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1 Introduction

Learning in dynamic decision problems comes in two different forms. Players learn from
their own individual, and often private, observations about the fundamentals of their
economic environment. At the same time, they may learn by observing the behavior of
other players in analogous situations. In this paper, we analyze the interplay of these two
modes of learning in an exit game with pure informational externalities.! We show that
observational learning intensifies the effects of the fundamental uncertainty. All players
stay longer in the game, and as a result those types that benefit from staying in the game
win while those types that should exit lose. Even though private information accumulates
steadily, it is revealed to the other players in occasional bursts.

There are a number of examples where both forms of learning are important. Learning
about the quality of a service, the profitability of a new technology, or the size of a new
market are examples of this type. In all these instances, it is reasonable to assume that
part of the uncertainty is common to all agents and part is idiosyncratic. A new restaurant
may be of high or low quality. A high quality restaurant is attractive to a larger fraction
of the clientele than a low quality restaurant. Learning from others is useful to the extent
that it can be used to determine whether the restaurant is good. It is not sufficient,
however, if even a good restaurant does not appeal to all customers. Hence it is natural
to consider a model where both private and observational learning are present.

To represent private learning, we use a standard discounted single-player experimen-
tation model in discrete time. Each initially uninformed player collects information on
her own binary type. The good types gain by staying in the game while the bad types
gain by exiting the game. We assume that information accumulates according to a par-
ticularly simple form. Good types observe a perfectly informative signal with a constant
probability in each period that they stay in the game while bad types never see any sig-
nals.? Uninformed players grow more pessimistic about their own type as time passes and
the optimal strategy is simply to exit the game if uninformed after an optimally chosen
number of periods.

Observational learning matters if a number of players face the same decision problem

!The literature on strategic experimentation considers the third case where individual experiences
are publicly observed. Examples of such models are Bolton & Harris (1999) and Keller, Rady & Cripps
(2005). The focus in these papers is on the private provision of public information rather than on

information aggregation.
2The actual form of information revelation is not very important for the logic of our model. The

important assumption is that it takes time for even the most pessimistic individual player to exit the

game.



and if their types are correlated. We model this correlation by assuming that there is a
binary state of the world that determines the probability distribution of individual types.
Conditional on the state, the players’ types are identically and independently distributed.
Whenever the exit decisions of a given player are sensitive to her information, her actions
reveal information about her type and hence also about the state of the world. Uninformed
players gain from additional information on the state, which creates an incentive to wait as
in Chamley & Gale (1994). But in contrast to Chamley & Gale (1994), private learning
makes it impossible for the players to delay indefinitely. Our model strikes a balance
between the benefits from delaying in order to learn more from others and the costs from
increased pessimism as a result of private learning.

We show that the game has a unique symmetric equilibrium in mixed strategies. The
properties of this equilibrium become particularly sharp when we eliminate the effects
of observation lags by reducing the time interval between consecutive decision moments.
We show that the symmetric equilibrium can be characterized by two modes of behavior:
In the flow randomization mode, bad news from no informative signals is balanced by the
good news from the observation that no other player exits. Exits are infrequent and prior
to any exit, the beliefs of the uninformed players evolve smoothly.

Following an exit, however, uninformed players become suddenly more pessimistic
and have an incentive to exit the game. On the other hand, immediate exit by all
uninformed players would release so much information that an individual player would
find it optimal to wait. Hence the continuation play must be in mixed strategies where the
randomizations are large enough to allow for a positive continuation payoff with positive
probability. This leads immediately to further exits with a relatively high probability. We
call this phase of consecutive exits an erit wave. An exit wave ends either in a collapse
as the last uninformed player exits, or in a reversion to the flow randomization mode if
there is a period with no exits. In the symmetric equilibrium, play fluctuates between
these two modes until a collapse ends the game.?

When the number of players is increased towards infinity, the pooled information
about aggregate state becomes accurate. A plausible conjecture would be that aggregate
behavior conditional on state would become deterministic by the law of large numbers. We
show that this is not the case. Even in the case with a large number of players, transitions
between the phases remain random. The size of an individual exit wave as measured by

the total number of exits during the wave also remains random. Information is thus

3Examples of models that display waves of action that resemble our exit waves include Bulow &
Klemperer (1994) and Toxvaerd (2008). However, these models depend on the direct payoff externalities

arising from scarcity.



aggregated during quick bursts, the exit waves, but the aggregation is not complete, since
a random number of these bursts is needed to reveal all the information in the game. We
derive explicit distributions for the exit probabilities during exit waves and hazard rates
for their occurrence when the number of players is large.

The game has also asymmetric equilibria. In particular, there is an equilibrium in pure
strategies, where players decide about their exit in a predetermined order conditioning
their actions on the outcomes of the previous decisions. In this equilibrium those players
that act later benefit from the information revealed by those who act earlier, and thus
they have higher ex-ante expected payoffs.

Although asymmetric equilibria are perhaps not as relevant as the symmetric one
due to coordination requirements (especially when the number of players is high), we
nevertheless investigate what can be said about all equilibria of the game. Our main
result confirms that all equilibria share a similar information aggregation property when
the observation lag is small and the number of players is large. This result states that
in the good state (where a higher fraction of players are successful), virtually all players
exit at their optimal exit moment as if they knew the state in advance. In this sense,
information is aggregated efficiently in the good state. But if the state is bad, information
aggregation fails: players learn the true state too late, and as a result, they delay exit too
much. The main message is that observational learning induces the players to stay in the
game for longer than when acting alone. While this brings individual actions closer to
ex-post efficient actions (good types are less likely to exit), it induces also a cost in terms
of increased delay for the bad types.

This paper is related to the literature on herding and observational learning. That
literature has studied the informational performance of games where players have private
information at the beginning of the game. Much of this literature assumes an exogenously
given order of moves for the players, e.g. Banerjee (1992), Bikhchandani, Hirshleifer &
Welch (1992), and Smith & Sorensen (2000). This latter assumption has been relaxed by
a number of papers. Among those, the most closely related to ours is Chamley & Gale
(1994).* In that paper a number of players consider investment in a waiting game that
mirrors our setting. The model exhibits herding with positive probability: the players’
beliefs may get trapped in an inaction region even when investment would be optimal. In
our model the private learning during the game prevents the beliefs from getting trapped.
The difference between the models is best seen by eliminating observation lags, i.e., letting

period length go to zero. In Chamley and Gale, the length of the whole game goes to

4See also a more general model Chamley (2004). An early contribution along these lines is Mariotti
(1992).



zero: information aggregates quickly but incompletely in one burst of investments that
corresponds to one exit wave of our model. In our model, this limit involves smooth
continuous time dynamics. All common values information eventually aggregates, but
this takes time.

The two papers that are most closely related to ours in that they combine private
and observational learning in a timing model are Caplin & Leahy (1994) and Rosenberg,
Solan & Vieille (2007). While they are close to ours in their motivation, each makes a
crucial modeling assumption that leads to qualitatively different information aggregation
properties to ours. Caplin and Leahy assume a continuum of players from the beginning.
This assumption rules out what is a key property of our model: a large number of players
can jointly release a small amount of information. Rosenberg, Solan & Vieille (2007)
work with a finite number of players like we do, but they assume signals that make some
players so pessimistic after one period that exiting is the dominant strategy. As a result,
when the number of players is increased, the exit behavior after the first period reveals
the state by the law of large numbers. Due to these modeling assumptions, the aggregate
behavior in the large game limit is essentially deterministic conditional on state both in
Caplin & Leahy (1994) and Rosenberg, Solan & Vieille (2007). Our model complements
these papers by showing that information may also aggregate slowly through randomly
occurring exit waves, even when the pooled information is precise.

Finally, by combining common and idiosyncratic uncertainty, our paper relaxes the
assumption of perfect payoff correlation across players made in Chamley & Gale (1994),
Caplin & Leahy (1994), and Rosenberg, Solan & Vieille (2007). The pure common values
case is obtained in our model as a limiting case.

The paper is organized as follows. Section 2 sets up the discrete time model. Section
3 provides the analysis of the symmetric and pure strategy equilibria of the model. In
Section 4, we characterize the symmetric equilibrium explicitly in the continuous time
limit. In Section 5 we prove that all equilibria aggregate information approximately

efficiently in the good state when the number of players is large. Section 6 concludes.

2 Model

The model is in discrete time with periods ¢ = 0,1,...,00. The discount factor per

"A where A is the length of a period. The set of players is denoted by

period is 6 = e~
N ={1,..,N}.

Before the game starts, nature chooses the (aggregate) state randomly from two al-

ternatives: § = 6y (high) and 6 = 0, (low). Let p° denote the common prior p° =



Pr(0 = 0y). After choosing the state, nature chooses randomly and independently the
individual type for each player. Each player is either good or bad. If § = 0y, the prob-
ability of being good is «, while if § = #, the probability of being good is 3, where
0 < B < a < 1. The player types are drawn independently for all players. All types
are initially unobservable to all players, but the parameters p°, o, and 3 are common
knowledge.

The information about nature’s choices arrives gradually during the game as follows.
In each period, each player gets a random signal ¢ € {0,1}. Signals have two functions:
they transmit information and payoffs. For a player of bad type, ( = 0 with probability
1. For a good player, Pr (¢ = 1) = AA, where A is a commonly known parameter. The
signal realizations across periods and players (conditional on the state and the type) are
independent. We call the signal ( = 1 a positive signal, since it entails a positive payoff
(see next paragraph) and reveals to a player that her type is good. Each player observes
only her own signals. We use the terms informed and uninformed to refer to the players’
knowledge of their own type: players who have had a positive signal are informed, other
players are uninformed.

At the beginning of each period, all active players make a binary decision: stop or
continue. Stopping is costless, but irreversible: once a player stops, she becomes inactive
and receives the outside option payoff 0. If the player continues, she pays the (opportu-
nity) cost ¢+ A, observes a signal ¢ € {0,1} that yields payoff ¢ - v, and then moves to
the next period. Here ¢ and v are parameters for which ¢ < Av. Since we assume risk
neutrality, the payoff per period is (Av — ¢) A > 0 for a good player and —cA < 0 for a
bad player. As a consequence, bad types want to stop and good types never stop.

Within each period the players act simultaneously, but they know each other’s previous
actions. However, they do not observe each others’ signals, and therefore they do not know
whether the others are informed or uninformed. Note that new information arrives to the
players via two channels: their own signals and observations on other players’ behavior.
In the terminology of learning models, they engage simultaneously in experimentation
and observational learning.

The history of player ¢ consists of the private history recording her own signal history,
and the public history recording the actions of all the players. Since observing a positive
signal reveals fully the player’s type, the only thing that matters in each private history
is whether it contains at least one positive signal. Since it is always a strictly dominant
action for any informed player to continue, we can take it as given that informed play-
ers never stop. Strategies are therefore fully described by the stopping behavior of the

uninformed players. For those, the only relevant history is the public history, and from



now on we call this simply the history. Denote the history in period ¢ by ht and define it

recursively as follows:

R = 0,
Rt = hltud vt e {1,2,..},

where o' = (at,...,dly) is a vector where each a! € {0,1} denotes an indicator for i

continuing at period t.
Denote by H' the set of all possible histories up to ¢ and let H = U H'. Since stopping

t=0
is irreversible, al = 0 implies that a! = 0 for all # > ¢ for all elements of H. Denote by

H, = {ht eH ‘affl = 1} the set of histories, in which ¢ has not yet stopped. Denote by
A(ht) ={i e N|ht € H;} the set of active players, and let n (h') denote their number.

A strategy for an uninformed player i is a mapping
ag; . HZ — [0, 1]

that maps all histories where i is active to a stopping probability. The strategy profile is
o= (01,...,0n).

The value of a player is the expected discounted sum of future cash flows as estimated
on the basis of her own signal history, observations of other players’ behavior, and initial
prior probability p°. Denote by V; (h; o) the value of an uninformed player 7 after history
ht and with profile . The value of an informed player is easy to calculate explicitly:

. (=0 A
% =15

By equilibrium, we mean a Perfect Bayesian Equilibrium of the above game. In an

equilibrium, all actions in the support of ; (k') are best responses to o_; for all 7 and for
all ht.

2.1 Beliefs

Players have two types of posterior beliefs. First, they have a belief concerning the state.
This is directly relevant, because it determines the posterior on their own type. Second,
they have beliefs concerning the information of other players. This is indirectly relevant,
because it determines what can be inferred about the state by observing others’ behavior.

Given h' and o, all beliefs can be summarized in three quantities: p; (h', o), ¢, (h', o),

and qf-; (h',0), i,7 € N. Here p; (h',0) is the belief of player i about the state (i.e.

7



probability with which 6 = 0p), and ¢} (h', ), 0 € {6x,0.}, is the posterior held by any
player (or equivalently, an outside observer) on the event "j is informed", conditional on
state. Given these, we may write the unconditional posterior held by ¢ about the event

"j is informed" as:
7 (1,0) = diy (', ) s (1,0) + i (1,0) (1 = pi (B, ). (1)

An individual player is ultimately concerned about her own type rather than the state.

Denote by s; (h', o) the belief of i on her own type, i.e.
si (', o) = Pr{type of i is "good” ‘ht, o}

Note that conditional on state, the belief of every uninformed player of her own type is
identical (this is because all uninformed have an identical private history, which is all
that matters conditional on state). Let s), denote the belief of any uninformed player of
her own type, conditional on 0. Applying Bayes’ rule to a private history containing no

positive signals gives:
¢ sp (1 — AA)

Sy = , 2
’ 89 (1= AA) 4+ 1 — ) @)

where 0 € {0y,0.}, and s% = «a, s§ = 3. Using this, we may now express i’s belief of her

own type in terms of her belief of state:
S (ht,a) = P (ht,a) sty 4 (1 — D (ht,a)) st
= p; (ht,a) <Sl}{ — 52) + 8. (3)
We may also express a player’s beliefs of state and other players’ information condi-

tional on her own type. Denote by p;, (h, o) and p;_ (h', o) player i’s posterior probability
on the good state, conditional on being herself of good (+) or bad (-) type, respectively:

) t p _ Sl}ipi (htaa)

e [ E A (e ) W
) t o _ (1 - S%)pi (htv U)

e (M0) = Tyt o)+ =) A= p (50 ©)

Using these, i’s belief of j’s information conditional on her own type being good and

bad, respectively, can be expressed as:

2o (10) = gy (o) p (10) 40 (00) (L (10)), (©
g (h'0) = qy (,0)pi (h',0) +q (h'0) (1=pi (B',0)). (7)



2.2 Learning

Within each period, the beliefs react to two random events. First, at the beginning of
the period, other players’ actions give rise to observational learning. Second, during the

period, private signals induce another belief update.

We first derive the update in the belief about state. Let p; (', o) = log %)
denote the log-likelihood ratio of i’s belief of state. At the beginning of the period players
observe each others’ exit decisions. Player j exits with probability o; (h'). This induces

the following change in i’s belief:

A;pi (aj) = : : (8)
() (0)Y o
log (H—() s if CL;» =0
The total change in 7’s belief from observing the actions of all N\ other players is then:
A'pi(a') = Y A (). (9)
JENN
After this observational learning, players obtain private signals during the period. The

change in p from this is identical for all uninformed players, who get a non-positive signal

and thus remain uninformed:

A?p = log (%) . (10)
Combining the two sources of learning, we have:
pi (W1 0) =p; (W', 0) + Alp; (a) + A%, (11)
and the new belief for a player that remains uninformed can be written as:
D; (htH,a) _ eXp (i (htHaU)) (12)

~ 14exp(p (bt o))
Consider next the updates in a player’s beliefs over another player’s information,
qo (h', o). First, at the beginning of the period, players observe each other’s stopping

behavior. If player j continues, then other players’ belief of j’s information changes to

% (ht,o):

ARt o) = qg(ht,d)
o (h ) ) - 1—o0, (ht) (1 _ C]Z (hﬂ(f))’ 0 < {€H7@L}' (13)

Second, players understand that other players may become informed within the current

period (after exit decisions have been undertaken), which induces an additional update.

After this second update, the new belief is:



qg (htH,U) = @\g (ht,a) + (1 — ?g\g (ht,a)) ShAA
gy (h',0) (1 = shAA)

SHAA .
AR 1 -0, (ht) (1 —q (ht,0)>

, 0 e {@H,@L} (14)

3 Equilibrium Analysis

3.1 Isolated player

As a useful starting point, we consider an isolated player that can only learn from her

own signals. This player faces a standard stopping problem. Denote by s the current

belief of an uninformed player about her type. If the player continues for another period,

but still receives no positive signal, the new posterior s + As is obtained by Bayes’ rule:
s(1—AA) 1—AA

S+AS:5(1—)\A)—I—1—525*1—)\A' (15)

Denote the value function of an isolated player by V,, (s). If it is optimal to stop,
this value is 0. If the player continues, she gets a positive signal with probability sAA in
which case the value jumps to V,, (1) = V. Without a positive signal s falls to s + As.

Bellman’s equation can thus be written as:

Vi (5) = max {0, Vi (5)} (16)
where V,,, (s) is the value of continuing for at least one more period:
Vo (s) = —cA + sAA (v+0VT) + (1= sAA) 6V, L= . (17)
" "A\sI=2A

The optimal policy is to stop as soon as s falls below some threshold level, denoted s*.
The value function V,, (s) must be weakly increasing in s. By (17), Vin (s) is then strictly
increasing in s. The threshold s* is obtained from (17) by setting V,, (s*) = 0 and noting
that V,,, (s) = 0 for s < s*:

c
s = A(v+6VF) (18)
We shall see that s* plays a crucial role also in the model with many players. Denote by
t* the period at which s falls below s* in case there is no positive signal.

The analysis of the isolated player leads to our first result concerning N players. This
result, valid for all equilibria, says that after any history, any player is at least as well off
as an isolated player would be (given the same current belief of her type), but it is not

possible that all players are strictly better off:

10



Lemma 1 Let o be an equilibrium profile. For any h' € H, V; (h';0) > V,, (s; (h';0))
for alli € A(hY) and V; (h';0) = V,, (s; (h';0)) for some i € A(h'). Further, o; (h') =0

whenever s; (h', o) > s*.

Since s; (ht,0) > s* for all t < t*, all players stay with probability one until time ¢*.
Since the players reveal information only through their exit decisions, there can never be

any information sharing before time ¢*.

3.2 Symmetric equilibrium

A profile ¢ is symmetric if o; (h') = o, (h') = o (k') for all 4,5 € A(h') and for all
ht. When o is symmetric, all uninformed players update their beliefs in the same way,
and therefore they all share common posteriors. We thus omit all sub- and superscripts
referring to individual players throughout this section.

With a symmetric o, after history k', a given player observes the actions of n (h') — 1
other players that stop with probability 7 = o (h'). It is simplest to work here directly
with the beliefs concerning the players’ own type. In this case, the inference from other
players’ actions can be defined in terms of ¢, = ¢, (h',0) and ¢ = ¢_ (h',0), given in (6)
and (7).> The number of other players that exit follows a binomial distribution, where the
exit probability for each individual player is (1 — ¢, ) 7 if the player’s own type is good,
and (1 — ¢_) 7 otherwise. Denoting by s the current belief of an uninformed player of her

own type, the new belief directly after observing k out of n — 1 other players stopping is:

S, (k‘i;n7ﬂ-787Q+>Q*) =
s[(1—q4) WJk [1—(1—qy) WJnilik .
s[(M=g)m -1 —g)a" "+ Q-9 [1—g)n" 1-(1—g)a" "

In any symmetric equilibrium, all uninformed players have the same expected payoff.

(19)

It follows from Lemma 1 that this payoff must equal the value of an isolated player. Thus,
to make a player indifferent between exiting and staying, the observational learning in
the current period must suffice to make continuation value zero even when ignoring any
observational learning that might take place in the future. To formalize this key property
of the symmetric equilibrium, we define an auxiliary value function that we call the single-
observation continuation value. This is the continuation payoff of a player that observes
the randomization of other players in the current period, but after this period will behave

as an isolated player:

°The beliefs ¢, (h',o) and ¢ (h', o) are updated using (12), (14), and (4) - (7).

11



Cr(s.qr,q-) = BV (s)

—1
= Z [( ned ) (L—g)n]" 1= (1=q)a]" " V. ()], (20)
k=0

where ¢ = sqy + (1 —s)q- and s’ = &' (k;n, 7, s,q+,q_) as given by (19).

The following proposition states that there is a unique symmetric equilibrium in mixed
strategies. Whenever s is above s*, it is a dominant action for them to continue. When
s is below a certain lower threshold s (n ¢, q" ) then it is a dominant action to exit.
Between these thresholds, there is a unique stopping probability 7* (n s\, q ) that
releases just enough information to make uninformed players indifferent between stopping

and continuing:

S

Theorem 1 There is a unique symmetric equilibrium o> = [af e O'i,} defined by:

0 ,if st > s
of (W) =q 7 (n's'dd) L ifs(n'idlq) <s'<s i€ A(),  (2D)
1 cif st <s(n'dh,q")

where n' =n (k') s' = s (h',0%), ¢¢. = q; (h',0%), ¢" = q_ (h',0%), and where s(-) and

7 (+) are the unique values implicitly defined by equations:

s(n,qp,q-) = {5€(0,5];C,(s,q4,9) =0}, (22)
L (n>5>Q+>qf) = {71'6(0,1] C (5 q+,9 )_0} (23)

Note that if s' < s*, then V,, (s') < 0. To have C~ (s',4%,q") > 0, there must then
be a positive probability that s‘*! > s*. Since s (ht“; o ) is at its highest after histories

ht where no player exits, the following must hold in equilibrium:

Remark 1 If s (n (h'),qs (h;0%) ,q- (h;0%)) < s (h!;0%) < s* and no player ezits at
h', then s (h;0%) > s*.

The symmetric equilibrium path can be verbally described as follows. Given that
5% > s*, all uninformed players initially stay with probability one until s’ falls below s*.
At that point they start to randomize. In each period, the remaining uninformed players
update their current beliefs after observing the number of exits. Positive news may move
st back above s*, in which case randomizations end until s falls again below s*. When

st falls below s (n ¢, q" ) the remaining uninformed players become so pessimistic that

12



the information held by others, even if it were fully shared, is not sufficiently valuable to
counterweight the cost of staying an extra period. At that point all remaining uninformed
players exit. A definite bound for when the game must be over is when s%; falls below s*:
then even knowing for sure that § = 0 would not justify continuing another period (we
have then s (n',¢%,¢" ) = s*). In Section 4 we give a full description of the symmetric

equilibrium path in the limit as A | 0.

3.3 Asymmetric equilibrium in pure strategies

The model has asymmetric equilibria in addition to the symmetric equilibrium discussed
above. We show next that there is a class of pure strategy equilibria that gives a higher ex-
ante expected sum of payoffs to the players. A strategy profile ¢ is a pure strategy profile
if o; (h') € {0,1} for all ' € H, i € A(h'). When a pure strategy commands i to stop,
other players learn perfectly ¢’s information. If ¢ exits, she becomes inactive; if she stays,
her type becomes common knowledge. Given a pure strategy o, let Z(ht,a) C A(nY)
denote the set of players, who have not yet revealed their information. We call A (ht, o)
the set of informative players and 7 (h', o) < n (h') is the number of informative players.

Given s, g4, and ¢, let ¢ (s,q.,q-) denote the minimum number of informative
players required to reveal their private history in order to make continuation without

further observational learning optimal for an uninformed player:

0if V,, (s) > 0,

- , 24
min <7’L S {1>2> } ‘C%—&-l (5>Q+>qf) Z 0) if Vm (5) S 0 ( )

¥ (5>Q+>qf) = {

where C! (-) is the single-observation continuation value with stopping probability one.
If lim C! (s,q:,q ) <0, then we define ¢ (s,qy,q ) = co.

The next Theorem says that there exists a set of pure strategy equilibria defined by
©:

Theorem 2 Let o be a pure-strategy profile for which
#{ie A" ol (n) =1} =min [0 (5,41, q") .72 (0, 0")] (25)

for each b € H, where s' = s (h',0"), ¢, = ¢+ (h',0"), ¢ = q_ (h',0”). Then o” is

an equilibrium.

The pure strategy equilibrium assigns to each history a set (possible empty) of players

that reveal their private histories. Equations (24) and (25) define the number of those
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players so that their information makes the single-observation continuation value positive
for those who stay, but not for those who exit. The proof shows that if the single-
observation continuation value is negative for a player, then a deviation by mimicing an
informed player cannot make continuation profitable. Even though such a deviation gives
access to information that others reveal later, the deviation makes other players overly
optimistic and future information flow is delayed.

While there are many strategy profiles satisfying Theorem 2, they are all obtained
via a permutation of the players’ identities. A notable difference between a pure strategy
equilibrium and the symmetric equilibrium is that the former gives a higher ex-ante total
payoff. The expected payoff in the symmetric equilibrium coincides with the stand-alone
payoff. In contrast, the pure strategy equilibrium payoff of those players that exit after
observing other players’ decisions is higher.

We now turn to the characterization of the symmetric equilibrium in the continuous

time limit. In Section 5 we will discuss the properties of all equilibria.

4 Exit Waves

In this section, we characterize the symmetric equilibrium in the limit as A | 0. We do
this for two reasons. First, we want to rule out any effects that observation lags might
have on equilibrium properties. Second, this limit reveals sharply the inherent dynamics
of the model: information aggregation happens in randomly occurring exit waves.

It is convenient to express the limiting properties of the equilibrium in continuous
time. This is indicated by using argument ¢ in parenthesis. Let us stress, however, that
our model is not defined in continuous time: strategies, beliefs, etc. are only defined
for histories consisting of a finite number of periods. Therefore, the continuous time
equations are to be understood merely as a representation of the belief dynamics of the

unique symmetric equilibrium as A | 0.

4.1 Equilibrium Path Prior to Exit

Let [t,t + dt] denote an arbitrary fixed time interval of real time. We let first A | 0, so
that the number of decision moments within [¢,¢ + dt] goes to infinity. In the second step,
we let dt | 0 to arrive at a continuous time description of the equilibrium path.

We start with some limiting properties of the symmetric equilibrium. In expression
(18), s* , depends on A through § and V*. To emphasize this dependence, we write it

here as s* (A). With a slight abuse of notation, we use s* without an argument in this
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section to refer to the exit threshold in the limit A | 0.

Lemma 2 Denote by 7 (n, s, q,q—; A) the equilibrium exit probability defined in Theo-
rem 1, given period length A. Letn > 2 and q < q. < 1. Then, we have

Lim* (n, 5" () = f(A),¢+,9-:8) =0,

where f(A) is an arbitrary positive function for which lAirl% f(A)=0.

We consider next the time path of s in the symmetric equilibrium. Whenever s crosses

1-2A
(s*(A)~1-aar

equilibrium exit probability after any history where s has just crossed s* (A) goes to

s* (A), its value in the next period must be s > Lemma 2 implies that the
zero as A | 0. On the other hand, Theorem 1 implies that when no player exits, the
next period belief s’ must be above s* (A). As soon as s has fallen below s = s*, the
players randomize with a probability that bounces s immediately back above s* (A) (if
no player exits). After this, s drifts down until it crosses s* (A) again at which point
another randomization bounces it back above s* (A), and so on. As A gets smaller, the
band around s* (A) within which s drifts narrows down, and in the limit A | 0, s must
stay infinitely close to s*.

Next we fix the interval [t,t + dt], and consider the belief of an arbitrary uninformed
player, who observes neither a positive signal nor an exit by another player within the
interval. Since her belief remains (arbitrarily) close to s* throughout the interval, the
belief updates from seeing no positive signals and no exits must offset each other. Since
the probability of a positive signal is of the order O (dt), the same must be true for the
probability of observing an exit. Therefore, when dt | 0, we may denote by p(t) - dt the
probability with which an arbitrary uninformed player exits within [¢,¢ + dt], where p (¢)
is to be interpreted as the hazard rate of exit of an arbitrary uninformed player. We call
p (t) the equilibrium flow rate of exit.

Adapting equations (8) - (12) appropriately and calculating b&ﬁ%w leads to:°

p(t)=[=A(su (t) =5 () +(n—=1) p(t) (qu (t) —qr ()] () (L= p(t)). (26)
Similarly, adapting (13) - (14) to calculate the limit b&ﬁ%w, we get:
Go () = [Asg (t) +p (t) g0 ()] [1 — a0 ()] - (27)

SEquations (8) - (12) give belief updates within a single period. Here we want to derive the corre-
sponding updates for an interval [t,t + dt] that contains an infinite number of periods. However, when

dt is small, the only change required is to replace A by dt, and o; (t) by p(¢) - dt.
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Letting A | 0 in (2) gives:

so (1) = —As () (1 — s (1)) (28)

Differentiating (3), and using (26) and (28), the dynamics of s (f) can be written as:

$(0) = D) (s (0) =51 (0) + 2 ) (50 (6) = 52 (0) + 51, ¢) (29)
— s L= O+ [1=1p(Op @) L= pO) s (1) — 52 (O] laar (¢) — az (8)

Equations (26) - (29) give the belief dynamics with an arbitrary p (¢). The equilib-
rium requirement is that p (¢) keeps s (t) at constant value s* as long as no player exits.
Requiring s () = 0 in (29) gives:

As(t)(1—s(t I'(t
PO~ T T O on D s TP AT=7 @ =T
Note that s (t) = s* is equivalent to p (t) = p* (¢), where
s* — s (t)
si(t) —s.(t)

Note, however, that s (h', o) is bounded from above by s’; for any h* and o. Therefore

pr(t) =

when st; falls below s*, it becomes impossible to keep an uninformed player indifferent.

To understand what happens at this point, let

dg P
gt p+dp - (1-p)
denote the maximum belief on the state of the world that information sharing could

Z_j(p> QH>QL>n) =

induce. If all the other players turn out to be informed, then p (p, qu, qr,n) is the belief
of the n:th player, who is uninformed. Assuming that the players continue randomizing
according to (30) and still assuming no exits, p(t), qg (t), and g, (t) keep increasing,
and eventually p(¢) and P (p, qu,qr,n) cross each other. Close to that moment, p ()
approaches D (p, qu, qr,n), and 7 (t) goes to infinity. At the same time ¢ (t), qu (), and
qr, (t) approach one. This means that by the time when p* and p (p, qu, qr,n) cross, all
uninformed players have already exited with probability 1, and at that moment it becomes
common knowledge that all the remaining players are informed and the game is over.

If the number of players goes to infinity, their pooled information is sufficient to
reveal the true state of nature to an arbitrary degree of precision. This means that
?(p,qm,qL,m) e 1 whenever p > 0, q;, < qg. Thus, as N — oo, the game can continue

as long as
s* — s (t)
su () — s ()
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The latest moment when the game must end is when sy (t) falls below s*.
As long as no player exits, the randomizations follow p (t) and we say that the play is
in flow randomization mode. Since beliefs change only gradually, information aggregates

slowly during such a phase.

4.2 Equilibrium Path after Exits

The first exit arrives at hazard rate n (1 — gy (¢)) p (t). Following an exit, beliefs change
drastically within the period, no matter how small A is. The analysis in the previous
subsection implies that p must stay close to p* as long as no player has exited. However,

following an exit, the belief falls from p* to a lower level p~. We calculate p— as:’

= (1—qu)p*
(I—qu)p+ (1 —qr) (1 —p*)

Consider next the equilibrium behavior after a history where p = p~ < p*. There are

two possibilities. First, if p(p, qm, qr,n) < p*, then all uninformed players exit immedi-
ately with probability one. If p (p, qu, qr,n) > p*, then by Remark 1, the players use an
exit probability that restores p above p* with a positive probability for the next period.
Since A | 0 means that the cost of waiting for one period, cA, vanishes, the margin by
which p should exceed p* in the event that no player exits goes to zero. Using (8) and
(9), the symmetric exit probability 7 that moves the belief from p < p* to p* is given by
the following:

() (i) ()7

When n is very large, @ must be very small, and we have:

g (247 ) ~ (o =)

and therefore, when n — oo, we have:

P —p

dH — 4L

This means that the random number of players that stop within the period is dis-
()@ ) 3

9H —4qL

(n—1)m— (31)

tributed approximately according to a Poisson distribution with parameter

0 =0y and%if@z@b

"The probability of more than one exits in a single period goes to zero as A | 0.
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If k players exit, the updates in beliefs are

’ Pl —gm) (1= (1= gu) " " *

b pll—gn)m" 1—Q—gn)r" " P+ Q-p)[1—q)m" 1 - (1 —q)a" " "
I qo
QG = m.

Since we are considering the limit A | 0, updating due to private signals can be ignored.

If £ =0, then p’ = p*, and the equilibrium path goes back to the flow randomization
mode described in the previous section. If k is so large that p (¢, ¢y, ¢, n — k) < p*,
then the game collapses as all remaining uninformed players will exit in the next period.
Otherwise, the players exit again with a relatively large probability in the next period
and the exit wave continues.

The exit wave ends in one of two possible ways: If at some period p (p, qu, qr,n) < p*,
then the game collapses and all the remaining uninformed players exit with probability
one. Or, if £ = 0 at some period, the game moves back to the flow randomization mode.
As A | 0, the succeeding periods along the exit wave are squeezed together, and the
duration of the exit wave as measured in real time shrinks to zero. The duration of
each flow randomization phase, on the other hand, stays strictly positive with probability
one. Basically, the equilibrium path alternatives between flow randomization phases with

strictly positive random duration and exit waves with negligible duration.

4.3 Discussion

We want to emphasize two properties of the symmetric equilibrium. Even as the number
of players gets large, the equilibrium path displays aggregate uncertainty. The incidence
and the size of the exit waves remains random, and information is only aggregated during
these waves. Hence the qualitative properties of the symmetric equilibrium are quite
different from the equilibria in related models such as Chamley & Gale (1994), Caplin &
Leahy (1994), and Rosenberg, Solan & Vieille (2007).

It is useful to observe that even though the argument in the previous subsection
proceeds by letting first A | 0 and then letting N — oo, we would get the same results
for the opposite order of limits. For a fixed A, we could use a Poisson approximation
similar to (31) for any s < s* (A) to derive the equilibrium exit distribution for large n.
Letting then A | 0 gives the same result as above.

The game always ends in a collapse. When N is large, however, a collapse reveals
the state by the law of large numbers. Denote by Ty the optimal exit time in state 6. In

symmetric equilibrium with a negligible observation lag, if & = 05, the collapse cannot
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take place before Ty, because the last exiting player would already know the state by
the time of exiting, which would contradict optimal behavior. On the other hand, the
collapse occurs at latest at T, because no uninformed player would ever stay beyond
that moment.

In contrast, if # = 6, the collapse can take place at any time between t* > T} and
Ty. Denote by £ (t) the hazard rate of market collapse when N — oo, conditional on

0 = 0. Since s is a martingale, we have:
SAL—=5")+ (1 —p) &) (sp—s") =0,
which gives:

s*(1—s")(sg — sp)

(s* —sp)(sg — s*)

() =A (32)

where we have used
s* — SL
* *
p P —’ 1 JE— p f— .
SH — SL SH — SL

Sy — S*

Note that by (30), the hazard rate of an exit wave with N — oo, 0 = 0, is given by
(1 —q (t)) T (¢). Since not all exit waves lead to a collapse, we have (1 —q. (¢)) T (t) >
0]

An outside observer needs only the information about whether a collapse has taken
place or not in order to update her belief on the state. If § = 8, the market collapses
with the hazard rate given in (32). If 6 = 0y, the game collapses at time Ty. As time
goes by and the game continues, the outside observer becomes gradually more convinced

that 8 = 0. But as long as t < Ty, there is a positive probability that 6 = 0.

5 Large Games

There may be other equilibria besides the symmetric and pure strategy equilibria (e.g.,
a subset of players behave as in a symmetric equilibrium, whereas others observe those
players without revealing any information). In this section, we prove a limiting result that
is valid for all equilibria of the game, when N is large and A is small. A large number
of players allows for the possibility of almost perfect social learning. If the players were
able to pool their information, their inference on the state would be accurate by the law
of large numbers. In the current stopping game, the amount of information pooling is
determined by equilibrium stopping behavior. Our main result shows that all equilibria of
large games feature almost perfect social learning in the high state whereas social learning

is slow relative to perfect information pooling in the low state.
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We let Xy (N, A, o) denote the (random) number of players that exit the game under
equilibrium strategy profile o when the state is #. We will also use notation X} (N, A, o) to
denote the (random) number of exits up to period ¢ in state §. Let Ty (A) be the optimal
exit time of an individual player that knows the state value 6. The total probabilities of

exiting the game with full information about state value are then:
En(A)=1-a+a(l-2 )" =2 (A)=1-8+p(1-1a)"HD,

In large games, these probabilities can be interpreted as populations shares of players that
exit under full information about aggregate state (by the law of large numbers). Observe
also that

EEB =y (A) = Zyand EH}O =L (A) ==,

are well defined.

To start the analysis, we make a preliminary observation on the maximization problem
of a utilitarian social planner. Suppose that the planner does not know the state or the
types of any individual players in the game but is allowed to dictate their exit strategies.
By observing the realized exit decisions, the planner can update her own belief on the true
state. It is easy to see that when NV is large, the planner can guarantee approximately
the same average payoff per player as in the case with a known state of the world. By
ordering K players to exit when uninformed at 7}, the number of exits at that instant
gives approximately accurate information on the state if K is large enough. If the state
is revealed to be 0, (with large probability), then all remaining uninformed players leave
in the next period. If 0 is revealed to be 0y, then the remaining uninformed players
leave at Ty. For A small enough, and N large enough, the average payoff per player is
approximately optimal for each state of the world.

The main result in this section contrasts equilibrium behavior to socially optimal
behavior. In equilibrium the fraction of players that exit is virtually optimal if § = 0y,
which means that information aggregates efficiently. But if & = 0, the fraction of players

that exit is too low, which indicates inefficient delay:

Theorem 3 Let o be an equilibrium. Then:
i) For all € > 0,

. . XH (N>A70) — _
i@(ﬂ\}l—r}rgoPr{T —Zg >¢}=0.
i1) There is a 6 > 0 such that
X (N, A
lim lim Pr{=, — X (N.A,0) >0} =1.

A—0 N—oo N
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We prove Theorem 3 in the Appendix through a sequence of Lemmas. The first shows
that all agents are informationally small in the sense that whenever the posterior belief
on the state of the world for an outside observer with no private information is sufficiently
accurate, then individual beliefs of the players are also accurate. This follows from the
fact that the maximum amount of private information for any player is incorporated in
her type. Accurate information thus requires information about the types of multiple
players. The second Lemma shows that a large expected number of exits in any given
period results in accurate beliefs for the following period. The third Lemma shows that
under such circumstances, players are better off waiting for the information, as long as
the period length A is small enough and as long as the players are not very pessimistic
(i.e. their belief on the state is bounded away from zero). When A converges to zero,
this lower bound on beliefs also converges to zero. If the state is high, then the players’
beliefs stay away from zero with a high probability. Hence, in equilibrium the expected
number of exits per period must be bounded. Since the total number of periods before
Ty is also bounded, we get an upper bound for exits in equilibrium that is independent
of the number of players and the result follows.

We emphasize the order of limits in the previous theorem. In order to maintain the
discrete time nature of the model, we first fix the period length and let the number of
players grow large. This allows for an arbitrarily accurate information sharing within a
single period. Then we shrink the period length in order to make the cost of waiting for

one period negligible.

Remark 2 When 8 — 0, all players exit eventually with probability 1 in the low state. In
this case, the fraction of players that exit is ex-post optimal in both states. When o — 1,
almost all players stay in the game forever. When o« — 1 and 5 — 0, all players exit if

0 = 01, and almost all players stay forever if 6 = 0. In all these cases, there is inefficient
delay if 0 =0y

6 Conclusion

A number of our modeling choices could be modified without affecting the qualitative
nature of the results. We have assumed that information is revealed perfectly upon the
arrival of a single positive signal. This assumption is made for convenience. At the
expense of additional notation, we could have used a model where the different types
observe positive signals at different Poisson rates. The key property that we need for

our qualitative results to hold is that even the most pessimistic player wants to stay in
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the game for a period of time. If some players become quickly so pessimistic that it is a
dominant action for them to exit, then the state will be revealed immediately by the law
of large numbers (see Rosenberg, Solan & Vieille (2007)).

The model could also be generalized beyond the two-state formulation. Even with
more than two possible states, the true state would be learned at the moment of collapse
if the number of players is large. Hence it can never be the case that a state is learned
before it is optimal for the uninformed to exit in that given state, which means that
almost all players would stay beyond the full information optimal exit time for all but
the highest state. This reasoning underlines the conclusion that observational learning
induces inefficient delay.

It would be straightforward to allow players to have private information on their own
parameters. This would result in a symmetric equilibrium in pure cut-off strategies that
would correspond to our mixed-strategy equilibrium. Letting the heterogeneity vanish in
such a model would give a purification of our symmetric equilibrium.

Relaxing the assumption of irreversible actions would be more difficult. We expect
the qualitative nature of our results to survive the assumption of costly re-entry, but the
analysis would be much more complicated as the exit value would include the value of
re-entry option, which in turn would depend on future play by other players. With fully
reversible entry and exit we expect the nature of our results to change: the limit A | 0
would allow players to easily communicate to each other their observations through an
exit followed by a quick re-entry.

Finally, an interesting and challenging extension to the current model would be to
allow for some form of direct payoff externalities. Then the informational aspects ana-
lyzed in this paper would combine with issues such as war of attrition, preemption, or
coordination. The analytical techniques required for these cases are quite different since
the value to an informed player depends on the continuation strategies of other players.

We hope that our model proves useful for pursuing such extensions.
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7 Appendix

7.1 Proofs of Sections 3 and 4

For the use of proofs that follow, the following lemma lists some properties of the single-

observation continuation value CT (s, q.,q-):
Lemma 3 C7 (s,qy,q ) is continuous in 7w, S, q,, and q_, and:
e weakly increasing in n, with CT (s,q+,q-) = Vin ()
o weakly increasing in 7, with C° (s, q.,q_) = Vi ().
e strictly increasing in s, with C7 (0,q+,q-) = —cA and CT (1,q4,q_ ) = V.

e weakly increasing in q. and weakly decreasing in q_.

Whenever C7 (s,q+,q-) = 0 > V. (s), CF(s,q4,q-) is strictly monotonous in w, n,

¢+, and q-.

Proof. Since V,, (s) is continuous and strictly increasing in s, the continuity of C7 (s, g4, q)
w.r.t. m, s, ¢+, and ¢_ follows directly from definitions (19) and (20). By definition (20),
C7 (s,q+,q-) is the expected value of Vi (s"), where ¢’ is the belief updated on the basis
of the signal that the single randomization event by n — 1 other players provides. It is
clear that a signal that is superior in the sense of Blackwell increases C7 (s,qy,q ). It
is straightforward to check that the signal is indeed improved by increasing n, w, and
g", and by decreasing q_. When Vin (s) < 0 and C7 (s,9+,q-) = 0, it must be that
Pr <l7m (s') > 0) > 0 and Pr <l7m (') < 0) > 0, which means that the optimal action
(whether to exit or continue) at the next period depends crucially on the signal real-
ization. In such a situation, the continuation value must be strictly increasing in the
precision of the signal, and CT (s, ¢, ¢ ) is strictly increasing in n, 7, and ¢, and strictly
decreasing in q_.

The distribution of the next period s’ with a given current period s, as given by (19), is
stochastically first-order dominant over the same distribution with a lower current period
s. Since V,, (s) is strictly increasing in s, this means that also C7 (s, qy,q_) is strictly
increasing in s. If s = 0, it is optimal to stop at the next period with probability 1, so
C7(0,q4+,q-) =V, (0) = —cA. On the other hand, s = 1 means that the player is good
type at probability 1 and will never exit, so C7 (s,qr,q ) =V7'. ®
Proof of Lemma 1. Assume that V; (h';0) < V,, (s; (h';0)) at some some h! € H,
i € A(Rh'). Then i could deviate by ignoring any information obtained by observing other
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players, and replicate the behavior of a player in isolation, which would guarantee the
payoff V,, (s; (h';)). Thus, o is not an equilibrium. In particular, exiting at s; (ht, o) > s*
would give payoff of 0 < V,, (s; (ht,0)). Thus, in equilibrium s; (h',o) > s* implies
o; (h') = 0. To show that V; (h'; o) =V}, (s; (h'; )) for at least one active player, it suffices
to note that the particular player that is the next to apply a positive exit probability,
must be willing to do so without any observational learning from others. Thus, this player
can not have a higher payoff than a player in isolation. m

Proof of Theorem 1. The properties of C7 (s, q.,q ) listed in Lemma 3 imply that
(22) defines a unique value s(n,qy,q ) < s* for all relevant n, ¢, and ¢, and (23)
defines a unique value 7 (n,s,q4,q-) € (0,1] for s € [s (n',¢%,¢"),s"). Also, Lemma 3

implies that s (n,qy,q ) and 7* (n, s, q,, q_) have the following properties:
e s(n,qy,q ) is decreasing in n and ¢, and increasing in ¢_.

e Whenever s € [s(n,qy,q-),s"), 7 (n,s,q4,q-) is strictly decreasing in n, s, and

¢+, and strictly increasing in ¢_.

Let us then show that o°, as defined recursively in (21), is an equilibrium. We
will first check whether it could be profitable for an arbitrary player ¢ to deviate when
s (ht,0%) < s*.

Denote by t; the random number indicating the index of the k:th such period that
s (h'*,0%) < s* (i.e., there are k sub-histories h’ C h', including h*, such that s (hf,0") <
s*). Since s (h'*,0%) < s*, (21) implies that ¢ (h'*) > 0. In order to check whether it
could be profitable for an arbitrary player ¢ to deviate, consider the best possible strategy
for i at h'* given that other players stick to o°. The best-response value can be written
recursively as:

Vi (h0®) = max{ 0. c:f,f[j? (s (', 0%) g (B, 05) g (h'*,0%))
TSV (a8 ) L (33)

Equation (33) captures the best-reponse value by decomposing it into two parts: the
single-observation continuation value and the additional value that would be obtained at
tpy1 if further observational learning makes it optimal to stay beyond that period. This
additional value is the expected discounted best-response value function calculated at his-
tory h'*+1, as captured by E6" " V;* (h'*+1;09,). The term V;* (h*+1;0%,) is again given
by (33) by increasing k index by 1. This recursive formulation implies that V* (htk; o 1)
can be strictly positive only if there is some m > k, such that s (ht’”,as) < s* and

CZ(Sh(t},:;l) (s (', 0%) ,qs (hfm,0%) ,q_ (h'™,0%)) > 0. But equations (21), (22), and (23)

24



imply that this can never be the case. This means that V* (htk; o’ 1) = 0. Since o gives
that same payoff, i.e. V; (htk; o ) = 0, there is no profitable deviation from o° at h'*.
Since k is arbitrary, h'* is an arbitrary history with s (h™,¢0%) < s*, and thus o® (h') is
a best-response whenever s (ht, o’ ) < s*.

On the other hand, whenever s (ht, o ) > s*, (21) defines 0° = 0. Since then
Vin (s (ht, o )) > 0, continuing must indeed be a dominant action. There is again no
profitable deviation. We can now conclude that ¢ is an equilibrium.

Finally, let us confirm that ¢° is the only symmetric equilibrium. Using the monotonic-
ity properties of the single-observation continuation value given in Lemma 3, it is straight-
forward to check that for every h' € H, o (ht) as defined in (21) gives the unique sym-

metric randomization probability for which:
i) V; (ht,as) = Vn (s (ht;as)) , and

i) Vi (1n,0%) = ) (s (0 0%) ay (B,0%) 0 (00%)).

The property i) must hold in a symmetric equilibrium by Lemma 1, and ii) must hold in
any equilibrium to prevent a profitable deviation by delaying exit. This means that o is
the unique symmetric equilibrium. m

Proof of Theorem 2. Denote by 74 (0) the (random) time at which ¢ induces the
number of informative players fall to or below N —k (i.e., the number of players that have
revealed their private histories exceeds k at period 7 (¢)). Let of be a profile for which
(25) holds. Denote by o~ the strategy profile, where i never exits, but other players
stick to strategies given by o (i.e. ¢/ " (h') = 0 for all h* € H;, af’*i = o} for all j # 1).
This profile is used for checking the profitability of i’s potential deviation.

Take a history h' € H; such that ¢ (h') = 1. The aim is to show that it is not
profitable for i to deviate by choosing o, (k') < 1.

Assume that ¢ has deviated at hf, and due to this, is still active and uninformed at
time 7y 1 (0P’*i). Note that 7y 1 (0P”i) is the period at which the number of players,
excluding 7, that have not yet revealed their private histories goes to zero. Given that
situation, consider the optimal action of ¢ at 7 1 (O’P ”) Note that due to ¢’s deviation,
other players’ strategies are based on a false belief that ¢ is informed. Compare the
beliefs of ¢ and j, where j is a player for which of’ (hTN *1(”P’7i)> = 1 (there must be
at least one such player, because the number of informative players falls to zero exactly
at period 7y_1 ((IP ”)) Both 7 and j have an identical observational history about all
players k # i, 7. Assuming that both are uninformed, the only source of difference in their
beliefs is that while j falsely believes that ¢ is informed at probability one, ¢ assigns a

non-trivial probability for j being informed. Assume that ¢ were somehow able to observe
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7’s information before choosing whether to continue or exit at 71 (O’P ”) Even then,
the most favorable news that ¢ could get would only make 7’s belief identical to j’s current
belief. Since by (25), single-observation continuation value is negative for j, it must also
be optimal for i to exit at 7y_; (677).

Let us then consider 7n_9 ((IP ”i) < TNn_1 ((IP ”) Assume again that 7 is active and
uninformed at 7y_s (O’P ”) Since we have just shown that ¢ should exit at latest at
period 7x (O’P ”i), the optimal decision of ¢ at period 7y _» (O’P ”i) is not affected by
any observational learning that might take place beyond that period. This means that,
by exactly the same reasoning as above, 7 should exit at 7n o (O’P *’)

The same logic can now be applied step by step backwards, and we end up concluding
that 7 should optimally stop already at the period of deviation, that is, t. So, whenever
of (k') = 1, there is no profitable deviation for i available.

Take then a history h' € H; for which of (h') = 0. Then (24) and (25) imply that
single-observation continuation value is positive for 7, and it can not be optimal to exit.
So, there is no profitable deviation for i available in that case either. Thus, ¢ is an
equilibrium. m
Proof of Lemma 2. Letn >2and ¢ < g, < 1, and take some 7 > 0. Using (17) and

(20), we can write the single-observation continuation payoff evaluated at s as
Cr(5,q4,q-) = BV (s)

= E|—cA+ A (v+6VT) +(1—s'AA) 6V, (ﬁ)} (34)

where s’ is the random value to which s jumps as a result of observing n — 1 other
players randomize at probability m. Note that s’ is independent of A. Since = > 0, and
beliefs are martingales, there must be some ¢ > 0 such that Pr(s' > s+¢) > 0.

Let s = s*(A) — f(A) and let A | 0. Then the terms of the order O (A) in (34) go
to zero, and we have:

G (s, g, q-) = B[Va ()] (35)

At the same time, A | 0 also makes s T s* (A), and thus Pr (s’ > s* (A)) > 0. Since
Vi (s) > 0 for any s and V,, (s') > 0 for s > s* (A), we have E [V}, (s)] > 0, which means
that lAirl%Cf{ (s* (A) — f(A),q4+,9-) > 0. Since this holds for all 7 > 0, definition (23)
implies that lAirerUT* (n,s* (A) — f(A),q+,¢;A)=0. =

7.2 Proof of Theorem 3

Lemma 4 Let p(h',0) = Pr{0 = 0y |h'}, i.e. the posterior probability of the good state

for an outside observer with no private information. Then for allt < Ty andp > 0, there
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is a p(p) > 0 such that
p(ht,a) >1—-p(@) = n (ht,a) >1-p
for all 1.

Proof. From (4) and (5), we have:

1_pi(ht70) < 1_pi*(ht70) < 1_StL 51}{
1_p(ht70) _1_pi+(ht70)_ StL 1_531.

Since s}, and s! are bounded away from 0 and 1 for ¢ € [0, Ty, the result follows. m

Lemma 5 Let Xy (h', o) denote the random number of immediate exits at history h' given
strategy profile o. Then
i) For all 6 > 0 and ¢ > 0 and p > 0, there is a p' < oo such that BX (h',0) >
implies that:
Pr{p(h"*',0) >1-06]0 =0y} >1-¢,

whenever p (h*, o) > p.
ii) For all € > 0, there is a K < oo such that Pr{Xy (h',0) > KEXy (h',0)} <e.

Proof. i) At history h', the outside observer believes that player j exits with probability

(1-aq) o, =xp

ht,a)

Since the randomizations are independent across agents, the mean ,uX‘)( and the vari-

X (ht,a)

ance var in state ¢ are simply:

ILLXe(ht’U) _ ZX%, 'UCLTXe(ht’U) _ ZX% <1 . X‘é) S ILLXQ(ht’U)_
J J

From (14), we know that

1—q£ (ht, o) B (1—stLAA> ( 1—q§(ht*1,a) ) 1—o;(ht1) (1—q§{ (ht*1,0)>

1 —qy (b, 0) 1= sy M) \1—qf (i —1,0) ) 1—0; (k1) (1= g} (h,0))
Hence for all ¢ > t*, ’
ot
1_qgi (ht,O')

for some 7 > 0. Hence we know that ,uXL(ht’”) > (1+n) ,uXH(ht’”).

Consider the random variable

1

}/(,) <ht,0'> = WXQ <ht,0'> .
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Then

EYy (ht,a) < = and EY}, (ht,a) =1,
n
Xy (bt 1
varYy (ht,a) _ n o) < Ty
(MXL(ht,a))2 puXeh'o)
X (B 1
varYy, (h' o) = var Xy (I, 0) < .
(MXL(ht,a))Q pXr(hto)

Hence the result follows from Chebyshev’s inequality and Bayes’ rule.

ii) Obvious. =

Lemma 6 For all n > 0, there is ap > 0 and a A > 0 such that for all A < A, and all
t<Ty:
Pr{p (ht,a) >1—-p ‘ht’l} >n = BR,; (ht’l,a,i) =0,

where BR; (h™Y, 0 ;) denotes the optimal action of i at history h'™! given strategy
profile o_; for other players.

Proof. Since p; (ht,0) < p(ht,o_;,0;) < piy (W', o), and p; (h', o) is independent of o,
Lemma 4 implies that for each p there is a p(p) such that

p(ht,a) >1-7p(p) = n (ht,a) >1-—p

for all i and for all exit choices (also for out of equilibrium choices). Hence all i believe
that
Pr{p; (W',0) >1—p} >nif Pr{p(h',0) >1-p(D)} > n.

Consider the payoff of an uninformed player ¢ at t < Ty. Denote the value of a single
uninformed player at history h* when 6§ = 6y by Vy (h'). A simple continuity argument
shows that for all t < Ty, there is a A > 0 such that for all A < A, Vj (k') > 0. The
value function of a single player is given by p; (k') Vi (') 4+ (1 — p; (b)) V7, (k') and hence
the same conclusion is valid whenever p; is large enough.

Consider now t — 1. If Pr{p (h',0) > 1—p} > 7, then the cost from staying one period
is ¢A and the benefit is bounded from below by 7V; (h', o). Hence for A small enough,
the benefit dominates the cost and BR; (h " !,0 ;) =0. =
Proof of Theorem 3. i) It is clear that all uninformed players exit by T (A). Hence
=n (A) gives a lower bound for the population share of those that exit. Consider an

XH(N7A70')
N

arbitrary equilibrium strategy profile o. Then an upper bound for is given for

each T'< Ty (A) by
_ XE(N,A,0)

U (v.8,0) = 2

N — XL (N,A, o)
N

><1—oz—|—oz(1—)\A)T>.
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For each ¢ > 0, choose Ts (A) < Ty (A) such that
a (1= AA)=D _ o (1= 2A)HA) 5. (36)

An obvious lower bound for U}, (N, A, o) is given by =y (A) since all uninformed players
For all 6 > 0,there is a p such that Pr{p (h', o) < p for some h* |0 =0y} < 4. To see
this, consider the event
A={n'|p(r' o) <p}.
The posterior probability of § = # conditional on reaching A is
po Pr{A|0 =0y}
poPr{Al0 =0y} + (1 —po) Pr{A|0 =6.}
by definition of the event A. Since Pr{A [0 = 0.} < 1, we have:

<

I3

Pr{Al0 =0y} < (A=p)p

po(1=p)
Consider then paths where p (hf,0) > p for all h*. Lemmas 5 and 6 imply that the
expected number of exits is bounded by some p in any period. The second part of Lemma
5 then implies that

Ty —t* Tg-t*

Pr{XF (5,4) < EO)p@)} > (1-d) 5,

for all T; < Ty for some k (¢8') < oo and for A small enough. By choosing ¢’ to be small
Ty —t*
enough (1 —§)” & can be made arbitrarily close to unity. This shows that for all § > 0,
there is an N such that for all N > N
Xi (N,A,0)
N

Hence for all T5 < Ty and 6 > 0, there is an N such that for all N > N

Pr{ >4} < 0.

Pr{U” (N,A,0) > 5 + (1 - 0) (1 —ata(l- )\A)T5>} <.

Combining this with (36) yields the result.
ii) The second part follows immediately from the fact that ¢* > T, and no player exits

prior to t* in any equilibrium. m

References

Banerjee, A.V. 1992. “A Simple Model of Herd Behavior.” Quarterly Journal of Eco-
nomacs 107:797-817.

29



Bikhchandani, S., D. Hirshleifer & I. Welch. 1992. “A Theory of Fads, Fashion, Cus-
tom, and Cultural Change as Informational Cascades.” Journal of Political Economy
100:992-1026.

Bolton, P. & C. Harris. 1999. “Strategic Experimentation.” Econometrica 67:349-374.

Bulow, J. & P. Klemperer. 1994. “Rational Frenzies and Crashes.” Journal of Political
Economy 102:1-23.

Caplin, A. & J. Leahy. 1994. “Business as Usual, Market Crashes, and Wisdom After the
Fact.” American Economic Review 84:548-565.

Chamley, C. 2004. “Delays and Equilibria with Large and Small Information in Social
Learning.” Furopean Economic Review pp. 477-501.

Chamley, C. & D. Gale. 1994. “Information Revelation and Strategic Delay in a Model
of Investment.” Econometrica 62:1065-1086.

Keller, G., S. Rady & M. Cripps. 2005. “Strategic Experimentation with Exponential
Bandits.” Econometrica 73:39-68.

Mariotti, M. 1992. “Unused Innovations.” Economics Letters 38:367-371.

Rosenberg, D., E. Solan & N. Vieille. 2007. “Social Learning in One Arm Bandit Prob-
lems.” Econometrica 75:1591-1611.

Smith, L. & P. Sorensen. 2000. “Pathological Outcomes of Observational Learning.”
Econometrica pp. 371-398.

Toxvaerd, F. 2008. “Strategic Merger Waves: A Theory of Musical Chairs.” Journal of
Economic Theory 140:1-26.

30



