
öMmföäflsäafaäsflassflassflas 
ffffffffffffffffffffffffffffffffffff  
 

Discussion Papers 
 
 
 
 
 
 
 
 
 

Delay and Information Aggregation in Stopping 
Games with Private Information 

 
 
 

Pauli Murto 
Helsinki School of Economics and HECER 

 
and 

 
Juuso Välimäki 

Helsinki School of Economics and HECER 
 
 
 
 
 

Discussion Paper No. 265 
June 2009 

 
ISSN 1795-0562 

 
  
 
 
 
 
 
 
HECER – Helsinki Center of Economic Research, P.O. Box 17 (Arkadiankatu 7), FI-00014 
University of Helsinki, FINLAND, Tel +358-9-191-28780, Fax +358-9-191-28781,  
E-mail info-hecer@helsinki.fi, Internet www.hecer.fi 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14912802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HECER 
Discussion Paper No. 265  
 
Delay and Information Aggregation in Stopping 
Games with Private Information 
 
Abstract 
 
We consider a timing game with private information about a common values payoff 
parameter. Information is only transmitted through the stopping decisions and therefore 
the model is one of observational learning. We characterize the symmetric equilibria of the 
game and we show that even in large games where pooled information is sufficiently 
accurate for first best decisions, aggregate randomness in outcomes persists. Further-
more, the best symmetric equilibrium induces delay relative to the first best. 
 
JEL Classification: C73, D81, D82, D83 
 
Keywords: optimal stopping, dynamic games, information aggregation. 
 
 
Pauli Murto    Juuso Välimäki  
 
Department of Economics,  Department of Economics, 
Helsinki School of Economics,   Helsinki School of Economics, 
P.O.Box 1210, FIN-00101  P.O.Box 1210, FIN-00101 
Finland    Finland 
 
e-mail: pauli.murto@hse.fi  e-mail: juuso.valimaki@hse.fi  
  
 
 



1 Introduction

We analyze a game of timing where the players are privately informed about the optimal

time to stop the game. The stopping decision may, for example, relate to irreversible in-

vestment, which is the case analyzed in the real options literature. Our point of departure

from that literature is in the nature of uncertainty. Rather than assuming exogenous un-

certainty in a publicly observable payo¤ parameter such as the market price, we consider

the case of dispersed private information on the common pro�tability of the investment.

We assume that information is only transmitted through observed actions. In other words,

our model is one of observational learning, where communication between players is not

allowed.

The key question in our paper is how the individual players balance the bene�ts from

observing other players�actions with the costs of delaying their stopping decision beyond

what is optimal based on their own private information. Observational learning is po-

tentially socially valuable, because it allows common values information to spread across

players. However, when choosing their optimal timing decisions, the players disregard the

informational bene�ts that their decisions have for the other players. This informational

externality leads to too late stopping decisions from the perspective of e¤ective informa-

tion transmission, and this delay dissipates most of the potential informational bene�t

from the observational learning. Our main �ndings are: i) The most informative sym-

metric equilibrium of the game involves delay, ii) the delay persists even if the number of

players is large, iii) information aggregates in random bursts of action, and iv) aggregate

uncertainty remains even when aggregate information in the model is su¢ ciently accurate

to determine the optimal investment time.

In our model, the �rst-best time to invest is common to all players and depends

on a single state variable !. Without loss of generality, we identify ! directly as the

�rst-best optimal time to invest. Since all players have information on !; their observed

actions contain valuable information as long as the actions depend on the players�private

information.

The informational setting of the game is otherwise standard for social learning models:

The players�private signals are assumed to be conditionally i.i.d. given ! and to satisfy

the monotone likelihood property. The payo¤s are assumed to be quasi-supermodular in

! and the stopping time t. Given these assumptions, the equilibria in our game are in

monotone strategies such that a higher signal implies a later investment decision. Our

main characterization result describes a simple way to calculate the optimal stopping

moment for each player in the most informative symmetric equilibrium of the game. The
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optimal investment time is exactly the optimal moment calculated based on the knowledge

that other (active) players are not stopping. The game has also less informative equilibria,

where all the players, irrespective of their signals, stop immediately because other players

stop as well. These equilibria bear some resemblance to the non-informative equilibria in

voting games with common values as in Feddersen & Pesendorfer (1997), and also herding

equilibria in the literature on observational learning as in Smith & Sorensen (2000).

In order to avoid complicated limiting procedures, we model the stopping game directly

as a continuous-time model with multiple stages. Each stage is to be understood as the

time interval between two consecutive stopping actions. At the beginning of each stage,

all remaining players choose the time to stop, and the stage ends at the �rst of these

stopping times. The stopping time and the identity of the player(s) to stop are publicly

observed, and the remaining players update their beliefs with this new information and

start immediately the next stage. This gives us a dynamic recursive game with �nitely

many stages (since the number of players is �nite). Since the stage game strategies are

simply functions from the type space to non-negative real numbers, the game and its

payo¤s are well de�ned.

The most informative equilibrium path involves two qualitatively di¤erent phases.

When a stage lasts for a strictly positive amount of time, we say that the game is in the

waiting phase. Since the equilibrium strategies are monotonic in signals, the fact that no

players are currently stopping implies that their signals must be above some cuto¤ level.

This in turn implies that it is more likely that the true state is higher, i.e. the �rst-best

optimal stopping time is later. Thus, during the waiting phase all players update their

beliefs gradually upwards. Eventually the waiting phase comes to an end as some player

stops. At that point, the remaining players learn that the signal of the stopping player

is the lowest possible consistent with equilibrium play, and by monotone likelihood ratio

property they update their belief about the state discretely downwards. As a result, a

positive measure of player types will �nd it optimal to stop immediately. If such players

exist, the following stage ends at time zero, and the game moves immediately to the next

stage, where again a positive measure of types stop at time zero. As long as there are

consecutive stages that end at time zero, we say that the game is in the stopping phase.

This phase ends when the game reaches a stage where no player stops immediately. The

game alternates between these two phases until all players have stopped. Notice that

information accumulates in an asymmetric manner. Positive information (low signals

indicating early optimal action) arrives in quick bursts, while pessimistic information

indicating higher signals and the need to delay accumulates gradually.

To understand the source of delay in our model, it is useful to point out an inherent
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asymmetry in learning in stopping games. That is, while the players can always revise

their stopping decisions forward in time in response to new information, they can not

go backward in time if they learn to be too late. In equilibrium, every player stops at

the optimal time based on her information at the time of stopping. As a consequence,

if at any moment during the game the current estimate of the stopping player is too

high in comparison to the true state realization, then all the remaining players end up

stopping too late. In contrast, errors in the direction of too early stopping times tend to

be corrected as new information becomes available.

We obtain the sharpest results for games with a large number of players. First, in the

large game limit, almost all the players stop too late relative to the �rst-best stopping

time (except in the case where the state is the highest possible and the �rst-best stopping

time is the last admissible stopping time). The intuition for this result is straight-forward.

With a large number of players the pooled information contained in the players�signals is

precise. If a non-negligible fraction of players were to stop too early, this would reveal the

true state. But then it would be optimal for all players to delay, and this would contradict

the presumption of too early stopping. Second, we show that almost all players stop at

the same instant of real time (even though they may stop in di¤erent stages) where the

game also ends. This is because in the informative equilibrium, all observed stopping

decisions are informative. With a large number of players, most of the players thus have

precise information about state when they stop. But as explained above, information can

not aggregate before �rst-best stopping time, which means that players become aware

of the true state too late. This leads to a collapse where all the remaining players stop

together fully aware of being too late. Finally, we show that even if we condition on the

true state, the time at which the players stop remains stochastic.

Our paper is related to the literature on herding. The paper closest to ours is the

model of entry by Chamley & Gale (1994).1 The main di¤erence to our paper is that in

that model it is either optimal to invest immediately or never. We allow a more general

payo¤ structure that allows the state of nature to determine the optimal timing to invest,

but which also captures Chamley & Gale (1994) as a special case. This turns out to be

important for the model properties. With the payo¤ structure used in Chamley & Gale

(1994), uncertainty is resolved immediately but incompletely at the start of the game. In

contrast, our model features gradual information aggregation over time. The information

revelation in our model is closely related to our previous paper Murto & Välimäki (2009).

In that paper learning over time generates dispersed information about the optimal stop-

1See also Levin & J.Peck (2008), which extends such a model to allow private information on oppor-

tunity costs.
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ping point, and information aggregates in sudden bursts of action. Moscarini & Squintani

(2008) analyze a R&D race, where the inference of common values information is similar

to our model, but as their focus is on the interplay between informational and payo¤

externalities, they have only two players. Our focus, in contrast, is on the aggregation of

information that is dispersed within a potentially large population.

It is also instructive to contrast the information aggregation results in our context with

those in the auctions literature. In a kth price auction with common values, Pesendorfer &

Swinkels (1997) show that information aggregates e¢ ciently as the number of object grows

with the number of bidders. Kremer (2002) further analyzes informational properties of

large common values auctions of various forms. In our model, in contrast, the only link

between the players is through the informational externality, and that is not enough

to eliminate the ine¢ ciencies. The persistent delay in our model indicates failure of

information aggregation even for large economies. On the other hand, Bulow &Klemperer

(1994) analyzes an auction model that features "frenzies" that resemble our bursts of

actions. In Bulow & Klemperer (1994) those are generated by direct payo¤ externalities

arising from scarcity, while in our case they are purely informational.

The paper is structured as follows. Section 2 introduces the basic model. Section 3

establishes the existence of a symmetric equilibrium. Section 4 discusses the properties

of the game with a large number of players. In section 5 we illustrates the model by

Monte-Carlo simulations. Section 6 concludes with a comparison of our results to the

most closely related literature.

2 Model

We consider an N -player game where the players choose optimally when to stop. Denote

the set of players by N �f1; :::; Ng. The payo¤ of each player i depends on her stopping
time ti and a random variable ! whose value is initially uncertain to all players and

whose prior distribution is P (!) on 
: We take 
 = f!; :::; !g � R [ 1 to be a �nite

set: Because we allow for the possibility that ! =1, it is natural to allow the actions to
be taken in the same set, Ti = R [1:
The stopping decision is irreversible and yields a payo¤

vi (ti; !) = v (ti; !)

to player i if she stops at ti and the state of the world is !. Notice that we assume

symmetric payo¤s: Furthermore, we assume that for any �xed !, v (ti; !) is maximized
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at ti = !. This allows us to identify ! as the full information optimal stopping time in

the game.

We assume also that the payo¤ function v is quasi-supermodular in ti; !:

Assumption 1

vi(ti; !)� vi(t0i; !)

is strictly single crossing in ! and

vi(ti; !
0)� vi(ti; !)

is strictly single crossing in ti.

The purpose of this assumption is to guarantee monotonicity of the optimal stopping

decisions in additional information. Many examples satisfy this assumption:

� Quadratic loss:
vi(ti; !) = ��(ti � !)2:

� Discounted loss from early stopping2:

vi(ti; !) = e
�rmaxf!;tig � V � e�rti � C:

Because we allow the players to stop at in�nity, we use the topology generated by the

one-point compacti�cation of R[1:We assume throughout that v (ti; !) is continuous in
ti in this topology. 3 Under this assumption, individual stopping problems have maximal

solutions.

Players are initially privately informed about !. Player i observes privately a signal

�i from a joint distribution G (�; !) on [�; �] � 
: We assume that the distribution is
symmetric across i, and that signals are conditionally i.i.d. Furthermore, we assume that

the conditional distributions G(� j !) and corresponding densities g(� j !) are well de�ned
and they have full supports [�; �] independent of !.

We assume that the signals satisfy monotone likelihood property (MLRP).

Assumption 2 For all i, �0 > �, and !0 > !,

g(�0 j !0)
g(� j !0) >

g(�0 j !)
g(� j !) :

2For example the investment model of Chamley & Gale (1994) uses this formulation.
3This assumption holds e.g. under bounded payo¤ functions and discounting.
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This assumption allows us to conclude that optimal individual stopping times for

player i, ti(�) is monotonic in other players�types: For all j,

@ti(�)

@�j
� 0:

Assumption 2 also guarantees that the pooled information in the game becomes arbi-

trarily revealing of the state as N is increased towards in�nity.

Furthermore we make the assumption that the information content in individual sig-

nals is bounded.

Assumption 3 There is a constant � > 0 such that

8�; !; 1

�
> g (�; !) > �:

Finally, we assume that signal densities are continuous in �:

Assumption 4 For all !, g(� j !) is continuous in � within [�; �].

2.1 Information and Strategies

We model the stage game �
�
sk
�
, k = 0; 1; :::, as a simultaneous move game where all

active players choose a time to stop the game. The (informational) state variable sk 2 S
contains all information available to the players at the beginning of stage k, as will be

speci�ed shortly. A strategy for player i is a sequence � i = f� ki g; where

� ki : [�; �]� S ! R+ [1.

For notational convenience, we suppress the dependence on the public state variable

and use notation � ki (�i) to denote the stopping time of player i in stage k. Players are

active if they have not stopped the game in any previous stage. Stage k ends at random

time

tk = min
i2N k

� ki ;

where N k � N �Qk is the set of active players and Qk is the set of players that have
stopped by stage k :

Q0 = ;;

Qk = Qk�1 [ arg min
i2N�Qk�1

� k�1i (�i) :
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We denote by Nk the number of active players at the beginning of stage k. The total real

time that has elapsed at the beginning of stage k is

T k = �k�1l=0 t
l:

A strategy pro�le is denoted by � = f� kg = f(� ki ; � k�i)g Within each stage k, the
time stopping time tk and the identities of the players that stop at tk are public infor-

mation. Stopping times � ki (�i) > tk are not observable to players other than i. This

restriction captures our modeling assumption that learning about other players�types is

observational. Let

Cki �
�
� 2 [�; �]

��� ki (�) > tk	 ;
Xki �

�
� 2 [�; �]

��� ki (�) = tk	 :
Thus, if i 2 N k stops at stage k, then other players learn that �i 2 Xki , otherwise they

learn that �i 2 Ck
i . The state variable includes all information about the players at the

beginning of stage k. For each i 2 Qk, let li < k denote the stage at which i stopped.

The state of player i is:

ski =

8>><>>:
\
k0<li

Ck0
i

\
Xlii for all i 2 Qk\

k0<k

Ck
0
i for all i 2 N k

:

Hence, ski is a subset of [�; �] that contains those signal values that are consistent with

observed behavior of i. The state variable sk =
�
sk1; :::; s

k
N

�
contains the available infor-

mation on all players.

We are interested in symmetric equilibria. We shall show that in such equilibria,

players stop in the order of their signals:

� k (�i) � � k (�j) if �i � �j for all k:

We call strategies with this property monotonic. Those strategies have the property that

all the inverse images of stopping times are intervals of the type space.

For symmetric monotonic strategies, we can express the state variable more concisely.

If we let

�k+ = max
�
f�
��� k (�) = tk g;

�k� = min
�
f�
��� k (�) = tk g;

we have:

ski =
�
�k�1+ ; �

�
for i 2 N k:
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Furthermore,

ski =
�
�li�; �

li
+

�
for i 2 Qk:

We use notation �k � �k�1+ to denote the highest type that has stopped before the begin-

ning of stage k. Thus, with symmetric monotonic strategies, it is known at the beginning

of stage k that all the remaining players have signals within
�
�k; �

�
.

2.2 Information during the stage

At the outset of stage k; player i has posterior belief G
�
�
��sk; �i � on [�; �]� 
: Since the

game remains in stage k only as long as no player stops, the choice of � k (�i) is relevant

only as far as

� k (�j) � � k (�i) for all j:

With monotonic strategies, conditional on her stopping choice being payo¤ relevant at

instant t in stage k; player i knows that

�j � minf� � �k
��� k (�) � tg � �k (t) :

As a result, the decision to stop at t must be optimal conditional on this information. To

include the information �owing during a stage, we introduce the state variable:

sk (t) = (ski (t)) =

(
ski for i 2 Qk;

ski \
�
�k (t) ; �

�
for i 2 N k

:

Notice that a strategy pro�le � k =
�
� k1; :::; �

k
N

�
induces a distribution of state variables

for the next stage. We denote this distribution by F
�
sk+1

��sk; � k �.
2.3 Payo¤s

With our recursive de�nition of the game, the payo¤s of each stage game are relatively

easy to describe. As long as other players adopt symmetric strategies, player i gets payo¤

V k
�
sk; ti; � (�)

�
= Prftki � min

j
� k (�j)g EG(�jsk(tki );�i )v

�
T k + tki ; !

�
+EF(sk+1jsk;�k;tki>minj �k(�j))V

k+1
�
sk+1; ti; � (�)

�
from strategy ti = ftki g when other players play according to � (�) = f� k (�)g: The �rst
expectation on the right hand side is taken with respect to the posterior on the state !

conditional on own stopping. The second expectation on the continuation payo¤ from

stage k + 1 onwards given the information that i was not the �rst to stop.
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3 Symmetric equilibria

We shall show in this section that the game has always a symmetric equilibrium that we

call the informative equilibrium. We also note that in some stages the game may have

another equilibrium, where all players stop at the beginning of the stage irrespective of

their signals. We call such equilibria uninformative.

All symmetric equilibria of the game have the property that each player stops at the

�rst moment that is the optimal stopping time conditional on the information received

so far, under the extra assumption that no further information will ever be obtained from

other players. This myopia property makes the computation of the equilibrium straight-

forward.

3.1 Informative equilibrium

Consider the beginning of an arbitrary stage k, where set of players that have not yet

stopped is given by N k and it is common knowledge that all of them have signals within�
�k; �

�
, where the lowest possible type is given by �k � �k�1+ . To de�ne the informative

equilibrium, it is useful to introduce an auxiliary state variable sk (�) =
�
sk1 (�) ; :::; s

k
N (�)

�
,

where:

ski (�) �
(

ski for i 2 Qk�
�; �
�
for i 2 N�Qk

:

This state variable has the following meaning: A player of type � that conditions on

state sk (�) assumes that all the remaining players have a signal higher than �. Let us

de�ne � k� (�) as the optimal stopping time for such a player:

� k� (�) � inf
�
t � 0

��E �v (t; !) ��sk (�)� � E �v (t0; !) ��sk (�)� for all t0 � t	 : (1)

Note that (1) allows � k� (�) =1: The following Lemma states that � k� (�) is increasing
in � (strictly so when 0 < � k� (�) < 1), and therefore de�nes a symmetric monotonic

strategy pro�le:

Lemma 1 (Monotonicity of � k� (�)) Let �
k
� (�) denote the stopping strategy de�ned in

(1).

� If 0 < � k� (�) < 1 for some � 2
�
�; �
�
, then for all �0 2 [�; �) and �00 2

�
�; �
�
, we

have

� k� (�
0) < � k� (�) < �

k
� (�

00) .

� If � k� (�) = 0 for some � 2
�
�; �
�
, then for all �0 2 [�; �) we have � k� (�0) = 0.
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� If � k� (�) =1 or some � 2
�
�; �
�
, then for all �00 2

�
�; �
�
we have � k� (�

00) =1.

Proof. These follow directly from the Assumptions 1 and 2.

The next Theorem states that this pro�le is an equilibrium. The proof makes use of

the one-step deviation principle and the assumption of MLRP. We call this pro�le the

informative equilibrium of the game.

Theorem 1 (Informative equilibrium) The game has a symmetric equilibrium, where

every player adopts at stage k the strategy � k� (�) de�ned in (1).

Proof. Assume that all players i use strategies given by (1) in each stage k: It is clear

that no player can bene�t by deviating to � i < � k� (�i) : Let b� i (�i) > � k� (�i) be the best
deviation for player i of type �i in stage k: Let b�i be the type of player i that solves

� k�

�b�i� = b� i (�i) :
By Assumptions 1 and 2, we know that b�i > �i; and also that

E
h
v (t; !)

���sk �b�i� ; �ii
is decreasing in t at t = � k�

�b�i� : But this contradicts the optimality of the deviation tob� i (�i) :
Since there are no pro�table deviations in a single stage for any type of player i; the

claim is proved by the one-shot deviation principle.

Let us next turn to the properties of the informative equilibrium. The equilibrium

stopping strategy � k� (�) de�nes a time dependent cuto¤ level �
k (t) for all t � 0 as follows:

�k (t) �

8>><>>:
�k if 0 � t < � k�

�
�k
�

� if t > � k�
�
�
�

max
�
� j � k� (�) � t

	
if � k�

�
�k
�
� t � � k�

�
�
� : (2)

In words, �k (t) is the highest type that stops at time t in equilibrium. The key properties

of �k (t) for the characterization of equilibrium are given in Proposition 1 below. Before

that, we note that the equilibrium stopping strategy is left-continuous in �:

Lemma 2 (Left-continuity of � k� (�)) Let �
k
� (�) denote the informative equilibrium stop-

ping strategy de�ned in (1). For all � 2
�
�; �
�
,

lim
�0"�
� k� (�

0) = � k� (�) .
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Proof. Assume on the contrary that for some �, we have � k� (�) � lim�0"� �
k
� (�

0) > 0

(Lemma 1 guarantees that we can not have � k� (�) � lim�0"� �
k
� (�

0) < 0). Denote �t =

t00 � t0, where t00 = � k� (�) and t
0 = lim�0"� �

k
� (�

0). Denote u (t; �) = E
�
v (t; !)

��sk (�)�.
By de�nition of � k� (�), we have then u (t

00; �) > u (t; �) for all t 2 [t0 � �; t0 + �] for any
0 < � < �t.

Because signal densities are continuous in �, u (t; �) must be continuous in �. This

means that there must be some " > 0 such that u (t00; �0) > u (t; �0) for all t 2 [t0 � �; t0 + �]
and for all �0 2 [� � "; �]. But on the other hand lim�0"� �

k
� (�

0) = t0 implies that � k� (�
0) 2

[t0 � �; t0 + �] if �0 is chosen su¢ ciently close to �. By de�nition of � k� (�0) this means
that u

�
� k� (�

0)
�
� u (t00; �0), and we have a contradiction. We can conclude that for all �,

lim�0"� �
k
� (�

0) = � k� (�).

The next proposition allows us to characterize the key properties of the informative

equilibrium. It says that �k (t) is continuous, which means that at each t > 0, only a single

type exits, and hence the probability of more than one player stopping simultaneously is

zero for t > 0. In addition, the Proposition says that along equilibrium path, �k (0) > �k

for all stages except possibly the �rst one. This means that at the beginning of each stage

there is a strictly positive probability that many players stop simultaneously.

Proposition 1 �k (t) : [0;1)!
�
�k; �

�
de�ned in (2) is continuous, (weakly) increasing,

and along the path of the informative equilibrium �k (0) > �k for k � 1.

Proof. Continuity and monotonicity of �k (t) follow from de�nition (2) and the properties

of � k� (�) given in Lemmas 1 and 2.

Take any stage k � 1 along the informative equilibrium path. To see that we must

have �k (0) > �k, consider how information of the marginal player changes at time tk�1.

If tk�1 = 0, the player with signal �k�1+ = �k was willing to stop at tk�1 = 0 conditional

on being the lowest type within the remaining players. However, since the stage ended

at tk�1 = 0, at least one player had a signal within
�
�k�1i ; �k�1+

�
. By MLRP and quasi-

supermodularity, this additional information updates the beliefs of the remaining players

discretely downwards. Therefore, � k� (�) = 0 for all � 2
�
�k; �k + "

�
for some " > 0, which

by (2) means that �k (0) > �k.

On the other hand, if tk�1 > 0, the lowest signal within the remaining players in

stage k � 1 was �k�1+ = �k. The player with this signal stopped optimally under the

information that all the remaining players have signals within
�
�k; �

�
. But as soon this

player stops and the game moves to stage k, the other players update on the information

that one of the players remaining in the game in stage k�1 had the lowest possible signal
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value amongst the remaining players. Again, by MLRP and quasi-supermodularity, the

marginal cuto¤ moves discretely upwards, and we have �k (0) > �k.

To understand the equilibrium dynamics, note that as real time moves forward, the

cuto¤ �k (t) moves upward, thus shrinking from left the interval within which the signals

of the remaining players lie. By MLRP and quasi-modularity this new information works

towards delaying optimal stopping time for all the remaining players. At the same time,

keeping information �xed, the passage of time brings forth the optimal stopping time for

additional types. In equilibrium, �k (t) moves at a rate that exactly balances these two

e¤ects keeping the marginal type indi¤erent. As soon as the stage ends at tk > 0, the

expected value from staying in the game drops by a discrete amount for the remaining

players (again by MLRP and quasi-supermodularity). This means that the marginal

cuto¤moves discretely upwards and thus �k+1 (0) > �k
�
tk
�
= �k+1, and at the beginning

of the new stage there is thus a mass point of immediate exits. If at least one player stops,

the game moves immediately to stage k + 2 with another mass point of exits, and this

continues as long as there are consecutive stages in which at least one player stops at t = 0.

Thus, the equilibrium path alternates between "stopping phases", i.e. consecutive stages

that end at t = 0 and result with multiple simultaneous exits, and "waiting phases", i.e.

stages that continue for a strictly positive time.

Note that the random time at which stage k ends,

tk = � k�

�
min
i2N k

�i

�
;

is directly linked to the �rst order statistic of the player types remaining in the game

at the beginning of stage k. If we had a result stating that for all k, � k(�i) is strictly

increasing in �i, then the description of the equilibrium path would be equivalent to

characterizing the sequence of lowest order statistics where the realization of all previous

statistics is known. Unfortunately this is not the case, since for all stages except the very

�rst one there is a strictly positive mass of types that stop immediately at t = 0, which

means that the signals of those players will be revealed only to the extent that they lie

within a given interval. However, in Section 4.3 we will show that in the limit where the

number of players is increased towards in�nity, learning in equilibrium is equivalent to

learning sequentially the exact order statistics of the signals.

3.2 Uninformative equilibria

While the model always admits the existence of the informative symmetric equilibrium

de�ned above, some stage games also allow the possibility of an additional symmetric
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equilibrium, where all players stop at the beginning of the stage irrespective of their

signals. We call these uninformative equilibria.

To understand when such uninformative equilibria exist, consider the optimal stopping

time of a player who has private signal �, conditions on all information sk obtained in

all stages k0 < k, but who does not obtain any new information in stage k. Denote the

optimal stopping time of such a player by � k (�):

� k (�) � min
�
t � 0

��E �v (t; !) ��sk; � � � E �v (t0; !) ��sk; � � for all t0 � t	 :
If � k (�) > 0 for some � 2 [�; �], then an uninformative equilibrium can not exist: it is

a strictly dominant action for that player to continue beyond t = 0. But if � k (�) = 0 for

all players, then an uninformative equilibrium indeed exists: If all players stop at t = 0

then they learn nothing from each other. And if they learn nothing from each other, then

t = 0 is their optimal action.

Since � k (�) is clearly increasing in �, the existence of uninformative equilibria depends

simply on whether � k
�
�
�
is zero:

Proposition 2 If at stage k we have � k
�
�
�
= 0, then the game has a symmetric equilib-

rium, where at stage k all active players stop at time � k = 0 irrespective of their signals.

The equilibrium, where all the active players choose � k = 0 in all stages with � k
�
�
�
=

0, is the least informative equilibrium of the game. There are of course also intermediate

equilibria between the informative and least informative equilibria, where at some stages

with � k
�
�
�
= 0 players choose � k (�) de�ned in (1), and in others they choose � = 0.

Note that there are also stages where the informative equilibrium commands all players

to stop at t = 0. This happens if the remaining players are so much convinced that they

have already passed the optimal stopping time that even �nding out that all of them

have signals � = � would not make them think otherwise. In that case � k (�) = 0 for all

� 2 [�; �], where � k (�) is de�ned in (1).
It is easy to rank the symmetric equilibria of the game. The informative equilibrium

is payo¤ dominant in the class of all symmetric equilibria of the game. The option of

stopping the game is always present for all players in the game, and as a result, not

stopping must give at least the same payo¤.

4 Informative Equilibrium in Large Games

In this section we study the limiting properties of the model, when we increase the number

of players towards in�nity. In subsection 4.1 we show that the informative equilibrium
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exhibits delay and randomness. In subsection 4.2 we discuss the e¤ect on the players�

payo¤s of the observational learning. In subsection 4.3 we analyze the information of the

players in equilibrium, and derive a simple algorithm for simulating the equilibrium path

directly in the large game limit.

4.1 Delay in Equilibrium

We state here a theorem that characterizes the equilibrium behavior in the informative

equilibrium for the model with a general state space 
 in the limit N !1. Let TN(�; !)
denote the random exit time (in real time) in the informative equilibrium of a player with

signal � when the state is ! and the number of players at the start of the game is N . We

will be particularly interested in the behavior of TN(�; !) as N grows and we de�ne

T (!; �) � lim
N!1

TN(!; �);

where the convergence is to be understood in the sense of weak convergence.4 Since we

have assumed 
 to be compact, we know that the sequence TN(�; !) has a convergent

subsequence. For now, we take T (!; �) to be the limit of any such subsequence. Along

the way, we shall prove that this is also the limit of the original sequence.

The real time instant when the last player with signal � stops is given by TN(!; �) and

we let

TN(!) � TN(!; �) and T (!) � lim
N!1

TN(!):

We let F (t j !) denote the distribution of T (!), or in other words,

F (t j !) = PrfT (!) � tg;

and use f(t j !) to refer to the corresponding probability density function. The following
Theorem characterizes the asymptotic behavior of the informative equilibrium as the

number of players becomes large.

Theorem 2 In the informative equilibrium of the game, we have for all ! < !,

1. suppf(t j !) = [maxft(�); !g; !].

2. For all �; �0 2
�
�; �
�
,

lim
N!1

PrfTN(!; �) = TN(!; �0)g = 1:

4In our setting, this is also equivalent to convergence in distribution.
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Proof. In a symmetric equilibrium, no information is transmitted before the �rst exit.

By monotonicity of the equilibrium strategies, a lower bound for all exit times and hence

also for TN(!) for all N is t(�):

Consider next an arbitrary �0 > �: By the law of large numbers, we have for all ! :

#fi 2 f1; :::; Ng j�i < �0g
N

! G (�0 j! ) :

By Assumption 3, and the law of large numbers, for each �0 there is a �00 < �0 such that

for all ! < ! and all t < !

lim
N!1

Prf9k such that �k+ < �00 < �0 < �k+1+ g = 0.

This follows from the fact that

lim
�00!0

G (�00 j! )
G (�0 j! ) = 0;

and the fact that by Assumption 2, for all !0 6= !;

lim
N!1

�
G (�0 j!0 )
G (�0 j! )

�N
= 0:

Consider therefore the stage k0 where a player with the signal �0 stops. Then �00 <

�k
0�1
+ < �0; and the player with signal �00 knows

#fi 2 f1; :::; Ng
����i < �k0�1+ g

N
:

By the law of large numbers, this is su¢ cient to identify !: This implies part 2 of the

Theorem and also that suppf(t j !) � [maxft(�); !g; !] :
The lower bound of the support is by the argument above maxft(�); !g; and the

remaining task is to argue that the upper bound of the support is !: This follows easily

from the fact that if PrfTN(!) < tg ! 1 for some t < !; then the �rst exit must take place

before t with probability 1 but this is inconsistent with symmetric informative equilibrium

in monotonic strategies. To see this, let t0 � t be the smallest instant such that

lim
N!1

Prf9i 2 f1; :::; Ng : � 1� (�i) � t0g = 1:

By Assumption 2, conditional on no exit by t0; the posterior probability on 
 converges

to a point mass on !:
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4.2 Payo¤s in equilibrium

We turn next to the e¤ect of observational learning on the players�payo¤s. To be precise

about this, we de�ne three ex-ante payo¤ functions. First, we denote by V 0 the ex-ante

value of a player whose belief on the state is given by the prior:

V 0 =
X
!2


�0 (!) v
�
T 0; !

�
;

where T 0 is the optimal timing based on the prior only:

T 0 = argmax
t

X
!2


�0 (!) v (t; !) :

Second, consider a player who has a private signal but does not observe other players.

The ex-ante value of such an "isolated" player is:

V 1 =
X
!2


264�0 (!) �Z
�

g(� j !)v
�
T �; !

�
d�

375 ;
where T � is the optimal stopping time with signal � and �� (!) is the corresponding

posterior:

T � � argmax
t

X
!2


�� (!) v (t; !) ;

�� (!) � �0 (!) g(� j !)X
!2


�0 (!) g(� j !)
:

Third, consider a player in the informative equilibrium of the game. We assume thatN

is very large, which by Theorem 2 means that almost all players stop at the same random

time T (!) (the moment of collapse). From an ex-ante point of view, the equilibrium

payo¤ is determined by its probability distribution f (t j !). The ex-ante equilibrium
payo¤ is thus:

V � =
X
!2


24�0 (!) 1Z
0

f (t j !) v (t; !) dt

35 : (3)

It is clear that additional learning can never reduce the ex-ante value, and therefore

we must have:

V � � V 1 � V 0.

We call V P � V 1�V 0 the value of private learning, and V S � V 1�V � the value of social
learning. In Section 5 we demonstrate numerically that V S and V P are closely related to
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each other. In particular, the value of social information increases as the value of private

information is increased. We can also derive analytically an upper bound for V S, which

shows that whenever the individual private signals are non-informative in the sense that

V P is very small, then also V S must be small (this holds even if the pooled information

is still arbitrarily informative).

An important e¤ect of observational learning is that it increases the sensitivity of

players�payo¤s to the realized state of nature. We will demonstrate this e¤ect numerically

in Section 5. We can also de�ne value functions conditional on realized signal:

V 1 (�) =
X
!2


�� (!) v
�
T �; !

�
;

V � (�) =
X
!2


�
�� (!)V � (!)

�
:

We conjecture that V S (�) � V � (�)�V 1 (�) is increasing in �, that is, the additional value
of observational learning is more valuable to players who have obtained a high signal. The

intuition runs as follows. If the true state is low, a player with a high signal bene�ts a lot

from the information released by the other players who have low signals (since they will

act before her). But if the true state is high, a player with a low signal will learn nothing

from the other players that have higher signals (because those players will act after her).

The computations in Section 5 support this conjecture.

It is clear that the player with the lowest possible signal cannot bene�t from obser-

vational learning at all (she must be indi¤erent between following her own signal and

following an equilibrium strategy), and we must therefore have

V 1 (�) = V � (�) .

4.3 Information in equilibrium

The properties of the informative equilibrium rely on the statistical properties of the order

statistics of the players�signals. In this subsection we analyze the information content in

those order statistics in the limit N !1.
Denote the n:th order statistic in the game with N players by

e�Nn � min�� 2 ��; �� j # fi 2 N j �i � �g = n
	
: (4)

It is clear that if we now increaseN towards in�nity while keeping n �xed, e�Nn converges
to � in probability. Therefore, it is more convenient to work with random variable

Y Nn �
�e�Nn � �� �N . (5)
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Note that Y Nn has the same information content as e�Nn , but as we will show below, it
will converge in distribution to a non-degenerate random variable. This limit distribution,

therefore, captures the information content of e�Nn in the limit. Let us also de�ne
�Y Nn � Y Nn � Y Nn�1 =

�e�Nn � e�Nn�1� �N , (6)

where by convention we let �N0 � � and Y N0 � 0. The following proposition shows that
�Y Nn converge to independent exponentially distributed random variables as N !1:

Proposition 3 Fix n 2 N+ and denote by [�Y 11 ; :::;�Y 1n ] a vector of n independent
exponentially distributed random variables with parameter g (� j !):

Pr (�Y 11 � x1; :::;�Y 1n � xn) = e�g(�j!)�x1 � ::: � e�g(�j!)�xn.

Consider the sequence of random variables
��
�Y N1 ; :::;�Y

N
n

�	1
N=n

, where for each N

the random variables �Y Ni are de�ned by (4) - (6). As N !1, we have:�
�Y N1 ; :::;�Y

N
n

� D! [�Y 11 ; :::;�Y
1
n ] ;

where D! denotes convergence in distribution.

Proof. The probability distribution of �Y Nn , conditional on Y
N
n�1 is given by:

Pr
�
�Y Nn � x j Y Nn�1

�
= Pr

��e�Nn � e�Nn�1� �N � x j e�Nn�1�
= Pr

�e�Nn � e�Nn�1 + x

N
j e�Nn�1�

= 1�

0@1�
�
G
�e�Nn�1 + x

N
j !
�
�G

�e�Nn�1 j !��
1�G

�e�Nn�1 j !�
1AN�n

:

Noting that as N !1, we have e�Nn�1 P! � and x
N
! 0, and therefore we have:

N �

�
G
�e�Nn�1 + x

N
j !
�
�G

�e�Nn�1 j !��
1�G

�e�Nn�1 j !�
P! g (� j !) � x.

Noting also that

lim
N!1

�
1� g (� j !) � x

N

�N�n
= e�g(�j!)�x;

we have:

lim
N!1

Pr
�
�Y Nn � x j Y Nn�1

�
= 1� e�g(�j!)�x.

This means that �Y Nn converges in distribution to an exponentially distributed random

variable with parameter g (� j !) that is independent of all lower order statistics.

18



Note that the limit distribution of �Y Nn does not depend on n. Therefore, Y Nn =

�ni=1�Y
N
n converges to a sum of independent exponentially distributed random variables,

which means that the limiting distribution of Y Nn is Gamma distribution:

Corollary 3 Y Nn converges to a Gamma distributed random variable:

Y Nn =

nX
i=1

�Y Ni
D!

nX
i=1

�Y 1i � Y 1n ;

where Y 1n � Gamma (n; g (� j !)).

Proposition 3 means that when N is large, observing the n lowest order statistics is

observationally equivalent to observing n independent exponentially distributed random

variables. This has an important implication for the Bayesian updating based on or-

der statistics: observing only the n:th order statistic e�Nn is informationally equivalent to
observing

ne�Ni on
i=1

that contains all order statistics up to n. This is due to the "memo-

ryless" nature of exponential random variables. To see this formally, write the posterior

belief of an observer who updates her belief on the state of the world based on the real-

ization
ne�Ni on

i=1
(approximating the joint distribution of

�e�Ni � e�Ni�1� �N by exponential

distribution based on Proposition 3). As can be seen, this posterior depends only on the

realization of e�Nn :

�
�
! j
ne�Ni on

i=1

�
�

�0 (!) �
nY
i=1

g (� j !) e�g(�j!)
�e�Ni �e�Ni�1��N

X
!2


�0 (!) �
nY
i=1

g (� j !) e�g(�j!)
�e�Ni �e�Ni�1��N

=
�0 (!) � (g (� j !))n e�g(�j!)

�e�Nn ����NX
!2


�0 (!) � (g (� j !))n e�g(�j!)
�e�Nn ����N :

So far, we have discussed the properties of the order statistics of the signals without

linking them to the equilibrium behavior. Now we turn to the properties of the infor-

mative equilibrium, and show that in the large game limit the equilibrium path can be

approximated by a simple algorithm that samples sequentially the order statistics. To

make this statement precise, we now �x N and de�ne two di¤erent sequences of random

variables, both obtained as mappings from realized signal values to real numbers.

First, for each N , denote by T �n (N) the real time at which the number of players that

stop exceeds n in the unique informative equilibrium:

T �n (N) � min
�
T k j Qk � n

	
.
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The increasing sequence fT �n (N)g
N
n=1 contains the real stopping moments of all N players

in the game.

Second, we de�ne a sequence of stopping times bTn (N) calculated directly on the basis
of the order statistics. As an intermediate step, denote by eTn (N) the optimal stopping
moment given the information contained in the n lowest order statistics:

eTn (N) � inf nt � 0 ���E hv (t; !) ���ne�Ni on
i=1

i
� E

h
v (t0; !)

���ne�Ni on
i=1

i
for all t0 � t

o
:

Next, de�ne random variable bTn (N) as:
bTn (N) � max

i=1;:::;n

eTn (N) : (7)

Hence,
nbTn (N)oN

n=1
is the sequence of optimal stopping times based on sequential sam-

pling of order statistics under an additional constraint that one is never allowed to "go

back in time", i.e. choose a stopping time lower than some previously chosen stopping

time. Note that both fT �n (N)g
N
n=1 and

nbTn (N)oN
n=1

are weakly increasing sequences of

random variables.

The next proposition says that for any �xed n, the di¤erence between bTn (N) and
T �n (N) vanishes as N goes to in�nity (in the sense of convergence in probability). The

key for this result is the �nding that inference on order statistics becomes informationally

equivalent to inference based on independent exponentially distributed random variables.

This means that a player that conditions on having the lowest signal among the remaining

players does not learn anything more by conditioning on exact realizations of the signals

lower than hers. Thus, inference based on the exact realizations of lowest order statistics

becomes the same as the inference of the marginal player in equilibrium, who knows the

lowest signal realizations only to the extent that they lie within some �xed intervals.

Proposition 4 Fix n 2 N+ and consider random variables T �n (N) and bTn (N). As

N !1, we have: bTn (N)� T �n (N) P! 0.

Proof. Fix n. As N !1, the updating based on the realizations of the n lowest signals
is informationally equivalent to observing n exponentially distributed random variables

with parameter g (� j !). Consider the player that has the n:th lowest signal e�Nn . As N
is increased, this signal is of course arbitrarily close to � at a probability arbitrarily close

to one. In equilibrium, this player is the n:th to stop (possibly together with some other

players). By (1), her real stopping time T �n (N) is optimal conditional on information

that some n0 < n players have signals within [�; �0] for some �0 � e�Nn , no player as signals
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within
�
�0;e�Nn �, and she herself has signal e�Nn . In contrast, eTn (N) is optimal conditional

on n players having signals within
h
�;e�Nn i, which by MLRP and super-modularity means

that for any " > 0,

lim
N!1

Pr
�eTn (N)� T �n (N) > "� = 0.

Since for all N , we have

bTn (N) � max
i=1;:::;n

eTn (N) and
T �n (N) � max

i=1;:::;n
T �i (N) ;

we have also

lim
N!1

Pr
�bTn (N)� T �n (N) > "� = 0:

To show that Pr
�
T �n (N)� bTn (N) > "�! 0 is conceptually similar.

5 Simulating the informative equilibrium path

In this section we illustrate the main properties of the game by Monte-Carlo simulations.

Proposition 4 gives a simple way to simulate the informative equilibrium directly in the

limit N ! 1. A sample path of the equilibrium is generated as follows. i) First, �x

prior �0 (!) and the true state of world !0. ii) Draw a sequence fyigMi=1 of independent
exponentially distributed random variables with parameter g (� j !0). For this sequence,
the corresponding sequence of posteriors is:

�i (!) =
�i�1 (!) g (� j !) e�g(�j!)�yiX

!2

�i�1 (!) g (� j !) e�g(�j!)�yi

; i = 1; :::;M .

For each i = 1; :::;M , calculate the stopping time bTi as:
bTi = max(bTi�1; argmax

t
E

"X
!2


�i (!) � v (t; !)
#)

:

The generated sequence
nbTioM

i=1
is the simulated realization of the sequence (7) in the

limit N ! 1. By Proposition 4, it corresponds to the real time moments at which the
�rst M players stop the game in the large game limit. By choosing M su¢ ciently large,

one can ensure that the belief �M (!) has converged to the true state, i.e. �M (!0) � 1

and �M (!) � 0 for all ! 6= !0. This means that all the remaining players will stop in

equilibrium at the same real time as the M :th player (with high probability). Thus, bTM
gives the real time at which the game collapses for this particular sample.
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We illustrate next the model by Monte-Carlo simulations, where we generate a large

number of equilibrium paths and use those to compute the probability distributions for

the players�stopping times and payo¤s. We specify the model as follows:


 =

�
0;

1

S � 1 ;
2

S � 1 ; :::;
S � 2
S � 1 ; 1

�
;�

�; �
�
= [0; 1] ;

g (� j! ) = 1 + 

�
! � 1

2

��
� � 1

2

�
;

v (t; !) = � (! � t)2 :

Here S is the number of states and  is a parameter measuring the precision of

individual signals. In this illustration we have S = 10, and for the signal precision we

compare two cases:  = 2 (precise signals) and  = 0:2 (imprecise signals).

5.1 Distribution of stopping times

We generated 10000 sample paths for each 10 state values. For each sample path, we

use M = 300000 random variables to make sure that the posteriors have fully converged

to the true state. Figure 1 shows the simulated cumulative distribution functions of the

moment of collapse, conditional on state. Top panel uses precision parameter  = 2 while

the bottom panel uses  = 0:2. This Figure demonstrates clearly the Theorem 2: the time

of collapse is random and delayed as compared to the �rst best for all but the highest

state. The delay is more sever for the lowest state values. The signal precision has an

expected e¤ect: with less precise signals there is on average more delay.

Figure 1

5.2 Payo¤s

Using the distributions of stopping times generated by the Monte-Carlo simulation, we

can easily compute the ex-ante value of a player in equilibrium according to (3).

The following table shows the ex-ante values de�ned in section 4.2 and computed with

the two precision parameters used in the simulations:
V 0 V 1 V � V P V S

 = 2 -0.1019 -0.0984 -0.0690 0.0035 0.0294

 = 0:2 -0.1019 -0.1018 -0.0989 0.000035 0.0029
The obvious result in this table is that the more precise the private signals, the more

valuable private learning: V P is higher for the precise signals. What is less obvious is
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that the social value behaves similarly: the more precise the private signals, the more

valuable is the additional value of the social learning on top of the private value of the

signals. In fact, it is easy to show formally that in the limit where private signals are

made uninformative in the sense that V P goes to zero (in our model speci�cation this

would mean  ! 0), also V S must go to zero.

Figures 2 and 3 show the values conditional on signal and state, respectively. The value

of an isolated player conditional on signal is U-shaped: extreme signal realizations are

ex-ante good news in the quadratic payo¤ case, since they make large mistakes unlikely.

In equilibrium, high signals are good news: they indicate that the optimal timing is more

likely to be late, and social learning is particularly valuable if that is the case. Learning

from others causes delay, which is valuable if late action is ex-post optimal, but it is costly

if the early action would have been optimal. This can be seen more clearly in Figure 3

that shows the value functions conditional on state. Social learning makes payo¤s more

sensitive on true state: actions are delayed which is good if state is high but bad if state

is low.

Figure 2

Figure 3

6 Discussion

Our results are quite di¤erent from related models in Chamley &Gale (1994) and Chamley

(2004). To understand why this is the case, it is useful to note that we can embed the

main features of those models as a special case of our model. For this purpose, assume

that ! 2 f0;1g, and
v (t; 0) = e�rt; v (t;1) = �ce�rt:

If it is optimal to invest at all in this version of the model, then the investment time

is insensitive to the information of the players. In other words, investment is good either

immediately or never. Private signals only a¤ect the relative likelihood of these two cases.

This leads to the conclusion that it is never optimal to invest at t > 0 conditional on

no other investments within (t� "; t), since then it would have been optimal to invest
immediately. As a result, a given stage k ends either immediately if at least one player

stops at time t = 0 and the play moves to stage k + 1, or the stage continues forever and

the game never moves to stage k + 1. This means that all investment must take place at

the beginning of the game, and with a positive probability investment stops forever even

when ! = 0. The models in Chamley & Gale (1994) and Chamley (2004) are formulated
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in discrete time, but their limiting properties as the period length is reduced corresponds

exactly to this description.

We get an intermediate case by setting 
 = f!1; :::; !S;1g with P (1) > 0. In this
case, the game has some revelation of information throughout the game. Nevertheless, it

is possible that all investment ends even though ! <1; and as a result, the game allows
for a similar possibility of incorrect actions as Chamley & Gale (1994).

There are a number of directions where the analysis in this paper should be extended.

Exogenous uncertainty on the payo¤ of investment plays an important role in the lit-

erature on real options. Our paper can be easily extended to cover the case where the

pro�tability of the investment depends on an exogenous (and stochastic) state variable p

and on private information about common market state !. In this formulation, the stage

game is one where the players pick a Markovian strategy for optimal stopping. With

our monotonicity assumptions this is equivalent to selecting a threshold value pi (�i) at

which to stop conditional on their signal. The stage ends at the �rst moment when the

threshold value of some player is hit.

The analytical simplicity of the model also makes it worthwhile to consider some

alternative formulations. First, it could be that the optimal time to stop for an individual

player i depends on the common parameter ! as well as her own signal �i: The reason

for considering this extension would be to demonstrate that the form of information

aggregation demonstrated in this paper is not sensitive to the assumption of pure common

values. Second, by including the possibility of payo¤ externalities in the game we can

bring the current paper closer to the auction literature. We plan to investigate these

questions in future work.
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