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Abstract 
 
This paper shows how a moment-based estimation procedure can be used to compute 
point estimates and obtain standard errors for the two components of the productivity 
decomposition proposed by G. S. Olley and A. Pakes (The Dynamics of Productivity in the 
Telecommunications Equipment Industry, Econometrica, Vol. 64, No. 6, Nov. 1996). When 
applied to business-level microdata, the procedure allows for panel-robust inference and 
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groups of firms. We provide an application to Finnish firm-level data and find that formal 
statistical inference is important for the interpretation of productivity dynamics and its 
sources. 
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1 Introduction

In their often-cited paper, Olley and Pakes (1996) show that when the level

of industry productivity is measured by the weighted average of �rm-level (or

plant-level) productivity and computed using microdata, it can be decomposed

to (i) the unweighted average of the productivity of �rms and (ii) a covariance-

like term between activity (i.e., output or input) shares and productivity. The

within-industry covariance between size and productivity is of particular interest

to economists: The smaller this cross-term is, the smaller the share of activity

(or resources) that gets allocated to the most productive �rms. Olley and Pakes

found that changes in the covariance term may be due to policy. In particular,

they argue that the deregulation of the U.S. telecommunications equipment

industry may have increased the covariance term by increasing the allocation of

resources to the most productive �rms.

The original Olley-Pakes (OP) decomposition is cross-sectional and static.1

However, when applied to a panel data of �rms, it provides a window to the de-

terminants of industry productivity growth that subsequent research has begun

to utilize intensively (see, e.g., Eslava, Haltiwanger, Kugler and Kugler 2004,

Van Biesebroeck, 2008, Bartlesman, Haltiwanger and Scarpetta 2009a, Eslava,

Haltiwanger, Kugler and Kugler 2009a,b). Bartlesman et al. (2009a) argue,

for example, that a low covariance term is a good indicator of misallocation

of resources and (policy-induced) market distortions and provide evidence that

its variation explains an important fraction of the cross-country di¤erences in

1Starting from Bailey, Hulten and Campbell (1992), there is a large literature on how

di¤erent types of decompositions of industry productivity (growth) are able to capture its

microeconomic sources. See, for example, Balk (2003) for a review and Foster, Haltiwanger and

Krizan (2006) and Foster, Haltiwanger and Syverson (2008) for a couple of recent contributions

that use decompositions other than the OP decomposition.
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productivity. The most recent papers develop dynamic extensions of the OP de-

composition and show how to allow for entry and exit (e.g., Melitz and Polanec

2009; see also Maliranta 2009 and Nevalainen 2010).

This paper builds on the observation that hypothesis testing and inference

appear to be a neglected part of the decomposition literature. One of the few

studies that obtain standard errors for the components of a productivity decom-

position is Foster, Haltiwanger and Krizan (2006). They regress productivity on

indicators of entry and exit, obtaining a regression analogue to a decomposition

of productivity growth to entry and exit e¤ects and growth in continuing �rms.

To the best of our knowledge, the estimation of the standard errors of the two

components of the OP decomposition has not - despite its increasing popularity

in applications - received attention in the prior studies.2 The aim of this paper

is to start �lling this apparent gap in the literature. We outline, in particular,

a moment-based procedure to the estimation of the OP components and their

standard errors and illustrate how it leads to a simple two-step receipt that can

be used for inference and hypothesis testing in applications.

Though it seems obvious that it would be worthwhile to have a procedure for

inference and hypothesis testing for the OP components, a particular feature

of the earlier applied literature is that the studies have often been based on

register data that cover (nearly) the entire population of �rms of a country (i.e.,

they are based on census data of some sort). These data are not samples in the

traditional sense and the elements of the decompositions do not have stochastic

variation due to sampling from a population. However, this does not mean that

there is no need for statistical inference. Instead, we can think of the data

as a sample drawn from the underlying data generating process (DGP) (see,

2Maliranta (2009) appears to be one of the �rst papers that considers statistical inference

in this context.
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e.g., Davidson and MacKinnon, 2004) and focus on estimating its parameters.

What�s more, a present tendency in the literature seems to be towards using �ner

decompositions and comparisons (by, e.g., �rm cohort, geographic region, or �rm

type) in the hope that they help us to better understand the microeconomic

sources of industry productivity growth. This tendency is likely to lead to

denser slicing of the available microdata with a smaller number of observations,

increasing thus the need for appropriate inference procedures.

We apply the estimation procedure to a Finnish �rm-level panel data from

1995 to 2007. We focus on a single industry and cross-regional di¤erences in

its productivity dynamics. We �nd that in our application, there is a clear and

statistically signi�cant improvement in the level of industry productivity in one

of the two regions that our data cover. However, formal statistical inference

casts some doubt on the conclusions that one might draw about its sources

based on a visual inspection of the dynamics of the two components of the OP

decomposition. In particular, we �nd that (relative di¤erences or changes in)

the covariance term cannot be measured as accurately as (relative di¤erences or

changes in) the unweighted average of the productivity of �rms.

The remainder of the paper is organized as follows: The next section presents

the OP decomposition. In the third section, we develop the moment-based

procedure using insights from the Generalized Method of Moments (GMM)

estimation. The fourth section provides an application using large Finnish �rm-

level data. Section �ve concludes and discusses potential extensions.

2 Olley-Pakes Decomposition

To write down a formal expression for the OP decomposition, let sit denote the

activity share of �rm i in period t and 'it an index of productivity. How sit

and 'it are measured depends on the application, as the decomposition can be
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applied either to an industry-level index of total factor productivity (TFP) or to

that of labour productivity, be done in levels or in log-units and computed using

either input or output shares. For concreteness, we frame our analysis in terms

of labour productivity and assume that the index of �rm-level productivity is

measured in log-units, i.e., 'it = log
h
Yit
Lit

i
, where Yit is a measure of value added

and where Lit is the number of employees in �rm i at time t: The activity shares

are measured by labour inputs so that sit = Lit=
PNt

i=1 Lit, where Nt refers to

the number of �rms in period t.

Taking a single cross-section of the data for period t, the OP decomposition

of the aggregate productivity index of an industry is

�t = 't +
XNt

i=1
(sit � st)('it � 't) (1)

where �t =
PNt

i=1 sit'it is the weighted mean of �rm-level productivity, 't refers

to the unweighted mean and the last term is the covariance term. The covariance

term consists of the deviations of input shares around their unweighted, cross-

sectional mean, (sit � st), and the deviations of �rm productivity around their

unweighted, cross-sectional mean, ('it � 't).3 To distinguish the second term

from standard sample (cross-sectional) covariance, ccovt(sit; 'it); we denote bct �PNt

i=1(sit�st)('it�'t) in what follows. This means that bct = ccovt(sit; 'it)�Nt.
A large part of the subsequent development in this paper is motivated by

the simple observation that the two terms on the R.H.S. of equation (1) can be

estimated jointly by regressing 'it on a constant and an appropriately scaled

sit using Ordinary Least Squares (OLS). This insight relies on the anatomy of

the population regression E ['it jsit ] = E ['it] +
cov('it;sit)
var(sit)

(sit � E [sit]), which

immediately suggests how the two components can be captured by a single

moment condition. In particular, the moment condition allows us to obtain

3Note that st = 1=Nt.
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point estimates and panel-robust standard errors for the two components of (1)

simultaneously, using a standard GMM procedure.

3 Computation and Inference

3.1 Moment-based Approach

To derive a moment-based representation of the OP decomposition, we assume

for notational simplicity that the microdata used to compute the OP decompo-

sition is a balanced panel and that the available sample period of interest is of

length T: It should be obvious, however, that the approach can be generalized

to many kinds of unbalanced panels (see, e.g., Wooldridge 2002, Ch. 17); see

also the discussion below.

We start with the simplest case in which the aim is to compute the 2T decom-

position terms, ('0;bc0)0 = ('1; :::; 'T ;bc1; :::;bcT )0 ; and the associated standard
errors. To this end, we de�ne s�it =

sit�stb�2tN , where b�2t is the cross-sectional sample
variance of sit, i.e., b�2t = 1

N

PN
i=1(sit � st)2 in period t.4 We also let Di be a

(T � T ) period dummy matrix with typical element dit;k, which is equal to one

if t = k and equal to zero otherwise. Using the period dummy matrix and col-

lecting the scaled input share data, s�it; for �rm i into a (T �T ) diagonal matrix

S�i = diag [s
�
i1; :::; s

�
iT ] allows us to de�ne a (T � 2T ) data matrix Xi = [Di S

�
i ] :

Using this matrix, we can write down population moment condition

E [Xi
0 ('i �Xi�)] = 0(2T�1) (2)

where 'i = ('i1; :::; 'iT )
0 and � = (�0;0)0 = (�1; :::; �T ; 1; :::; T )

0 is a (2T�1)

parameter vector.

4To simplify the presentation, we use N instead of the more usual N � 1 when computing

sample variances. In large samples, N � N � 1:
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The analogy principle says that a suitable estimator for unknown population

parameters can be found by considering the sample counterpart of a population

moment (see, Manski 1988). What we show next is that applying the principle

to (2) results in an estimator for � = (�0;0)0 that is numerically equivalent to

the two components on the R.H.S. of (1). Because moment-based estimators

are naturally based on the analogy principle, we frame our discussion in terms

of GMM. As explained in, e.g., Cameron and Trivedi (2005, pp. 744-745), a

GMM estimator based on a moment like (2) results in a single-equation panel

GMM estimator for parameter vector �. Besides the point estimates of the

decomposition terms, the GMM procedure allows us to obtain their standard

errors.

As we have speci�ed moment (2), the number of instruments is equal to the

number of parameters to be estimated. This property means that the model is

just-identi�ed and that the moment condition results in the familiar pooled OLS

estimator of a linear panel model. To derive this pooled OLS estimator using the

analogy principle, we replace the expectation operator in (2) by the correspond-

ing sample average. The estimator therefore solves 1
N

PN
i=1

h
Xi

0
�
'i �Xi

b��i =
0: Stacking all �rms '0 = ('01 � � �'0N ) and X0 = (X0

1 � � �X0
N ), the resulting

pooled OLS estimator is b� = (b�0; b0)0 = (X0X)
�1
X0'. This means, in other

words, that to obtain the point estimates, we just regress 'it on the complete

set of period indicators and their interactions with s�it using OLS.

The pooled OLS estimator is numerically equivalent to ('0;bc0)0. The result
follows from standard results on partitioned regression and from the fact the

model is completely saturated in terms of (orthogonal) period indicators. In

particular, picking any b�t, one can show that b�t = 't � bts�t = 't. The last

step follows from s�t = 0: Similarly, picking any bt, one can establish that bt =�PN
i=1(s

�
it)('it � 't)

��PN
i=1(s

�
it)
2
��1

: This expression simpli�es to ccovt�N =
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PN
i=1(sit�st)('it�'t) and is thus equal to bct, as desired. This establishes that

for t = 1; :::; T , the R.H.S. of (1) can be rewritten as b� + b:
In sum, obtaining point estimates for the two OP components from mi-

crodata consists of two steps: First, sit is demeaned and scaled by N times

its cross-sectional variance (separately for each period). Second, one regresses

'it on a constant and the scaled sit (using, e.g., OLS). The estimator for the

constant gives 't and that of the slope
PNt

i=1(sit � st)('it � 't):

3.2 Panel-Robust Statistical Inference and Testing

The bene�t of casting the estimation of the OP decomposition in terms of

a population moment and GMM is that the GMM framework can be used to

establish the asymptotic properties of the estimators, their asymptotic normality

in particular, and to compute their standard errors.5

To derive an estimator for the standard errors, we start by noting that

moment (2) implicitly de�nes a (T�1) vector of regression errors ui � 'i�Xi�

for each �rm i. If it were the case that these errors were uncorrelated over time

for a given �rm and homoscedastic, using the classical OLS variance-covariance

estimator (i.e., b�2u(X0X)), would lead to an estimator for the standard errors of

't and bt that are similar (but not identical) to the conventional stantard error
estimators for the sample mean and covariance.6 However, there are strong

reasons to suspect that the errors are both correlated over time for a given �rm

5For a textbook treatment, see for example Cameron and Trivedi (2005, Ch. 6 and 22)

and Wooldridge (2002, Ch. 14).
6The conventional (cross-sectional) estimator for the standard error of the sample mean

is of course the square root of the sample analog of 1
N
�2': The corresponding estimator for

the sample covariance is the square root of the sample analog of 1
N
(�jj;t � �2jj;t); where

�jj;t = E (sit � st)j ('it � 't)j . There is an e¢ ciency gain from estimating both standard

errors at the same time.
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and heteroscedastic. The former should be allowed for, because shocks to the

productivity of �rm i are likely to be persistent over time. Heteroscedasticity

is also expected in most microdata and should therefore be allowed for. For

example, the cross-sectional variance of productivity shocks may vary over time,

leading to a form of heteroscedasticity.

Assuming independence over i and N ! 1, the panel-robust estimate of

the asymptotic variance matrix of the estimator is

bV hb�i = �XN

i=1
X0
iXi

��1XN

i=1
X0
ibuibu0iXi

�XN

i=1
X0
iXi

��1
(3)

where bui = 'i � Xi
b�: This formula can be used to obtain a consistent esti-

mate of the asymptotic covariance matrix for b� that is robust to within-�rm
autocorrelation and heteroscedasticity of unknown form. This familiar variance

estimator is a suitable choice when one is unwilling to make assumptions about

the within-�rm autocorrelation structure or the type of heteroscedasticity in the

microdata. It is also suitable when the data are a short panel and thus have rel-

atively few observations per each �rm (small T ) but includes many �rms (large

N); see Cameron and Trivedi (2005, Ch. 22 and 24) and Wooldridge (2003) for

further discussion.

Expression (3) provides the basis for panel-robust statistical inference. The

estimator is easy to implement, because it can be computed using a standard

OLS command with an option for cluster-robust standard errors.7 To obtain

con�dence intervals for the components of the productivity decomposition fol-

lows from standard argumentation. One can draw on the asymptotic normality

of the GMM estimators and use the standard errors that can be obtained as the
7Note, however, that some of the standard econometric softwares (such as Stata ) make by

default a small-sample correction when computing the cluster-robust standard errors. In large

samples, this correction does not matter.
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square root of the diagonal elements of (3). What is convenient is that standard

regression output includes the con�dence intervals automatically.

In applications, it may be of interest to test hypotheses about the compo-

nents of the productivity decomposition. For example, to study whether the

covariance term has remained stable over the sample period in a particular

industry, one can formulate H0: 1 = ::: = T and test for the joint hypoth-

esis using standard joint testing procedures, such as the Wald-test. Similarly,

testing for H0: T�s = ::: = T = 0 corresponds to analysing the null hy-

pothesis that the industry index of productivity during the last s years of the

sample period is no higher than it would if the input shares were randomly al-

located within the industry. As a �nal example, the null hypothesis of constant

growth (rate) of the average �rm productivity can be examined by testing H0:

�2 � �1 = ::: = �T � �T�1:

3.3 Discussion and Extensions

3.3.1 Mutually Exclusive Sub-groups

The �rst, perhaps most obvious, extension to the basic procedure builds on

the observation that the aggregate productivity index for a group of �rms can

be computed as a weighted mean of the aggregate productivities of the sub-

groups of �rms. This observation suggests that one can assign all the �rms of

an industry to mutually exclusive sub-groups and estimate the productivity de-

compositions and the associated standard errors separately for each sub-group.

To illustrate how that could be done, we assume that there are J sub-groups

(j = 1; :::; J) and take the following four steps: First, we de�ne sub-group

indicator qit;j , which is equal to one if �rm i belongs to group j in period t and

is zero otherwise. This implies that in each period, the number of members in

sub-group j is Nt;j =
PN

i=1 qit;j . Second, we scale the input shares by period
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and within each sub-group to obtain s�it;j =
sit�st;jb�2t;jNt;j

, where st;j is the mean andb�2t;j is the cross-sectional sample variance of the input share in sub-group j in
period t. By de�nition, s�it;j is zero for �rm i in period t if it does not belong

to group j during the period. Third, we let 
 denote the Kronecker product

and de�ne ed0it = (qit;1; :::; qit;J) 
 (dit;1; :::; dit;T ) and es�0it = �
s�it;1; :::; s

�
it;J

�



(dit;1; :::; dit;T ); which are row vectors of length JT . Finally, we use population

moment condition (2) and the GMM approach to estimate the two components

of the OP decomposition for each sub-group by rede�ning matrix Xi so that

its tth row is now x0it =
hed0it es�0iti. Of course, � = (�0;0)0 has to be rede�ned

accordingly, i.e., to be a (column) vector of length 2JT .

This extension is of potential interest in applications. For example, to study

whether the (relative) importance of the covariance terms in an industry is

similar in J geographic regions in a given period, we could use (2) and the

GMM-procedure in estimation, pick the relevant parameters of the model (e.g.,

t;j = Nt;j � ccovt;j('it; sit)) and test the hypothesis H0: t;1 = ::: = t;J using
a joint test. Implementing such a test is straightforward, because in each row of

Xi; the �rst JT terms are group-speci�c period indicators (i.e., the complete set

of period indicators interacted with the complete set of sub-group indicators)

and the next JT terms are the period and sub-group speci�c input shares s�it;j .

We illustrate a variant of this extension in our application.

It is important to emphasize that b�t;1 + bt;1:::: + b�t;J + bt;J is not equal
to �t, i.e., the weighted mean of �rm-level productivity in period t. However,

if these estimates are weighted by the employment share of each sub-group

in period t, St;j =
PN

i=1 qit;jLit=
PN

i=1 Lit, they total to �t: That is, �t =

St;1

�b�t;1 + bt;1�+ :::+ St;J �b�t;J + bt;J�, where PJ
j=1 St;j = 1:
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3.3.2 Industry-level Productivity

The procedure we have developed lends itself directly to making statistical in-

ference about the L.H.S. of (1). It follows from the de�nition of the estimator

that V ar [�] = V ar
hb� + bi, where � =(�1; :::;�T )0 is the vector contain-

ing the weighted mean of �rm-level productivity for periods t = 1; :::; T . This

relation implies that it is easy to test hypotheses about, e.g., how industry

productivity has developed over the sample period. For example, testing H0:

(�T � �1)+ (T � 1) = 0 would be a test of the hypothesis that there has been

no (aggregate) productivity growth over the sample period (i.e., �1 = �T ).

It is worth pointing out that the terms corresponding to the L.H.S. of (1)

are periodic weighted averages and that they and their standard errors can also

be obtained directly from a regression. To show how, let '�it = 'it
p
Lit, collect

these weighted productivity indices for �rm i into '�i = ('
�
i1; :::; '

�
iT )

0, and de�ne

a (T � T ) matrix X�
i with t

th row x�0it =
�
d1;it

p
Lit; :::; dT;it

p
Lit
�
; where dit;s

are, as before, period indicators. The rows of X�
i consist thus of "weighted"

period dummies.

Using this notation, we can write down the following population moment

condition for �rm i:

E [X�
i
0 ('�i �X�

i�)] = 0(T�1) (4)

where � = (�1; :::; �T )
0 is a (T � 1) parameter vector. By the analogy prin-

ciple, this moment condition results in the standard pooled OLS estimator of

a linear panel model that regresses '�it on the complete set of period indica-

tors interacted with
p
Lit. Stacking all �rms '�0 = ('�01 � � �'�0N ) and similarly

for X�; this OLS estimator is b� = (X�0X�)
�1
X�0'�. Equivalently, if we let

Wi = diag [(Li1; :::; LiT )], (4) can be rewritten as E [Di
0Wi ('i �Di�)] =

0. Stacking all �rms D = (D0
1 � � �D0

N ) and using the stacked D and W =

diag [W1; :::;WN ], the resulting estimator is b� = (D0WD)
�1
D0W':
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It takes a couple of steps of algebra to establish that both of the above

OLS expressions are equivalent and that they are numerically equivalent to

� =(�1; :::;�T )
0. It immediately follows that using a variance estimator sim-

ilar to (3), one can obtain a consistent estimate of the asymptotic covariance

matrix for b� (and thus for �) that is robust to within-�rm autocorrelation and

heteroscedasticity.

3.3.3 Discussion and Further Extensions

We have above established a link between the moment-based estimators that

can be derived from (2) and (4), because b� = b�+ b: This, of course, implies
that V ar [b�] = V ar

hb� + bi : There is thus an indirect way to estimate the
covariance term, as it can be obtained as the di¤erence of the weighted and

unweighted means, i.e., b = b� � b�: The standard error of the covariance term
is the square root of the diagonals of V ar [b] = V ar hb�� b�i :
Allowing for an unbalanced panel data that is due to entry and exit of �rms

is possible. One way to do so is to focus on the dynamic OP decomposition

introduced by Melitz and Polanec (2009). As shown in Nevalainen (2010), point

estimates for the di¤ent terms of the dynamic OP decomposition can be obtained

by focusing on two time periods and by regressing 'it on appropriately scaled

sit using data on surviving incumbents from both periods, data on entrant �rms

from the latter of the two periods and data on exiting �rms from the �rst period.

An alternative way to allow for entry and exit is to assume that there are 3

mutually exclusive sub-groups in each period, i.e., the sub-groups for surviving

incumbents (j = 1), entrant �rms (j = 2), and those �rms that exit before the

end of the next period (j = 3). One can then follow the steps outlined above for

the estimation of the (static OP) productivity components in mutually exclusive

sub-groups. The sub-group indicator, qit;j , is de�ned as follows: If �rm i neither

enters at t nor exits at t+1, qit;1 = 1 and = 0 otherwise. If �rm i enters the data

13



during period t; qit;2 = 1 and = 0 otherwise. For those �rms that exit at t+ 1,

qit;3 = 1 and = 0 otherwise.8 Slicing data in this way one can, for example,

compare productivity levels between entrants and surviving incumbents in a

given period (e.g., test H0: t;2 + �t;2 � t;1 � �t;1 = 0)9 , study whether the

(relative) productivity levels of entry vintages change over time (e.g., test H0:

(t;2 + �t;2) � (t�s;2 + �t�s;2) = 0 or H0: t;2 + �t;2 � t;1 � �t;1 = t�s;2 +

�t�s;2 � t�s;1 � �t�s;1) and examine whether it is the change in the covariance

component (e.g., test H0: (t;2�t�s;2) = 0 or H0: t;2�t;1 = t�s;2�t�s;1),

or changing average productivity of entrants (e.g., test H0: (�t;2 � �t�s;2) = 0

or H0: �t;2 � �t;1 = �t�s;2 � �t�s;1), that drives the change.

In some applications, there may be a bene�t of not treating moment condi-

tions (2) and (4) independently. Because the models are just-identi�ed (this may

however be relaxed; see below) and linked by de�nition, the bene�t is for the

present purposes more computational (and practical) than statistical: Stacking

the two moment conditions and building GMM estimation on them gives point

estimates and standard errors for the L.H.S. and the two R.H.S. components

of (1) simultaneously. Such an estimation is easily implemented using modern

software packages, such as Stata. Because the errors in (2) and (4) are corre-

8Using this notation,
P3
j=1 qit;j = 1: There is, however, a remaining piece of ambiquity

in how one should classify new plants that enter the data by the end of period t and exit by

the end of period t + 1. For them, qit;2 = 1 and qit;3 = 1: When the time period becomes

shorter, the share of such observations gets smaller. In applications that use annual data,

the number of observations of this type may however be non-negligible. A practical solution

to this problem is to introduce a fourth plant category for such "experimental", short-lived

entrants.
9One could also study how a vintage of entrants contribute to the level of industry pro-

ductivity in a given period. For such an analysis, an estimate of the activity shares (e.g.,

employment shares St;j =
PN
i=1 qit;jLit=

PN
i=1 Lit) is of course needed.
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lated for �rm i, the stacked GMM estimation should allow for (cross-moment)

clustering of the errors.

Finally, it may sometimes be useful and possible to expand the instrument set

in (2) with additional explanatory variables. In that case, E [Zi0 ('i �Xi�)] =

0, where Zi includes Xi and the additional instruments. The model would then

be over-identi�ed and more e¢ cient estimation is possible. It would call for

using a two-step GMM with an appropriate weighting matrix. We leave it for

future work to pursue extensions based on over-identi�ed models and additional

instrumental variables.

4 Application

4.1 Data

In our empirical application, we focus on the development of labour produc-

tivity in a single industry, "Computer and related activities" (NACE 72). The

industry is an example of a dynamic service industry in Finland, with high net

employment growth and intensive hiring and separation rates of the employees

(see Maliranta and Nikulainen 2008).

Our �rm-level data cover years from 1995 to 2007 and come from the Struc-

tural Business Statistics (SBS) data of Statistics Finland. The SBS data in-

clude all �rms in the Finnish business sector. For larger �rms, the SBS data

are primarily obtained from the Financial Statements inquiry. For those �rms

not covered by the inquiry, typically employing less than 20 persons, data come

from the Finnish Tax Administration�s corporate taxation records and Statistics

Finland�s Register of Enterprises and Establishments.

We measure labour productivity, 'it, by (the logarithm of) value added per

person in year 2000 prices and activity shares, sit, by the employment share of
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�rms.10 For de�ation, we have used implicit price index of the industry obtained

from the Finnish National Accounts.

Inspired by Bartelsman et al. (2009a), we focus on cross-regional di¤erences

in productivity.11 We estimate, in particular, OP productivity decompositions

for two Finnish regions that are in many ways not alike. The �rst is "Uusimaa",

which is a region in Southern Finland province. Uusimaa consists of Helsinki,

the capital of Finland, and 20 surrounding municapilities. The population of the

region is 1.4 million that is a quarter of the total population of Finland. The

second region is "Itä-Suomi" (the Eastern Finland). It is sparsely populated

region whose area is 7.6 times larger than that of Uusimaa but its population is

only 40% of that in Uusimaa. Uusimaa is much richer than Itä-Suomi; according

to the statistics of Eurostat, in 2006 the GDP per inhabitant was 56.9% above

the EU average in Uusimaa but 14.7% below in Itä-Suomi.

Some of the multi-unit �rms have activities in several regions. In these cases,

the location of the �rm refers to the region that has the highest within-�rm

10The number of persons refers to the average numbers of persons engaged in the activities

of a �rm during the accounting period. This convention means that a person who has been

employed in the �rm for six months corresponds to half an employee. On the other hand, part-

time employees are not converted to full-time equivalents. The number of persons engaged

include workers, salaried employees and entrepreneurs. It also includes, for example, employees

on sick leave or on maternity leave and those laid-o¤ for a �xed period. For a more detailed

description of the SBS, see http://tilastokeskus.�/til/tetipa/kas_en.html.
11See also Böckerman and Maliranta (2007), who examine the plant-level sources of regional

productivity divergence in Finnish manufacturing industries. By using a dynamic decompo-

sition formula, they �nd that the main factor behind the widening productivity gap between

the Eastern and Southern Finland since the mid-1980s has been the lack of productivity-

enhancing plant-level restructuring within industries in the Eastern Finland. Further analysis

of the regional productivity di¤erences in Finland can be found from Ottaviano, Kangasharju,

and Maliranta (2009).
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employment share.12 Using this information, we de�ne two mutually exclusive

sub-group indicators. The �rst, qit;U , is equal to one if �rm i is located in

Uusimaa (j = U) in period t, and zero otherwise. The second indicator, qit;I , is

de�ned similarly for �rms located in Itä-Suomi (j = I). The two indicators are

complements, as qit;I = 1� qit;U :

Descriptive statistics of the data can be found in Table 1.13 It displays

for selected years the number of �rms (Nt;j =
PN

i=1 qit;j), total employment

(
PNt

i=1 qit;jLit), and the weighted average of labour productivity (
PNt

i=1 qit;jsit'it),

separately for j 2 fU; Ig.

[Insert Table 1 about here]

4.2 Results

Our main results are displayed in Figures 1-3, obtained by the moment-based

approach developed above. The �gures display point estimates and the associ-

ated 95% con�dence intervals (based on panel-robust standard errors) for the

weighted average of labour productivity (b�, Figure 1), the average of labour
productivity (b�; Figure 2) and the covariance term (b; Figure 3), separately for
the two regions (Uusimaa shown by the lines without dots and Itä-Suomi with

dots) over the sample period from 1995 to 2007.

[Insert Figures 1-3 about here]

As can be seen from Figure 1, the productivity development has been some-

what erratic, especially in Itä-Suomi. However, the positive trend in the level
12The distribution of a �rm�s employment by region is computed by using Statistics Fin-

land�s Register of Enterprises and Establishments.
13We have excluded from the sample observations that have less than one (employed) person

or that have negative value added.
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of industry productivity is quite visible in Uusimaa. The same is not true for

Itä-Suomi, which seems to have su¤ered from a dip in productivity development

around 2001. However, the con�dence intervals are much wider in Itä-Suomi

than in Uusimaa.

Figures 2 and 3 suggest that while the covariance component has made a

negative contribution in both regions, the positive trend in the average �rm pro-

ductivity has kept industry productivity increasing in Uusimaa and prevented

it from falling in Itä-Suomi. Moreover, it appears that over the last six (or so)

years of our sample period (i.e., years after the dot-com bubble period), the level

of industry productivity has been higher in Uusimaa partly due to its larger co-

variance component. Interestingly, the con�dence intervals of the average �rm

productivity are much narrower in Uusimaa than in Itä-Suomi, whereas those

of the covariance term are of the same order of magnitude in the two regions.

We have formally tested a number of hypotheses about the regional de-

velopment in productivity and its sources: First, the null hypothesis that the

level of industry productivity has not changed from 1995 to 2007 (i.e., H0:

�2007;j + 2007;j � �1995;j � 1995;j = 0) is rejected for Uusimaa (j = U) but not

for Itä-Suomi (j = I). The p-value for the (Wald) test of the former hypothesis

is 0.001, whereas it is 0.966 for the test of the latter hypothesis. Looking at the

sources of this di¤erence, the OP decomposition shows that there is a statisti-

cally signi�cant improvement from 1995 to 2007 in the average productivity of

�rms in Uusimaa. For Uusimaa, we reject H0: �2007;U � �1995;U = 0 at better

than the 1% signi�cance level. However, the same null hypothesis for Itä-Suomi

cannot be rejected at the 1% level (p-value is 0.042). Interestingly, we cannot

reject H0: 2007;j � 1995;j = 0 for either region (with p-values 0.255 and 0.108

for j = U; I, respectively). This �nding suggests that long-term changes in the

covariance term cannot be measured very accurately in our data.
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Second, we clearly reject the null hypothesis that the level of industry pro-

ductivity has, on average, been the same in the two regions during the period

from 1995 to 2007. This hypothesis is equivalent toH0: 1
13

P2007
t=1995(�t;U+t;U�

�t;I � t;I) = 0: The p-value of the associated test is less than 0.001. Looking

at the OP components, there is a statistically signi�cant di¤erence between the

two regions in the the average productivity of �rms; the p-value of the test for

H0: 1
13

P2007
t=1995(�t;U � �t;I) = 0 is less than 0.001. However, the di¤erence be-

tween the two regions in the covariance term is not statistically signi�cant, as

we �nd that the p-value of the test for H0: 1
13

P2007
t=1995(t;U �t;I) = 0 is 0.146.

Third, when we focus on the last six years of the sample period, we �nd that

H0: 16
P2007

t=2002(�t;U+t;U��t;I�t;I) = 0 can be rejected at better than the 1%

signi�cance level (p-value < 0.001). This result appears to be due to two things:

First, the average productivity of �rms in Uusimaa has, on average, been higher

during these years. The p-value of the test for H0: 1
6

P2007
t=2002(�t;U � �t;I) = 0

is less than 0.001. The covariance term has also been higher in Uusimaa than

in Itä-Suomi. However, the di¤erence cannot be measured as accurately: The

p-value of the test for H0: 16
P2007

t=2002(t;U � t;I) = 0 is 0.024.

5 Conclusions

We show how a standard moment-based GMM procedure can be used to com-

pute point estimates for the components of the Olley-Pakes productivity decom-

position and to estimate their standard errors. The procedure provides applied

researchers with a simple two-step receipt for panel-robust inference and allows

for hypothesis testing about, e.g., the coevolution of the productivity compo-

nents in di¤erent groups of �rms.

We provide an application of the procedure to Finnish �rm-level data from

1995 to 2007. We �nd that in our data, there is a clear and statistically sig-
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ni�cant improvement in the level of industry productivity in one of the two

regions that our empirical analysis covers. However, formal statistical inference

reveals that we cannot in all cases measure the drivers of the change and the

di¤erence between the two regions accurately. In particular, we �nd that not

all intertemporal changes and cross-regional di¤erences in the covariance term

are statistically signi�cant even though they appear visible to a naked eye.

We have framed our analysis in terms of population moments and GMM

because they immediately suggest a number of ways of how the estimation and

inference procedure might be extended. For example, the procedure provides

a starting point for the computation of, and inference about, dynamic pro-

ductivity decompositions, such as those of Melitz and Polanec (2009) (see also

Maliranta 2009 and Nevalainen 2010), that allow for di¤erential productivity

growth contributions by new, surviving and exiting �rms.

Three other potential directions for extensions are also worth mentioning:

The �rst is an instrumental variables application that might allow productivity

researchers to account for measurement error in the raw data on productivity

and activity shares; see Bartelsman, Haltiwanger and Scarpetta (2009b) for a

discussion of measurement errors in this context. The second potential extension

is to "decompose" the covariance term so as to better understand what drives

it. Such a breakdown might be done by bringing in (appropriately scaled)

additional regressors (and, if needed, additional population moments) into the

model. The Frisch-Waugh regression anatomy formula can then be used to

link the partial regression coe¢ cients of the extended model to the covariance

term. The third, but clearly more speculative, direction for an extension is

the possibility of integrating industry-level (TFP) decomposition computations

that the procedure developed in this paper enables with the regression-based

estimation of �rm-level production functions that precede the measurement of
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�rm-level TFP (e.g., Levinsohn and Petrin 2003).
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Table 1: Descriptive Statistics
Uusimaa -region Itä-Suomi -region

Nt
PNt

i=1 Lit
PNt

i=1 sit'it Nt
PNt

i=1 Lit
PNt

i=1 sit'it
1995 667 10 541.1 3.88 61 482.4 3.70
2000 855 21 604.6 4.02 109 886.8 3.68
2005 892 24 931.0 3.98 94 835.0 3.53
2007 1183 29 614.7 4.09 108 807.7 3.69
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