0.930 0.060 0.713 0.063 0.526 0.064
0.940 0.830 0.039 0.550 0.039 0.376 0.040 0.837 0.059 0.557 0.065 0.375 0.066
0.920 0.748 0.049 0.442 0.046 0.290 0.045 0.730 0.062 0.432 0.060 0.279 0.058
0.900 0.652 0.049 0.361 0.049 0.231 0.045 0.634 0.067 0.342 0.065 0.217 0.063
0.880 0.570 0.054 0.301 0.053 0.191 0.054 0.544 0.065 0.280 0.067 0.174 0.066
0.860 0.494 0.051 0.253 0.056 0.166 0.053 0.468 0.062 0.231 0.063 0.154 0.062
0.840 0.435 0.057 0.220 0.058 0.143 0.057 0.401 0.061 0.197 0.064 0.136 0.062
0.820 0.383 0.059 0.197 0.060 0.127 0.062 0.356 0.063 0.172 0.062 0.121 0.061
0.800 0.340 0.047 0.176 0.057 0.115 0.056 0.310 0.055 0.157 0.058 0.111 0.056
0.500 0.111 0.050 0.077 0.047 0.065 0.049 0.104 0.063 0.074 0.063 0.065 0.061
0.300 0.076 0.068 0.062 0.066 0.058 0.070 0.075 0.064 0.063 0.060 0.059 0.058
0.000 0.055 0.059 0.052 0.060 0.050 0.062 0.054 0.070 0.053 0.063 0.052 0.064

Notes: The DGP is yt = αyt−1 + et with et
iid∼ N(0, 1). KPSSµ(k) and KPSSτ (k) are as defined in the text, respectively. boot.

denotes the bootstrap test, asym. the asymptotic test, and T sample sizes. The figures reported are the rejection frequencies at 5%
nominal significance level, based on 5,000 replications for the asymptotic tests, and 1,000 for the bootstrap tests with 100 re-samples.
The asymptotic critical values for 5% level is .463 for KPSSµ(k) and .146 for KPSSτ (k).



Table 4 Empirical Power Performance of KPSS Tests

Panel A: KPSSµ (with intercept)
KPSSµ(4) KPSSµ(8) KPSSµ(12) KPSSµ(4) KPSSµ(8) KPSSµ(12)

T α asym. boot. asym. boot. asym. boot. T asym. boot. asym. boot. asym. boot.
30 1 0.647 0.635 0.487 0.495 0.380 0.392 50 0.704 0.725 0.596 0.607 0.488 0.496

0.1 0.442 0.454 0.346 0.372 0.272 0.283 0.594 0.609 0.520 0.498 0.423 0.397
0.01 0.141 0.148 0.119 0.126 0.106 0.113 0.257 0.281 0.233 0.247 0.198 0.228
0.001 0.062 0.051 0.057 0.059 0.062 0.072 0.075 0.091 0.076 0.084 0.072 0.080
0.0001 0.051 0.050 0.051 0.056 0.055 0.062 0.052 0.054 0.056 0.056 0.055 0.059

100 1 0.821 0.829 0.690 0.687 0.612 0.605 150 0.914 0.919 0.792 0.836 0.710 0.723
0.1 0.759 0.792 0.654 0.696 0.586 0.631 0.881 0.887 0.765 0.792 0.693 0.689
0.01 0.506 0.528 0.465 0.478 0.426 0.438 0.681 0.693 0.618 0.639 0.573 0.582
0.001 0.146 0.159 0.137 0.148 0.134 0.143 0.278 0.297 0.262 0.273 0.248 0.264
0.0001 0.057 0.084 0.057 0.079 0.058 0.077 0.077 0.079 0.072 0.078 0.074 0.082

300 1 0.962 0.960 0.893 0.900 0.816 0.825 600 0.992 0.984 0.959 0.956 0.919 0.924
0.1 0.957 0.958 0.886 0.897 0.809 0.832 0.990 0.989 0.958 0.965 0.917 0.932
0.01 0.880 0.889 0.818 0.836 0.753 0.782 0.972 0.970 0.935 0.928 0.896 0.898
0.001 0.554 0.543 0.532 0.524 0.508 0.496 0.818 0.824 0.783 0.795 0.751 0.765
0.0001 0.152 0.178 0.150 0.174 0.148 0.175 0.368 0.396 0.362 0.384 0.355 0.379

Panel B: KPSSτ (with intercept and time trend)
KPSSτ (4) KPSSτ (8) KPSSτ (12) KPSSτ (4) KPSSτ (8) KPSSτ (12)

T σ2
ζ asym. boot. asym. boot. asym. boot. T asym. boot. asym. boot. asym. boot.

30 1 0.463 0.486 0.232 0.206 0.011 0.026 50 0.612 0.622 0.398 0.434 0.181 0.219
0.1 0.213 0.238 0.132 0.152 0.026 0.033 0.389 0.398 0.281 0.305 0.135 0.168
0.01 0.074 0.096 0.062 0.078 0.044 0.056 0.110 0.117 0.097 0.110 0.072 0.075
0.001 0.051 0.070 0.052 0.066 0.047 0.063 0.058 0.070 0.056 0.058 0.052 0.066
0.0001 0.050 0.057 0.051 0.062 0.047 0.063 0.053 0.063 0.051 0.051 0.049 0.069

100 1 0.810 0.803 0.599 0.625 0.461 0.497 150 0.917 0.890 0.767 0.758 0.619 0.592
0.1 0.689 0.686 0.524 0.534 0.416 0.435 0.853 0.863 0.714 0.739 0.571 0.599
0.01 0.289 0.291 0.245 0.253 0.217 0.213 0.486 0.527 0.417 0.465 0.361 0.384
0.001 0.073 0.083 0.072 0.086 0.071 0.076 0.114 0.128 0.108 0.129 0.101 0.119
0.0001 0.051 0.068 0.050 0.066 0.054 0.058 0.053 0.061 0.052 0.053 0.053 0.056

300 1 0.980 0.965 0.906 0.900 0.807 0.805 600 0.998 0.985 0.976 0.962 0.936 0.931
0.1 0.966 0.952 0.886 0.887 0.790 0.809 0.996 0.991 0.974 0.970 0.933 0.924
0.01 0.814 0.803 0.732 0.734 0.654 0.660 0.970 0.978 0.937 0.947 0.891 0.896
0.001 0.287 0.324 0.271 0.304 0.250 0.273 0.683 0.657 0.644 0.618 0.602 0.583
0.0001 0.071 0.092 0.071 0.086 0.068 0.087 0.172 0.175 0.166 0.175 0.156 0.172

Notes: Under the alternative, the DGP is yt = rt + εt, and rt = rt−1 + ζt, with εt
iid∼ N(0, 1) and ζt

iid∼ N(0, σ2
ζ ). KPSSµ(k) and

KPSSτ (k) are as defined in the text, respectively. boot. denotes the bootstrap test, asym. the asymptotic test, and T sample sizes.
The figures reported for the bootstrap tests are the rejection frequencies at 5% nominal significance level, based on 1,000 replications
with 100 re-samples. Those reported for the asymptotic counterparts are the size-adjusted empirical power.



Table 5 Testing for Purchasing Power Parity:
Asymptotic vs. Bootstrap KPSS Tests

Monthly data Quarterly Data
boot. cv. boot. cv.

Country KPSS α̂ 5% 10% KPSS α̂ 5% 10%
Australia n/a n/a n/a n/a 0.514∗∗‡ 0.018 0.401 0.350
Austria 0.439∗ 0.835 0.785 0.678 0.225 0.436 0.399 0.322
Belgium 0.224 0.898 0.929 0.824 0.118 0.851 0.572 0.504
Canada 0.924∗∗ 0.960 1.252 1.057 0.463∗∗† 0.707 0.470 0.394

Denmark 0.276 0.785 0.540 0.475 0.147 0.644 0.502 0.404
Finland 0.119 0.882 0.853 0.756 0.070 0.836 0.474 0.404
France 0.196 0.777 0.562 0.499 0.110 0.298 0.409 0.341

Germany 0.237 0.818 0.764 0.623 0.128 0.861 0.708 0.641
Greece 0.355∗‡ 0.937 0.302 0.235 0.178 0.856 0.555 0.509
Ireland n/a n/a n/a n/a 0.391∗ 0.818 0.674 0.560
Italy 0.367∗† 0.688 0.380 0.285 0.204 0.038 0.400 0.336
Japan 1.315∗∗‡ 0.641 0.626 0.483 0.629∗∗‡ 0.017 0.416 0.344

Netherlands 0.221 0.983 1.684 1.658 0.120 0.863 0.432 0.356
Norway 0.156 0.745 0.382 0.306 0.089 0.536 0.385 0.322

New Zealand n/a n/a n/a n/a 0.158 0.758 0.444 0.346
Portugal 0.459∗† 0.344 0.477 0.382 0.227 0.736 0.572 0.481
Spain 0.395∗ 0.923 0.962 0.886 0.209 0.722 0.493 0.419

Sweden 0.296† 0.835 0.333 0.260 0.158 0.928 0.824 0.789
Switzerland 0.608∗∗‡ 0.865 0.327 0.252 0.313 0.365 0.405 0.326

United Kingdom 0.410∗ 0.970 1.434 1.262 0.254 0.834 0.371 0.310

Notes: Data is obtained from the IMF publication, International Financial Statistics. The real
exchange rates are constructed from the consumer price index series and the exchange rate series
for the price of U.S. dollars in respective currency. Monthly data is available over the period
1973.1-1998.12, and quarterly data is available over 1973.I - 1998.IV. For all calculations, the
bandwidth number is set to L = [12(T/100)]1/4. α̂ denotes The largest autoregressive root from
fitting ARMA(p,1) to the differenced series from which the bootstrap re-samples are generated.
the autoregressive lag order is chosen by the AIC. ‘boot. cv.’ is short for bootstrap critical
values. The asymptotic critical value for KPSS test is 0.463 (0.347) at the 5 (10)% significance
level. ∗∗ (∗) represents a rejection at 5 (10)% level using the asymptotic critical values, and ‡
(†) using the bootstrap asymptotic critical values.


