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1 Introduction

In this study, we consider the risk-return tradeoff in the monthly U.S. excess stock

market returns. Previous empirical results are ambiguous on whether there is a posi-

tive relationship between risk and expected return as postulated by the Intertemporal

Capital Asset Pricing Model (ICAPM) of Merton (1973). Previously, the risk-return

tradeoff has typically been examined by means of the GARCH-in-mean (GARCH-M)

model originally proposed by Engle, Lilien and Robins (1987). The general idea of

the GARCH-M model is that the conditional variance is included in the conditional

mean equation and its coefficient is interpreted as to measure the strength of risk

aversion.

The main empirical contribution of this paper is to allow the state of the economy

to have an effect on the risk-return tradeoff. This is in line with the conditional

ICAPM (for details, see Merton, 1973; Guo and Whitelaw, 2006, among others) where

macroeconomic state variables proxying investment opportunities (i.e., real economic

activity) are also assumed to be important in asset pricing. The idea of the conditional

ICAPM is supported by the empirical findings of Chen (1991), Whitelaw (1994)

and Pesaran and Timmermann (1995), among others, who have shown that there is

significant variation in the excess stock returns related to business cycle fluctuations.

In the previous studies cited above, the dependent variable is typically “continu-

ous” taking any real number. However, many economic and financial applications

involve also discrete variables, such as binary variables, with only a limited number

of possible outcomes. For instance, binary time series models have been used to predict

the business cycle recession and expansion periods (see, e.g., Estrella and Mishkin,

1998; Bernard and Gerlach, 1998; Nyberg, 2010a) and the sign of future stock returns

(see, e.g., Leung, Daouk, and Chen, 2000; Rydberg and Shephard, 2003; Nyberg,

2010b).

The novel idea of this paper is to construct a new regime switching model combin-

ing a binary time series model for a business cycle indicator and a regime switching

model for the excess stock market return. The model is applied to U.S. data with the

regime in the regime switching model being based on the NBER (National Bureau

of Economic Research) business cycle indicator. In the previous ICAPM literature,
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various financial variables, such as the default spread, term spread, Treasury Bill

rate, and dividend-price ratio (see, e.g., Ghysels, Santa-Clara and Valkanov, 2005;

Bali and Engle, 2008, and the references therein) have been employed as proxies of

the state of the economy instead of a binary business cycle indicator. We use the

autoregressive probit model of Kauppi and Saikkonen (2008) to predict the state of

the business cycle, whereas the excess stock return is assumed to follow a regime

switching GARCH-M model. The latter is augmented with a qualitative response

(QR) variable, and hence the model is referred to as the “QR-GARCH-M” model.

Our empirical results show that there is indeed evidence of statistically significant

regime switching behavior in the U.S. excess stock returns over the business cycle.

The estimated coefficients of the QR-GARCH-M model reveal that the risk aversion

coefficient is positive and statistically significant in both business cycle regimes. This

finding contradicts, for example, the evidence provided by Kim and Lee (2008), but

is consistent with the positive risk-return relationship implied by the conditional

ICAPM. Risk aversion appears to be higher in the recession regime indicating that

the investors are demanding a higher risk premium during recession. As an example,

Kim and Lee (2008) find evidence on the positive relation only in the expansion

regime in their regime switching GARCH-M model. Furthermore, in accordance with

previous studies the conditional variance of returns turns out to be higher during

recession periods.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the

idea of risk-return tradeoff and show how it has been examined empirically with the

GARCH-M model. The QR-GARCH-M model is introduced in Section 3. Empirical

findings on the risk-return tradeoff are presented in Section 4. Section 5 concludes.

2 GARCH-M Model, ICAPM and Business Cycles

The tradeoff between risk and expected stock market return has been examined ex-

tensively in the theoretical and empirical finance literature. The ICAPM of Merton

(1973) suggests a positive relationship between expected return and risk. French,

Schwert and Stambaugh (1987) and Campbell and Hentschel (1992) were among the
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first to find empirical evidence of such a positive relationship. However, overall the

empirical evidence seems to be mixed because several authors have also found a sta-

tistically insignificant or even negative relation (see, e.g, Glosten, Jagannathan and

Runkle, 1993, and the references therein).

In empirical studies on the risk-return tradeoff, the GARCH-M (GARCH-in-

mean) model of Engle et al. (1987) has been used to capture the potential link

between time-varying expected return and risk measured by the conditional vari-

ance of returns. The main idea in the GARCH-M model is to allow the conditional

variance ht to have an impact on the conditional mean of the return rt. This is stated

formally as

rt = ψ + δht + h
1/2
t ǫt, (1)

where ǫt ∼ IID(0, 1). Often the conditional variance is assumed to follow the GARCH(1,1)

model

ht = ω + βht−1 + αu2
t−1, (2)

where ut = rt−ψ−δht and ω > 0, β ≥ 0, and α > 0.1 The inclusion of ht in the mean

equation (1) is called a “volatility feedback” effect. In the ICAPM the parameter δ

is interpreted as the coefficient of relative risk aversion (Merton, 1980). A positive

coefficient means that risk-averse investors require a higher expected return (a higher

risk premium) when the risk is higher.

In the previous literature, Glosten et al. (1993), inter alia, have concluded that,

despite the simplicity of the GARCH-M model (1), it should be extended to capture

the risk-return tradeoff accurately. They suggested a “modified” GARCH-M model,

whereas Chauvet and Potter (2001), for example, introduced a dynamic factor model

to the market risk premium. Both of these studies find a negative relationship between

risk and expected return. On the other hand, Ghysels et al. (2005) find evidence of a

positive relationship by using a model based on the mixed data sampling (MIDAS)

approach. In addition, Lanne and Saikkonen (2006) point out that in many empirical

studies the intercept ψ is included in the mean equation (1) although, based on the

1 In this study, we employ the conditional variance ht instead of its standard deviation
√
ht in the

mean equation (1). Both of these alternatives have been used in the literature. Overall, the results

turn out to be more or less the same irrespective of this selection.
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ICAPM, it is not theoretically justified. They find that the inclusion of an unnecessary

intercept term makes the estimated risk aversion coefficient δ in (1) unstable and

statistically insignificant. However, they find a positive and statistically significant

estimate in the case of the U.S. stock returns when they exclude the intercept from

the mean equation.

As discussed above, many previous studies have considered the ICAPM in a sim-

plified form by ignoring a “hedge component” which captures investors’ preferences to

hedge against investment opportunities (see Merton, 1973, and Guo and Whitelaw,

2006). If the hedge component is included in the model, the model is often referred

to as the conditional ICAPM. In previous empirical work, the conditional ICAPM is

typically used by including various macroeconomic variables in the estimated model

in order to reflect the state of real economic activity. Recently, for example, Guo and

Whitelaw (2006) and Bali and Engle (2008) have shown that there is indeed a positive

relation between risk and expected return conditional on macroeconomic factors. In

addition to these studies, Chen (1991), Whitelaw (1994) and Pesaran and Timmer-

mann (1995), among others, have emphasized the role of business cycle fluctuations

in determining the conditional mean and conditional variance of excess stock returns.

In this paper, we consider a new model where a binary indicator variable defines

the state of the economy in terms of expansion and recession periods. This is in con-

trast to the previous literature where various macroeconomic variables are typically

employed as predictors in the model for the conditional mean of returns (see, e.g.,

Bali and Engle, 2008, and the references therein). The probability of the recession

is obtained from a probit model and the conditional distribution of the excess stock

returns is modeled using a regime switching GARCH-M model where the business

cycle indicator defines the regime. Kim and Lee (2008) have considered a closely re-

lated model based on an augmented GARCH-M model where the unobserved state

of the economy is modeled by using a Markov switching model. They find the binary

valued business cycle indicator to be a statistically significant predictor in the con-

ditional mean equation and interpret these findings as evidence in favor of business

cycle specific risk aversion.

As Kim and Lee (2008) point out, the state of the business cycle cannot be iden-
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tified for sure in real time. Due to the informational lags and revisions between the

initial and final values of macroeconomic variables, there is also a substantial delay

in the values of the business cycle indicator. Thus, investors have to base their in-

vestment decisions on expectations of the state of the economy. Therefore, instead of

using the hindsight of the business cycle recession and expansion periods, the business

cycle indicator should be modeled simultaneously with stock returns.

3 QR-GARCH-M Model

3.1 Background

As discussed above, the main interest in this study is a new type of extension of the

GARCH-M and regime switching GARCH models (hereafter RS-GARCH models).

The benchmark GARCH-M model defined in (1) and (2) is augmented by regime

switching dynamics where the regime is determined by the value of a binary time

series. For simplicity, we refer to this model as the “QR-GARCH-M” model. This

model can be seen as a special case of a general mixture model where the value of

the qualitative response variable, now a binary variable, and continuous variables are

modeled simultaneously within the same model.

In our empirical application, the binary variable yt is the U.S. business cycle

indicator provided by the National Bureau of Economic Research (NBER). The con-

tinuous variable rt is the monthly U.S. excess stock market return. It is constructed

by subtracting one-month risk-free return from the nominal stock market return.2 We

construct the QR-GARCH-M model in a similar way to the corresponding Markov

switching models (see, e.g., Hamilton and Susmel, 1994; Hamilton and Lin, 1996;

Perez-Quiros and Timmermann, 2001; Kim and Lee, 2008). This means, in particu-

lar, that the stock return is dependent on the contemporaneous state of the business

cycle. Thus, we consider a structural model, where the NBER business cycle indicator

has an effect on the contemporaneous U.S. excess stock return, but not vice versa.

However, the lagged return rt−1 can be used as a predictor of the business cycle phase.

These assumptions imply that yt can be seen as weakly exogenous for rt.

2 Details on the data set are given in Section 4.1.
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In addition to the similarity to the previously considered models, our structural

model with the aforementioned weak exogeneity assumption, can be justified by em-

pirical findings presented in the recession forecasting literature. First, there is evidence

that the stock market return has predictive power for the coincident and future state

of the economy (see, e.g., Estrella and Mishkin, 1998; Nyberg, 2010a). Thus, as a

leading indicator of future recession and expansion periods of the economy, it is rea-

sonable to use the lagged stock return instead of the contemporaneous return in the

model for the state of the business cycle. Second, Schwert (1989, 1990) and Fama

(1990), among others, have provided empirical evidence that the state of the econ-

omy is a key predictor of the stock market return (see also, e.g., Chauvet and Potter,

2000).

3.2 Model

Consider two time series yt and rt, t = 1, 2, ..., T , which define a bivariate model, where

the former is a binary variable and the latter is a continuous real-valued variable. For

notational convenience, we collect these variables in the vector

zt = (yt rt)
′

. (3)

The framework put forth in this paper can be used in various empirical applications.

In this study, we concentrate on business cycles and excess stock returns which can

be seen in the notation employed in the paper.

In the QR-GARCH-M model, we assume the weak exogeneity assumption intro-

duced in Section 2. In other words, we consider a structural form of the model in

which the contemporaneous value of yt has an effect on the variable rt, but not vice

versa. Thus, as will be seen in Section 3.3, the QR-GARCH-M model is based on a

mixture distribution, where the conditional density of rt is dependent on the value of

the binary variable yt. In our application, this means that the probit model for the

business cycle indicator can be treated independently of the regime switching model

of the excess stock return.

Let us first consider the model for the binary variable. Conditional on the infor-
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mation set Ωt−1, yt follows a Bernoulli distribution

yt|Ωt−1 ∼ B(pt). (4)

Here pt is the conditional expectation of yt, Et−1(yt), which is equal to the conditional

probability of the outcome yt = 1. Thus,

pt = Et−1(yt) = Pt−1(yt = 1) = Φ(πt), (5)

where Φ(·) is a standard normal cumulative distribution function and πt is a linear

function of variables, such as lagged values of zt and explanatory variables xt, in-

cluded in information set Ωt−1. In other words, the expression (5) defines a univariate

probit model.

To complete the model specification of yt, the linear function πt should be deter-

mined. In the previous literature, the most commonly used model is a “static” probit

model

πt = w + x
′

t−1b, (6)

where w is an intercept term, the vector xt−1 contains the explanatory variables and

b is a vector of parameters. In this study, we concentrate on an extension of the static

model suggested by Kauppi and Saikkonen (2008) (see also Rydberg and Shephard,

2003). Specifically, we add a lagged value of πt to the right hand side of (6), which

results in the model

πt = w + aπt−1 + x
′

t−1b, (7)

where |a| < 1. Due to the first-order autoregressive structure in the variable πt we refer

to this model as the “autoregressive” model. Kauppi and Saikkonen (2008) augment

model (7) with the lagged value yt−1. However, we concentrate on model (7) because,

as discussed in Section 2, values of the recession indicator become available with a

considerable delay.

In the QR-GARCH-M model, rt follows a regime switching GARCH-M model

where the regime is defined by the value of the business cycle indicator. The regime

switching structure of the conditional mean (cf. (1)) can be expressed as

rt = (1 − yt)
(

ψ0 + δ0h0t + h
1/2
0t ǫt

)

+ yt

(

ψ1 + δ1h1t + h
1/2
1t ǫt

)

, (8)
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where ǫt ∼ IID(0, 1) and the outcome of yt = j (j = 0, j = 1) defines the regime and

the parameters. Similarly to this specification of the conditional mean, the regime

dependent volatility process, denoted by hjt, follows a regime switching GARCH(1,1)

model

hjt = ωj + βjhj,t−1 + αju
2
j,t−1, (9)

where j = 0, 1, and uj, t−1 is the lagged value of

ujt = rt − (1 − yt)
(

ψ0 + δ0h0t

)

+ yt

(

ψ1 + δ1h1t

)

. (10)

Model (9) can be rewritten as

hjt = (1 − yt)h0t + yth1t, (11)

where h0t and h1t can be obtained from the expression (9). As in the GARCH(1,1)

model (2), we impose the restrictions ωj > 0, βj ≥ 0 and αj > 0 which imply the

conditional variance always be positive.

It is assumed that the error term ǫt in (8) is independent of both yt and the

variables included in information set Ωt−1. Thus, later on in this section and also

in Section 3.3., we use the augmented information set {Ωt−1, yt}. However, it should

be pointed out than when constructing forecasts the value yt is not included in the

information set. Therefore, in Section 3.4, we see that yt will be replaced by the

conditional expectation (5).

Compared with the benchmark GARCH-M model, expressions (8) and (9) em-

phasize the fact that the excess stock return is dependent on the binary variable.

In the risk-return relationship, the flexible dynamics of the QR-GARCH-M model

allows the risk aversion (risk premium) coefficient δj and the intercept term ψj to

be business cycle specific in the mean equation (8). This regime switching structure

of the model implies state dependent time-varying investment opportunities deter-

mined by the conditional ICAPM. Furthermore, the parameters in the model for

the conditional variance are also dependent on the business cycle regime indicating

that the conditional variance follows a different model in business cycle recession and

expansion periods.

8



3.3 ML Estimation

In the QR-GARCH-M model parameters can conveniently be estimated by the method

of maximum likelihood (ML). In general, the conditional density function of zt, con-

ditional on information set {Ωt−1, yt}, can be written as

gt−1(zt; θ) = ft−1(rt|yt = j; θ)Pt−1(yt = j; θ), (12)

where j = 0 or j = 1, ft−1(rt|yt = j; θ) is the conditional density function of rt,

and Pt−1(yt = j; θ) is the conditional probability of the outcome yt = j. The vector

of parameters, θ = (θ
′

1 θ
′

2)
′

, contains all the parameters of the model. Hereafter,

we assume that the parameters included in the vector θ2 are related to the model

specified for the binary variable. Because of the exogeneity assumption discussed in

Section 3.1, the conditional density function (12) can be written as

gt−1(zt; θ) = ft−1(rt|yt = j; θ1)Pt−1(yt = j; θ2). (13)

This shows that the conditional probability Pt−1(yt = j; θ2) is constant with respect

θ1 indicating that θ1 and θ2 can be estimated separately by ML.

After the distribution of the error term ǫt and the linear function πt (see (5)) in

probit model have been specified, the log-likelihood function can be constructed. The

normality assumption of the error term has been rejected in asset return data in a

large number of previous studies. This is typically related to the excessive kurtosis

and fatter tails of the unconditional distribution of returns compared with the normal

distribution (see, e.g., Franses and van Dijk, 2000, 9–19). Therefore, in this study,

the error term εt is assumed to follow the Student’s t distribution with ν degrees

of freedom (ν > 2). This appears to be the most commonly used alternative to the

normal distribution. The parameter ν is estimated along with the other parameters

of the model (i.e. hereafter θ = (θ
′

1 θ
′

2 ν)
′

).

Assume that we have observed the time series yt and rt, t = 1, 2, ..., T , with initial

values treated as fixed constants. The conditional density function of observation zt,

gt−1(zt; θ), is given in (13). Thus, the log-likelihood function over the whole sample,

given the initial values, can be written as

lT (θ) =

T
∑

t=1

lt(θ) =

T
∑

t=1

log(gt−1(zt; θ)), (14)

9



where θ = (θ
′

1 θ
′

2 ν)
′

.3 As the error term ǫt follows the Student’s t distribution,

the log-likelihood function of observation zt, given the expressions (5), (7), (8) and

(9), is

lt(θ) = log
[Γ((ν + 1)/2)√

π Γ(ν/2)

(ν − 2)−1/2

√

hjt

(

1 +
u2

jt

hjt(ν − 2)

)

−(ν+1)/2

pyt

t (1 − pt)
1−yt

]

, (15)

where Γ(·) is the Gamma function, and ujt and hjt are given in (10) and (11), re-

spectively. Due to the regime switching dynamics of the model the value of lt(θ) is

dependent on the realized value of yt. For example, if yt = 1,

lt(θ) = log
[Γ((ν + 1)/2)√

π Γ(ν/2)

(ν − 2)−1/2

√
h1t

(

1 +
u2

1t

h1t(ν − 2)

)

−(ν+1)/2

pt

]

,

where u1t = rt − ψ1 − δ1h1t and h1t = ω1 + β1hj,t−1 + α1u
2
j,t−1. Finally, the maximum

likelihood estimate θ̂ is obtained by maximizing the log-likelihood function (14) by

numerical methods.

Explicit stationarity conditions of the QR-GARCH-M model are unknown al-

though stationarity conditions for the univariate autoregressive probit model (7) and

the GARCH-M model (1) are available. Meitz and Saikkonen (2008), among others,

have considered stationarity conditions for GARCH and GARCH-M models. Further-

more, by recursive substitution of the autoregressive probit model (7), we obtain the

following representation

πt = ω
∞

∑

j=1

aj−1 +
∞

∑

j=1

aj−1x
′

t−1−j+1β, (16)

which shows that πt depends on the whole lagged history of the explanatory variables

xt. Hence, if the explanatory variables are stationary and |a| < 1, πt is also stationary.

At the moment there is no formal proof of the asymptotic distribution of the

maximum likelihood estimate θ̂. Nevertheless, under reasonable regularity conditions,

such as the stationarity of rt, xt and πt, and correctness of the model specification,

it is reasonable to assume that the ML estimator θ̂ is asymptotically normal, that is,

T 1/2(θ̂ − θ)
L−→ N(0, I(θ)−1), (17)

3 The initial value of g0(z1) is obtained by setting π0 = (x̄
′

t−k
b)/(1 − a) (cf. (7)) and h0 =

(1− ȳ)
(

ω0 +β0v̂ar(rt)
)

+ ȳ
(

ω1 +β1v̂ar(rt)
)

(cf. (9)), where a bar is used to signify the sample mean

and v̂ar(rt) is the sample variance of rt.

10



where I(θ) = plim T−1
∑T

t=1(∂lt(θ)/∂θ)(∂lt(θ)/∂θ)
′

. As the specified distribution of

ǫt may not be correct, the maximum likelihood estimate θ̂ can also be interpreted as

a quasi-maximum likelihood estimator. In that case, the asymptotic distribution is

T 1/2(θ̂ − θ)
L−→ N(0, I(θ)−1J (θ)I(θ)−1), (18)

where J (θ) = plimT−1
∑T

t=1(∂
2lt(θ)/∂θ∂θ

′

). Robust standard errors are obtained

from the diagonal elements of the asymptotic covariance matrix (18) where I(θ) and

J (θ) are replaced by their sample analogues. Further, Wald and likelihood ratio (LR)

tests for the components of the parameter vector can be applied in the usual way.

3.4 Forecasting

As discussed in Section 3.2, although in expressions (8) and (11) the value of the

binary variable yt determines the regime, its value is unknown at time t − 1. In

estimation, we can use the extended information set {Ωt−1, yt} to obtain parameter

estimates. However, when constructing forecasts in the QR-GARCH-M model we

have to replace yt with the conditional expectation pt = Et−1(yt) given in (5). In our

empirical application, when the binary variable is the business cycle indicator, this

expectation can be interpreted as the expected probability of recession that investors

had at real time (see Section 3.1).

Because of the structural specification of the model, the conditional expectation of

yt is independent of rt. As the error term ǫt is independent of both the information set

Ωt−1 and the contemporaneous value yt by assumption, the conditional expectation

of rt given the information set Ωt−1, Et−1(rt), is a mixture of the conditional expecta-

tions of the two GARCH-M regimes. The mixing proportion between the regimes is

determined by the conditional expectation Et−1(yt). According to the law of iterated
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expectations, the conditional expectation of rt is

Et−1(rt) = Et−1

[

E(rt|Ωt−1, yt)
]

= Et−1

[

(1 − yt)
(

ψ0 + δ0h0t + h
1/2
0t Et−1(ǫt|Ωt−1, yt)

)

+ yt

(

ψ1 + δ1h1t + h
1/2
1t Et−1(ǫt|Ωt−1, yt)

)]

=
(

1 − Et−1(yt)
)(

ψ0 + δ0h0t

)

+
(

Et−1(yt)
)(

ψ1 + δ1h1t

)

= (1 − pt)
(

ψ0 + δ0h0t

)

+ pt

(

ψ1 + δ1h1t

)

, (19)

where the third equation follows from the fact that Et−1(ǫt|Ωt−1, yt) = 0. This result

shows that the conditional expectation of rt is dependent on the conditional proba-

bility pt and its complement probability 1 − pt. This conditional expectation is also

the fitted value of rt implied by the QR-GARCH-M model when the information set

is Ωt−1.

In forecasting, the conditional expectation of zt,

ẑt = Et−1(zt) =
(

Et−1(yt) Et−1(rt)
)′

. (20)

can also be interpreted as the mean-square sense optimal one-period forecast where

Et−1(yt) and Et−1(rt) are given in (5) and (19). In Section 4.3, we concentrate on

one-period forecasts for the U.S. stock market return. In other applications also mul-

tiperiod forecasts may be of interest. However, computation of multiperiod forecasts

is more complicated than that of one-period forecasts (cf. multiperiod forecasting in

nonlinear models, e.g., Franses and van Dijk, 2000, 118–121).

The regime switching dynamics of the QR-GARCH-M model also indicates that

the conditional expectation of the conditional variance of rt, derived in Appendix, is

different from the simple GARCH-M model. That is,

Vart−1(rt) = (1 − pt)h0t + pth1t + pt(1 − pt)
(

(ψ0 + δ0h0t) + (ψ1 + δ1h1t)
)2

, (21)

where the regime switching volatility process in the two regimes of yt, h0t and h1t, is

given in (9).

3.5 Comparison to Related Models

To the best of our knowledge, no regime switching model of this type has been

proposed in the previous literature. However, several closely related models have
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been considered. Dueker (2005) has proposed a Qual VAR model where binary and

continuous dependent variables, such as (3), are modeled endogenously within the

same vector autoregressive model. The main difference is that on the Qual VAR model

a binary variable is replaced by a continuous latent variable y∗t . This latent variable

determines the values of the binary variable yt which in our model is observable. For

instance, y∗t > 0 (y∗t ≤ 0) determines the outcome yt = 1 (yt = 0).

In contrast to the VAR modeling of the latent y∗t and continuous variables in the

Qual VAR model, in this study, the joint density of zt is constructed in a proposed

regime switching context, where the binary variable defines the regime. Further, the

main implication of use of the autoregressive model (7) is that it facilitates the method

of maximum likelihood in estimation (Section 3.2) and one-period forecasts can be

calculated with explicit formulae (Section 3.4) without using Bayesian methods.

As already mentioned, the QR-GARCH-M model shares some characteristics with

regime switching models, such as Markov switching GARCH models (see, e.g., Hamil-

ton and Susmel, 1994; Hamilton and Lin, 1996). However, in the QR-GARCH-M

model the regime, such as the state of the economy, is observed, whereas in Markov

switching models this is not the case. Consequently, compared with RS-GARCH

models (see, e.g., Bauwens et al., 2006; Lange and Rahbek, 2009, 871–887), the QR-

GARCH-M model has the advantage that it is not “path dependent”. In many RS-

GARCH models, path dependence occurs because the conditional variance is depen-

dent on the entire history of past unobserved regimes. Thus, one needs to integrate

over all possible 2T past regime paths when computing the value of the likelihood

function which is clearly computationally infeasible.

In previous literature, Bauwens et al. (2006) have proposed Bayesian methods,

whereas Gray (1996), Lanne and Saikkonen (2003) and Haas, Mittnik and Paolella

(2004), among others, have suggested alternative methods and new regime switching

models to circumvent the path dependence problem. The essential difference between

these above-mentioned models and the QR-GARCH-M model is that now the regime

is observed as the value of a binary time series.
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4 Empirical Results

4.1 Data and Descriptive Analysis

In this section, we consider an application of the QR-GARCH-M model to the risk-

return tradeoff in the U.S. excess stock returns. The monthly data set consists of the

period from January 1960 to March 2009. The first 12 observations are used as initial

values in estimation. It is assumed that the recent U.S. recession period that began

after the business cycle peak in December 2007 is still going on at the end of the

sample period in March 2009. This assumption is based on the evidence of various

U.S. economic indicators.

The monthly U.S. excess stock return series (rt) is constructed as the difference

between the monthly CRSP value-weighted return on all NYSE, AMEX, and NAS-

DAQ stocks and the return on the risk-free one-month Treasury Bill rate. Business

cycle recession and expansion periods (yt) are obtained from the NBER business cy-

cle chronology. The NBER defines the recession as “a significant decline in economic

activity spread across the economy, lasting more than a few months, normally visible

in real GDP, real income, employment, industrial production, and wholesale-retail

sales.” 4

In estimating the conditional probability of recession and expansion we employ

financial predictive variables which have been found the most reliable leading indi-

cators for the state of the economy in the previous literature. Another reason why

we restrict ourselves to financial predictors is that they are available on a continuous

basis without informational delays and revisions. Therefore, the information set Ωt−1

in our model consists of the information available at period t− 1 in real time.

Much of the previous research on predictive variables lends support to the term

spread between the long-term and the short-term interest rate being the main reces-

sion predictor, but the stock market return and the foreign term spread have also

4 We use the CRSP stock return data and the one-month Treasury Bill

rate from Ibbotson Associates (see details at Kenneth French’s data library

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). Details on

the NBER recession periods, i.e. the chronology of business cycle peaks and troughs, see

http://www.nber.org/cycles/cyclesmain.html.
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been found to have some additional predictive power (see, e.g., Estrella and Mishkin,

1998; Bernard and Gerlach, 1998; Rudebusch and Williams, 2009; Nyberg, 2010a, and

the references therein). In addition, the results of Ang and Piazzesi (2006) and Wright

(2006) suggest that the short term interest rate, such as the three-month Treasury

Bill rate or the Federal funds rate, may have some additional predictive power. In

contrast, King, Levin and Perli (2007), and the references therein, provide evidence

in favor of the default spread between the corporate bonds as a recession predictor.5

Descriptive statistics of the excess stock market returns are presented in Table 1.

One of the contributions of this study is the extension of the sample period with the

recent U.S. business cycle expansion period from December 2001 to December 2007

and the beginning of the subsequent recession. Hence, although there have been only

few recession periods in last decades, the sample period appears to be reasonably long

to be used in the QR-GARCH-M model because there are now 89 recession months

(yt = 1) in the sample period which is 15.1% of the whole sample (T = 591).

The mean of excess stock market returns is positive, but the returns also exhibit

clear variation over the business cycle. As expected, during the recession the returns

have mainly been negative. The standard deviation is also higher in the recession

regime when compared with the expansion regime, indicating that volatility is also

time-varying. Excessive kurtosis and negative skewness lead to the result that the nor-

mal distribution does not describe returns adequately. The values of the Jarque-Bera

normality test confirm this finding. However, in the recession regime, the skewness

and kurtosis are close to zero and three, respectively, as implied by the normal dis-

tribution. Thus, the null hypothesis of normality is not rejected. It should be noted,

however, that the limited number of observations in the recession regime may have a

salient effect on this result.

4.2 Estimation Results

In this section, the main interest is in the estimated coefficients related to the risk-

return tradeoff. However, in the QR-GARCH-M model, a model for the U.S. business

5 Interest rate data are extracted from http://www.federalreserve.gov/releases/h15/data.htm,

http://www.bundesbank.de/statistik/statistik.en.php and http://stats.oecd.org/index.aspx.
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cycle recession and expansion periods should first be specified. For that purpose,

we consider the autoregressive probit model (7). To complete the specification of

the model, the predictive variables included in the vector xt−1 must be selected. As

emphasized in Section 4.1, we restrict ourselves to financial predictors. In model se-

lection, we include predictors one by one in the vector xt−1 as long as the lowest value

of the Schwarz information criterion (BIC) (Schwarz, 1978) is found. In other words,

the model selection procedure is stopped if the estimated value of BIC increases

when any additional predictor is included in the previous model. The whole sample

period from January 1961 to March 2009 is used in estimation.

In accordance with the findings of Nyberg (2010a), the U.S. term spread (SP US
t ),

the German term spread (SPGE
t ), used as a “representative” foreign term spread in

the model reflecting the state of the economy in euro area, and the lagged U.S. stock

market return turn out to be the best predictors. This three variable combination

yields the lowest value of BIC. Therefore, neither the three-month short-term inter-

est rate, its first difference, nor the default spread provides statistically significant

additional predictive power when considered as a fourth predictor in the model (cf.

Ang and Piazzesi, 2006; Wright, 2006; King et al., 2007).

Throughout the paper, we employ these three financial predictors in the autore-

gressive probit model (7) for the business cycle indicator yt. The best lags of the

predictors in terms of their predictive power based on the BIC are mentioned in Ta-

ble 2. We also report the estimated parameter coefficients and some commonly used

statistical goodness-of-fit measures for binary time series. In the case of predictive

variables, all estimated coefficients are negative and statistically significant. Thus,

low values of the term spreads and stock returns predict a high probability of reces-

sion. Overall, the value of the pseudo-R2 measure of Estrella (1998) provides evidence

that the model is successful in predicting the state of the U.S. business cycle very

accurately. For example, if the 50% threshold value is employed to construct recession

and expansion signals, the percentage of correct predictions, denoted by CR50%, is

very high (CR50%=0.967). The p-value of the sign predictability test of Pesaran and

Timmermann (1992) is 1e-05 showing that recession and expansion periods are well

predictable in sample.
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Figure 2 depicts the in-sample recession probability pt which is also the estimated

mixing probability between the two GARCH-M regimes in the QR-GARCH-M model.

As the statistical goodness-of-fit measures show, the recession probability matches

very well with the U.S. recession and expansion periods. The recession probability

is high during the recession periods and very close to zero during the expansions.

This is also the case with the beginning of the recent recession where the recession

probability increased at the same time as the recession started after the business cycle

peak in December 2007.

Next we turn our interest to the estimation results of the GARCH-M specifications

for the U.S. excess stock returns. At first, it is worth reminding that the GARCH-

M part of the model does not affect the autoregressive probit model for yt. Thus,

the estimation results of the probit model presented in Table 2, and also the mixing

proportion between the regimes, are the same for all QR-GARCH-M specifications.

In Table 3, the first two models (Model 1 and Model 2) are GARCH-M models

(1), where the state of the U.S. business cycle is not taken into account. The last three

models (Models 3–5) are different specifications of the QR-GARCH-M model. In all

models, the GARCH(1,1) model for the conditional variance is employed. In Model 1,

we observe a positive risk-return tradeoff, but the estimated risk aversion coefficient δ

is statistically insignificant. On the other hand, if the intercept term is excluded from

the mean equation, as the ICAPM indicates, the risk aversion coefficient is indeed

positive and statistically significant at the 5% level (Model 2). This result is in line

with the findings of Lanne and Saikkonen (2006).

The QR-GARCH-M models indeed suggest substantial business cycle variation

in the excess stock returns. The likelihood ratio (LR) test of the GARCH-M model

(Model 1) against the unrestricted QR-GARCH-M model (Model 3) is statistically

significant at all traditional significance levels. Although the unrestricted QR-GARCH-

M model outperforms the simple GARCH-M model, there are several statistically in-

significant coefficient estimates. As the objective is to select as parsimonious a model

as possible, we consider a restricted model with the restrictions β0 = β1 and α0 = α1.

Thus, in the restricted model (Model 4) the GARCH and ARCH parameters are the

same in both regimes, but the intercept terms can be different. The LR test indicates
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that the above-mentioned restrictions hold (p-value 0.651). However, the intercept

term in the recession regime (ω1) is significantly higher than in the expansion regime

(ω0) indicating that the level in the conditional variance is higher in the recession

regime. Hamilton and Lin (1996) and Chauvet and Potter (2001), among others,

have obtained similar results.

In the restricted model (Model 4) the intercept in the mean equation of the re-

cession regime (ψ1) is statistically significant, but the intercept ψ0 in the expansion

regime is not. Based on the findings of Lanne and Saikkonen (2006), in Model 5, we

exclude the latter intercept. Once again the LR test indicates that this restriction

holds in the model with the restrictions α0 = α1 and β0 = β1 imposed. In Model 5,

the estimated coefficients are all statistically significant and the value of BIC is mini-

mized among the considered models. Therefore, this model seems adequate. Residual

diagnostics confirm that there is no significant autocorrelation left in the residuals,

but some remaining conditional heteroskedasticity is still found.6

Perhaps the most interesting finding in Model 5 is that the estimates of the risk

aversion coefficients δ0 and δ1 are positive and statistically significant (p-values are

1.098e-05 and 0.012, respectively). Thus, a higher conditional variance tends to in-

crease expected stock return in both regimes. However, it is worth pointing out that

the estimated value of the intercept ψ1 is negative. It appears necessary to include an

intercept in the recession regime. If it is excluded, the estimated risk aversion coeffi-

cient δ1 in fact becomes negative and statistically insignificant (results not reported).

This is in accordance with the findings of Kim and Lee (2008). They found a positive

risk-return relationship only in the expansion period, whereas in recession the risk

aversion coefficient is negative and insignificant.

All in all, in Model 5 the positive estimates of δ0 and δ1 are consistent with the

conditional ICAPM. Furthermore, the fact that the estimate of δ1 is greater than

that δ0 leads to the conclusion that the risk aversion, or equivalently the required

risk premium, is significantly higher in recession. Estimated risk aversion coefficients

6 We also considered some extensions of the GARCH(1,1) model for the conditional variance.

The values of BIC obtained with the GARCH(1,2) and GARCH(2,1) models were higher than in

the GARCH(1,1) model. Overall, these extensions of the GARCH(1,1) model essentially lead the

same conclusions concerning the risk-return tradeoff as obtained with Model 5.
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reported in the previous literature (see, e.g, Lanne and Saikkonen, 2006; Bali and

Engle, 2008) have typically been between 0.04 and 0.06, and hence quite close to

the corresponding estimate obtained for the expansion regime. In contrast, the risk

aversion coefficient (0.13) in the recession regime in Model 5 is considerable higher

than in the previous studies.

The estimated in-sample predictions for the excess stock market return and the

conditional variance (see (21)) are depicted in Figure 3. As in Section 3.4, the in-

formation set is Ωt−1 indicating that the stock return is dependent on the estimated

recession probability pt. We see that the conditional variance is typically relatively

high during the recession periods. Interestingly in the upper panel, there are some

months where the fitted value of the excess stock return has been negative. Those

months are related to the recession periods, and especially to the beginnings of the

recessions, showing very low investment opportunities. At those periods, it seems that

even higher conditional variance (i.e. higher risk) does not guarantee the positiveness

of the excess return. This is in line with the findings of Guo and Whitelaw (2006).

They argue that the inclusion of the hedge component in the conditional ICAPM may

lead to the result that the expected stock can be negative although this is intuitively

implausible. Perez-Quiros and Timmermann (2001) also find similar evidence in their

Markov switching model that the expected stock returns are negative from the late

expansion to early recession stage of the business cycle.

The results are also in accordance with the findings of Bauwens et al. (2006)

who, among others, have suggested that neglected regime switches may lead to the

excessively persistent GARCH models. In Model 5, the sum of GARCH and ARCH

parameters is 0.868. In Model 2, where the regime switches are not taken into account,

the sum is considerably higher (0.948) indicating that the QR-GARCH-M model

indeed implies less persistent conditional variance.

4.3 Out-of-Sample Forecasting Performance

The estimation results in Section 4.2 suggest that there is indeed statistically signifi-

cant business cycle specific variation in the conditional mean and variance of the U.S.

excess stock returns. Although the main interest lies in the risk-return tradeoff it is
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also interesting to explore out-of-sample forecasts of the QR-GARCH-M model. This

can also be seen as a robustness check against potential overfitting.

In our limited forecasting experiment we compute forecasts for two out-of-sample

periods. The first one consists of observations from January 1989 to March 2009,

whereas the second period begins in January 1996. The second sample period includes

one recession period more compared to the first one. The parameters are estimated

using an expansive window approach.7 We restrict ourselves to one-period forecasts

(h = 1) for the excess stock market return.

Table 4 reports the root mean square forecasting error (RMSE) and the mean

absolute forecast error (MAE) measures of the QR-GARCH-M model relative to the

benchmark GARCH-M model. In addition, we also consider a potential qualitative

difference between forecasts when the sign of the loss-differential series is examined.

In the QR-GARCH-M model, we impose the restrictions implied by Model 5 in Table

3 (i.e. β1 = β0, α1 = α0 and ψ0 = 0). In the GARCH-M model the intercept is

excluded (i.e. we use Model 2).

It turns out that the conditional variance is very high related to the recent re-

cession in the U.S. at the end of the out-of-sample in November 2008. This means

that especially the QR-GARCH-M model predicts a very high expected excess stock

return (over 16%). As the realized return was -8.54% this aberrant observation has a

huge impact on the out-of-sample forecasting results. Therefore, in Table 4 we report

results with and without this observation.8

The results show that excluding the above-mentioned observation, the QR-GARCH-

M model yields only a bit better out-of-sample forecasts compared with the simple

GARCH-M model when RMSE and MAE are used to measure forecasting accuracy.

However, when comparing the residual series of the two models, the forecast error is

often smaller in the QR-GARCH-M model. The p-values of the sign test of Diebold

and Mariano (1995) are 0.062 (sample 1989 M1–2009 M3) and 0.131 (sample 1996

7 We execute our out-of-sample forecasting in the same way as Kim and Lee (2008). In particular,

they employed an expansive estimation window which is the only feasible selection also in this study.

Due to the limited number of recession periods the use of a rolling estimation window is complicated.
8 In the QR-GARCH-M model the contribution of this single observation to the overall sum of

mean square forecast error is as much as about 15%.
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M1–2009 M3) showing that qualitatively the QR-GARCH-M model produces slightly

superior forecasts. Thus, the in-sample findings of the importance of regime switches

based on the business cycle regimes in the risk-return tradeoff are also confirmed in

our out-of-sample forecast experiment.

5 Conclusions

We study the risk-return tradeoff in the U.S. stock market by means of a new QR-

GARCH-M model. In the model the binary dependent U.S. business cycle indicator

is modeled simultaneously with the continuous dependent U.S. excess stock market

return with a regime switching GARCH-M model. The QR-GARCH-M model has

several advantages related to maximum likelihood estimation and forecast compu-

tation compared with closely related models, such as previously suggested regime

switching GARCH models.

In the previous literature, findings on the sign of the risk-return tradeoff have

been ambiguous. Our empirical results show that there is evidence for a positive

relationship between the conditional mean and the conditional variance of returns

irrespective of the state of the business cycle. Recently, Lanne and Saikkonen (2006)

failed to find a positive risk-return tradeoff in the simple GARCH-M model with

an intercept in the conditional mean equation. However, when allowing for regime

switching, it is necessary to include an intercept term in the mean equation for the

recession regime to find a positive relation. This is consistent with the idea of the

conditional ICAPM because the regime switching structure of the model, based on the

state of the business cycle, can be interpreted as describing time-varying investment

opportunities implied by the conditional ICAPM. The results also show that the

strength of the risk aversion appears to be significantly higher in the recession regime

compared with the expansion regime. In addition, in accordance with previous studies,

the conditional variance turns out to be higher in recession periods.
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Appendix: Conditional Variance in the QR-GARCH-

M Model

This appendix derives the conditional variance of rt in the QR-GARCH-M model ((8)

and (11)). That is,

Vart−1(rt) = Et−1

[

rt − Et−1(rt)
]2

= Et−1

[

(1 − yt)
(

ψ0 + δ0h0t + h
1/2
0t ǫt

)

+ yt

(
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1/2
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(

ψ0 + δ0h0t

)
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(
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)]2
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2
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2
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(
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(
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)
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)(
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]

.

According to the properties of Bernoulli distribution, Et−1(yt) = pt, (0 ≤ pt ≤ 1) (see

(5)), and

Et−1(y
2
t ) = pt.

Furthermore, as assumed in Section 3.2, the error term εt is independent of yt. There-

fore, we obtain

Vart−1(rt) = (−p2
t + pt)

(

ψ0 + δ0h0t

)2

+ (−p2
t + pt)

(

ψ1 + δ1h1t

)2

+ (1 − pt)h0t + pth1t

+ 2(pt − p2
t )

(

ψ0 + δ0h0t

)(

ψ1 + δ1h1t

)

+ 2(pt − pt)h
1/2
0t h

1/2
1t

= pt(1 − pt)
(

ψ0 + δ0h0t

)2

+ pt(1 − pt)
(

ψ1 + δ1h1t

)2

+ (1 − pt)h0t + pth1t

+ 2pt(1 − pt)
(

ψ0 + δ0h0t

)(

ψ1 + δ1h1t

)

= (1 − pt)h0t + pth1t + pt(1 − pt)
(

(ψ0 + δ0h0t) + (ψ1 + δ1h1t)
)2

.
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Table 1: Descriptive statistics.

whole sample expansion recession

yt = 0 yt = 1

Mean 0.366 0.548 -0.660

St. Deviation 4.465 4.012 6.356

Skewness -0.577 -0.701 -0.039

Kurtosis 5.056 5.832 2.881

Observations 591 502 89

Jarque-Bera 136.872 208.770 0.074

p-value 0.000 0.000 0.964

Notes: Descriptive statistics for monthly U.S excess stock returns. The Jarque-Bera test tests the

normality of excess stock returns.
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Table 2: Estimation results of the autoregressive probit model (7) for the business

cycle indicator in the QR-GARCH-M model.

πt QR-GARCH-M

w 0.034

(0.023)

πt−1 0.880

(0.011)

rt−1 -0.113

(0.016)

SPUS
t−6 -0.138

(0.025)

SPGE
t−3 -0.087

(0.018)

log-likelihood -64.132 CR50% 0.967

pseudo-R2 0.650 PT 20.687

BIC 92.473 (p-value) (0.000)

Notes: The sample period is 1961 M1–2009 M3. In table, SPUS is the U.S. term spread and SPGE

is the German term spread. Robust standard errors (18) are given in parentheses. The pseudo-R2

measure (Estrella, 1998) is the counterpart to the coefficient of determination used in models with

continuous dependent variables. The BIC is the Schwarz information criterion and CR50% the

percentage of correct signal predictions when the 0.50 threshold is applied for probability forecasts.

PT is the test statistic of the the market timing test of Pesaran and Timmermann (1992).
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Table 3: Estimation results of QR-GARCH-M models for the excess stock returns.

GARCH-M GARCH-M QR-GARCH-M QR-GARCH-M QR-GARCH-M

Model 1 Model 2 Model 3 Model 4 Model 5

ψ0 0.366 0.203 0.133

(0.343) (0.447) (0.486)

δ0 0.018 0.035 0.036 0.040 0.048

(0.018) (0.009) (0.028) (0.030) (0.011)

ω0 1.100 1.213 1.526 1.880 1.987

(0.522) (0.546) (0.804) (0.907) (0.869)

β0 0.821 0.826 0.794 0.777 0.773

(0.041) (0.041) (0.057) (0.061) (0.061)

α0 0.136 0.122 0.107 0.098 0.095

(0.038) (0.032) (0.037) (0.032) (0.030)

ψ1 -8.743 -5.805 -5.916

(5.911) (2.071) (2.083)

δ1 0.209 0.127 0.131

(0.163) (0.052) (0.052)

ω1 12.286 7.259 7.450

(8.418) (3.046) (3.058)

β1 0.637 β0 β0

(0.232)

α1 0.072 α0 α0

(0.056)

ν 7.212 7.292 7.748 7.753 7.757

(1.917) (1.948) (2.100) (2.081) (2.082)

log-likelihood -1715.24 -1715.77 -1703.38 -1703.81 -1703.84

BIC 1734.32 1731.67 1738.36 1732.43 1729.28

Notes: The sample period is 1961 M1–2009 M3 and the number of observations is 578. Robust

standard errors (18) are given in parentheses. The reported value of the log-likelihood function is

for the whole QR-GARCH-M model including also the autoregressive probit model for the business

cycle indicator yt (see Table 2). The BIC is the Schwarz information criterion. In Models 2 and 5,

the intercept ψ0 is excluded from the model, whereas in Models 4 and 5, the GARCH and ARCH

parameters are restricted to the same in both regimes (β0 = β1 and α0 = α1).
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Table 4: Out-of-sample performance of the QR-GARCH-M model for excess stock

returns.

Sample RMSE MAE sign

1989 M1-2009 M3 1.102 1.017 0.560

1996 M1-2009 M3 1.119 1.021 0.560

excl. Nov 2008 1989 M1-2009 M3 0.999 1.000 0.562

excl. Nov 2008 1996 M1-2009 M3 0.990 0.998 0.563

Notes: Table reports the ratio of the forecast error criteria of the QR-GARCH-M model relative to

the benchmark GARCH-M model. The employed QR-GARCH-M model is Model 5 presented in

Table 3. RMSE denotes the root mean square error and MAE the mean absolute forecasting error.

“Sign” states the percentage of months when the forecast error has been smaller in the

QR-GARCH-M model compared with the GARCH-M model. In both models, the parameters are

estimated by the expansive window of observations. In the last two cases November 2008 is

excluded from the forecast evaluation sample.
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Figure 1: Excess stock returns rt on the CRSP index and the values of the U.S.

business cycle indicator yt for the sample period from February 1960 to March 2009.

The shaded areas are the recession periods (yt = 1).
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Figure 2: Recession probability pt implied by the autoregressive probit model (7)

presented in Table 2. The shaded areas are the recession periods (yt = 1).
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Figure 3: Fitted values for the U.S. excess return (upper panel) and its conditional

variance (see (21)) (lower panel) from Model 5 in Table 3. The shaded areas are the

recession periods (yt = 1).
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