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1 Introduction

The Nordic wholesale market for electricity covers the four continental Nordic countries

– Finland, Denmark, Norway, and Sweden – which, through their national transmission

system operators, own and run a common power exchange, the Nord Pool. Private

parties can procure and sell electricity in the Nord Pool, allowing a division of labor

for a diverse set of generation technologies including hydro, nuclear, and various forms

of thermal power. Hydroelectricity is the key technology is this market. On average,

one half of the annual Nordic consumption is met by hydroelectricity but its availability

varies widely within and across the years – the annual deviation of water availability

can deviate from a typical year by an amount that translates into ca. 1.3 bn (2 bn

$) using average historical prices. Under multiple uncertainties regarding future in‡ows,

temperature-driven demands, and fuel prices of alternative production, the Nordic hydro

power stations face a nontrivial problem of allocating the water stocks between the current

and future uses.

We …nd that the Nordic market presents a unique opportunity for an empirical ap-

plication of an explicit model of dynamic imperfect competition. In this market, the

institutional, technological, and economic framework naturally shape the model struc-

ture, thereby leaving relatively little scope for speculations regarding the main ingredients

of the model. It is hard to think of other inherently dynamic markets where the ’state’

of the market can be measured with similar preciseness. As opposed to many other dy-

namic markets such as those for aircrafts (Benkard 2004) or cement (Ryan 2006),1 the

producers’ dynamic decision is in principle simple: how much water to release and save

today? The reduction in the complexity of the economic problem allows us to take steps

in empirical matching of the market structure with a quite detailed data.2

We develop a model that is computationally tractable and can map the multiple

distributions of market fundamentals into price, output and reservoir distributions as a

1While much of the literature on dynamic competition aims to capture the evolution of an industry

by focusing on entry and exit, the hydro industry is pronouncedly static with respect to its capacity

but extremely dynamic and potentially also strategic with respect to usage of the existing capacity. In

this market, the static-dynamic breakdown (see Doraszelski and Pakes, 2006) is thus reversed such that

the economic problem is further simpli…ed without loss of realism, allowing a more detailed study of

dynamic pricing and production for a very sharply de…ned commodity.
2We note there are not many applications of explicit dynamic models of imperfect competition, despite

the considerable recent interest in developing a framework for such testing (e.g., Bajari, Benkard, and

Levin 2007, Pesendorfer and Schmidt-Dengler 2008; see Doraszelski and Pakes 2007 for a review).
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function of the market structure, which allows us to choose the structure that best …ts

with the historical data. The approach is not speci…c to the Nordic market and therefore

applies to market power issues in storable-good markets, and electricity markets with

hydro technologies more generally. This paper is also the …rst explicit attempt to evaluate

the best-…tting market structure in hydro use in the Nordic market and among the …rst

in general.3 We …nd a pattern for market power and evidence that it systematically

distorted the reservoir levels during the years 2000-2005. The model can explain the main

behavioral patterns in pricing, storage, and production, and 90 per cent of the estimated

welfare loss. We also simulate the expected long-run social loss from such behavior and

…nd an extremely low number: the best-…tting market structure increases the expected

average price of electricity by less than 1 /MWh. This leads us to conclude that the

scope for social losses from imperfect competition is not large in the Nordic market for

hydroelectricity, but at extraordinary events, such as the shortage of water availability

in 2002, large sporadic deviations from the …rst-best outcome can occur.

Market power in storable-good markets has traditionally been notoriously di¢cult

to detect because price-cost margins depend on expected future market conditions that

cannot be observed ex post – in a pure storage decision such as the hydro release, the

marginal cost is only the opportunity cost from not being able to sell the same unit in

the future. Thus, to evaluate the price-cost margins, one needs to evaluate the expected

future values at the state of the market where the decision is made. Perhaps for this

reason, while there is a well-developed theory on competitive storage,4 there is little

work on market structure and storage and, in particular, empirical applications or tests

are practically nonexistent.5 The Nordic market gives us an advantage in testing the

e¤ectiveness of storage behavior. As an electricity market, the Nordic market is, and

has been, subject to a regulatory oversight, providing a wealth of data that we can

use to estimate relatively objectively how market participants should view the market

fundamentals such as in‡ows, demands, and thermoelectric supply.

3Evaluating market power in the Nordic market requires a framework for imperfect competition in

hydro use. We are the …rst to provide such a framework and its empirical application. Amundsen and

Bergman (2002) and (2006), and von der Fehr, Amundsen and Bergman (2005) provide valuable analysis

of the issues relevant in the Nordic market.
4The work by Williams and Wright is summarized in their book (1991); see also Deaton and Laroque

(1992) and (1996).
5McLaren (1999) builds on Newbery (1984) to descibe a Markov perfect equilibrium in an oligopolistic

storage market. Market power leads to reduced storage levels and increased price risk. Rotemberg and

Saloner (1989) include storage as a strategic device supporting collusive oligopoly equilibria.
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We depart from other studies of market power in electricity markets in that the

focus is on the long-run usage of capacity rather short-run market power in the spot

market. In the Nordic market, the hydro stocks are long-lived and the main market

fundamental determining how the division of labor between capacity types evolves within

and between the years. The stocks create a …rm link between the current spot prices

and expected future prices, thereby stipulating e¢ciency analysis of the long-run price

levels. Studies of other early deregulated electricity markets focus on the short-run

market power, for which electricity markets provide an interesting case: there is relatively

precise engineering (expert) data on marginal costs, allowing a direct evaluation of price-

cost margins from price-quantity data. This approach has been used by Wolfram (1999)

in the British electricity market, and by Borenstein, Bushnell, and Wolak (2002) in the

California’s market; in later work, for example, Hortaçsu and Puller (2008), Puller (2007),

and Bushnell, Mansur, and Saravia (2008) put more focus on the market structure.

A hydro-dominated market requires a very di¤erent methodological approach from

that used in the previous work on electricity markets. Any attempt to include hydro

as a part of the aggregate marginal cost curve will require a behavioral element in the

analysis because one must solve the equilibrium valuation of water; this value does not

exist as a primitive input in an expert data set. A realistic computation of the socially

optimal water values is in most cases a large scale numerical problem. To obtain a

realistic benchmark for our market power analysis, we …rst develop an aggregative model

of competitive storage, where data inputs include 52 weekly distributions for both in‡ows

and consumer demand estimated from historical data as well as weekly supply curves for

other technologies. The hydro demand is then constructed as the residual using the

consumer demand and nonhydro supply curve. In this procedure, we must estimate how

the nonhydro capacity is supplied in each potential future state of the market; otherwise

one cannot form expectations determining the value of the current storage. This is an

important di¤erence to the past studies based on expert data sets on marginal cost

curves.6

A model set up this way can be used to map the primitive distributions of market

6Our paper is a natural extension to the literature on hydroelectricity markets in that we present the

…rst explicit empirical model of imperfect competition that is …tted to the market outcomes. Analytically,

Crampes and Moreaux (2001) show that market power can be exercised by exploiting di¤erences in

demand elasticity of di¤erent periods, without spilling water. Bushnell (2003) …nds potential for such

behavior in a numerical multi-period short-term Cournot game calibrated to the western United States

electricity markets. Scott and Read (1996), Garcia, Reitzes and Stacchetti (2001), and Thille and Genc

(2008) also study a mixed hydro-thermal system with market power.
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fundamentals and nonhydro supply curves to socially optimal weekly price, output and

reservoir distributions. The moment properties of the price distributions reveal that the

Nordic market has features of an exhaustible-resource market. About 50 per cent of the

annual in‡ow is concentrated to Spring weeks, leading to a market arbitrage that seeks to

use this endowment to equalize expected discounted prices until the next Spring. Indeed,

the socially optimal expected market price increases at a rate very close to the interest

rate throughout the hydrological year, while in the end of the year the price is expected

to drop at the arrival of the new allocation. The market has also features of a traditional

storage market: favorable demand-in‡ow realizations lead to storage demand and savings

to the next year. Towards the end of the hydrological year weekly price distributions have

moment properties familiar to those observed in other storable-commodity markets.

Using the socially optimal policy we can evaluate the historical market experience in

2000-2005, a period over which the economic environment was relatively stable. We …nd a

7.3 per cent welfare loss, or that the cost of meeting the same demand could have been 636

mill. lower. We also …nd a systematic deviation between the socially optimal policy

and the market usage of water: the reservoir target levels are systematically di¤erent

leading to a market shortage of water in late 2002 and to a considerable price spike.

When developing the model of dynamic imperfect competition, we keep the primitives

of the socially optimal framework but change the behavioral assumption: some fraction

of the total reservoir and turbine capacity is assumed to be strategically managed,

and the remainder of the hydroelectricity generation is competitive. We do not have

data detailed enough to map actual …rm level capacities into the model, and given the

dimensionality of the problem, this approach would render the model intractable. Our

dominant …rm (or cartel) approach is pushing the computational limits while still being

an explicit model of dynamic competition.

The existing techniques for …nding the underlying structural parameter (the capacity

share ) do not directly apply in our dynamic game.7 The computational problem is

caused by the need to evaluate the market expectations of the behavior of the large …rm

in each possible state. We develop an algorithm for solving this …xed-point problem,

and then solve the game through a large backward-induction exercise. By repeatedly

solving the game for varying -values, we …nd a mapping from primitive distributions

7We considered using the Bajari, Benkard and Levin (2007) approach, where the market policy is …rst

estimated and then used to recover structural parameters. However, the hydro policies are conditional

on a rich set of variables, and it is di¢cult to estimate these relationships with preciseness that can lead

to an outcome competing with our direct method.
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plus market structure to weekly price, output and reservoir distributions. We then use the

Generalized Method of Moments for the three moment restrictions to …nd the best-…tting

market share parameter.

We …nd that the market structure where 30 per cent of the storage capacity is strate-

gically managed provides the best match with the historical data. The result is robust

to various forms of data aggregation (weekly, monthly, quarterly, or semi-annual aggre-

gation). To evaluate if some unobserved or mismeasured factors can produce a simi-

lar match with the data, we force the competitive behavioral assumption and estimate

structurally the best-…tting constraints in the hydro system, the discount rate, and out-

of-sample expectations for demand and in‡ows. Su¢cient adjustment of both lower and

upper limits on available hydro capacity can almost match the …t provided by our behav-

ioral assumption, but with gross deviation from what the data indicates for the available

capacity.

How is the market power then exercised? We rule out (or penalize) spilling of water

since such behavior is easily detected. Under this constraint, the current availability can

be reduced by shifting supply to the future, thereby increasing the expected reservoir

levels as well as prices and price risk. However, in expected terms the social loss from

such behavior is extremely low: the best-…tting market structure increases the expected

average price of electricity by merely 1 /MWh. The reason for the relatively large loss

estimated from the historical data is that the market experienced an in‡ow shortage in

late 2002 that occurs on average once in every 200 years. Such extraordinary events

provide a unique opportunity for exercising market power, and this is what our model

predicts: the model can replicate the price shock experienced and explain 90 per cent of

the welfare loss.

The paper is structured as follows. In Section 2, we provide an overview of insti-

tutional framework and the market fundamentals that are the main ingredients of the

model. In Section 3, we describe the formal model used in the socially optimal hydro

allocation problem. While complicated due to multidimensional state and uncertainties,

it is a standard stochastic dynamic programming problem. The model is general enough

to give traditional storage and exhaustible resource models as special cases, but when

speci…ed to match the power market framework, the implications become speci…c to this

market. We explain how this model is calibrated and discuss the properties of the socially

optimal path in detail. In Section 4, we formally develop the alternative market structure

that is then, for a given , calibrated similarly to the socially optimal model (with some

increase in computational complexity). We develop a test statistic and search for the best
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matching and also explain the implications of market power in this storage market.

In Section 5, we test for the robustness of our results by studying whether the observed

behavior could be explained by socially optimal hydro use under alternative parameteri-

zations of the model. The …nal section concludes and discusses the shortcomings of the

approach.

2 Institutions and market fundamentals

2.1 System price

In this section we give an overview of the institutional and market environment; the data

and its sources will be discussed in detail in Section 3.4. The Nordic wholesale power

market developed to its current form through a series of steps, as the four continen-

tal Nordic countries (Finland, Denmark, Norway, Sweden) underwent electricity market

liberalization at di¤erent times in the 1990’s. Full integration was achieved in October

2000, when East Denmark was integrated into the market. Wholesale electricity trade is

organized through a common pool, Nord Pool, a power exchange owned by the national

transmission system operators.8 Market participants submit quantity-price schedules to

the day-ahead hourly market (Elspot market).9 The demand and supply bids are ag-

gregated, and the hourly clearing price is called the system price. The Nordic market

uses a zonal pricing system, in which the market is divided into separate price areas. If

the delivery commitments at the system price lead to transmission congestion, separate

price areas are established. However, we do not focus on the hourly electricity market

but de…ne the relevant market at the weekly level. Our objective is to analyze hydro

storage for which extraordinary events may have rami…cations over several years and,

given this objective, we de…ne prices as well as other economic variables as weekly aver-

ages. Decisions in an hourly market do not lead to signi…cant changes in hydro stocks

and, therefore, one is forced to aggregate over hours to make the dimensions of stocks

and ‡ows relevant for the analysis. At this level of aggregation, there are good reasons to

argue that the Nordic area is a relatively well integrated electricity market. The Nordic

market forms a single price area for a signi…cant fraction of time, as indicated by Table

1 which shows deviations from the system price for the main price areas as percentage

8For more information, see www.nordpool.com. For a concise description of the Nordic market, see

Amundsen and Bergman (2006).
9The day-ahead Elspot market is the relevant spot market. While there is a real-time market (Elbas

market) closing an hour before delivery, volumes in the Elbas market are small relative to the Elspot.

7



departures in weekly averages. About 94 per cent of the hydro resource stocks are located

in the Norwegian and Swedish price areas, in which deviations from the system price are

on average the smallest. It would be di¢cult to choose any other price than the system

price as the reference price for hydro storage decisions.10

Figure 3 shows the weekly system price over the six years 2000-05, and an estimated

price that we discuss later. We focus on this period when matching the model with the

data because the institutional and economic environment was relatively stable; that is,

the market was not yet a¤ected by the European emissions trading scheme and further

integration to the continental Europe. To present a snapshop of the market development,

we may call the years 2000-01 as years of abundant availability of hydroelectricity which

is re‡ected in the prices of Figure 3. The year 2002 in turn was exceptional: the Fall

rainfall and thus in‡ow was scant and the stocks were drawn down to approach historical

minimums by the turn of the year. The price spike resulted, and it took almost two years

for the stocks to recover.

2.2 Capacities

The attraction of a joint Nordic power market is due to the favorable mix of generation

technologies resulting from the integration of the national markets. Roughly one half of

annual Nordic generation is produced by hydro plants. In 2000-05, 61 per cent of hydro-

electricity was generated in Norway and 33 per cent in Sweden.11 Sweden is the largest

producer of thermoelectricity with a share of 46 per cent of annual mean production,

followed by Finland and Denmark, with shares of 35 and 19 per cent, respectively. The

direction of trade between the countries varies from year to year, depending mainly on

the availability of hydroelectricity. In years of high precipitation, the hydro power is

exported from the hydro dominated regions to Denmark and Finland. In these years, a

sizeable fraction of total thermal capacity is idle through much of the year. When in‡ow

is scarce, the ‡ow of trade is reversed, and power is exported from the thermally intensive

10The direction of congestion in the transmission links varies from year to year depending on the divi-

sion of labor between hydro-intensive and thermal-intensive regions in the market. Thus, the frequency

with which hydro producers receive a price deviating up or down depends on the state of the market and,

in principle, one could estimate the expected departure in the price and then use this information when

evaluating the hydro producers’ behavior. In the current paper, we do not model the hydro resource

stocks in di¤erent price areas separately and, therefore, cannot incorporate the information about area

price di¤erentials in a meaningful way.
11The capacities cited here are reported by the Organisation for the Nordic Transmission System

Operators (www.nordel.org) unless otherwise noted.
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regions to Norway.

Hydro availability therefore is the one single market fundamental that would alone

cause considerable price volatility within and across the years even without other sources

of uncertainty. Figure 1 depicts the mean and the empirical support for aggregate weekly

in‡ow over the years 1980-1999. The mean annual in‡ow in the market area was 201

TWh of energy, and the maximum deviation from this -49 TWh in 1996. This di¤erence

translates into a value of ca. 1.3 billion using the average system price in 2000-05.

Within-the-year seasonal in‡ows follow a certain well-known pattern, as illustrated by

Figure 1. The hydrological year can be seen to start in Spring when expected in‡ows are

large due to the melting of snow; on average 50 per cent of annual in‡ow arrives in the

three months following week 18. The aggregate reservoir capacity in the market is 121

TWh, or 60 per cent of average annual in‡ow. There are several hundred hydro power

stations in the market area, with a great variety of plant types. At one extreme, the run-

of-river power plants have no storage capacity, and usually produce as much electricity as

the current river ‡ow permits. At the other extreme, there are power stations connected

with one or more large reservoirs, that may take months to …ll or empty. In 2005, the

total turbine capacity of the hydro plants was 47 445 MW, or 72% of peak demand.

Hydro production is also constrained by environmental river ‡ow constraints. These

constraints together with the must-run nature of the run-of-river plants bound the hydro

output from below.

For our empirical application, it is important to emphasize the following features of

the hydro system. First, there is an almost deterministic in‡ow peak in the Spring: in

our historical data, the Spring in‡ow has never been less than one third of the mean

annual in‡ow. In this sense, at the start of each hydrological year, the market receives a

reasonably large recurrent water allocation that must be depleted gradually. The annual

consumption of this exhaustible resource has marked implications for the equilibrium

price expectations, as we will explicate. Second, the remaining annual in‡ow, on average

50 per cent, is learned gradually over the course of the Fall and Winter. This uncertainty

is important for the storage dynamics over the years: abundant Fall in‡ow, for example,

can lead to storage demand and savings to the next year; in case of shortage, a drawdown

of stocks can take place. The Nordic market for water can be seen, on one hand, as an

exhaustible-resource market and, on the other, as a storage market for a reproducible

good. For understanding the potential for market power, it is important to understand

these two interpretations, as we will see. Third, the reservoir, turbine, and various

‡ow constraints for production a¤ect the degree of ‡exibility in using the overall hydro
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resource. We take an estimate for these constraints from the data and previous studies,

but we also structurally estimate a set of constraints best …tting the data. The purpose

of this procedure is to distinguish the e¤ect of potentially mismeasured constraints on

the equilibrium from the e¤ect of potential market power.

2.3 Demand for hydro

Like hydro in‡ow, the overall electricity demand follows a seasonal pattern, which is

closely temperature related. Figure 2 depicts the mean demand and empirical support

over the weeks of years 2000-2005. The relevant concept of demand for the purposes

of this paper is the residual demand for the hydro: when consumer demand is given,

the supply from non-hydro technologies determines the residual demand for hydro. In

the Nordic area, the non-hydro production capacity consists of nuclear, thermal (coal-

, gas-, biofuel-, waste- and oil-…red plants), and wind power. An important part of

thermal capacity is combined heat and power (CHP) plants which primarily serve local

demand for heating but also generate power for industrial processes and very cost-e¢cient

electricity as a side product. An implication of CHP capacity is that the non-hydro

market supply experiences temperature-related seasonal shifts, which we seek to capture

in our estimation procedure detailed later. Table 2 provides a breakdown of capacity,

number of plants, and the utilization rates of the capacity forms over the period 2000-

2005. At the market level, there is thus a rich portfolio of capacities with large number of

plants in each category determining a relatively smooth supply function or, alternatively

put, a smooth residual demand function for hydro.

The elasticity of this residual demand is almost exclusively determined by the slope

of the non-hydro supply curve because the consumer demand is insensitive to short-run

price changes. For this reason, in the analysis we will take the consumer demand as

a given draw from a week-speci…c distribution that we estimate from the data. The

industrial consumers have more ‡exibility in responding to short-run price changes, but

their own generation capacity is included as part of the overall market supply curve and,

therefore, their price responsiveness is accounted for.
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3 Socially e¢cient allocation

3.1 The model

We describe now the socially optimal resource allocation problem. This way we introduce

the basic elements of the model which, for the most part, remain the same throughout

the rest of the paper.

Time is discrete and extends to in…nity, = 0 1 2 One year consists of 52 discrete

time periods. It will be important to keep track of the periods within a year, and therefore

we introduce another time index for the week, . Let denote the aggregate hydro stock

(measured in energy) in the reservoir, is the demand for energy, and is the week at

. State, denoted by at , is the vector

= ( )

The timing of decisions within period is the following:

1. state is observed;

2. water usage from the stock, denoted by , is chosen;

3. residual demand = ¡ is met by non-hydro production;

4. in‡ow available at + 1 is realized.

In the empirical application the key variables are discrete and de…ned on a …nite

grid, and this is what we assume also for the theory model. In particular, the action

set 2 ( ) is …nite as well as the possible physical state space for . Choices are

constrained, e.g., by the availability of water, reservoir and turbine capacity, and river

‡ow restrictions.

Demand realization is drawn separately for each week from a week-speci…c distribu-

tion:

» ( ) (1)

= 2 f1 52g

where is a cumulative distribution function (CDF) on some …nite set of outcomes

(each element bounded). An alternative to this formulation would be to assume week-

by-week realizations of demand schedules depending on price, incorporating demand
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elasticity in a more realistic manner. However, the analytical loss is small since for

our purposes the interesting elasticity is given by the residual demand for hydro. This

elasticity is to a large degree determined by the slope of the non-hydro supply curve. Yet

another formulation would be to include persistence in seasonal shocks, as high demand

in some week due to a cold spell may have implications for the next week’s demand.

Since we are uncertain about the relevance of this phenomenon in the Nordic area, we

do not want to expand the state space by assuming correlated shocks in demand.

Production by other than hydro capacity has a week-speci…c aggregate cost curve

: £ ¡! 1
+

which is increasing in each week . We denote the weekly cost by ( ). As explained,

the seasonal variation comes from the availability of CHP capacity and from the main-

tenance pattern for nuclear and large coal plants. The de…nition of ( ) incorporates

the level of fuel prices and we could also include changing fuel prices explicitly. Indeed,

we solve the planner’s model under a stochastic fuel-price process when we evaluate the

robustness of the results in Section 5. However, fuel prices are not structural variables

of the Nordic market in the same sense as in‡ow and demand are because we cannot es-

timate fuel price distributions with the same accuracy. We …nd it important not to mix

fuel prices with the market fundamentals because, as will be demonstrated, excluding

the fuel price uncertainty has little e¤ect on the predicting power of the model. Thus,

we set up the benchmark model with a cost function depending on supply and period

only.

The …nal stochastic element of the model is the water in‡ow which we denote by

. The in‡ow at is observed only after the hydro usage is chosen but it is observed

before the choice of the next period water use +1. The in‡ow realization is, like demand,

drawn separately for each week from a week-speci…c distribution:

» ( ) (2)

= 2 f1 52g

where is a CDF on some …nite set of outcomes (bounded elements).

Finally, the physical state, i.e. the hydro stock, develops according to

+1 = minf ¡ + g (3)

where we include the reservoir capacity . Any in‡ow leading to a stock exceeding is

spilled over and left unused. The next period stock cannot go below a nonnegative lower
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bound ; this constraint will be implemented through the choice set 2 ( ). Now,

if we …x a policy rule = ( ) and start from a given state 0, the development of the

state vector is fully determined by the stochastic processes for and , and by the

law of motion for +1. To determine the optimal policy, we de…ne next the per-period

payo¤ for the decision maker at each as

( ) ´ ¡ ( ¡ )

Maximizing is equivalent to minimizing the cost of non-hydro production. If we let

be the discount factor per period, the optimal policy = ( ) maximizes the discounted

sum of the expected per period payo¤s, or alternatively put, minimizes the social cost of

meeting the current and future demand requirements generated by (1). Let ( ) denote

the maximum social value at state . This value satis…es the Bellman equation

( ) = max
2 ( )

f ( ) + +1j ( +1)g

Note that the existence of the optimal policy follows directly from the Blackwell’s The-

orem because the rewards are bounded and the state space is …nite (see Stokey et al.

1989).

In the empirical application, all production is dispatched by market clearing in a spot

market, where the residual demand ¡ is left for non-hydro producers. If the market

is competitive,12 it is cleared through bidding such that the spot price satis…es

= 0 ( ¡ )

We express the socially optimal hydro dispatch policy immediately in terms of the (so-

cially optimal) market price because the price will give (or approximate due to discrete

action space) the shadow cost of not using a unit of water in the current period. Us-

ing the optimal policy = ( ), we see that the state follows a stationary Markov

process, and therefore it generates a stationary weekly price distribution. Let = ( )

denote the socially optimal price following when optimal policy is applied at state .

As ! 1, we obtain a limiting week-by-week distribution for the state vector by the

stationarity of the underlying Markov process, and thereby also a limiting week-by-week

distribution for the prices:

12In the empirical part, we estimate the non-hydro supply from data without invoking competitive

behavior. Thus, 0 ( ) is interpreted as the inverse supply curve rather than the true marginal cost

curve. See Section 3.4 for detailed discussion.
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» ( ) (4)

= 2 f1 52g

where ( ) is the discrete CDF on some …nite set of possible prices.

Denoting the …rst moments of the long-run weekly price distribution by , from

(4), we can describe the basic economic logic of the equilibrium using the long-run price

distribution. The model allows various interpretations, depending how the market fun-

damentals are speci…ed.

3.2 Interpretations

Exhaustible-resource interpretation. Suppose the long-run price moments satisfy

1 = 2 = = 51
52

52
1

a situation that can arise, e.g., when the annual in‡ow is concentrated to the …rst week

(or to some other week initiating the hydrological year). Then, the allocation problem is

e¤ectively an exhaustible-resource problem within the weeks of the year, equalizing the

expected present-value prices across the weeks but not across the years: the new in‡ow

at the beginning of the year makes the resource reproducible. Assuming that the decision

maker indeed has enough ‡exibility to equalize expected prices within the year (to be

discussed in detail below), the drop in the expected price must arise at the turn of the

year as long as there is expected annual scarcity.

Storable-good interpretation. The long-run price moments can satisfy

+1

for all weeks when the weeks are relatively similar in terms of in‡ow and demand for

hydro. In this situation, the equilibrium progresses as in standard competitive commodity

storage models (Williams and Wright, 1991): inventories are held to the next period after

relatively favorable in‡ow-demand conditions, implying storage demand up to the point

where the current price equals the expected next period price, = +1; when the

current in‡ow-demand conditions are relatively unfavorable, stockout may take place,

and +1. However, when periods are ex ante similar in terms of in‡ow and

demand, the expected long-run storage cannot be positive and the price means satisfy

+1
. Consistent with this reasoning, the long-run price distribution is skewed
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as the storage demand eliminates extremely low prices that would arise when storage is

not allowed (see also Deaton and Laroque, 1991).

When the market fundamentals are estimated from the Nordic market data, we ob-

serve that both of these interpretations are useful. The socially optimal long-run prices

support the exhaustible-resource view of the expected year but the storage market view

describes well the decisions at the annual level.

3.3 Characterization

The long-run price means are useful in conceptualizing the nature of the market, but the

realized price sequences may follow a logic that can be di¢cult to relate to the long-run

price distributions. For ease of interpretation of the empirical results, we explain next

how the state-dependent optimal policy, the current price, and the market fundamentals

are linked.

Consider the optimal policy ( ), and let = ( ) be an alternative policy that

deviates from ( ) only at current

( ) = ¢ + ( )

where ¢ 6= 0 and coincides with ( ) at all other dates and states. We can de…ne

¹ = ¹( ¢) =
( ( ))¡ ( ( ))

¢

as the average cost change caused by the one-shot deviation ¢. Recall that the grid for

actions determines the smallest feasible ¢; when ¢ is small, then ¹( ¢) is approxi-

mately equal to the market price, . We can thus interpret ¹ as the approximate price

in the following:

Proposition 1 Assume there is an alternative policy to ( ) at , i.e., ¢ 6= 0 and

2 ( ). Price ¹ and the alternative have the following relationship:

¢ 0 () ¹ · ¹ + for some ¸ 1 (5)

¢ 0 () ¹ ¸ 0
¹ + 0 for some 0 ¸ 1 (6)

Proof. See Appendix.

In the empirical application, feasible choices are constrained, e.g., by storage and

turbine capacity, water availability, and river ‡ow restrictions. When these constraints

allow a deviation upwards from the optimal policy at state , i.e. ¢ 0, then the
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cost saving today, given by ¹ , is weakly lower than the expected loss from future cost

increase implied by increased usage today. That is, the current "price" is lower than

some expected future discounted "price". Similar reasoning holds in the other direction.

When in‡ow and demand distributions for hydro vary widely across weeks, the set

of conceivable prices can shift from one period to the next, and there is no general

way of achieving the present-value price equalization. Even when the optimal policy is

unconstrained in equilibrium, i.e., it is possible to use or save more water at state , the

current price can be lower than some expected future price

+

and higher than some other expected future price

0
+ 0

This pattern in no way contradicts Proposition 1. The optimal policy seeks to minimize

the di¤erence in expected present value prices but no price equalization is guaranteed.

For this reason the long-run price moments can satisfy

· +1

over some weeks when, for example, in‡ow is high in week so that the storage capacity

is likely to be binding. Then, in expectations water is frequently dumped to the market in

that period. Alternatively, expected demand may be high enough to frequently require

maximum production in week but even more so in the next week + 1. Finally,

minimum ‡ow requirements at low demand periods can bias price moments downwards

from what would otherwise hold for some particular weeks.

3.4 Calibration of the benchmark model

In this section, we describe the data and the estimations needed for the calibration of the

planner’s model. Here, we calibrate the model as suggested by the data, but in Section

5 we re-evaluate the data inputs and the distributional assumptions using a structural

estimation procedure. The data, estimations, and the program for computing the model

are available at the authors’ webpage. We use weekly observations from the six years

2000-2005 which is a period over which the institutional and market environment was

relatively stable.

For demand, we use weekly demand data for the Nordic market in 2000-05 as published

by the Organization for Nordic Transmission System Operators. As explained earlier, in a
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given week, the consumer demand is assumed to be inelastically drawn from the demand

distribution. We assume that demand is normally distributed with the weekly means

and standard deviations computed from the data.13 The distribution is then mapped to

a …nite grid. The step length of the grid was …xed at 200 GWh, leading to an average of

5.4 demand states per week14. The weekly support of demand in the model follows the

empirical support as observed in the data.

In‡ow energy is assumed to be log-normally distributed, and the parameters of the

distributions are estimated using data from the period 1980-1999. National in‡ow data

is published by Norwegian Water Resources and Energy Directorate (NVE), Swedenergy

and the Finnish Environment Institute. As with demand, in‡ow is mapped to a …nite

grid, with an average of 27.5 possible in‡ow levels per week.

Hydroelectric generation is represented by a single reservoir and power plant, and we

use the aggregate market reservoir capacity of 120 TWh and the aggregate weekly turbine

capacity of 7.9 TWh as the key parameters of the hydro sector. There is no publicly

available information about minimum ‡ow constraints but, after presenting the main

results, we experiment with di¤erent levels of minimum production. For the minimum

reservoir level, we use a lower bound of 10 TWh for the whole Nordic system.15

For the residual demand of hydroelectricity, we can follow two routes. We can use

engineering data on the ‡eet of non-hydro power plants in the Nordic area to build an

aggregate marginal cost curve.16 Using this data we can in principle follow the approach

from Wolfram (1999), also used in Borenstein et al. (2002), to construct the theoretical

supply curve for nuclear and thermal plants. In this market the theoretical non-hydro

13Demand for electricity showed little trend growth over the sample period.
14For example, demand varies between 8.2 and 9.6 TWh in the …rst week of January. All variables

measured in energy must be discretized using the same step length to keep track of the evolution of the

reservoir level. Thus, while a …ner grid for demand might seem plausible, decreasing the step length would

also increase the reservoir space. The current choice of step length is determined by the computational

burden and memory requirements of the market power model.
15The lower bound of the aggregate reservoir level is based on the importance of the hydro resource as

a fast power reserve supporting the electrical system. Bye et al. (2006) refer to a statement by the NVE,

according to which the actual minimum level of Norwegian reservoirs was 8 TWh in the spring of 2003.

Nordel uses 5% (6 TWh) of total reservoir capacity as the lower bound for aggregate reservoir level in

the simulations of its Energy Balances publication (Nordel 2006). Amundsen and Bergman (2006) refer

to a total minimum reservoir level of 15 TWh in 2002, and to 12 TWh in 2003.
16A data set containing all plants of relevant size in Finland, Sweden and Norway has been collected by

the …rm EME Analys for use with the PoMo market simulation model. We thank Per-Erik Springfeldt

and Karl-Axel Edin for sharing this data with us.
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supply curve experiences considerable seasonal shifts because of heating demand (making

electricity a side product) and planned maintenance outages. Moreover, for the hydro

usage decisions we need to know the expected future supply of the non-hydro power;

the value of water in a given state can be computed only by evaluating its value in

possible future states. At this point, the expert data set becomes dependent on subjective

assessments of patterns in capacity availability and maintenance.

For the above reason, we rather estimate the seasonal supply of the non-hydro capacity

than use the engineering data. We thus estimate the weekly supply function of the

thermal sector from data on the weekly system price and total demand in 2000-05. A

conceptual di¤erence to Wolfram (1999) follows: by estimating the thermal (all non-

hydro) supply from the data, we include all the strategic distortions that may exist in

this part of the market (nevertheless, it is a conceptually valid approach to evaluate the

e¢ciency of hydro use separately, given the behavior of the thermal sector).

The system price data is published by Nord Pool, while electricity production by

technology is reported by the Organization for Nordic Transmission System Operators.

We used the European Brent spot price for the price of fuel oil as reported by Reuters.

We regress the thermal supply on the price of electricity, the prices of fossil fuels and the

time of year. A majority of the marginal cost of thermal plants consists of the price of the

fuel. As explained, the thermal generation costs vary within the year for reasons related

to heating demand and maintenance, both of which follow a seasonal pattern (nuclear

plants and other large thermal power plants follow a seasonal maintenance schedule). To

capture these e¤ects, we include month dummies in the regression equation,

= 0 + 1 ln + + +

where is the thermal supply, and is the vector of fuel prices. The thermal generation is

composed of all other production than hydro, including wind power and the net import of

electricity. The price depends on thermal generation, and is thus endogenous. There are

two natural candidates for instruments, the hydro production and the level of reservoirs,

both of which in‡uence the price level but not the cost of thermoelectricity. We report

our estimation results in Table 3. The …rst panel of the table contains the results of

the …rst stage of the two-stage least squares regression. The …rst column of the table

represents the model with fossil fuel (coal and oil) prices as regressors and aggregate

reservoir level as the instrument for price. Fossil fuel prices are strongly multicollinear,

and the price of coal is dropped from the model depicted in the second column. Finally,

the third column reports the results of the same model as in the second column, but using
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hydro output instead of reservoir levels as the instrument. As expected, there is a strong

negative relationship between reservoir levels and price. The same holds true for total

hydro output and price. The second panel of Table 3 presents the second stage results.

The parameter values and the model …t are very similar for the two instruments. We

take this as an indicator of the strength of the instruments since the correlation between

output and reservoir levels is not perfect. Given its slightly better …t in the …rst stage,

we use the model with reservoir levels as instruments in the calibration.

We note here that the purpose of the estimation is to …nd a stationary supply curve

that shifts only because of the seasons within the year. This way we seek to obtain a fair

description of how the hydro producers viewed their residual demand ex ante; it would

not be di¢cult to estimate the non-hydro supply more precisely using information that

is available ex post. We want to include only supply shifters that we can include into

the state vector de…ned earlier. We set the fuel price equal to observed average from

the period 2000-05, but later solve the planner’s model with a stochastic fuel price using

the above estimated curve. However, we cannot solve the market power model with a

stochastic process for the fuel price because of the curse of dimensionality. We …nd no

evidence that the fuel price is important for our results regarding the market structure.

Given , the estimated supply gives the relationship between hydro output and

market prices, and this is how the value of hydro is evaluated throughout the remaining

of the paper. It is therefore important to illustrate how well this key input to the model

describes reality: Fig 3 depicts the historical weekly prices and the prices obtained by

using historical values for and the estimated thermal supply. The …t is reasonably

accurate for the whole period; in particular, the estimated price equation captures the

price spike of 2002-03. However, the predicted prices deviate more from the actual prices

after the price spike, which may be due to the fact that thermal plants rescheduled their

maintenance patterns in response to the shortage of hydro after the price spike.

The annual discount rate is 8 per cent.

We develop an algorithm for solving the model using a combination of backward

induction and modi…ed policy iteration. The algorithm begins with an initial estimate

of the value of water at the end of the year. Given this end value, we can solve for the

optimal policies and water values for the entire year by backward induction. Then, using

modi…ed policy iteration (see Puterman 1994), we iterate over the value of water in the

…rst week of the year. For a given policy estimate we compute its value over a …xed

number of years. The value of the evaluated policy then replaces the current estimate

of the value of water in the end of the year. We iterate until the week-by-week value
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function converges.

3.5 The benchmark results

We …rst generate the long-run weekly price moments by running the model over 2000

years, using the market fundamentals that we calibrated as explained above. Recall that

we are not projecting the market to the future but, rather, studying how the model

maps the distributions of the fundamentals, describing the market in 2000-05, to socially

optimal price distributions. The …rst moments of the weekly prices are in the upper panel

of Fig. 4 , and the second moments together with skewness of the prices are in the lower

panel. The weekly long-run price means reveal the exhaustible-resource nature of the

market: the Spring in‡ow is in expectations depleted over the course of the year, leading

to expected prices increasing quite closely at the rate the rate of interest until next in‡ow

peak. The drop in the price expectation from week 18 to week 19 is .063, a number close

to the discount rate.17 In this sense, various constraints in the hydro system, as speci…ed

above, do not prevent a relatively close equalization of the present-value expected prices

across the weeks. The average price level is 26 which is almost identical to historical

average of 26.3 from the period 2000-05.

From the lower panel we see that the socially optimal price risk, indicated by the

second moment of the weekly prices, increases towards the end of the hydrological year.

This makes sense: Summer and early Fall are the periods of relatively abundant storage

and predictable demand. Considerable uncertainty regarding the overall annual in‡ow is

revealed gradually during the Fall, and unfavorable sequences of rainfall, or cold spells

increasing demand, can lead to drawdown of stocks. Such risks are larger, the longer the

period under consideration, which is why the socially optimal price risk must increase

with time, until removed by a new in‡ow at the turn of the season. The skewness of price

is positive and also increases towards the end of the hydrological year. This relates to

the fact the storage motives across the hydrological years dominate the market dynamics

exactly there: the storage demand for the next year tends to eliminate the extremely

low price realizations so that there are relatively few downward price spikes to match the

upward spikes (see also Deaton and Laroque 1991 for discussion).

Let us now examine a particular sequence of events, i.e., the historical realizations

17The peak price is on week 17 and the lowest price on week 20. The reduction is .085 which is slightly

higher than the discount rate. Regressing the expected price on a constant and weeks, starting from

week 18 and ending at the next year’s week 17, gives the slope .085 for the price curve.
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of demands and in‡ow over the period 2000-05. Figure 5 shows two panels over the

weeks of 2000-2005. The upper panel is for the aggregate storage and the lower one is for

hydro output, both measured as gigawatthours (GWh). The socially optimal paths are

calculated by setting the initial hydro stock equal to the observed stock at the beginning

of 2000 and then letting it evolve as determined by the optimal policy. Demand and

in‡ow realizations are taken as they in actuality occurred in each week but decisions are

made under genuine uncertainty regarding the future.

The planner’s output matches the observed output (the lower panel) quite well. Later,

after introducing the alternative market structure, we will introduce criteria for matching

the model with the data. Here, we note that the seasonal …rst moments (quarters of the

year) for the observed historical output and social planner’s output deviate on average

by 5 per cent, which is less than one grid step in the planner’s choice set for a signi…cant

fraction of the time. The quarters are di¤erent with respect to the match such that

there seems to be some tendency for the planner to save more water during the Summer

and spend more in the Winter quarters. While there is no clear systematic deviation

in outputs, such a deviation is clear for the reservoir levels, as illustrated by the upper

panel of Fig. 5. The market and the planner have clearly di¤ering target levels for

the reservoirs. In the …rst two years, the planner seeks to save more of the abundant

in‡ow (recall that we are forcing the observed and model stocks to be equal at the start),

whereas later in the sample the planner would draw down the stocks more aggressively in

respond to the in‡ow shortage taking place in late 2002. Note that the planners di¤ering

stock levels arise not because of a systematic annual di¤erence in usage but, rather,

because of relative short and intensive ’steering’ of the stocks in years 2001 and 2002-03.

The implications for prices are dramatic, see Fig. 9 (the SP price). The planner

can avoid the price spike of 2002-03 by more aggressive production. Excluding the price

spike, the seasonal means of predicted prices are not lower, while much more stable.

4 Market power

4.1 The Model

Using the framework introduced in section 3, we now assume that a fraction of the

reservoir capacity is strategically managed. We do not seek to map the observed market

characteristics such as the market shares or the ownership of capacity to market outcomes

but, rather, develop a stylized, while consistent, model of market power that remains
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empirically implementable in this relatively complicated dynamic market. The share

for the strategic capacity, 2 [0 1], is our market structure parameter for which we

can search values best …tting the data in Section 4.3. We assume that the fraction

is managed by one strategic agent (single …rm, or an agent for a coherent group

of coordinating …rms). The rest of the reservoir capacity share, 1 ¡ , is owned and

controlled by a large number of competitive agents. Note that is the share of the

capacities (reservoir and turbine), not the share of the existing hydro stock. The small

agents are nonstrategic but forward looking, e.g., an individual competitive agent has

no in‡uence on the price but its decisions are rationally based on predictions for future

prices, and these are formed using information that is available to all agents. This

structure for oligopolistic competition remains computationally tractable, achieves the

planner’s solution and monopoly as limiting cases ( = 0 and = 1, resp.), and, as we

will show, will reveal a quite natural pattern for market power.

To separate the state vectors, in‡ows, and payo¤s for the strategic and nonstrategic

agents, we use superscripts and , respectively. Competitive agents are treated as a

single competitive unit so that their state, for example, is

= ( )

where is the aggregate physical stock held by the competitive agents. There are thus

two physical stocks that evolve according to

+1 = minf ¡ + g, = , (7)

where the reservoir capacity is what determines the size of the strategic agent: = .

Both parts of the market have their own choice sets, 2 ( ), and in‡ows .18

The division of the aggregate in‡ow can have important implications for the exercise

of power. In principle, we would like to experiment with the correlation of in‡ows into

the stocks and to study its impact on the equilibrium. Unfortunately, for com-

putational reasons, we are able include only perfectly correlated in‡ows: the aggregate

in‡ow is …rst drawn from the weekly distribution ( ) as described earlier, and then

this in‡ow is divided into the two stocks in accordance with .
18For the planner’s model, we did not impose any formal restrictions on spilling of water as the planner

has no incentives to do so, but for the large agent this incentive is material. Therefore, we want to impose

a spilling constraint (implemented as a …nancial penalty on water spilled over in the numerical part).

We have been told that the hydro plants are monitored for spilling.
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We look for a subgame-perfect equilibrium in the game between the strategic and

nonstrategic agents. To save on notation, we let now denote = ( ). At each

period, the sequence of events is

1. States = ( ) are observed;

2. Strategic agent chooses ;

3. Nonstrategic agents make the aggregate choice ;

4. Nonhydro production clears the market: = ¡ ¡ ;

5. In‡ow for + 1 is realized.

When we impose a Markov-restriction on strategies, this timing implies that a policy

rule for the strategic agent depends on both states, = ( ). As said, we treat the

nonstrategic agents as a single competitive unit and thus look for a single policy rule for

this unit, = ( ).19 It is useful to think that the competitive agents’ policy seeks

to solve the planner’s problem of minimizing the overall social cost of meeting current

and future demand requirements, given the current and future strategic behavior of the

large agent. In this sense, the competitive agents minimize the cost of market power

arising from the concentration of capacity in the hands of the large agent. Solving such a

resource allocation problem for the competitive agents is the appropriate objective as it

will generate a policy rule that implies a no-arbitrage condition for small storage holders.

Thus, no small agent can achieve higher pro…ts by rearranging its production plan from

what we describe below.

Letting ( ) denote the overall expected payo¤ for the strategic agent at state ,

we see that a pair of equilibrium strategies f ( ) ( )g must solve

( ) = max
2 ( )

f + +1j +1( +1)g

= 0 ( ¡ ¡ )

= ( )

While an individual small agent takes the expected path of both stocks as given,

aggregate can be solved by minimizing the expected cost-aggregate from meeting the

19Notice that the Stackelberg timing simpli…es the market clearing. Small agents’ policy depends not

only on the state but also on and so we do not have to dwell on complications caused by simultaneous

moves.
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demand that is not served by the large agent. Let ( ) denote the value of this

cost-aggregate. We de…ne

( ) ´ ¡ ( ¡ ¡ )

as the per period payo¤ and note that equilibrium policy ( ) solves the follow-

ing recursive equation

( ) = max
2 ( )

f ( ) +
+1j +1(~ +1 +1)g

where ~ +1 is taken as given by equilibrium expectations. Having observed the expec-

tation for the next period stock +1 is …xed by the knowledge of the in‡ow distribution.

Similarly, for a given , the next period competitive stock +1 can be estimated using

the in‡ow distribution. Therefore, competitive agents can correctly anticipate the next

period subgame ( +1 +1) and the strategic action +1 = ( +1). The equilibrium

expectation ~ +1 must be such that the current period action , through the physical

state equation (7) for +1, ful…lls this expectation:

~ +1 = ( +1)

In this way, competitive actions today are consistent with the next period expected

subgame, without any strategic in‡uence on the market price.

If there exists a stationary long-run equilibrium, we can drop the time index from

policies and value functions. We solve the equilibrium by a long backward induction and

use the …rst year weekly policies in the empirical application.20 In this procedure, the

existence of the equilibrium is not an issue.

4.2 Interpretation

We have illustrated in section 3 that the hydro market has features of an exhaustible-

resource market (allocation of the Spring in‡ow) and a storage market (savings to the

next year). In an exhaustible-resource market, market power is exercised by a sales policy

that is more conservative than the socially optimal policy: sales are delayed to increase

the current price 21. In the hydro market, the seller is not free to extend the sales path in
20One can in principle test if such a …nite-horizon equilibrium approximates a long-run equilibrium

well by simulating the long-run value functions using the …nite-horizon policies, and then computing

the payo¤s from one-shot deviations. However, using such a test for choosing the number of needed

backward-induction steps, is computationally demanding.
21See Hotelling (1931) for the analysis of a monopoly; Lewis and Schmalensee (1981) consider an

oligopoly.
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this way because of the recurrent Spring allocation which limits the length of the period

over which there is scarcity of supply. In this sense, the ability to exercise market power

as in exhaustible-resource models is limited. Nevertheless, the seller can shift sales to the

future by storing the resource excessively to the next year, and in general such behavior

is pro…table because of discounting.

For illustration, suppose that all actions are made at the annual level (one period is

one year), that there is no uncertainty, and that the decisions described in the previous

section are made in the beginning of the year where all agents receive a deterministic

annual allocation of water. It is then clear the strategic agent can reduce current supply

only by saving to the next year; in equilibrium, saving takes place to the point where

the current period marginal revenue equals the next period discounted marginal revenue,

minus the cost from marginally reducing next year’s potential for supply reduction. When

the agent cannot spill water, a given stock in the hands of the strategic agent has only

negative shadow price for him, as increasing the stock reduces the size of the ’sink’ that

is available for supply reduction. This mechanism will emerge clearly in the empirical

part below.

4.3 Empirical implementation

We calibrate the market power model using the estimates for weekly in‡ow, demand,

and thermoelectric supply, as in the model of e¢cient hydro use. However, we leave the

strategic agent’s capacity share parameter open, and consider in next what provides

the best match with the data. We would like …nd to the capacity share parameter

structurally, i.e., by maximizing the empirical match of the model, using the criteria

discussed below, with respect to . In principle, we follow this approach but we are

limited to consider only a subset of values for due to computational reasons. As

opposed to the one-decision maker problem, the game cannot be computed using policy

iteration techniques. Instead, we solve the equilibrium by straight backward induction

over the weeks of 10 years. In each state, we need to solve the following …xed-point

problem as part of the procedure for …nding the market policy = ( ): a given

induces the transition of the expected stock +1, which when used together with +1 in

~ +1 = ( +1) determines the expected behavior of the large agent; in equilibrium,

the assumed for the state transition must be the same as the cost minimizing optimal

for an agent who takes the aggregate state transition as given. Since such a …xed-point

may not exist on a discrete grid, we use a lexicographic criterion at each state: (i) if there

25



exists a unique most consistent when consistency is measured as the distance between

the aggregate and private , then this is chosen; (ii) if criterion (i) fails, we use the

Pareto criterion for choosing among the candidates. We need to apply the lexicographic

procedure in approximately 5% of the states depending on the size of the strategic storage

. In total, it takes several days to solve the model on a standard desktop computer,

which limits the set of parameters we can consider.

The program …les for computing the model are available at the authors’ webpage.

4.3.1 Simulated long-run distributions

For comparison with the social optimum, we generate the long-run weekly reservoir, price,

and production moments by running the model over 2000 years using various capacity

shares . Fig. 6 depicts the long-run weekly stock levels for the social planner (SP),

and for equal to 2 3, and 4. The expected stock levels increase monotonically with

the share of the strategically managed stock. This is consistent with the interpretation

given in section 4.2: the steady-state stock increase is a way to achieve the disposal of

supply not meant to reach the market. Under uncertainty the logic of market power is

slightly more intricate than in the deterministic case, as will be illustrated shortly, but

the implication for the expected stock levels are clear.

The long-run weekly price moments are in Fig. 7, for the same parameter values.

Two features can be observed. First, as expected, the price level increases with the size

of the strategic agent, leading also to a more marked fall in prices at the turn of the

hydrological year in the Spring. Second, for su¢ciently large, the highest expected

prices are experienced earlier, before the end of the hydrological year. Our conjecture for

the result is that a larger agent can follow a riskier strategy in the sense that water is

withheld from the market earlier to take advantage of potential shortage of in‡ow during

the late Summer and Fall: an in‡ow below expectations provides a welcome ’sink’ for

unused stock, so that less of the excessive saving must be carried over to the next year.

On the other hand, if the in‡ow turns out be abundant, then the strategic agent needs

to produce excessively, from his point of view, to prevent excessive storage to the next

year. This latter e¤ect tends to depress expected prices in the end of the year.

4.3.2 Matching historical data

To consider the match with the historical data, we evaluate the equilibrium policies for a

given , using the historical realizations of demands and in‡ows over the period 2000-05.
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We set the initial hydro stock equal to the observed stock at the beginning of 2000 and

then let it evolve as determined by the equilibrium policies.

We look for that best matches the historical data. In this procedure, we use the

model predictions for three variables: the reservoir levels, output, and prices. It is clearly

important to include reservoir levels in the set of variables, given that imperfect com-

petition should become evident through this variable. Recall that there is a systematic

discrepancy between observed reservoir development and that chosen by the social plan-

ner (Fig. 5). Including both prices and hydro outputs in the set of variables would

clearly be unnecessary if the "observed" prices were the ones computed from the es-

timated supply relationship using the historical outputs; in this case, there would be

one-to-one relationship between outputs and prices. However, since we use the real his-

torical prices as our observations, it makes sense to use both prices and outputs in the

matching procedure to evaluate the overall performance of the model.

Let ( ) be the model prediction for a (column) vector of the three variables at ,

given . If is the historical observation for the same vector, the sample mean of the

prediction error is22

( ) =
1 X

=1
( ( )¡ )

One criterion for choosing the model is to …nd a value for that minimizes the quadratic

form

( ) = ( )0 ( )

where is a 3 £ 3 weighting matrix (to be discussed below). A crude way to proceed

is to choose = 312, i.e., to aggregate over all weeks of the six-year period to form

three simple moment restrictions. When = the statistic has a straigthforward

interpretation: it is the sum of three least-square errors. This statistic is misleading

since it completely ignores the Markovian nature of the policy rule: the statistic should

be able discriminate how well the model predicts variables as the state of the market

changes. Another extreme is to let = 1, which allows one to calculate the statistics

1( ) for each of the 312 weeks, and then sum up these numbers (or average them). This

approach would pay maximum attention to actions at individual states, but would not

allow weighting the variances of the prediction errors when choosing in ( ). The

latter shortcoming can be avoided, for example, when = 13 and the statistic 13( )

is calculated separately for each of the 24 quarters in the data. Then, we can use the

22We are abusing notation on purpose here, hopefully without a risk of confusion, in order to follow

the conventions of the literature using the GMM approach.
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two-stage GMM approach23 where in the …rst stage is chosen for some given , and

in the second stage, we estimate the sample variance-covariance matrix of the prediction

errors associated with the chosen to construct a weighting matrix that depends on the

data.24

We evaluate each model under di¤erent criteria ranging from moment restrictions

for aggregated data to "path matching" using weekly data. For Table 4, we have …rst

calculated the statistic ( ) for each model at di¤erent aggregation levels (weekly,

monthly, quarterly, and semi-annual). In this calculation, we took …rst as a given

diagonal matrix and used the inverses of squared means of the relevant variables on the

diagonal to transform the variables into comparable units.25 The mean value of the

statistic ( ), obtained this way, is reported in the …rst column for each model. The

35 per cent model provides the best score at all time aggregation levels.26

For quarterly and semi-annual predictions there is enough variation to consider the

variance of the sample mean and to exploit the covariance-variance properties of the data

in choosing the weighting matrix for the statistics. The reported numbers are the mean

values of the statistic over the 24 and 12 samples (quarterly and semi-annual aggregation,

resp.). The 30 per cent model minimizes the statistic ( ) obtained this way. Note

that ( ) from the 30 per cent model need not be the smallest, for example, in each of

the 24 quarters, but the only the mean value of the statistic has this property. We are

thus putting equal weights to the match in each of the time periods.

Our main result is that a market share of 30 per cent for the strategic agent provides

the best …t with the historical data under various criteria. In Table 5, we report statistics

on the entire observed and predicted price series. The average price in the sample period

was 26.3 euros. The socially optimal hydro policy would have yielded a mean price of

24.9. The 30% model outperforms the planner’s model in predicting the average, variance

23See, for example, Cochrane (2001).
24In the second stage, we allow for serial correlation in the prediction errors associated with the

chosen alpha by using the inverse of the estimated long-run variance matrix as the weighting matrix.

The asymptotic variance matrix is computed using the quadratic spectral kernel proposed by Andrews

(1991) and a bandwidth of three. The results are robust to di¤erent kernel types and to a large range

of bandwidths.
25Otherwise, the stock variable dominates in the calculation. Correcting dimensions this way favors

the hypothesis that there is no market power since the market power model is particularly good in

matching the stock development.
26Due to computational reasons we have computed only seven market share values for the strategic

agent: 0, 20, 25, 30, 35, 40, and 50 per cent. Since we …nd no evidence for perfect competition, i.e.,

= 0, we do not believe that this coarse grid for is essential for the main result.
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and skewness of price. It also outperforms the other market structures in the Table, with

the exception of slightly underestimating the skewness of price compared to the 40%

model.

Recall that for computational reasons we did not cover a very large set of -values,

which is why a better …tting market share parameter is likely to exist. However, we do not

see a large gain from this search as has no clearly de…ned empirical counterpart. The

objective of the analysis is to merely show that there exists some market structure with

market power that has more predicting power than the socially optimal structure. While

it is clear that having one more parameter to choose, cannot hurt us ( = 0 is always a

choice), it is somewhat surprising that the model prediction is better in all dimensions

(price, output, stocks). In Fig. 9, we depict again the observed price, this time together

with the predicted price under = 3 and the planner’s solution. The market power

model can replicate the price shock of 2002-03 quite well (the price shocks in 2003-04

originate our supply curve estimation which does not capture well the change in the

available capacity of thermal; see Fig. 3). In Fig. 8, we see the systematic improvement

in the reservoir match throughout the period 2000-2005.

5 Robustness analysis

In this section, we study the possibility that unobserved factors, mismeasured data and

expectations, or limitations in the model structure can lie behind the pattern that we

have connected to imperfect competition.

5.1 Unobserved reservoir capacity constraints

Reservoir constraints can have substantial implications for the main behavioral patterns

in the market. In Figure 8, we see that the …rst-best reservoir levels overshoot the

observed levels in years 2000-02 and then, in the latter part of the period, the deviation

is to the opposite side. It seems clear that by su¢ciently reducing the maximimum

reservoir capacity, we may obtain a better match in the years of overshooting, while a

su¢cient increase in the minimum capacity may improve the match for the remaining

years.

We took the reservoir constraints from the data (see fn. 3.4) but now we look for

constraints that maximize the model …t under the competitive behavioral assumption.

We thus compute the social planner’s model for all minimum reservoir levels (in TWh)
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2 f0 1 2 20g

and all maximum reservoir constraints

2 f112 113 120g

These parameter sets were chosen based on historical reservoir levels, so the search was

conducted over a range that should cover the "true" limits. After solving for the pol-

icy rules corresponding to the alternative parameterizations, we applied the policies at

historically observed states, and then computed the two-stage GMM statistic for each

model. The model with the lowest test score provides the best …t with the historical

data.

Using this procedure we …nd that the best-…tting pair is =17 TWh and =112

TWh. These choices lead to almost identical reservoir development with that predicted

by our model of imperfect competition, and since the reservoir is important for the

test statistic, the model …ts are indistinguishable. However, the constraint adjustments

cannot explain the observed price increase. Are estimated capacity constraints consistent

with data? The estimated lower limit of 17 TWh is implausibly high given the discussion

in footnote 3.4. As such, the maximum capacity of 112 TWh is also o¤ by being too

low; higher actual levels have been observed since the deregulation of the Norwegian

power market.27 It should also be noted that the capacity used in the model may proxy

limitations in the hydro system arising from regional heterogeneity, and that therefore,

there may not be a single number that would be the appropriate estimate of the maximum

capacity for the whole sample period.28

27The aggregate maximum reservoir capacity in the Nordic market was almost constant throughout

the sample period, being 120.5 TWh in the beginning of 2000 and 121.0 TWh in the end of 2005 (Nordel

annual statistics 2001 and 2006). In 1990-2007, the maximum observed aggregate reservoir level in

the market was 115 TWh (94.5%) (Nord Pool). In Norway, reservoirs have reached a high of 97.3%

(1990-2007) and in Sweden 97.7% (in 1950-2007).
28Such a constraint can arti…cially represent the unmodelled limitations that regional heterogeneity

puts on the storage behavior. For example, in the summer of 2007, the reservoir levels in Southern

Norway were close to the capacity, and the local producers had to generate so much power to avoid

over‡ow that they were unable to export all the power to other parts of the system, and the weekly

average area price dropped to just 3.77 /MWh in week 34, when the system price was 16.2 /MWh. In

general, once the transmission line from a hydro abundant region becomes congested, increasing output

in that region does not a¤ect the prices faced in the other areas. Thus, the hydro producers in the other

parts of the system have no incentive to reduce their output and save more water even though hydro
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The estimated 112 TWh coincides with the actual maximum level in 2000, and thus

forces the reservoir path to the true level. The reduction in the initial storage level also

means that the planner is carrying less water in the end of 2002, and has less hydro

resources to allocate to the price spike in the winter 2002-03. In the latter part of the

sample, the maximum reservoir capacity has only a marginal e¤ect on the optimal policy

until in 2005, when reservoirs again approach the maximum capacity. On the other hand,

the reservoir lower limit has a very small e¤ect to the results in the …rst three years of

the sample period. It thus follows that one needs to adjust both the upper and lower

limits for capacity to challenge the market power explanation. We …nd this implausible.

We also experimented with a minimum ‡ow constraint. We considered several levels

for the lower bound of hydro output, 2 f0 2 4 2 8g (in TWh). Low levels of the

minimum ‡ow constraint have no e¤ect on the optimal hydro policy. For high enough

levels, the model …t slightly improves. The fact that the planner must be able to meet the

constraint on hydro output in future periods means that the planner must have enough

water in storage to meet these future obligations. In the historical simulation, this e¤ect

can be seen as a gradual build-up of storage levels throughout the sample. This more

conservative hydro use policy also implies slightly higher prices during the price crisis

of 2002-03. Nevertheless, the in‡uence of the minimum ‡ow constraint is of secondary

importance when compared to the reservoir level constraints.

5.2 Fuel price uncertainty

We took the oil price, which was the only statistically signi…cant fuel price in the nonhydro

supply, as an average price from 2000-05. Due to the curse of dimensionality, we could

not solve the model of strategic hydro use with stochastic price, but we can solve the

planner’s model under this assumption.29 We can therefore evaluate whether the fuel

price changes can explain the discrepancy between the …rst-best and observed behavior.

To this end, we assume a Markov process for the price. The price belongs to a …nite set,

output in the congested region is very high. Economically, transferring water from the congested area to

the other regions would improve welfare. In our model, where all reservoirs are aggregated into a single

storage, such uneven distribution of in‡ow has no similar consequences.
29The inclusion of oil price in the state increases computation time approximately linearly in the

number oil price states. This is due to the fact that the most time-consuming part of the algorithm is

taking the expected value over the reservoir state transitions. These transitions depend on the stochastic

in‡ow process and the current estimate of the planner’s hydro use policy. Since the policy is dependent

on the current oil price, the expectations must be computed for each possible current oil price state;

hence the linear increase in computation time.
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roughly consistent with the empirical support from 2000-05. To be more speci…c,

2 f10 12 14 80g
¡ ¡1 2 f¡6 ¡4 ¡2 6g

The transitions are assumed to follow a normal distribution, the mean (.08) and standard

deviation (1.46) of which are estimated from actual weekly oil price changes in 2000-05.

The …t of the planner’s model’s predicted price path improves with the inclusion of the

oil price state, but not the …t of the reservoir levels. The price e¤ect is most pronounced

in 2004-05, when the price of Brent roughly doubled from its level at the end of 2003.

While the price prediction becomes generally more accurate, it does not replicate the

observed price spike of 2002-03. Indeed, the predicted prices in 2002-03 are lower in the

new model than in the benchmark planner’s model. Uncertainty over future input prices

increases the planner’s incentive to store more water in the relatively water abundant

years 2000-01. This increased storage is then used during 2002-03 not to alleviate price

pressure due to high input prices, but due to the scarcity of water.

5.3 Discounting

We have used a discount factor that corresponds to an 8 per cent annual discount rate.

Holding wealth in hydro stocks is relatively risky, justifying a rate above the risk-free

rate, although we are unaware of prior studies elaborating what discount rates should be

applied in this context.

To test which interest rate is supported by the historical data, we evaluated the

alternative planner’s models in the same way we compared the di¤erent -values. Using

the historical demand and in‡ow realizations, we simulated the price, reservoir and hydro

output paths for all discount rates (percentages) in the range f2 4 20g. We then

computed the GMM test statistic for all models, using quarterly averages as observations.

The test score is lowest for the model with 12 per cent discounting.

As one would expect, increasing the interest rate decreases the expected level of

reservoirs. Earlier, we have shown that in the strategic model, raising the market share

of the large agent increases the expected reservoir level. This e¤ect is much stronger than

the one from decreasing the interest rate in the planner’s model. For example, even at a

2 per cent interest rate the planner’s expected reservoir level is lower than in the strategic

model with = 3 and the interest rate at 7 per cent. Since expected price increases at
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the rate of interest through the hydrological year, a higher discount rate implies higher

output in the Spring and Summer periods and lower output in late Fall and Winter. A

higher interest rate also increases the weekly standard deviation of price in virtually all

weeks of the year, the exception being the weeks immediately following the start of the

spring in‡ow, when variation is lowest and di¤erences between discount rates are very

small. Price skewness, on the other hand, is more variable when interest rates are low.

In particular, prices are more positively skewed before the spring in‡ow and less skewed

in the summer for low discount rates.

In the historical simulation, higher discounting lowers the reservoir level in every

week of the sample period. Yet, even a very high discount rate does not explain the low

storage levels in 2000. During the winter of 2002-03 the low reservoir levels due to higher

discounting force the planner to use less water, thus causing a more pronounced price

spike than in the benchmark model. Prices at the peak are, however, probably depressed

by the high discount rate. That is, the planner is more willing to take losses in the future

than now, and will therefore use water more aggressively. After the price crisis, higher

discounting leads to slower build-up of the reservoirs.

5.4 Expectations

We also considered the possibility that our assumptions about the parameters of the

demand and in‡ow distributions might be o¤ the mark.

Given the low levels of storage in the early part of the sample, one possible source of

bias could be too high expectations of future in‡ows. If expected in‡ow in the benchmark

model is underestimated, then the high realizations in 2000 are seen as more valuable,

and storage is higher. If, in reality, the expectations were higher than in the model, this

could create a shortage of water in 2002-03, which could replicate the price spike. On

the other hand, higher expected in‡ow should also lead to more aggressive use of water

during a stock-out, as the producers believe that their storages will be soon replenished.

This should then bring down the price spike in the simulation results. To test for these

hypotheses, we increased the expected in‡ow mean by 5 per cent, leaving the variance of

the in‡ow distribution unaltered. As expected, the change in expectations induces the

planner to use more water in the early part of the sample than before, but the pattern is

quite di¤erent from the actual hydro output. More speci…cally, compared with historical

output, the new simulation results still overestimate the level of reservoirs in the water

abundant year 2000, but a steadily decreasing reservoir level thereafter, so that storage
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is signi…cantly lower than in reality in the summer of 2002 before the price crisis. The

shortage of water then causes the prices to peak at a higher level than before, but the

price spike is not as pronounced as in the fringe models, for example. After the shortage,

reservoir levels are built up too slowly compared to the actual pace. Overall, it seems

that changing the in‡ow expectations in the described manner will bring about only a

modest improvement in the model …t, at best.

The demand support used in the benchmark model was based on the empirical support

of demand in 2000-05. To be speci…c, the week-speci…c lower bound of the demand space

was set at the grid point below the observed minimum demand in that week, and the

upper bound similarly at the grid point just above the observed maximum. We analyzed

the sensitivity of the simulation results to the choice of demand support by considering

mean-preserving spreads of demand uncertainty. We …rst decreased the week-speci…c

lower bounds and increased the upper bounds by two standard deviations each. The

probabilities formerly assigned to the lowest and highest demand levels were spread to

cover the new support according to the original distributional assumption. That is, the

mean and variance of the demand distributions were not changed.

Expanding the demand support has no e¤ect on the historical simulation paths. We

also experimented by altering the demand space in the high-season (weeks 45-10) only.

This, had no e¤ect on the simulation results, either. Adjusting the demand space by

four standard deviations has a small but almost indiscernible e¤ect on the results. This

change is virtually the same whether the demand supports are expanded for all weeks of

the year, or for the high-season only.

5.5 Thermal capacity and price cap

In the current model, the thermal supply curve is assumed to represent all power sources

other than hydro. Based on information in the Nordel annual statistics, the aggregate

capacity from all non-hydro sources including imports was approximately 8 TWh per

week in the sample period. The highest observed output from these sources during the

same time was 5.5 TWh. The model has no explicit constraint on thermal capacity. This

does not, however, mean that we assume an in…nite supply of "thermal" power. Instead,

one may interpret the supply exceeding the thermal capacity as stemming from elastic

demand. After all, the hydro producers are interested only in their residual demand. An

assumption about demand elasticity during an extreme power shortage is always going

to be ad hoc, since we have not observed such a situation in practice.
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Nevertheless, we experimented by constraining thermal capacity to be less than 5.8

GWh a week - a rather stringent condition given the theoretical maximum capacity. The

capacity constraint must be paired with either elastic demand or with a penalty for lost

load. The value of lost load (VOLL) has been estimated to be 2000 /MWh in the

Nordic market. We used this …gure as the price cap. Thus, up until thermal capacity,

supply is determined by the estimated thermal supply curve as before, but at and beyond

5.8 GWh supply is ‡at. In the planner’s case, this means that the planner incurs a cost

of 2000 per each MWh of load that it can not supply.

The results are practically identical to the case, where supply is unconstrained. We

have not surveyed yet, what e¤ect the price cap would have in the strategic model.

6 Conclusions

We have developed a structure that can be used to interpret market data in an attempt to

make a distinction between behavioral patterns arising from imperfect competition and

those arising from fundamental factors in the institutional and economic environment.

We found evidence supporting the conclusion that imperfect competition can explain

the main behavioral patterns in the market outcome in years 2000-05. The data period

includes an extraordinary period allowing us to identify the pattern for market power.

But in expected terms the welfare losses are extremely small. The hydro resource alloca-

tion in the Nordic power market follows surprisingly closely the …rst-best outcome. Our

framework can be used to test if some unobserved factors or mismeasured data could lie

behind the results. We found no such evidence. However, there is a number of factors

whose e¤ect on the market outcome we cannot evaluate using this approach. We conclude

by discussing such factors.

We evaluated the e¢ciency of the long-run outcomes, which is a natural starting point

for the analysis because there is no basis for evaluating the short-run outcomes without

the knowledge of longer-term benchmarks. However, the hydro capacity is very di¤erent

from thermal and other capacity forms also in the short-run. It allows rapid adjustments

of usage, thereby potentially exploiting constraints in the transmission system or those

that the other production forms face (see Hoel 2004). If the hydro capacity commands

an extra, potentially state-dependent, short-run return because of its special nature, the

long-run allocations are also altered. Hopefully the data allows an evaluation of potential

short-run ine¢ciencies in the near future.

Our approach to e¢cient allocations and those distorted by imperfect competition
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is aggregative. Analysis exploiting more detailed information on capacities, usage, and

regional heterogeneity is therefore called for. If such data becomes available, one could

potentially estimate hydro usage policies directly from the data, and then using the

estimated policies to simulate hydro resource values. These values could in principle be

used in estimation of structural parameters of the market (Bajari, Benkard and Levin

(2007)). Such an indirect approach, rather than our direct approach, is perhaps more

natural when data is not constraining the choice of the approach.

Finally, our benchmark for e¢ciency analysis was obtained using a risk-neutral deci-

sion maker. Behavior under risk neutrality and various constraints in the environment

can show resemblance to behavior arising from pure risk aversion. There are reasons

to believe in risk aversion in the hydro resource use. Large players may want to avoid

extreme outcomes (e.g., stockouts) to avoid creating political pressure on the market

institution. Alternatively, the regulatory constraints are likely to be ’soft’ in this market

in the sense that capacity usage is a¤ected by regulatory communications in states where

the electricity system is under stress. One may want to consider if risk-aversion chang-

ing pricing rule for the state-dependent resource can explain some of the deviations we

discovered.

7 Appendix: proof of Proposition 1

Proof. We can take ¢ as the smallest deviation allowed by the action space such that

( ) 2 ( ). The properties of optimal prices follow from non-optimality of one-shot

deviations described by ( ). By the optimality of ( ),

( ( )) + ( ( )) ¸ ( ( )) + ( ( )) (8)

()
( ( ))¡ ( ( )) ¸ ( ( ))¡ ( ( )) (9)

Recall that

( ( ))¡ ( ( )) = ¡ ( ¡ ( )) + ( ¡ ( ))

As in text, we can de…ne ¹ = ¹( ¢) such that

¡¹( ¢)¢ = ( ( ))¡ ( ( )) (10)
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Note then that

( ( ))¡ ( ( )) =
X1

= +1

¡ f ( ( )¡ ( ( )g (11)

=
X1

= +1

¡ ¹( ) (12)

where changes in the optimal usage path, after the one-shot deviation from the optimal

policy at , are denoted by .

Combining (9), (10) and (12) implies that one-shot deviations satisfy

¡¹( ¢)¢ ¸
X1

= +1

¡ ¹( )

But when¢ is the smallest deviation allowed by the grid for actions (same for all periods),

the condition implies

¡¹( ¢)¢ ¸ ¹( + ¡¢)(¡¢) for some ¸ 1. (13)

Now, if ( ) is constrained from above (i.e., there is no ( ) such that 2 ( )),

then only ¢ 0 is feasible, and, by (13), we have

¢ 0 , ¹( ¢) ¸ ¹( + ¡¢) for some ¸ 1 (14)

On the other hand, if ( ) is constrained from below, then only ¢ 0 is feasible, and

we have

¢ 0 , ¹( ¢) · 0
¹( + 0 ¡¢) for some 0 ¸ 1 (15)

Finally, if the optimal policy is not constrained, then both (14) and (15) must hold at
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Figure 1: Inflow energy in the Nordic market area in 1980-99. Sources: Norwegian Water Resources and Energy Directorate (www.nve.no),
Swedenergy (www.svenskenergi.se) and Finland’s environmental administration (www.ymparisto.fi).
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Figure 2: Mean and empirical support of demand in Nordic market 2000-05.



Figure 3: Observed (solid line) and estimated (dashed line) system price 2000-05. Estimation based on historical output levels.



Figure 4: Simulated expected price (upper panel) and the skewness and standard deviation (lower panel) of price.



Figure 5: Upper panel: observed (solid line) and social planner’s (dashed) reservoir levels. Lower panel: observed (solid line) and social
planner’s (dashed) hydro output



Figure 6: Simulated expected reservoir levels for different market structures.



Figure 7: Simulated weekly price expectations under different market structures.



Figure 8: Historical, the planner’s, and market power (30%) storage levels.



Figure 9: Historical, the socially optimal, and the market power (30%) price.



Quarter Sweden Finland E-Denmark W-Denmark Norway 1 Norway 2
Q1 2.0 2.6 8.2 5.2 1.5 1.7
Q2 7.5 8.1 21.1 6.8 4.0 2.7
Q3 6.2 12.9 24.6 6.5 2.8 4.8
Q4 2.5 4.3 14.9 10.8 1.4 2.1
All 4.6 7.0 17.2 7.5 2.5 2.8

Table 1: Average weekly area price deviations from the system price 2000-05 (Source: Nord Pool)



Denmark Finland Norway Sweden
Total generation 37.3 73.4 125.2 146.5
Hydro power 0.0 12.7 124.1 67.8
Other renewable power 5.8 2.0 0.3 1.9
Thermal power 31.5 58.8 0.8 76.7
- nuclear power 0.0 21.8 0.0 66.6
- CHP, district heating and condensing power 29.4 26.3 0.1 5.8
- CHP, industry 2.1 10.7 0.4 4.3
- gas turbines, etc. 0.0 0.0 0.3 0.0

Table 2: Average production levels (TWh) by technology in the Nordic market 2000-05



Panel A: First stage results (dependent variable log of system price)

Panel B: Second stage results (dependent variable total thermal output in GWh)

(1) (2) (3)
ln(price) 1200.9** 1185.4** 1254.1**

(43.3) (43.2) (47.9)
Oil price -27.3** -24.0** -24.5**

(1.8) (1.7) (1.8)
Coal price 7.1**

(1.4)
Observations 300 313 313

Table 3: Results of the 2SLS thermal supply estimation. The standard errors (in parentheses)
have been corrected for heteroskedasticity and autocorrelation. The regression also includes
monthly dummy variables. Statistical significance is marked with (**) at the 1% level and (*) at the
5% level.

(1) (2) (3)
Oil price 0.0199** 0.0197** 0.0205**

(0.0017) (0.0016) (0.0018)
Coal price -0.0019

(0.0014)
Reservoir level -0.0280** -0.0290**

(0.0015) (0.0015)
Hydro output -0.0006**

(0.00004)
Observations 300 313 313
R-squared 0.71 0.70 0.59



Weeks SP 20% 25% 30% 35% 40% 50%
1 1.21 - 0.82 - 0.68 - 0.55 - 0.35 - 0.66 - 0.91 -
4 1.20 - 0.80 - 0.66 - 0.53 - 0.34 - 0.64 - 0.89 -

13 1.14 12.8 0.75 10.5 0.61 9.0 0.48 7.7 0.27 17.6 0.57 25.6 0.78 42.9
26 1.06 73.6 0.67 61.4 0.53 48.7 0.40 47.8 0.21 85.7 0.47 144.2 0.56 314.3

Table 4: Goodness-of-fit tests. The first column for each model reports the H-statistic (divided by
105) from the first stage of the estimation. The second column reports the H-statistic from the
second stage (for applicable models). The second stage weighting matrix is heteroskedasticity and
autocorrelation consistent.



Observed SP 20% 30% 40% 50%
Mean price (€/MWh) 26.3 24.9 25.2 26.4 28.0 31.0
Standard deviation 11.9 7.5 8.3 10.6 16.6 28.7
Skewness 2.5 0.9 0.9 1.4 2.3 5.4
Total cost (bn.€) 9.3 8.7 8.8 9.2 9.8 10.9
Welfare loss (bn.€) 0.64 0 0.14 0.57 1.16 2.26

Table 5: Price and cost statistics for the historical series and model predictions. The estimates of
total cost are based on the estimated thermal supply.


