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We study the effects of distortionary taxation on endogenous cycles, and the determinacy 
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Under proportional taxation there is a critical tax rate above which cycles will vanish, while 
with linearly progressive taxation there is a critical level of exemption below which cycles 
will vanish as well. If the utility function is quasi-linear, increasing tax rate can cause the 
economy to become determinate both with proportional and linearly progressive taxation 
so that tax exemption does not matter. But tax exemption might matter if the utility function 
is more general. Finally, a policy with the price level target can completely eliminate 
fluctuations.  
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1. Introduction 

 

Macroeconomists have long been interested in studying the stabilizing effects of 

different policies. More than fifty years ago Friedman (1948) advocated a non-

discretionary monetary and fiscal framework for stability. It was recognized in the early 

literature on fiscal policy e.g. by Musgrave and Miller (1948) that also progressive 

taxation operates as an automatic stabilizer to smooth business fluctuations.1 

      It is not always the case that fluctuations are bad for welfare, since the equilibria 

associated with stable cycles can be efficient. The resulting indeterminacy, i.e. the 

multiplicity of equilibria, however, can be an independent reason for stabilization policy 

as argued e.g. by Woodford (1984). An appropriate policy can render the equilibrium 

determinate, and thus possibly rid the economy from the effects of sunspots and 

bubbles.2 If fluctuations are chaotic, as sometimes is the case even in simple 

overlapping generations models, policies, which stabilize the economy, can also help 

agents to coordinate their actions more easily. 

The possibility of endogenous cycles in overlapping generations models was 

observed by Gale (1973) and Cass, Okuno and Zilcha (1979). Grandmont (1985) 

elaborated their findings, and analyzed precisely the conditions for the existence of 

cycles. From the policy point of view Grandmont (1986a) pointed out that simple fiscal 

and monetary policies involving proportional transfers and lump-sum taxes (or 

transfers) can abolish cycles completely. In his demonstration of sunspot equilibria 

Aiyagari (1988) showed that there is a simple policy of proportional tax rate and lump-

sum transfers, which can stabilize the asset price completely and thus rid the economy 

from the effects of sunspots.3  

Woodford (1986) studied the model with an infinitely lived agent with similar 

preferences to what we have below, and with a finance constraint. Because of that 

constraint it turns out that consumption and labor supply decision in his model are 

identical to the decisions, which would be made by two-period lived agents in an 
                                                           
1 See also Vickrey (1945) and Slitor (1948). 
2 See especially section V in Woodford's (1984) survey, where he also discusses the policy responses to 

indeterminacy.  



 2

overlapping generations model. There are equilibrium fluctuations and sunspot 

equilibria in his model. Woodford showed that government expenditures adjusted to 

changes in private investment demand can stabilize the price level. Smith (1994) 

utilized a two-period overlapping generations model with money, storage and reserve 

requirements to study the effects of many types of monetary and fiscal policies on 

indeterminacy. He showed that indeterminacy is a pervasive feature under many 

policies, and furthermore that a certain inflation target can be achieved but often with a 

welfare cost meaning that the same target can be achieved by other policy measures 

with better welfare properties. 

Ghiglino and Tvede (2000) studied an overlapping generations model with a 

prescribed objective function for the government. They showed that if the discount 

factor is close to one, the optimal policy can completely stabilize the economy. Goenka 

(1994) advocated a role for discretionary policies in a general equilibrium model with 

public goods to abolish the sunspot equilibria, and thus stabilize the economy. Keister 

(1998) studied the effects of redistribution on the volatility of the economy and argued 

that models with indeterminacies can be useful vehicles for certain types of policy 

analyses. He showed e.g. that larger transfers lead to higher fluctuations in 

consumption. 

 There is a related literature, though not in an OG framework, in which the role 

of various tax schemes as stabilizing or destabilizing devices has been analyzed in 

models with inefficiencies and/or externalities. In these models the potential impacts of 

progressive, proportional and regressive taxation on cycles and indeterminacy have 

been studied. This literature includes Guo (1999), Guo and Lansing (1998, 2001), Guo 

and Harrison (2001, 2004), and Schmitt-Grohe and Uribe (1997). Giannitsarou (2004) 

revisits the issue of indeterminacy and aggregate instability when government 

expenditures may be financed by consumption taxes as well.  

Aloi, Lloyd-Braga and Whitta-Jacobsen (2003) utilize an overlapping 

generations monetary model to study the impacts of fiscal policy rules on the 

determinacy of rational expectations equilibrium. This paper is closely related to our 

                                                                                                                                                                              
3 Guesnerie and Woodford (1992) in their survey on endogenous fluctuations touch on the issues of 

stabilization policy, but mainly from the point of view of preventing sunspot equilibria. 
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analysis. Their emphasis is not on taxation, but on discretionary fiscal policy rules, 

where government expenditures depend on the current and last period's outputs. They 

show e.g. that stabilization at the monetary steady state can be obtained by using a 

sufficiently ‘countercyclical’ rule for government spending. Moreover, they 

demonstrate that a sufficiently ‘procyclical’ rule will create indeterminacy.   

In both the OG and real business cycle models summarized briefly above, the 

stabilizing role of proportional and non-proportional taxes is sensitive to the details of 

model specifications. The source for cycles in our model is the same as in many 

overlapping generations models; the income effect dominates the substitution effect in 

an old agent's utility function. We re-examine the stabilizing effects of fiscal policies in 

a simple overlapping generations model by assuming, in contrast to Grandmont (1986) 

and Aiyagari (1988), that government uses distortionary taxes to maintain a balanced 

budget. In particular, we analyze the impact of proportional and linearly progressive 

taxes on cycles and the indeterminacy of equilibria, and briefly study the price level 

targeting as a stabilizing device.    

We show the following results. Under proportional taxation the steady state 

supply exceeds (falls short of) the one without taxation, if the elasticity of the marginal 

utility of the second period consumption, is higher (lower) than one. This is because the 

higher (lower) steady state supply in the presence of taxation is due to the fact that the 

positive income effect of the tax rate dominates (is dominated by) the negative 

substitution effect. Moreover, and importantly, in the presence of endogenous cycles, 

there is a critical level of tax rate above which there are no cycles. Under progressive 

taxation the steady state supply is less than the one with proportional taxation due to the 

negative income effect of tax exemption. In this case we show that there is a critical 

level of tax exemption, such that for all tax exemptions below that level there are no 

cycles in the economy. This is due to the fact that when tax exemption is low enough, 

the slope of the offer curve will become positive and cycles will vanish.   

We also characterize the effects of tax policy on the indeterminacy of equilibria, 

and demonstrate the following results. First, if the utility function is quasi-linear, 

increasing the tax rate can cause the equilibrium to become determinate both with 

proportional and linearly progressive taxation so that tax exemption does not matter, 
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because the income effect of tax exemption is zero for consumption. Second, if the 

utility function is not quasi-linear, a relatively high tax exemption might make the 

equilibrium indeterminate due to non-zero income effect. Following the approaches of 

Woodford (1986), Aiyagari (1988), and Smith (1994) we also consider a policy, which 

completely eliminates fluctuations. We show that by fixing the target for the price level 

this can be done by either taxing or subsidizing young workers.  

We proceed as follows. In section 2 we present an overlapping generations 

model with a balanced budget distortionary taxation. Section 3 characterizes 

competitive equilibrium with proportional taxation, the relationship between the level of 

taxes and endogenous cycles, and the impact of tax policy on the indeterminacy and 

determinacy of equilibria. In section 4 we ask what the implications of linearly 

progressive taxation are for cycles and indeterminacy. In section 5 we characterize price 

level targeting as a stabilizing policy. Finally, there is a concluding section. 

 

2. An Overlapping Generations Model with a Balanced Budget Fiscal 

Policy 
 

We consider a perfect foresight overlapping generations model with money and zero 

population growth. We assume the stock of money to be constant. Producer-consumers 

consume when old and produce when young. The person born at t  has the following 

additively separable lifetime utility function 

(1) )()(),( 11 tttt nvcuncU −= ++ , 

where 1+tc  denotes consumption when old, and tn  labor supply in youth. Labor is 

transformed to output, ty , in a linear fashion, i.e. tt ny = . )(cu  is an increasing strictly 

concave function, and )(nv  an increasing strictly convex function. We denote by  L   

the upper bound for the available time, and make the following assumptions: 

+∞=
→

)('lim
0

cu
c

, 0)('lim =
∞→

cu
c

, 0)('lim
0

=
→

nv
n

 and +∞=
→

)('lim nv
Ln

. Given our assumptions 

it follows that 1)0('/)0(' <uv . This means that the slope of the indifference curve at the 
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endowment point is less than unity. Using the terminology in Gale (1973) we consider 

here a Samuelson case, which is needed for monetary equilibria in this model. 

We consider a fiscal policy with a balanced budget, where government taxes the 

output (income) produced by the young, and uses the revenues to buy output from the 

market. We study the potential effects of taxation both in terms of the relationship 

between the level of the tax rate and cycles as well as in terms of the determinacy of 

equilibria. We also compare the results of proportional taxation with those of linearly 

progressive taxation.  

To study the effects of progressive taxation in a simple manner we assume that 

there is a nominal exemption on the taxable income and a constant marginal tax rate, i.e. 

tt ∀=ττ .4  Total nominal tax revenues in period t  are thus 

(2) )( tttt EnpT −= τ , 

where ttnp  is the nominal tax base (i.e. price times output of the young), and tE  

denotes the nominal exemption, which we assume to be constant as well, i.e. tEEt ∀= . 

The average tax rate, )/1(/ ttttt npEnpT −=τ , is less than the marginal tax rate τ .  The 

tax schedule (2) is progressive in the sense that even though the marginal tax rate is 

constant, the average tax rate increases with the tax base. An increase in the average tax 

rate is higher the higher is the marginal tax rate and the tax exemption when the tax base 

goes up. 

The government budget constraint in the absence of debt financing is 

(3)  )( EnpTgp ttttt −== τ . 

We emphasize that the real government expenditure, tg , is not a given sequence, but it 

adjusts every period to the level necessary to maintain balanced budget. With 

proportional taxation the government budget constraint is tt ng τ= .  
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3. Competitive Equilibrium with Proportional Taxation 

 
In this section we study the effects of proportional taxation, and provide answers to the 

following questions. First, given the existence of endogenous cycles, can the 

proportional taxation eliminate them? And second, what is the effect of the tax rate on 

the determinacy of equilibrium.  

We first study the properties of competitive equilibrium in the presence of 

proportional taxation. The private sector periodic budget constraints are  

(4i) tt
d
t npM )1( τ−=  

(4ii) d
ttt Mcp =++ 11 , 

and the lifetime constraint is 

(5)   t
t

t
t n

p
pc

1
1

)1(
+

+
−

=
τ . 

The young producers accumulate money by selling their output to the old, and part of it 

to the government. The first-order condition for the utility maximization subject to the 

periodic budget constraints (4i) and (4ii) is 

(6)  )(')1(')1(
11

tt
t

t

t

t nvn
p

pu
p

p
=







 −−

++

ττ . 

The solution to (6) gives the young’s supply function [ ]1/)1( +−= ttt ppnn τ . If supply is 

increasing in the after tax real wage ( 1/)1( +− tt pp τ ), a rise in the tax rate will decrease 

supply. If supply is downward sloping, the reverse happens so that an increase in the tax 

rate will increase supply. 

 The equilibrium condition for the goods market is  

(7)  tt
t

d
t ng

p
M

=+−1 . 

Taking into account the government budget constraint, tt ng τ= , and the fact that the 

nominal money supply is constant, we rewrite (7) as 

                                                                                                                                                                              
4  For the definition of progressive taxation, see the seminal paper by Musgrave and Thin (1948). See also 

Lambert (2001), chapters 7-9 for further analyses. Sandmo (1983) and Koskela and Vilmunen (1995) 
provide different applications. 
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(8) t
t

n
p
M )1( τ−= . 

Using equation (8) in the first-order condition (6) we can re-express it as 

(9)   [ ] )(')1(')1( 11 tttt nvnnun =−− ++ ττ , 

This equation determines the equilibrium sequence of supplies for a given tax rate, and 

implicitly defines the reflected generational offer curve.5 The steady state equilibrium is 

determined from [ ] )(')1(')1( nvnu =−− ττ . Given the Inada conditions and the feasible 

tax rates, 10 <<τ , it is straightforward to see that the steady state is unique. 

 In order to explore the impact of tax policy we first ask: How does the steady 

state solution to (9) (denoted by n̂ ) compare to the steady state supply without 

proportional taxation (denoted by *n )? The answer is given in  

 

Proposition 1. Under proportional taxation the steady state supply exceeds (falls short 

of) the one without taxation, if the elasticity of the marginal utility of 

the second period consumption (or the Arrow-Pratt measure of the 

relative risk aversion), denoted by σ , is higher (lower) than one, i.e. 

                                                 *ˆ nn
















<
=
>

  as .1
















<
=
>

σ  

 Proof: Rewriting equation (9) in the steady state as 

[ ] )()(')1(')1();( nRHSnvnunLHS ≡=−−≡ τττ , and given the Inada conditions, we 

have 0)0( =RHS , ∞=
→

)(lim nRHS
Ln

, and 0)(' >nRHS . We also have 0);( <τnLHSn . 

We calculate [ ] [ ]nnununLHS )1('')1()1(');( τττττ −−−−−= , and re-express it as 

[ ]( ))(1)1(');( nnunLHS στττ −−−= , where [ ] [ ]nunnun )1('/)1('')1()( τττσ −−−−= . 

Note that consumption in steady state is n)1( τ− . When 1)( >nσ , the curve );( τnLHS  

shifts up, if the tax rate is raised and vice versa when 1)( <nσ . The results of 

Proposition 1 follow from these observations. Q.E.D. 

                                                           
5 The geometric techniques of the reflected generational offer curves, developed by Cass, Okuno and 

Zilcha (1979), are useful for characterizing properties of equilibria in many overlapping generations 
models.  
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  Proposition 1 follows from the Slutsky equation. The higher (lower) steady state 

supply with than without taxation is due to the fact that the positive income effect of the 

tax rate dominates (is dominated by) the negative substitution effect (for a precise 

elaboration of this intuition, see Appendix). The Slutsky equation can be written as 

m
c nnnn −= ττ , where cnτ  is the negative substitution effect and mnn−  the positive 

income effect. The latter (former) effect - evaluated at 0=m  - dominates if 

.1)()( <>nσ   

In order to derive the slope of the offer curve we differentiate (9) to get 

(10) [ ] [ ]11
2

1

1

)1('')1()1(')1(
)('')('

+++

+

−++−−
+

=
ttt

ttt

t

t

nunnu
nvnnv

dn
dn

ττττ
. 

 
We drop the subscripts and note that the second period consumption equals n)1( τ− . 

Equation (10) cannot be signed generally since the sign of the denominator is a priori 

ambiguous. Defining [ ] [ ]{ }nnununD )1('')1()1(')1()( ττττ −−+−−=  we can express it 

as 

(11)  ( ) [ ]
[ ] 








−

−−
+−−=

nu
nnununD

)1('
)1('')1(1)1(')1()(

τ
ττττ  

We define ( ) ( )[ ]nunnun )1('/)1('')1()( τττσ −−−−= , which is the elasticity of the 

marginal utility of the second period consumption. Using this definition equation (11) 

can be rewritten as [ ])(1)(')( nnunD σ−= . So we conclude that 0)( >nD , when 

1)( <nσ . This means that it is necessary for backward bending offer curve (and indeed 

for endogenous cycles) to have 1)( >nσ . 

To explore the stabilizing effect of proportional taxation on cycles we use the 

following notation for the two parts of equation (9), presented above 

(12)   [ ] [ ]nnunU )1(')1(; τττ −−≡  and )(')( nnvnG ≡ .6 

Since function )(nG is monotone increasing we can invert it, and obtain the following 

relation 

(13)  [ ]( ) )(; 11
1

++
− Φ≡= ttt nnUGn ττ . 

                                                           
6  Here we follow Grandmont (1986a), and partly Aiyagari (1988). 
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which is actually the inverted reflected generational offer curve. Note that this equation 

describes the backward dynamics of equilibrium. If there is no τ  subscript in (13), it 

then refers to the case without taxation.  

 Given (13) we say that there is indeterminacy, if the absolute value of the slope 

of τΦ  at the steady state is greater than unity. This also means that the corresponding 

forward dynamics is locally stable, i.e. equilibria are indeterminate. And, if that slope is 

less than unity, then the steady state is determinate.7  

To make this problem interesting from the point of view of endogenous cycles 

and the potential tax effects on them we assume that there can be cycles in our model 

economy even in the absence of exogenous shocks. For the existence of a two-cycle (or 

a periodic point with period two) it is necessary that function )(nΦ (economy without 

taxation) is downward sloping. That property, however, is not sufficient for periodic 

solutions of higher order. To have periodic points with period three and more, it is 

necessary that the curve, )( 1+Φ= tt nn , must be hump-shaped. More precisely, if there 

are at least three cycles in the economy without taxation (see Figure 1), there must be 

periodic solutions of any order higher than three according to Sarkovskii’s theorem.8 It 

is also well known that cycles in overlapping generations models are intimately 

connected with sunspot equilibria.9 Below we present a parametric specification of our 

model and provide conditions under which we get a hump-shaped offer curve. 

Next we ask: Is there a proportional tax policy, which can eliminate cycles? We 

provide a positive answer in the following proposition.  

 

 

 

                                                           
7 Guesnerie and Woodford (1992), especially chapter 5, discuss thoroughly the concept of indeterminacy 

in OG models.  
8 An elementary discussion and elaboration of Sarkovskii’s theorem can be found e.g. in Holmgren 

(1996), in particular chapter 5. On the conditions for the existence of endogenous cycles of more than 
two periods in economic models, see e.g. Grandmont (1986b). 

9 Azariadis and Guesnerie (1986) showed that a two-cycle is enough for the existence of stationary 
sunspot equilibrium.   
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Proposition 2. There is a critical level of tax rate, τ̂ , such that for all ττ ˆ>  there are 

no  endogenous cycles in the economy. 

Proof: Let 'n  be the maximum of the function )(nΦ  such that ')'( nn >Φ . We see that 

the maximum for the function )(nτΦ  is at )1/(' τ−n . The maximizing point of )( 1+Φ tnτ  

can then be increased in such a way that ultimately we have for some τ , say τ̂ , that 

[ ] )ˆ1/(')ˆ1/(' τττ −<−Φ nn . It follows that 0)ˆ('1 >Φ> nτ , where n̂  is the respective 

steady state, which in turn means that there can be no cycles. Q.E.D. 

According to Proposition 2 a sufficiently high proportional tax rate will 

eliminate cycles by changing the location and slope of the inverted reflected 

generational offer curve. In Figure 1 we have described an economy without taxation 

but with cycles (curve )( 1+Φ= tt nn ) and an economy with high enough proportional 

taxation, and with such a policy that there can be no cycles (curve )( 1+Φ= tt nn τ ). The 

steady state is stable in backward dynamics, and is denoted by n)  in Figure 1. 

Figure 1.
*n'n

tn

1+tn

)( 1+Φ= tt nn τ

)( 1+Φ= tt nn

n̂

 
 

To be able to study more explicitly the relationship between proportional 

taxation, endogenous cycles and indeterminacy, we consider a parametric example, 

which allows for backward-bending reflected generational offer curve. We specify the 
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quasi-linear utility function10 as follows: The consumption preferences are described by 

)1/()()( 1 σσ −+= −accu , where a  denotes a luxury of consumption11, and the 

preferences for disutility of labor are linear, nnv =)( . We assume here that 1>σ , which 

lies in conformity with empirics12 and yields possibly interesting dynamics. Note that 

now the elasticity of marginal utility of consumption is not constant, but 

equals )/( acc +σ , and is thus an increasing function of consumption. Under these 

specifications the supply function can be written as 

(14)  
)1(

)1(
1

1111

1 τ
τ σσ

−
−−=

+

−−

+
t

tt R
aRn , 

where we have used the notation: 11 / ++ = ttt ppR . Differentiating (14) with respect to the 

interest factor and the tax rate we get 

(15i) 











+−






 −

−=
∂
∂

+
−
+

−

+
aRR

R
n

tt
t

t σσ τ
σ
στ

11

1
2
1

1

1
)1(1)1(  

(15ii)   
1

1

1 +

+

∂
∂








−

−=
∂
∂

t

ttt

R
nRn

ττ
. 

These equations show that the interest factor and the tax rate have an opposite effect on 

supply. Clearly, the supply function can be backward bending with respect to the 

interest factor, if 1>σ . Hence, given the interest factor, for all the tax rates, which 

fulfill the condition 1
11

1 −
+








−
−< tRaσ

σ

σ
στ , the supply function is backward bending 

with respect to the tax rate. This means that decreasing the tax rate will decrease the 

supply and vice versa if 1
11

1 −
+








−
−> tRaσ

σ

σ
στ . 

 Next we analyze the properties of competitive equilibrium for this example with 

the assumption that 1>σ . Utilizing the equilibrium condition (9) we get 

(16)    [ ] t
t

t n
an

n
=

+−
−

+

+
στ

τ

1

1

)1(
)1( , 

                                                           
10 Quasi-linearity is often used in the welfare analyses to simplify the presentation, see e.g. Laffont 

(1988), 158-161.  
11 For a further discussion of this specification , see e.g. Auerbach and Hines (2002).    
12 See e.g. the survey by Attanasio (1999).   
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and in the steady state )1/()1(ˆ
11

ττ σ −−−==
−

annt . Note that the steady state without 

taxes is an −=1* . By direct differentiation with respect to the tax rate we see that 

*ˆ nn > , if 0)1(
1

>−− aστ . This latter condition is fulfilled naturally, since it equals 

consumption ( n)1( τ−= ) in the steady state.13 Differentiating (16) we get 

(17)   [ ] 1
1

1
2

1 )1(
)1()1)(1(

+
+

+

+ +−
−+−−

=
∂
∂

στ
ττσ

an
an

n
n

t

t

t

t . 

To get the hump-shaped offer curve described in Figure 1, and thus to allow for periodic 

solutions of order higher than two we need to have the maximum of the offer curve, 

)1)(1/( τσ −−a , to be less than the steady state, )1/()1(
11

ττ σ −−−
−

a . This will lead to 

the following inequality for the proportional tax rate, τ
σ
στ

σ

ˆ
1

1 =







−
−<

a . If the tax rate 

exceedsτ̂ , there can be no cycles in this economy as noted in Proposition 2. 

Finally we explore the indeterminacy of equilibrium. Evaluating the slope of 

(17) at the steady state yields 

(18)    
σ

σ

τ

στσ
1

1

1 )1(

)1)(1(*)(
−

+−−
==

∂
∂

+

ann
n
n

t
t

t , 

where the numerator should be negative for cycles. For the determinacy of perfect 

foresight dynamics we need 1/ 1 −>∂∂ +tt nn , and thus get the condition  

(19) 11
)1(

1 1 <−
















−
−

στ
σ a , 

which implies that the tax rate must fulfill the following inequality 

τ
σ
στ

σ
~

2
1 =








−
−>

a , and ττ ~ˆ > . According to (19) increasing the tax rate above τ~  

guarantees the determinacy of equilibrium. Whether this happens depends also on the 

magnitudes of the luxury of consumption, ,a  and the parameter,σ , which affects the 

elasticity of the marginal utility of consumption. It is important to emphasize that to 
                                                           
13 See also Proposition 1. 
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completely abolish the endogenous cycle, i.e. when the offer curve is upward sloping, 

we need a rather high tax rate (τ̂ ). To make the backward dynamics stable (i.e. the 

requirement for determinacy), but still maintaining the downward sloping offer curve, it 

is enough to have a lower tax rate thanτ̂ . 

 

4. Competitive Equilibrium with Linearly Progressive Taxation 
 

In this section we study the effects of linearly progressive taxation from the same 

perspective as we did for proportional taxation, and compare the results to those 

presented above.  

The private sector periodic budget constraints are now  

(20i)   EnpM tt
d
t ττ +−= )1(  

(20ii) d
ttt Mcp =++ 11 , 

so that the lifetime constraint is 

(21)  
1

1
)1(
+

+
+−

=
t

tt
t p

Enpc ττ . 

The young producers accumulate money by selling their output again to the old and the 

government. The first-order condition for the utility maximization subject to budget 

constraints (20i) and (20ii) is  

(22)  )(')1(')1(
11

t
t

tt

t

t nv
p

Enpu
p

p
=







 +−−

++

τττ , 

which implicitly defines the young’s supply function, 






 −
=

++ 11
,)1(

tt

t
t p

E
p

pnn ττ . The 

equilibrium condition in the goods market is again  

(23) tt
t

d
t ng

p
M

=+−1 . 

Taking into account the government budget constraint and the fact that the nominal 

money supply is constant we can rewrite (23) for periods t and t+1 as 

(24) EnpM tt ττ +−= )1( , EnpM tt ττ +−= ++ 11 )1( . 
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It follows that 11 ++= tttt npnp , which means that the tax base stays constant also outside 

the steady states. Note also that we must have the following natural condition for the 

policy parameters: 1/ <MEτ . Now we can develop the first-order condition above as 

(25)  )('')1(
1

1
t

tt

t nv
p
Mu

n
n

=






−

+

+τ . 

From (24) we solve
1

1 )1( +
+ −

−
=

t
t n

EMp
τ
τ , and plug into (25) to obtain 

(26)   )('
1

)1(')1( 1
1 tt

t
t nvn

M
E
nun =

















−

−
− +

+ τ
ττ , 

which determines the equilibrium sequence of supplies. If the second period preferences 

are logarithmic, the dynamics is determined from the condition MEnvn tt /1)(' τ−= , i.e. 

the economy stays forever at the steady state, n~ , determined from MEnvn /1)~('~ τ−= . 

It is also interesting to note that the level of nominal money supply affects the 

intertemporal allocation in the presence of progressive taxation.   

  Next we ask: How does the steady state solution to (26) (denoted by n~ ) under 

progressive taxation compare to the steady state with proportional taxation, n̂ ? The 

answer is given in  

 

Proposition 3. The steady state supply with progressive taxation is less than the supply 

with proportional taxation. 

Proof: We rewrite equation (26) in the steady state as 

[ ] )()('))/(1/()1(')1(),;( nRHSnvMEnuEnLHS ≡=−−−≡ ττττ . Given the Inada 

conditions we have 0)0( =RHS , ∞=
→

)(lim nRHS
Ln

, and 0)(' >nRHS . We also have 

0),;( <EnLHSn τ , [ ] 0))/(1/()1('')1)(1(),;( 2 <−−−−= − MEnnu
MM

EEnLHSE ττττττ  

so that the ),;( EnLHS τ  shifts down, when tax exemption is increased. Proposition 3 

follows from this finding. Q.E.D. 
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Proposition 3 is natural, since in competitive models progressive taxation is more 

distortionary than proportional taxation. This is because a higher level of tax exemption 

decreases the steady state supply due to the negative income effect of tax exemption on 

supply.  

To explore the stabilizing effect of taxation on cycles we use the following 

notation in equation (26)  

(27)   [ ]
















−

−
−≡

M
E
nnuEnU τ

τττ
1

)1(')1(,;ˆ  and )(')(ˆ nnvnG = . 

Since function )(ˆ nG is monotone increasing we can invert it, and obtain from (27) the 

following relation 

(28)  [ ]( ) )(,;ˆˆ
11

1
++

− Φ≡= tEtt nEnUGn τ , 

which is again the inverted reflected generational offer curve, where subscript E  refers 

to the case of linearly progressive taxation. If there is no subscript in (28), it then refers 

to the case without taxation. Obviously the same definition for indeterminacy as above 

for τΦ , applies here for EΦ . Again we assume that there is at least a two-cycle in the 

economy without taxation (see Figure 1). As with proportional taxation the hump-

shaped form of equation (28) is not necessary for two cycles, but it is necessary for 

three cycles.14  

Is there a progressive tax policy, which can stabilize the economy by eliminating 

endogenous cycles? We provide the answer in the following proposition.   

 

Proposition 4. Given the marginal tax rate there is a critical level of tax exemption, ,Ê  

such that for all ,ÊE <  there are no endogenous cycles in the economy. 

Proof: Let 'n  be the maximum of the function )(nΦ  such that ')'( nn >Φ . The 

maximum for the function )(nτΦ is thus at )1/(' τ−n , and for the function )(nEΦ  at 

)1/(')1( ττ
−− n

M
E . The maximizing point of )( 1+Φ tE n can then be increased by 

                                                           
14 See footnote 7 above. 
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decreasing E  in such a way that ultimately we have for some E , say Ê , that 

)ˆ1/(')1()ˆ1/(')1( ττττ
−−<



 −−Φ n

M
En

M
E

E . This also means that 0)~('1 >Φ> nE , where 

n~  is the respective steady state, which in turn means that there can be no cycles. Q.E.D. 

 

Hence, according to Proposition 4 a sufficiently low progressive taxation – 

meaning that the average tax rate does not increase with the tax base too much - will 

eliminate endogenous cycles. This is because lower tax exemption will decrease the 

income effect and thus will change both the slope and location of the offer curve. When 

exemption is low enough, the slope will become positive and cycles will vanish.    

Next we consider our parametric example specified in section 3 above to explore 

the issue of indeterminacy. Analogously to the derivation of the supply function with 

proportional taxes (c.f. equation 15) we get 

(29)   
tt

tt p
E

R
aRn

)1()1(
)1(

1

1111

1 τ
τ

τ
τ σσ

−
−

−
−−=

+

−−

+ , 

where the term, tpE / , is the real exemption. Differentiating (29) with respect to the tax 

rate, and the tax exemption we get 

(30i)  
t

tt
t

p
EaRRn 2

11

1
1
1

2 )1()1(1)1( −
+

−
+

− −−











+−






 −

−−=
∂
∂ ττ

σ
στ

τ
σσ   

 (30ii)  
t

t

pE
n

)1( τ
τ
−

−=
∂
∂ . 

For a given interest factor decreasing the tax rate will decrease the supply (i.e. 

0/ >∂∂ τtn ), if the marginal tax rate and tax exemption fulfill the following condition 

(31)  1
1

11
1 −

+
+









+








−
−≤ σ

σσ

σ
στ t

tt

R
p
E

R
a . 

Now we analyze the determinacy of competitive equilibrium for this specification 

again with the assumption that 1>σ . Using equation (26) we obtain 
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(32)  t

t

t n

a

M
E
n

n
=

















+
−

−

−

+

+
σ

τ
τ

τ

1

)1(

)1(

1

1 , 

where we calculate the steady state 
τ

τττ σ
−

−−−−=
−

1
)1()1)(1(~ 11 a

M
E

M
En .  This can be 

expressed in terms of the steady state with proportional taxation as n
M
En ˆ)1(~ τ

−= . 

Hence, introducing tax exemption, which makes taxation progressive, decreases the 

steady state supply compared to the case with proportional taxation (see Proposition 3).   

 Differentiating (32) yields 

 

(33)  1

1

1
2

1

1

)1(

)1(
1

)1)(1(

+

+

+

+

















+
−

−

−+
−

−−

=
∂
∂

σ

τ
τ

ττ
τσ

a

M
E
n

a

M
E

n

n
n

t

t

t

t . 

 

Evaluating the slope at the steady state we get 

(34) 
σ

σ

τ

στσ
1

1

1 )1(

)1)(1()~(
−

+−−
==

∂
∂

+

ann
n
n

t
t

t , 

where the numerator must be negative. We get the condition for determinacy as 

(35)  11
)1(

1 1 <−
















−
−

στ
σ a . 

Decreasing the tax rate can cause indeterminacy, i.e. if τ  decreases enough the 

inequality sign turns around depending on the relative size of parameters a  and σ .15  

Note that this condition is exactly the same (c.f. equation (19)) as with the presence of 

                                                           
15 This can also be seen by differentiating the left-hand side of (35) with respect to the tax rate, and noting 

that the partial derivative will be negative. 
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proportional taxation. This is due to the quasi-linear specification of the utility function, 

which is strictly concave in consumption and linear in leisure and labor supply. 

Therefore the income effect of tax exemption is zero for consumption so that tax 

progressivity does not matter here. 

Finally we consider an example where – unlike in the case of quasi-linear utility 

function - the income effect for consumption is not zero. We assume that disutility 

function ( )(nv ) is of the form 2)4/1()( nnv = . This gives the following equilibrium 

dynamics 

(36)  2

1

1

2
1

1

)1(

)1(
t

t

t n

a

M
E
n

n
=

















+
−

−

−

+

+
σ

τ
τ

τ . 

While we cannot explicitly solve for the steady state, we, however, get from (36) the 

following relation at the steady state 

(37) );()1(2

1

)1(),,;( ττ
τ
ττ

σ

nRHS
n

a

M
E

nMEnLHS ≡
−

=
















+
−

−
≡ . 

The left-hand side of (37) is an increasing, and the right-hand side a decreasing function 

of supply, .n  Furthermore, we see from (37) that 0)),,;( >MEnLHSE τ . This means that 

an increase in the level of exemption will shift the ),,;( MEnLHS τ  curve up, so that 

there is a negative relationship between the steady state employment and exemption, i.e. 

0/ <∂∂ En .  

 Using (36) we get 

(38)  
t

t

t

t

t

n

a

M
E
n

a

M
E

n

n
n 1

1

)1(

1

)1)(1()1(

1

1

1

1

×

















+
−

−

















+
−

−−
−

=
∂
∂

+

+

+

+
σ

τ
τ

τ
τστ

, 
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Again we concentrate on the case, where 1>σ , so that the above slope can be negative. 

Next we evaluate the slope at the steady state. Using the steady state characterization 

from (37) and evaluating (38) at the steady state we obtain 

(39)  

















+
−

−

















−

−
−+

−

−

=
∂
∂

=
+

a

M
E
n

M
E
na

M
E
n

n
n

ntn
t

t

τ
τ

τ
τστ

τ

1

)1(2

1

)1(

1

)1(

*
1 )1(2)1(2

)1()1)(1(

M
Ean
M
Ean

ττ

ττσ

−+−

−+−−
= . 

Hence (39) provides the following condition for the determinacy of equilibrium 

(40)  1
)1()1)(1(

)1(2)1(2
−<

−+−−

−+−

M
Ean

M
Ean

ττσ

ττ
. 

Taking into account the fact that, in the case we are considering, the left-hand side of 

(40) must be negative, we get from the denominator the following inequality for 

exemption 

(41)  



 −−
−>

a
nME )1)(1(1 τσ

τ
. 

We can re-express (40) as 

(42)  



 −−
−<

a
nME

3
)1)(3(1 τσ

τ
. 

Hence (41) and (42) provide bounds for the level of exemption, and thereby for 

determinacy to hold. In this example it is necessary for determinacy that 3>σ . In 

particular, if σ  is just slightly greater than three (42) holds for sure and we have 

determinacy. Thus, there is an upper bound for tax exemption as already suggested by 

Proposition 4 above. Tax exemption matters for determinacy because of non-zero 

income effect. Since the steady state employment is a decreasing function of exemption, 

both sides of (42) are increasing functions of exemption. Increasing the level of 

exemption might switch the inequality around, and make the steady state indeterminate, 

if the effect of a change in exemption on supply is not very large. 
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5. Price Level Targeting as a Stabilizing Policy 

 
We briefly discuss here an example of a policy, which will stabilize the economy 

completely, i.e. we look for a policy under which the only equilibrium is stationary. We 

partly follow Woodford (1986), Aiyagari (1988), and Smith (1994), who discuss 

different policies in the same sense. The young are taxed and the proceeds are directly 

transferred to the old. This means that the amount of the nominal money supply stays 

constant as above. Consider now the following tax policy: the policy authority chooses 

a benchmark price level, *p , and taxes the young workers by a proportional rate 

tpp /*1− . If 1/* >tpp , the workers are subsidized and the old are taxed. The 

decision problem of the young is to maximize the lifetime utility function, 

)()( 1 tt nvcu −+  subject to the budget constraints   

(42i) tt
t

tt
d
t np

p
pnpM )*1( −−=  

(42ii) 111 +++ += t
d
ttt SMcp , 

where 1+tS  is the subsidy (if positive) they get in the second period of their lives. The 

first-order condition is 

(43) )('*'*

1

1

1
t

t

tt

t

nv
p

Snpu
p
p

=






 +

+

+

+

. 

The goods market equilibrium condition in period t is 

(44)  t
t

t
d
t n

p
SM

=
+−1 . 

Subsidy in equilibrium will be ttt nppS *)( −= , and the nominal money supply is 

constant, i.e. MMt =  for all t . It then follows that tnpM *= . We can now rewrite the 

first-order condition, (43), as 

(45) )
*

('
*

'*

1 p
Mv

p
Mu

p
p

t

=








+

, 

which can be solved for a unique price level. Thus the only equilibrium is stationary. 
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6. Conclusions 

 
We have studied the effects of distortionary taxation on endogenous cycles and the 

determinacy of equilibria in a competitive overlapping generations model with money 

and a balanced budget rule for fiscal policy. In particular, we have explored the 

implications of proportional and progressive tax systems.  

We have shown that under proportional taxation the steady state supply exceeds 

(falls short of) the one without taxation, if the elasticity of the marginal utility of the 

second period consumption, is higher (lower) than one. This is because the higher 

(lower) steady state supply in the presence of taxation is due to the fact that the positive 

income effect of the tax rate dominates (is dominated by) the negative substitution 

effect. Moreover, and importantly, in the presence of cycles there is a critical level of 

tax rate such that for all higher tax rates there are no cycles in the economy. The steady 

state supply under progressive taxation is less than the one with proportional taxation 

due to the negative income effect of tax exemption on supply. In this case there is a 

critical level of tax exemption, such that for all smaller tax exemptions there are no 

cycles in the economy. When tax exemption is low enough, the slope of the offer curve 

will become positive and cycles will vanish.  

We have also characterized the effects of tax policy on the determinacy of 

equilibria by providing the following results. First, if the lifetime utility function is 

quasi-linear, increasing the tax rate can make the equilibrium determinate both with 

proportional and linearly progressive taxation so that tax exemption does not matter. 

This is because the income effect of tax exemption is zero for consumption.  Second, if 

the lifetime utility function is more general, then tax exemption might matter because of 

the income effect. But for a small tax rate an increase in progression can bring about 

determinate equilibria. We have also shown that policy, which fixes a target for the 

price level, can completely eliminate fluctuations in the economy.  
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Appendix: 
 

                           Derivation of the Slutsky equation for the supply function 
 

Maximizing the utility function )()( nvcuU −=  subject to mnc +−= )1( τ , where m  is 
non-labor income, gives )(')1)(('0 nvcuUn −−== τ , which implicitly defines the 
supply function ),( mnn τ= . Substituting this for n  in U gives the indirect utility 
function oUmU =),(* τ  with the following properties: 0)(' ** >= cuUm  and 

.0** <−= mnUUτ Given the monotone *
mU  we can invert the indirect utility function for 

m  so that we have the following expenditure function, ),( oUhm τ= . Substituting this 
for m  in oUmU =),(* τ  yields the compensated indirect utility function (see Diamond 
and Yaari, 1972) oo UUhU =)),,((* ττ with the following property 0** =+ ττ UhUm  so 

that .** nUUh m =−= ττ  According to the duality theorem we can write the relationship 
between the uncompensated and the compensated supply as 
follows ),()),,(( oco UnUhn τττ = . Differentiating this with respect to the tax rate gives 

c
m nhnn τττ =+  which can be written as the Slutsky equation  m

c nnnn −= ττ  , where we 

have the negative substitution effect, )0
)('')1)((''

)('( 2 <
−−

=
nvcu

cunc

ττ , and the        

positive income effect, )0
)('')1)((''

)(''( 2 >
−−

=−
nvcu

ccunnm τ
. The latter (former) effect         

evaluated at 0=m  dominates if .1)()( <>nσ  
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