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1 Introduction

This paper examines technology policy in an economy with innovation and

imitation. Through the development of new products, an innovator achieves

a temporary advantage earning monopoly profits. This advantage ends when

an imitator succeeds in copying the innovation, enters the market and starts

competing with the innovator. In this paper, I assume that (a) firms cannot

borrow without collateral, and (b) they cannot use their immaterial property

(e.g. innovations or imitations) as collateral. It is instructive to see how

these capital market imperfections affect the prospects of technology policy.

There is already a large literature concerning technology policy with im-

itation starting from Segerstrom (1991), who presents a model with the fol-

lowing properties: (i) Producers collude. (ii) R&D firms are subject to

constant returns to scale. (iii) R&D firms can both innovate and imitate.

(iv) Outsiders can innovate a new quality of product at the same cost as the

incumbents. Segerstrom shows that innovation subsidies speed up growth,

but promote welfare only if innovative effort is initially large enough.

Segerstrom’s (1991) model is challenged by the following papers. Walz

(1995) replaces cooperation (i) by Cournot competition and finds out that in

some circumstances innovation subsidies may even retard economic growth.

Davidson and Segerstrom (1998) replace constant returns (ii) by decreasing

returns to scale and show that innovation subsidies promote growth but

imitation subsidies do the opposite. Zeng (2001) obtains more or less similar

results by rejecting (iii) and assuming that innovation improves product

quality while imitation expands product variety.

Property (iv) in Segerstrom’s model leads to leapfrogging: innovations

will always be performed by outsiders and the current industry leaders will

be replaced. The following papers eliminate this unrealistic outcome. Aghion

et al. (1997, 2001) construct models where technological laggards must first

catch up with the leading-edge technology before battling “neck-to-neck” for
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technological leadership in the future. Mukoyama (2003) constructs a model

in which only leaders can conduct next-round innovation, while outsiders

can become leaders by imitation. These papers establish an “inverted-U”

relationship between competition and growth, but with the following differ-

ence. Aghion et al. (1997, 2001) represent competition by the elasticity of

substitution between the firms’ products, while Mukoyama (2003) uses the

proportion of two-producer industries in the economy for that purpose. In

this paper, I preserve Mukoyama’s assumption on cumulative technology, but

measure competition by the elasticity of substitution.

All papers referred above assume that R&D firms can borrow any amount

of capital and the household can make any investment at a given market inter-

est rate. In such a case, firms decide on R&D and households are protected

from uncertainly through diversification in the market portfolio. Because

that assumption is in contradiction with the entire literature of venture capi-

tal,1 it is instructive to assume for a change that firms cannot borrow without

collateral and immaterial property cannot be used as collateral. Firms must

then finance their R&D through issuing shares and households purchasing

these shares face the uncertainly associated with investment.

The remainder of this paper is organized as follows. Section 2 introduces

the basic structure of the model. Sections 3 and 4 consider firms in produc-

tion and R&D. Section 5 examines households deciding on saving, section 6

general equilibrium, and section 7 the prospects of public policy. Optimal

elasticity rules for subsidies and competition policy are presented.

2 The model

I extend Wälde’s (1999a, 1999b) growth model with risk-averting households

by replacing the sector of innovating firms by a large number of industries

which innovate or imitate. Following Mukoyama (2003), I eliminate leapfrog-

1A nice summary of this literature in given in Gompers and Lerner (1999).
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ging through the assumption that in the product market only leaders can

innovate. The model can then be characterized as follows:

(i) Labor is homogeneous and inelastically supplied. It is used in innovation,

imitation or the production of the intermediate goods.

(ii) Competitive firms produce the consumption good from a great number

of intermediate goods according to Cobb-Douglas technology.

(iii) All intermediate-good firms produce one unit of their output from one

labor unit. Each intermediate good is produced by a separate industry

and composed of the products of the firms in the industry through

CES technology. The elasticity of substitution between any pair of the

products is used as the measure of product market competition (PMC).

(iv) R&D firms innovate or imitate. Imitation is necessary for an outsider to

become an innovator. A successful imitator enters the product market

and starts an innovation race with the old producers. A successful

innovator becomes a monopolistic producer of the latest technology

until its technology is imitated.

(v) R&D firms finance their expenditure by issuing shares. The households

save only in these shares. Each R&D firm distributes its profit among

those who had financed it in proportion to their investment in the firm.

The subsidies to R&D are financed by lump-sum taxes.

3 Production

There is a great number of intermediate-good industries that are placed over

the limit [0, 1]. The representative consumption-good firm makes its output

y from the products of all intermediate-good firms through technology

log y =

∫ 1

0

log[Bjxj]dj, xj =

[ aj∑
κ=1

x
1−1/ε
jκ

]ε/(ε−1)

,

ε > 1, (1)
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where Bj is the productivity parameter in industry j, aj the number of firms

in industry j, xj the quantity of intermediate good j, xjκ the output of

firm κ in industry j, and ε the elasticity of substitution between any pair of

the products of the firms in the same industry. The consumption-good firm

maximizes its profit

Π
.
= Py −

∫

j∈[0,1]

aj∑
κ=1

pjκxjκdj

by its inputs xj, taking the price P of the consumption good and the input

prices {pjκ} as fixed. I normalize total consumption expenditure Py at unity.

Because the consumption-good firm is subject to constant returns to scale,

we then obtain

Py = 1, Π = 0,

aj∑
κ=1

pjκxjκ = 1 for all j,

pjκ = P
∂y

∂xj

∂xj

∂xjκ

= P
y

xj

∂xj

∂xjκ

= x
1/ε−1
j x

−1/ε
jκ for all j and κ. (2)

All intermediate-good firms produce one unit of their output from one

labor unit. Technological change is random. I assume that a successful

innovator in industry j is able to make a perfect substitute for intermediate

good j, which is a composite product of the outputs of all incumbent firms

in industry j. I assume furthermore that the innovator’s product provides

exactly the constant µ > 1 times as many services as the intermediate good

of earlier generation. To push old producers out of the market, the innovator

in industry j chooses the price pj1 = µw for its product, where w is the wage

for labor.2 From pj = µw and (2) it then follows that

xj = xj1 =
1

pj1

=
1

µw
and πj =

(
1− 1

µ

)
pj1xj1 = 1− 1

µ
for aj = 1. (3)

The innovator is always the first leader in the industry. A successful

imitator of the state-of-art good is able to make a close substitute for the

2Because the productivity of the old producers is equal to 1/µ, with the innovator’s
mark-up rule pj1 = µw the price index of their composite product xj must be equal to µ.
Thus, none of the old producers can charge a price greater than its marginal cost µ.
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product of the innovator. Thus with each imitation, the number of leaders

and products increases by one. I assume that all leaders 1, ..., aj in industry

j behave in Cournot manner, taking each other’s output levels as given.3

Given (1) and (2), leader κ in industry j maximizes its profit

πjκ = pjκxjκ − wxjκ = x
1/ε−1
j x

1−1/ε
jκ − wxjκ, (4)

by its output xjκ, assuming that the output levels xjı for the other leaders

ı 6= κ in industry j are constant. It therefore sets the wage w equal to the

marginal product of labor:

w = pjκ + xjκ

[
∂pjκ

∂xj

∂xj

∂xjκ

+
∂pjκ

∂xjκ

]
= pjκ + xjκ

[(1

ε
− 1

)pjκ

xj

( xj

xjκ

)1/ε

− 1

ε

pjκ

xjκ

]

= pjκ

[
1 +

(1

ε
− 1

)( xj

xjκ

)1/ε−1

− 1

ε

]
= pjκ

(
1− 1

ε

)(
1− 1

aj

)
.

Because this condition holds for all competitors κ = 1, ..., aj, noting (2) and

(4), we obtain the symmetry xjκ = xj1 for all κ, and

pjκ = Φ(aj)w, Φ(aj)
.
= (1− 1/ε)−1(1− 1/aj)

−1, Φ′ < 0, ajpjκxjκ = 1,

πjκ = (pjκ − w)xjκ =

[
1− 1

Φ(aj)

]
pjκxjκ =

[
1− 1

Φ(aj)

]
1

aj

.
= π(aj), π′ < 0,

xj = a
ε/(ε−1)
j xjκ = a

1/(ε−1)
j /[Φ(aj)w]. (5)

I assume that the entry of the second leader decreases the first leader’s mark-

up pj1/w from µ to Φ:

Φ(aj) < µ. (6)

3Alternatively, one could introduce a more general framework through the assumption
that leader κ estimates the response of the other leaders ` 6= κ by dxj`/dxjκ = $ xj`/xjκ,
where $ < 1 is a constant. In that model, the special case $ = 0 corresponds to Cournot
competition. The general case $ < 1 would with some complication produce the same
results as this paper. Kreps and Scheinkman (1983) provide a rather convincing argument
for the Cournot assumption. They show that the Cournot game can be interpreted as a
result of a two-stage game in which the firms first choose their capacities and then sell
their products at the market-clearing prices. The unique equilibrium is that in the first
stage the firms fix their capacities at the Cournot output levels.
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Anyone investing in firms attempts to maximize his expected profit. The

innovator is the first leader in an industry. If one invests in imitation to enter

an industry with one leader, then its prospective profit is πjκ

∣∣
aj=2

, but if it

invests (with the same cost) in imitatation to enter an industry with more

than two leaders, then its prospective profit is πjκ

∣∣
aj>2

. Because, by (5), the

profit is smaller with more than two leaders, πjκ

∣∣
aj=2

> πjκ

∣∣
aj>2

, investors

invest in imitation only in one-leader industries. I summarize:

Proposition 1 Each industry has one or two leaders. In one-leader indus-

tries the followers imitate and in two-leader industries the leaders innovate.

I denote the set of one-leader industries by Θ ⊂ [0, 1], the relative pro-

portion of one-leader industries (two-leader industries), α (β) by

α =

∫

j∈Θ

dj, β
.
=

∫

j /∈Θ

dj = 1− α. (7)

Noting this, aj = 2, (3), (5) and (6), we obtain the following result:

Proposition 2 A firm’s profit is πα
.
= 1− 1

µ
in one-leader industries j ∈ Θ

and πβ
.
= 1

2

(
1 − 1

φ

)
in two-leader industries j /∈ Θ, and the total output of

the industry is xα
.
= 1

µw
for one-leader industries j ∈ Θ and xβ = 1

φw
for

two-leader industries j /∈ Θ, where φ
.
= Φ(2) ∈ (0, µ) is the mark-up factor φ

in the two-leader industries j /∈ Θ. The higher the elasticity of substitution,

ε, the closer the mark-up factor φ is to one.

Noting proposition 2 and equations (1), (3) and (7), and summing up through-

out all firms and industries, we obtain that the employment of labor in pro-

duction, x, and total output y are determined as follows:

x
.
= αxα + (1− α)xβ =

ϕ

w
, ϕ(α, φ)

.
=

α

µ
+

1− α

φ
<

1

φ
,

∂ϕ

∂α
=

1

µ
− 1

φ
< 0,

∂ϕ

∂φ
=

α− 1

φ2
< 0, xα =

x

µϕ
,

∂

∂φ

(xα

x

)
> 0, xβ =

x

φϕ
> 0,

∂

∂φ

(xβ

x

)
< 0,

y = Bxα
αx1−α

β = χ(α, φ)xB, χ(α, φ)
.
=

µ−αφα−1

ϕ(α, φ)
, log B

.
=

∫ 1

0

log Bjdj,

(8)
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where x is employment, ϕ = wx wage expenditure and B the average level

of productivity in production. More intense competition (i.e. a smaller φ)

increases employment x and total wages in production, ∂ϕ/∂φ < 0. Because

innovating two-leader industries j /∈ Θ employ more than imitating one-

leader industries j ∈ Θ, a decrease in the proportion α of imitating industries

raises employment x and total wages ϕ in production, ∂ϕ/∂α < 0.

Because innovating two-leader industries j /∈ Θ employ more than imitat-

ing one-leader industries j ∈ Θ, a smaller proportion α of imitating industries

raises employment x and total wages ϕ in production. Because by (8),

1

χ

∂χ

∂φ
=

∂ log χ

∂φ
=

α− 1

φ
− 1

ϕ

∂ϕ

∂φ
=

1− α

φ

( 1

φϕ
− 1

)
> 0,

we obtain the following result:

Proposition 3 More intense PMC (i.e. a lower mark-up φ in the two-leader

industries) decreases the productivity χ of efficient labor, ∂χ/∂φ > 0.

Proposition 3 can be explained as follows. The problem is the maximiza-

tion of total output y = Bxα
αx1−α

β subject to the allocation of labor between

innovation and imitation, x = αxα + (1 − α)xβ, keeping total employment

in production, x, constant. Output y is at the maximum, if all industries

employ the same amount of labor, xα = xβ, and this is possible only if two-

leader industries collude and set monopoly prices. More intense competition

(i.e. a smaller ε) transfers labor from one-leader into two-leader industries

(i.e. xα falls and xβ rises by (8)). The greater the difference xβ − xα, the

lower total output y for given x.

4 Research

Given proposition 1, there are three types of R&D firms: the first leader

(successful innovator), which I call firm 1, the second leader (successful imi-

tator), which I call firm 2, and followers, which we call firm 0. In two-leader
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industry j /∈ Θ, firms 1 and 2 innovate and no firm imitates. The techno-

logical change of firm κ ∈ {1, 2} is characterized by a Poisson process qjκ in

which the arrival rate of innovations is given by

Λjκ = λljκ + ξl for j /∈ Θ and κ ∈ {1, 2}, (9)

where ljκ is the firm’s own input, l total employment in R&D in the economy

and λ > 0 and ξ > 0 are constants. In the production function (9), the

term ξl characterizes the spillover of knowledge between R&D firms. During

a short time interval dν, there is an innovation dqjκ = 1 in firm κ with

probability Λjκdν, and no innovation dqjκ = 0 with probability 1− Λjκdν.

In one-leader industry j ∈ Θ, the representative follower (firm 0) imitates

and no firm innovates. The technological change of firm 0 is characterized

by a Poisson process Qj in which the arrival rate of imitations is given by

Γj = γlj0 for j ∈ Θ, (10)

where lj0 is total imitative input in industry and γ > 0 a constant. During a

short time interval dν, there is an imitation dQj = 1 with probability Γjdν,

and no imitation dQj = 0 with probability 1− Γjdν.

The invention of a new technology in industry j raises the number of

technology in that industry, tj, by one and the level of productivity, B
tj
j , by

µ > 1. Given this and (8), the average productivity in the economy, B, is a

function of the technologies of all industries, {tk}, as follows:

log B{tk} .
=

∫ 1

0

log B
tj
j dj, Btj+1

/
B

tj
j = µ. (11)

The arrival rate of innovations in industry j /∈ Θ is the sum of the arrival

rates of both firms in the industry, Λj1 + Λj2. The average growth rate of Bj

due to technological change in industry j in the stationary state is then given

by E
[
log B

tj+1
j − log B

tj
j

]
= (Λj1 + Λj2) log µ, where E is the expectation

operator.4 Because only industries j /∈ Θ innovate, then, noting (9), the

4For this, see Aghion and Howitt (1998), p. 59.
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average growth rate of the average productivity B in the stationary state is

g
.
=

∫

j /∈Θ

E
[
log B

tj+1
j − log B

tj
j

]
dj = (log µ)

∫

j /∈Θ

(Λj1 + Λj2)dj

= (log µ)

∫

j /∈Θ

[
λ(lj1 + lj2) + 2ξl

]
dj. (12)

I use g above as a measure of the growth rate of the economy.

Total employment in R&D is given by

l
.
=

∫

j /∈Θ

(lj1 + lj2)dj +

∫

j∈Θ

ljdj. (13)

There exists a fixed number N of households, each supplying one labor unit.

Total labor supply N is equal to inputs in production, x, and R&D, l:

N = x + l. (14)

The government subsidizes R&D expenditures, but possibly at different

rates in innovating and imitating industries. Given proposition 2, we obtain

total expenditures from these subsidies as follows:

R
.
= τα

∫

j∈Θ

wlj0dj + τβ

∫

j /∈Θ

(wlj1 + wlj2)dj, (15)

where wlj0 is expenditure on imitation in firm 0 industry j ∈ Θ, wljκ expen-

diture on innovation in firm κ ∈ {1, 2} in industry j /∈ Θ and τα ∈ (−∞, 1)
(
τβ ∈ (−∞, 1)

)
is the subsidy to imitation (innovation). If the government

cannot discriminate between innovation and imitation, then τα = τβ.

In industry j ∈ Θ firm 0 and in industry j /∈ Θ firms 1 and 2 issue shares

to finance their labor expenditure in R&D, net of government subsidies. Be-

cause the households invest in these shares, we obtain

N∑
ι=1

Sιj0 = (1− τα)wlj0 for j ∈ Θ,

N∑
ι=1

Sιjκ = (1− τβ)wljκ for κ ∈ {1, 2} and j /∈ Θ, (16)

9



where wlj0 is the imitative expenditure of firm 0 in industry j ∈ Θ, τα the

subsidy to it, wljκ the innovative expenditure of firm κ ∈ {1, 2} in industry

j /∈ Θ, τβ subsidy to it, Sιj0 (Sιjκ) household ι’s investment in firm 0 in

industry j ∈ Θ (firm κ in industry j /∈ Θ), and
∑N

ι=1 Sιj0

(∑N
ι=1 Sιjκ

)

aggregate investment in firm 0 in industry j ∈ Θ (firm κ in industry j /∈ Θ).

Household ι’s relative investment shares in the firms are given by

iιj0
.
=

Sιj0

(1− τα)wlj
for j ∈ Θ; iιjκ

.
=

Sιjκ

(1− τβ)wljκ
for j /∈ Θ. (17)

I denote household ι’s income by Aι. Total income throughout all house-

holds ι ∈ {1, ..., N} is then equal to income earned in the production of

consumption goods, Py, plus income earned in R&D, wl, minus government

expenditures R (= lump-sum taxes). Since Py = 1 by (2), this yields

N∑
ι=1

Aι = Py + wl −R = 1 + wl −R. (18)

5 Households

The utility for risk-averting household ι ∈ {1, ..., N} from an infinite stream

of consumption beginning at time T is given by

U(Cι, T ) = E

∫ ∞

T

Cσ
ι e−ρ(ν−T )dν with 0 < σ < 1 and ρ > 0, (19)

where ν is time, E the expectation operator, Cι the index of consumption, ρ

the rate of time preference and 1/(1−σ) is the constant relative risk aversion.

Because investment in shares in R&D firms is the only form of saving in

the model, the budget constraint of household ι is given by

Aι = PCι +

∫

j∈Θ

Sιj0dj +

∫

j /∈Θ

(Sιj1 + Sιj2)dj, (20)

where Aι is the household’s total income, Cι its consumption, P the consump-

tion price, and Sιj0 (Sιjκ) the household’s investment in firm 0 in industry

10



j ∈ Θ (firm κ in industry j /∈ Θ). When household ι has financed a success-

ful R&D firm, it acquires the right to the firm’s profit in proportion to its

relative investment share. Thus, I define:

sιjκ household ι’s true profit from firm κ in industry j when the uncertainty

in R&D is taken into account;

iιjκ household ι’s investment share in firm κ in industry j [Cf. (17)];

παiιjκ household ι’s expected profit from firm κ ∈ {1, 2} in industry j /∈ Θ

after innovation in firm κ changes j from a two-leader into a one-leader

industry;

πβiιj0 household ι’s expected profit from firm 0 in industry j ∈ Θ after imi-

tation in firm 0 changes j from a one-leader into a two-leader industry.

The changes in the profits of firms in industry j are functions of the

increments (dqj1, dqj2, dQj) of Poisson processes (qj1, qj2, Qj) as follows:5

dsιjκ = (παiιjκ − sιjκ)dqjκ − sιjκdqj(ζ 6=κ) when j /∈ Θ;

dsιj0 = (πβiιj0 − sιj0)dQj when j ∈ Θ. (21)

These functions can be explained as follows. Consider first industry j /∈ Θ

in which there are two innovating leaders 1 and 2. If a household invests in

firm κ, then, in the advent of a success for the firm, dqjκ = 1, the amount of

its share holdings rises up to παiιjκ, dsιjκ = παiιjκ − sιjκ, but in the advent

of success for the other firm ζ 6= κ in the industry, its share holdings in the

firm fall down to zero, dsιjκ = −sιjκ. Next, consider industry j ∈ Θ in which

firm 0 imitates. If a household invests in that firm, then, in the advent of a

success for the firm, dQj = 1, the amount of its share holdings rises up to

πβiιj0, dsιj0 = πβiιj0 − sιj0.

Household ι’s total income Aι consists of its wage income w (the household

supplies one labor unit), its profits sιj1 from the single leader in each industry

5This extends the idea of Wälde (1999a, 1999b).
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j ∈ Θ, its profits sιj1 and sιj2 from the two leaders 1 and 2 in each industry

j /∈ Θ, minus its share 1/N in the government’s expenditures R (= the

household’s lump-sum tax). Given this and proposition 2, we obtain

Aι = w +

∫

j∈Θ

sιj1dj +

∫

j /∈Θ

(sιj1 + sιj2)dj − R

N
. (22)

Household ι maximizes its utility (19) by its investment, {Sιj0} for j ∈ Θ

and {Sιj1, Sιj2} for j /∈ Θ, subject to its budget constraint (20), the stochas-

tic changes (21) in its profits, the composition of its income, (22), and the

determination of its relative investment shares, (17), given the arrival rates

{Λjκ, Γj}, the wage w, the consumption price P , the subsidies (τα, τβ) and

the government’s expenditures R. In the households’ stationary equilibrium

in which the allocation of resources is invariable across technologies, this

maximization yields the following results (see Appendix A):

ljκ = `β for j /∈ Θ,
lj0 = `α for j ∈ Θ,

`β

l
= ψ(φ, τα, τβ)

.
= ξ

[
(1− τβ)πβγ

(1− τα)παµσ
− λ

]−1

= ξ

[
(1− τβ)(1− 1/φ)γ

2(1− τα)(1− 1/µ)µσ
− λ

]−1

,

∂ψ

∂φ
< 0,

∂ψ

∂τα

< 0,
∂ψ

∂τβ

> 0, ψ(φ, τ, τ) = ψ(φ, 1, 1), (23)

`α = [1− 2(1− α)ψ]l/α, (24)

g
.
= (log µ)(1− α)(Λj1 + Λj2) = (2 log µ)(1− α)(λψ + ξ)l, (25)

ρ +
1− µσ

log µ
g =

hz

1− τα

.
= ∇(l, α, φ, τα, τβ),

∂∇
∂l

< 0,
∂∇
∂φ

∣∣∣∣
τα=τβ

> 0,

∂∇
∂α

∣∣∣∣
τα=τβ

> 0, lim
φ→µ

∂∇
∂α

∣∣∣∣
τα=τβ

= 0,
∂∇
∂τα

∣∣∣∣
τα=τβ=0

> 0,
∂∇
∂τβ

∣∣∣∣
τα=τβ=0

> 0,

∂∇
∂τ

∣∣∣∣
τα=τβ=τ

> 0, (26)

where z
.
= πβΓj/(wlj0) is the rate of return to investment in imitative R&D,6

h is the households’ propensity to consume and ∇ the rate of return paid to

6Because a successful imitator obtains the profit πβ , the expected revenue from imita-
tion is the profit times the arrival rate of imitations, πβΓj . Dividing this by total imitation
cost wlj0 yields the rate of return to investment in imitative R&D.
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savings. Result (23) says that with a smaller subsidy τα to imitative R&D,

a bigger subsidy τβ to innovative R&D or with more intense PMC (i.e. a

smaller φ), R&D firms spend relatively more in innovative than imitative

R&D (i.e. a higher `β/`α). With a uniform R&D subsidy τα = τβ = τ , the

relative investment in imitation is independent of the subsidy. Result (25)

says that the larger the proportion 1−α of innovating industries or the more

each innovating firm invests (i.e. the bigger `β), the higher growth rate g.

6 General equilibrium

To close the system, I now specify how the proportion α of imitating indus-

tries is determined. When innovation occurs in an industry, this industry

switches from the group of two-leader industries to that of one-leader indus-

tries, and when imitation occurs in an industry, this industry switches from

one-leader industries to two-leader industries. In a steady-state equilibrium,

every time a new superior-quality product is discovered in some industry,

imitation must occur in some other industry.7 Thus, the rate at which in-

dustries leave the group of two-leader industries, β(Λj1 + Λj2)dν, is equal to

the rate at which industries leave the group of one-leader industries, αΓjdν.

This, (7), (23) and (24) yield

2(1− α)(λψ + ξ)l = 2(1− α)(λ`β + ξl) = 2β(λ`β + ξl) = αγ`α

= γ[l − 2(1− α)`β] = γ[l − 2(1− α)ψ]l,

from which I solve for the proportion of one-leader industries as follows:

α = Ψ(ψ)
.
= 1− γ/2

(λ + γ)ψ + ξ
, Ψ′ =

dΨ

dψ
> 0. (27)

Inserting (27) into (25), the following equation can be defined:

l(ψ, g) = 2

[
1

γ
+

1

λ + ξ/ψ

]
g,

∂l

∂ψ
> 0,

∂l

∂g
=

l

g
> 0. (28)

7Cf. Segerstrom (1991), p. 817.
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The four equations (23), (26), (27) and (28) form a system of four un-

known variables: employment in R&D, l, the proportion of innovative labor

in R&D, ψ, the proportion of one-leader industries, α, and the growth rate

g. The comparative statics of this system yields the result [Appendix B]

g(φ, τα, τβ),
∂g

∂τ

∣∣∣∣
τα=τα=τ

> 0, lim
φ→µ

∂g

∂τα

∣∣∣∣
τα=τα=0

> 0, lim
φ→µ

∂g

∂φ

∣∣∣∣
τα=τβ

> 0.

(29)

This can be rephrased as follows:

Proposition 4 A small uniform subsidy τ to all R&D boost economic growth.

If the mark-up factor in the two-leader industries is initially high enough (i.e.

φ → µ), then less intense price competition (i.e. a higher mark-up φ) or a

small targeted subsidy τα to imitative R&D is growth enhancing.

A subsidy to imitative R&D and a higher producer’s market power in the

two-leader industries are equivalent in the sense that they both increase the

expected profit of a successful imitation. This has two opposing effects on

the extent of innovation. First, it increases the overall investment in R&D,

a proportion of which is used in innovation. Second, it increases the propor-

tion of investment being used in imitation and decreases that being used in

innovation. If the mark-up in the two leader industries, φ, is already close to

that in the one-leader industries, µ, the latter effect is weak and outweighed

by the former. In such a case, investment in innovative R&D and the growth

rate will increase. Otherwise, the outcome remains ambiguous. If a uniform

subsidy to all R&D is used, then the second reallocating effect disappears

altogether and the growth rate increases.

7 Optimal public policy

The symmetry across the households ι = 1, ..., n yields Cι = y/N . Noting

Cι = y/N , (8), (14), (27) and (53), a single household’s consumption relative

14



to the level of productivity, c, can be written as follows:

c(g, α, φ)
.
=

Cι

B{tk} =
y/N

B{tk} =
x

N
χ =

[
1− l(ψ, g)

N

]
χ

= χ(α, φ)

[
1− 1

N
l
(
Ψ−1(α), g

)]

,

∂c

∂g
= − χ

N

∂l

∂g
= − cl

xg
< 0, (30)

where Ψ−1 is the inverse function of Ψ. Given this, a single household’s

utility function (19) takes the form

U(Cι, T ) = E

∫ ∞

T

c(g, α, φ)σ
(
B{tk})σ

e−ρ(ν−T )dν. (31)

On the assumption that the government is benevolent, it maximizes the

representative household’s welfare (31). I consider two cases:

(a) First-best policy. The government can discriminate between innovation

and imitation, τα 6= τβ. Because there is one-to-one correspondence

from (τα, τβ) to (g, α) through (23), (27) and (29), the government can

control the growth rate g and the proportion of imitating industries,

α, by the subsidies (τα, τβ). It maximizes social welfare (31) by the

growth rate g and the proportion of imitating industries, α.

(b) Second-best policy. The government cannot discriminate between inno-

vation and imitation, τα = τβ = τ . Given (27) and (29), the proportion

of imitating industries, α, is wholly exogenous and the growth rate

g can be controlled by the uniform subsidy τ . The government then

maximizes social welfare (31) by g.

I denote:

Υ({tk}) the value of each industry k using current technology tk.

Υ
(
tj + 1, {tk 6=j}

)
the value of industry j using technology tj +1, when other

industries k 6= j use current technology tk.
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The maximization problems in both the first-best (a) and second-best (b)

cases above lead to the Bellman equation

ρΥ(t) =

{
maxg,αF in the first-best policy (a),

maxg F in the second-best policy (b),
where

F .
= c(g, α, φ)σ

(
B{tk})σ

+

∫

j /∈Θ

(Λj1 + Λj2)
[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj

=
c(g, α, φ)σ

(
B{tk}

)−σ +
g

(1− α) log µ

∫

j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj. (32)

(a) First-best policy. The socially optimal levels for the growth rate g and

the proportion of imitating industries, α, are given by [see Appendix C]

g∗ =
ρσ log µ

(µσ − 1)(σ + x/l)
, α∗ =

η

η + l/x
, (33)

where

η(g, α, φ)
.
= −α

c

∂c

∂α
(34)

is the elasticity of consumption with respect to imitation.

Inserting g = g∗ from (33) into (26) yields

Proposition 5 The welfare-maximizing subsidy to imitative R &D is

τ ∗α = 1− hz

ρ + 1−µσ

log µ
g∗

= 1−
(
σ

l

x
+ 1

)hz

ρ
.

The starting point is that τ ∗α determines the welfare-maximizing levels for

both subsidies τα and τβ. In the next proposition, I examine how much τα

and τβ should be differentiated. The lower the propensity to consume, h,

the average rate of return to investment in imitative R &D, z, or the relative

proportion of workers in R&D, l/x, the more R&D should be subsidized.

The promotion of R&D by subsidies speeds up growth and increases future

consumption and welfare. On the other hand, it crowds out the produc-

tion of consumption goods through higher wages and decreases welfare. The
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subsidies to R&D should be increased as long as the former growth effect

dominates over the latter current-consumption effect. The lower the propen-

sity to consume, h, the weaker the current-consumption effect and the higher

the optimal subsidy. The lower the “private” rate of return z to imitative

R&D, the higher subsidy is needed to cover the gap between it and the social

rate of return to imitative R&D. Finally, the lower the relative proportion

of workers in R&D, l/x, the less a proportional increase in R&D crowds out

current consumption and the higher the optimal subsidy.

Inserting (25) and (33) into (23), we obtain [see Appendix D]:

Proposition 6 If the government can discriminate between innovation and

imitation, τα 6= τβ, then the welfare-maximizing subsidy to innovative R &D,

τ ∗β , is determined by

1− τ ∗β
1− τα

=

[
λ

γ
+

(
λ
γ

+ 1
)
ξ

γ
2

(
1 + 1

η
l
x

)− ξ

]
µσ πα

πβ

,
∂

∂(η x
l
)

(1− τ ∗β
1− τα

)
> 0.

The bigger the relative profit in the two-leader industries, πβ/πα, or the less

workers there are in R&D (i.e. the smaller l), the more the government should

prefer innovation to imitation (i.e. the higher τ ∗β relative to τα and the lower

the ratio (1− τ ∗β)/(1− τα)). The profit in the two-leader industries, πβ, and

the subsidy to imitative R&D, τα, are strategic substitutes, for they both

increase the incentives to imitate. Therefore, at the optimum, the increase

in πβ relative to πα should lead to the decrease in τα relative to τβ.

Given proposition 3, PMC causes inefficiency. Noting (30), (32) and

proposition 3, we obtain:

Proposition 7 In the first-best case τα 6= τβ, the increase of PMC (i.e. a

smaller φ) is welfare diminishing, ∂F/∂φ > 0.

(b) Second-best policy. The optimal level α∗ of α is given by (33). Because

α is an decreasing function of φ through ψ [cf. (23) and (27)], there is a
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socially optimal level φ∗ for the mark-up factor φ as well. This result can be

rephrased as follows:

Proposition 8 If the government cannot discriminate between innovation

and imitation but uses the uniform subsidy τ optimally, then there is an

“inverted-U” relationship between PMC and welfare. When PMC is weak

enough for φ < φ∗ (strong enough for φ > φ∗), it should be strengthened

(weakened) to raise (lower) φ.

PMC has two opposing effects. It decreases the consumption price and

thereby increases current consumption. On the other hand, it transfers la-

bor from R&D to the production of goods and thereby hampers economic

growth. These opposing effects are balanced for φ = φ∗ and α = α∗.

8 Conclusions

This paper examines a multi-industry economy in which growth is generated

by creative destruction: a firm creating the newest technology by a success-

ful R&D project crowds out the other firms with older technologies from the

market so that the latter lose their value. A research firms can innovate to

produce better versions of the products or imitate to copy existing innova-

tions. Firms finance their R&D by issuing shares, and households save only

in these shares. The government subsidizes R&D, possibly discriminating be-

tween innovation and imitation, and promotes collusion or product market

competition (PMC). The main findings of this paper are as follows.

Each industry has either (i) one leader and a number of imitating follow-

ers, or (ii) two leaders which both innovate and no followers which would

imitate. In the first-best, one labor unit in the consumption-good sector

produces the largest amount of consumption. PMC produces a distortion

through allocating too much labor in the two-leader and too little labor in

the one-leader industries. In terms of consumption, lower output in the one-

leader industries outweighs higher output in the two-leader industries.
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The lower the propensity to consume, the average rate of return to invest-

ment in imitative R &D or the relative proportion of workers in R&D, the

more R&D should be subsidized. The promotion of R&D by subsidies speeds

up growth and increases future consumption and welfare. On the other hand,

it crowds out the production of consumption goods through higher wages and

decreases welfare. The subsidies to R&D should be increased as long as the

former growth effect dominates over the latter current-consumption effect.

The lower the propensity to consume, the weaker the current-consumption

effect and the higher the optimal subsidy. The lower the “private” rate of

return to imitative R&D, the higher subsidy is needed to cover the gap be-

tween it and the social rate of return to imitative R&D. Finally, the lower

the relative proportion of workers in R&D, the less a proportional increase

in R&D crowds out current consumption and the higher the optimal subsidy.

The bigger relative profit in the two-leader industries, the more the gov-

ernment should subsidize innovation relative to imitation. The profit in the

two-leader industries and the subsidy to imitative R&D are strategic sub-

stitutes, for they both increase the incentives to imitate. Therefore, at the

optimum, the increase in the former should lead to the decrease in the latter.

In the second-best case in which the government cannot discriminate

between innovation and imitation, there is an “inverted-U” relationship be-

tween PMC and social welfare. PMC has two opposing effects. PMC has two

opposing effects. It decreases the consumption price and thereby increases

current consumption. On the other hand, it transfers labor from R&D to

the production of goods and thereby hampers economic growth. PMC is at

the optimum when these opposing effects are balanced. When PMC is below

(above) its optimum level, it should be increased (increased).

While a great deal of caution should be exercised when a highly styl-

ized dynamic model is used to explain the relationship of growth, product

market competition and public policy, the following judgement nevertheless

seems to be justified. With the exclusion of the second-best case, there
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seems to be no support to the assertion that imitation-induced PMC would

be growth enhancing. In the literature, a common explanation of such re-

sult is that competition reduces the rewards from innovation and thereby

incentives to engage innovative activity,8 but this paper provides a different

story. PMC reduces incentives to imitative, not to innovative R&D. In such a

case, households transfer their investment from imitating to innovating firms,

firms spend longer time in the imitative stage, the proportion of innovative

industries decreases and the growth rate falls.

Appendix

A. Results (23)-(29)

I denote:

Ω
({sιkυ}, {tk}

)
the value of receiving profits sιkυ from all firms υ in all in-

dustries k using current technology tk.

Ω
(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
the value of receiving the profit παiιjκ

from firm κ in industry j /∈ Θ using technology tj +1, but receiving no

profits from the other firm which was a leader in that industry when

technology tj was used, and receiving profits sι(k 6=j)υ from all firms υ in

other industries k 6= j with current technology tk.

Ω
(
πβiιj1, πβiιj2, {sι(k 6=j)υ}, {tk}

)
the value of receiving profits πβiιjκ from firms

κ ∈ {1, 2} in industry j ∈ Θ, but receiving profits sι(k 6=j)υ from all firms

υ in the other industries k 6= j with current technology tk.

The Bellman equation associated with the household’s maximization is9

ρΩ
({sιkυ}, {tk}

)
= max

Sιj ≥ 0 for all j
Ξι, (35)

8Cf. Barro and Sala-i-Martin (1995), pp. 223-226.
9Cf. Dixit and Pindyck (1994).
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where

Ξι
.
= Cσ

ι +

∫

j∈Θ

Γj

[
Ω

(
πβiιj1, πβiιj1, {sι(k 6=j)υ}, {tk}

)− Ω
({sιkυ}, {tk}

)]
dj

+

∫

j /∈Θ

∑
κ=1,2

Λjκ

[
Ω

(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)− Ω
({sιkυ}, {tk}

)]
dj.

(36)

Because ∂Cι/∂Sιjκ = −1/P by (20), the first-order conditions are given by

Λjκ
d

dSιjκ

[
Ω

(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)− Ω
({sιkυ}, {tk}

)]
=

σ

P
Cσ−1

ι

for j /∈ Θ and κ ∈ {1, 2}, (37)

Γj
d

dSιj0

[
Ω

(
πβiιj1, πβiιj2, {sι(k 6=j)υ}, {tk}

)− Ω
({sιkυ}, {tk}

)]
=

σ

P
Cσ−1

ι

for j ∈ Θ. (38)

I try the solution that for each household ι the propensity to consume, hι, and

the subjective interest rate rι are independent of income Aι, i.e. PCι = hιAι

and Ω = Cσ
ι /rι.

Let us denote variables depending on technology tk by superscript tk.

Since according to (22) income A
{tk}
ι depends directly on variables {stk

ιk}, I

denote A
{tk}
ι ({stk

ιk}). Assuming that hι is invariant across technologies yields

P {tk}C{tk}
ι = hιA

{tk}
ι ({stk

ιk}). (39)

The share in the next innovator tj +1 is determined by investment under the

present technology tj, s
tj+1
ιjκ = παi

tj
ιjκ for j /∈ Θ. The share in the next imitator

is determined by investment under the same technology tj, s
tj
ιjκ = πβi

tj
ιjκ for

j ∈ Θ. The value functions are then given by

Ω
({sιkυ}, {tk}

)
= Ω

(
πβiιj1, πβiιj2, {sι(k 6=j)υ}, {tk}

)
=

1

rι

(
C{tk}

ι

)σ
,

Ω
(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
=

1

rι

(
C

tj+1,{tk 6=j}
ι

)σ
. (40)

Given this, we obtain

∂Ω
({sιkυ}, {tk}

)

∂S
tj
ιj

= 0. (41)
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From (17), (22), (39), (40), s
tj+1
ιjκ = παi

tj
ιjκ for j /∈ Θ, and s

tj
ιjκ = πβi

tj
ιjκ for

j ∈ Θ it follows that

∂s
tj+1
ιjκ

∂i
tj
ιjκ

= πα for j /∈ Θ,
∂s

tj
ιj0

∂i
tj
ιj0

= πβ for j ∈ Θ,
∂A

tj+1,{tk 6=j}
ι

∂s
tj+1
ιjκ

=
∂A

{tk}
ι

∂s
tj
ιjκ

= 1,

∂i
tj
ιj0

∂S
tj
ιj0

=
1

(1− τα)w{tk}l{tk}j0

for j ∈ Θ,
∂i

tj
ιjκ

∂S
tj
ιjκ

=
1

(1− τβ)w{tk}l{tk}jκ

for j /∈ Θ,

∂Ω
(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)

∂S
tj
ιjκ

=
σ

rι

(
C

tj+1,{tk 6=j}
ι

)σ−1 ∂C
tj+1,{tk 6=j}
ι

∂A
tj+1,{tk 6=j}
ι︸ ︷︷ ︸

hι/P
tj+1,{tk 6=j}

∂A
tj+1,{tk 6=j}
ι

∂s
tj+1
ιjκ︸ ︷︷ ︸
=1

∂s
tj+1
ιjκ

∂i
tj
ιjκ︸ ︷︷ ︸

=π

∂i
tj
ιjκ

∂S
tj
ιjκ

=
πασhι

(
C

tj+1,{tk 6=j}
ι

)σ−1

rιP tj+1,{tk 6=j}
∂i

tj
ιjκ

∂S
tj
ιjκ

=
παhισ

(
C

tj+1,{tk 6=j}
ι

)σ−1

(1− τβ)rιw{tk}P tj+1,{tk 6=j}l{tk}jκ

for j /∈ Θ,

(42)

∂Ω
(
πβiιj1, πβiιj2, {sι(k 6=j)υ}, {tk}

)

∂S
tj
ιj0

=
σ

rι

(
C{tk}

ι

)σ−1 ∂C
{tk}
ι

∂A
{tk}
ι︸ ︷︷ ︸

=hι/P {tk}

∂A
{tk}
ι

s
tj
ιj0︸ ︷︷ ︸
=1

s
tj
ιj0

∂itιj0︸ ︷︷ ︸
=πβ

∂itιj0
∂St

ιj0

=
πβσhι

rιP {tk}
(
C{tk}

ι

)σ−1 ∂itιj0
∂St

ιj0

=
πβhισ

(
C
{tk}
ι

)σ−1

(1− τα)rιw{tk}P {tk}l{tk}j0

for j ∈ Θ. (43)

I focus on a stationary equilibrium where the growth rate g and the

allocation of labor, (ljκ, x), are invariant across technologies. Given (2), (8),

(11) and (14), this implies

l
{tk}
jκ = ljκ, x{tk} = x = N − l, w{tk} = w = x/ϕ,

P {tk}

P tj+1,{tk 6=j} =
C

tj+1,{tk 6=j}
ι

C
{tk}
ι

=
A

tj+1,{tk 6=j}
ι

A
{tk}
ι

=
ytj+1,{tk 6=j}

y{tk}
=

Btj+1,{tk 6=j}

B{tk} = µ.

(44)
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Inserting (36), (39), (40), (44) and g
.
=

∫
j /∈Θ

ljdj into equation (35) yields

0 =
[
ρ +

∫

j /∈Θ

(Λj1 + Λj2)dj +

∫

j∈Θ

Γjdj
]
Ω

({sιkυ}, {tk}
)− (

C{tk}
ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

ΛjκΩ
(
παiιjκ, 0, {sι(k 6=j)υ}, tj + 1, {tk 6=j}

)
dj

−
∫

j∈Θ

ΓjΩ
(
πβiιj1, πβiιj2, {sι(k 6=j)υ}, {tk}

)
dj

=
[
ρ +

∫

j /∈Θ

(Λj1 + Λj2)dj
](

C
{tk}
ι

)σ

rι

− (
C{tk}

ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

Λjκ

rι

(
C
{tj+1},{tk 6=j}
ι

)σ
dj

=
[
ρ +

∫

j /∈Θ

(Λj1 + Λj2)dj
](

C
{tk}
ι

)σ

rι

− (
C{tk}

ι

)σ −
∫

j /∈Θ

∑
κ=1,2

Λjκ
µσ

rι

(
C{tk}

ι

)σ
dj

=
1

rι

(
C{tk}

ι

)σ
[
ρ + (1− µσ)

∫

j /∈Θ

(Λj1 + Λj2)dj − rι

]

=
1

rι

(
C{tk}

ι

)σ
[
ρ− rι +

1− µσ

log µ
g
]
.

This equation is equivalent to

rι = ρ +
1− µσ

log µ
g. (45)

Because there is symmetry throughout all households ι, their propensity

to consume is equal, hι = h. From hι = h, (15), (16), (18), (20), (22) and

(39) it follows that

wl −R = w

∫

j∈Θ

lj0dj + w

∫

j /∈Θ

(lj1 + lj2)dj −R

= (1− τα)w

∫

j∈Θ

lj0dj + (1− τβ)w

∫

j /∈Θ

(lj1 + lj2)dj

=
N∑

ι=1

[∫

j∈Θ

Sιj0dj +

∫

j /∈Θ

(Sιj1 + Sιj2)dj

]
=

N∑
ι=1

(Aι − PCι)

= (1− h)
N∑

ι=1

Aι = (1− h)(1 + wl −R).
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Solving for the propensity to consume, we obtain

hι = h =
1

1 + wl −R
. (46)

Given (8) and (14), we obtain the wage

w =
ϕ

x
=

ϕ(α, πβ)

N − l
. (47)

I define the rate of return to imitative R&D by z
.
= πβΓj/(wlj0). Inserting

this, (9), (10), (41), (42), (43) and πα = 1− 1/µ and πβ = (1− 1/φ)/2 from

proposition 2 into (37) and (38), we obtain

(1− 1/µ)hλσµσ
(
C
{tk}
ι

)σ−1
(λ + ξl/ljκ)

(1− τβ)
(
ρ + 1−µσ

log µ
g
)
wP {tk}

=
σπαhιµ

σΛjκ

(
C
{tk}
ι

)σ−1

(1− τβ)rιwljκP {tk}

=
σπαhιΛjκ

(
C

tj+1,{tk 6=j}
ι

)σ−1

(1− τβ)rιwljκP
ttj+1,{tk 6=j} = Λjκ

d

dSιjκ

Ω
(
παiιj, {sι(k 6=j)}, tj + 1, {tk 6=j}

)

=
σ

P {tk}
(
C{tk}

ι

)σ−1
for j /∈ Θ and κ ∈ {1, 2}, (48)

1
2
(1− 1/φ)hγσ

(
C
{tk}
ι

)σ−1

(1− τα)
(
ρ + 1−µσ

log µ
g
)
wP {tk}

=
σh

(
C
{tk}
ι

)σ−1
z

(1− τα)
(
ρ + 1−µσ

log µ
g
)
P {tk}

=
σπβhιΓj

(
C
{tk}
ι

)σ−1

(1− τα)rιwlj0P {tk} = Γj
d

dSιj0

Ω
({πβiιj1, πβiιj2, {sιm(k 6=j)}, {tk}

)

=
σ

P {tk}
(
C{tk}

ι

)σ−1
for j ∈ Θ. (49)

Given equations (48) and (49) and proposition 2, we obtain

ljκ = `β for j /∈ Θ,
lj0 = `α for j ∈ Θ,

`β

l
= ψ(φ, τα, τβ)

.
= ξ

[
(1− τβ)(1− 1/φ)γ/2

(1− τα)(1− 1/µ)µσ
− λ

]−1

,

∂ψ/∂φ < 0, ∂ψ/∂τα < 0, ∂ψ/∂τβ > 0, [∂ψ/∂τ ]τα=τβ=τ = 0. (50)

Equations (2), (7), (8), (9), (12), (13), (14), (15), (46), (49) and (50) yield

w =
ϕ(α, φ)

x
=

ϕ(α, φ)

N − l
,

l =

∫

j /∈Θ

(lj1 + lj2)dj +

∫

j∈Θ

ljdj = `β

∫

j /∈Θ

dj + `α

∫

j∈Θ

dj

= α`α + 2(1− α)`β = α`α + 2(1− α)ψl,

`α = [1− 2(1− α)ψ]l/α,
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R = τα

∫

j∈Θ

wlj0dj + τβ

∫

j /∈Θ

(wlj1 + wlj2)dj

= ταw`α

∫

j∈Θ

dj + 2τβw`β

∫

j /∈Θ

dj = ταw`αα + 2τβw`β(1− α)

=
{
τα[1− 2(1− α)ψ] + 2τβ(1− α)ψ

}
wl

=
[
τα + 2(1− α)ψ(τβ − τα)

]
wl,

h =
Py∑
ι Aι

=
1

1 + wl −R
=

1

1 +
[
1− τα + 2(1− α)ψ(τα − τβ)

]
wl

=
N − l

N − l +
[
1− τα + 2(1− α)ψ(τα − τβ)

]
ϕ(α, φ)

,

Λjκ = λlξjκl
1−ξ = λψξl for j /∈ Θ and κ ∈ {1, 2},

g = (log µ)

∫

j /∈Θ

(Λj1 + Λj2)dj = (log µ)(1− α)(Λj1 + Λj2)

= (2λ log µ)(1− α)ψξl, (51)

ρ +
1− µσ

log µ
g =

hz

1− τα

=
(1− 1/φ)γh

2(1− τα)w
=

(1− 1/φ)γh(N − l)

2(1− τα)ϕ(α, φ)

=
(1− 1/φ)γ

2(1− τα)

(N − l)/ϕ(α, φ)

1 +
[
1− τα + 2(1− α)ψ(φ, τα, τβ)(τα − τβ)

]
ϕ(α, φ)l/(N − l)

.
= ∇(l, α, φ, τα, τβ),

∂∇
∂l

< 0,
∂∇
∂φ

∣∣∣∣
τα=τβ

> 0,
∂∇
∂α

∣∣∣∣
τα=τβ

> 0,

lim
φ→µ

∂∇
∂α

∣∣∣∣
τα=τβ

> 0,
∂∇
∂τα

∣∣∣∣
τα=τβ=0

> 0,
∂∇
∂τβ

∣∣∣∣
τα=τβ=0

> 0,
∂∇
∂τ

∣∣∣∣
τα=τβ=τ

> 0.

(52)

Equations (50), (51) and (52) define (23)-(26).

B. Results (29)

Inserting the functions (23), (27) and (28) into (26), we obtain

ρ +
1− µσ

log µ
g = ∆(φ, τα, τβ, g)

.
= ∇(

l(ψ(φ, τα, τβ), g), α(ψ(φ, τα, τβ)), φ, τα, τβ

)
,

(53)

in which

∂∆

∂g
=

∂∇
∂l︸︷︷︸
−

∂l

∂g︸︷︷︸
+

< 0,
∂∆

∂τ

∣∣∣∣
τα=τβ=τ

=
∂∇
∂τ

∣∣∣∣
τα=τβ=τ︸ ︷︷ ︸
+

> 0,
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∂∆

∂φ

∣∣∣∣
τα=τβ=0

=
∂∇
∂l︸︷︷︸
−

∂l

∂ψ︸︷︷︸
+

∂ψ

∂φ︸︷︷︸
−

+
∂∇
∂α︸︷︷︸
+

∂α

∂ψ︸︷︷︸
+

∂ψ

∂φ︸︷︷︸
−

+
∂∇
∂φ︸︷︷︸
+

,

lim
φ→µ

∂∆

∂φ

∣∣∣∣
τα=τβ=0

=
∂∇
∂l︸︷︷︸
−

∂l

∂ψ︸︷︷︸
+

∂ψ

∂φ︸︷︷︸
−

+
∂∇
∂φ︸︷︷︸
+

> 0,

∂∆

∂τα

∣∣∣∣
τα=τβ=0

=
∂∇
∂l︸︷︷︸
−

∂l

∂ψ︸︷︷︸
+

∂ψ

∂τα︸︷︷︸
−

+
∂∇
∂α︸︷︷︸
+

∂α

∂ψ︸︷︷︸
+

∂ψ

∂τα︸︷︷︸
−

+
∂∇
∂τα︸︷︷︸
+

,

lim
φ→µ

∂∆

∂τα

∣∣∣∣
τα=τβ=0

=
∂∇
∂l︸︷︷︸
−

∂l

∂ψ︸︷︷︸
+

∂ψ

∂τα︸︷︷︸
−

+
∂∇
∂τα︸︷︷︸
+

> 0,
∂∆

∂τ

∣∣∣∣
τα=τβ=τ

=
∂∇
∂τ︸︷︷︸
+

> 0,

∂∆

∂τβ

∣∣∣∣
τα=τβ=0

=
∂∇
∂l︸︷︷︸
−

∂l

∂ψ︸︷︷︸
+

∂ψ

∂τβ︸︷︷︸
+

+
∂∇
∂α︸︷︷︸
+

∂α

∂ψ︸︷︷︸
+

∂ψ

∂τβ︸︷︷︸
+

+
∂∇
∂τβ︸︷︷︸
+

.

The growth rate g and employment in R&D, l are determined by the two

equations (28) and (53). In the (g, l)-plane, the equation (28) defines the

increasing line OL that goes through the origin, and the equation (53) the

increasing curve GG [see Fig. 1]. The equilibrium for (g, l) is in the intersec-

tion Q of these. If 1−µσ

log µ
< ∂∆

∂g
< 0, then the curve GG were steeper than the

line OL at equilibrium Q and it is plausible that the equilibrium is unstable.

Assume for instance that a household adjusts its investment in R&D (i.e. l)

along line OL towards the curve GG on which its subjective discount factor

ρ + 1−µσ

log µ
g is equal to the rate of return to savings, ∇. The system then es-

capes from equilibrium Q along line OL when GG is steeper, but converges

to Q when OL is steeper. I therefore assume 0 > 1−µσ

log µ
> ∂∆

∂g
. The line OL is

then steeper at Q and the system converges to Q. Equation (53) defines the
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function g(α, φ, τα, τβ) with the properties limφ→µ ∂g/∂φ > 0 and

lim
φ→µ

∂g

∂φ
=

(
1− µσ

log µ
− ∂∆

∂g︸ ︷︷ ︸
+

)−1

lim
φ→µ

∂∆

∂φ
> 0,

∂g

∂τ

∣∣∣∣
τα=τβ=τ

=
∂∆

∂τ︸︷︷︸
+

(
1− µσ

log µ
− ∂∆

∂g︸ ︷︷ ︸
+

)−1

> 0.

C. Results (33)

Noting (30), the first-order conditions for g and α in the government’s

maximization are given by

∂F
∂g

= σcσ−1
(
B{tk})σ ∂c

∂g
+

1

(1− α) log µ

∫

j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj

= 0, (54)

∂F
∂α

= σcσ−1
(
B{tk})σ ∂c

∂α
+

g

(1− α)2 log µ

∫

j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj

= 0. (55)

I try the solution

Υ
({tk}

) .
= ϑcσ

(
B{tk})σ

, (56)

where ϑ is independent of the endogenous variables of the system. Noting

(11) and (56), we then obtain

Υ
(
tj + 1, {tk 6=j}

)
= ϑcσ

(
Btj+1,{tk})σ

= ϑµσcσ
(
B{tk})σ

= µσΥ
({tk}

)
. (57)

Inserting (56) and (57) into the Bellman equation (32), we obtain

0 = cσ
(
B{tk})σ

+
g/(1− α)

log µ

∫

j /∈Θ

[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj − ρΥ

({tk}
)

= Υ
({tk}

)
[1/ϑ− ρ + (µσ − 1)g/(log µ)]

and

1/ϑ = ρ− (µσ − 1)g/(log µ) < ρ. (58)
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Given (30), (34)-(56), (57) and (58), we obtain

∂F
∂g

= σcσ−1
(
B{tk})σ ∂c

∂g
+

µσ − 1

log µ
Υ

({tk}
)

=
( σ

ϑc

∂c

∂g
+

µσ − 1

log µ

)
Υ

({tk}
)

=
(µσ − 1

σ log µ
− l

ϑxg

)
σΥ

({tk}
)

=
[µσ − 1

σ log µ
−

(
ρ− µσ − 1

log µ
g
) l

xg

]
σΥ

({tk}
)

= 0, (59)

∂F
∂α

= σcσ−1
(
B{tk})σ ∂c

∂α
+

(µσ − 1)g

(1− α) log µ
Υ

({tk}
)

=
( σ

cϑ

∂c

∂α
+

µσ − 1

log µ

g

1− α

)
Υ

({tk}
)

=
(1

c

∂c

∂α
+

µσ − 1

σ log µ

ϑg

1− α

)σ

ϑ
Υ

({tk}
)

=
[
− η

α
+

l

(1− α)x

]σ

ϑ
Υ

({tk}
)

= 0. (60)

Noting (59), we obtain

g =
ρσ log µ

(µσ − 1)(σ + x/l)
.

Given (34) and (60), ∂c/∂α < 0, η > 0 and α
.
= η/(η + l/x) hold.

D. Proposition 6

Inserting α = α∗ and (33) into (27) and noting yields

γ/2

(λ + γ)ψ + ξ
= α = α∗ =

η

η + l/x
.

From this and (23) it follows that

ξ

[
(1− τβ)πβγ

(1− τα)παµσ
− λ

]−1

= ψ =
1

λ + γ

[
γ

2

(
1 +

1

η

l

x

)
− ξ

]
.

Solving for the ratio (1− τ ∗β)/(1− τα) and noting (14), we obtain

1− τ ∗β
1− τα

=

{
λ

γ
+

(λ

γ
+ 1

)
ξ

[
γ

2

(
1 +

1

η

l

x

)
− ξ

]−1}
µσ πα

πβ

.
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