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Preface

This licentiate thesis is partly based on the published article by A. Penttilä, K.
Lumme, E. Hadamcik and A-C. Levasseur-Regourd, titled ‘Statistical analysis of
asteroidal and cometary polarization phase curves’. The article is published in
Astronomy & Astrophysics, volume 432 (2005). As a first author of the article
I was responsible of the data management, statistical analysis and conclusions
made in the article.
Commonly used abbreviations in the thesis
α0 inversion angle
λ wavelength
GS Gibbs sampler
IR infrared wavelength domain
LEM linear-exponential model
LR likelihood ratio
LS least squares
ML maximum likelihood
MR multiple response
P(α) polarization (linear polarization ratio) as a function of α
PPC polarization phase curve
SBN Small Bodies Node database
sub-TRIM restricted version of the trigonometric model
TRIM trigonometric model
UV ultraviolet wavelength domain
WE wavelength effect

I will use the following font styles to indicate the different types of variables and
functions: scalar variables with italic, e.g. b, and scalar-valued functions with
roman slant, e.g. P. Vectors and vector-valued functions with bold, e.g. x and
f . Matrices and matrix-valued functions with capital roman bold, e.g. I and F.
Random variables accordingly, but with sans-serif font, e.g. y, y and Y. Estimates
are printed with an accent, b̂, and distributions with calligraphic font, e.g. N .
I would like to acknowledge the financial support for this work by Finnish Cul-
tural Foundation. I thank my supervisor, prof. emeritus Kari Lumme for his
support and active role in my research work, as well as the whole Planetary Sys-
tems Research group led by Karri Muinonen. Other people that have helped
and influenced this work include e.g. Edith Hadamcik, Anny-Chantal Levasseur-
Regourd, Imbi Traat and Pentti Saikkonen. Special thanks also to my family —
Sonja, Joona and Tuomas — for patience, inspiration and support.
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A. Penttilä Licentiate thesis

Chapter 1

Introduction

Photopolarimetry is one of the key methods to retrieve physical information about
the Solar System objects. These include the planets, their aerosols, satellites and
rings, the asteroids, the cometary comae and the interplanetary dust. Roughly
speaking, they can be subdivided into objects with a surface (planets, satellites,
asteroids) and clouds of particles (aerosols in planetary atmospheres, rings, coma,
interplanetary dust). The Solar light scattered by such media is actually partially
linearly polarized.

The linear polarization, as defined in e.g. Gehrels (1974) or Hapke (1993), is
the ratio of the difference to the sum of the two polarized components of the
brightness, respectively perpendicular and parallel to the scattering plane. One
of the most interesting points is indeed that, since the polarization is a ratio
(remaining between -1 and +1), no normalization in brightness is required to
compare data obtained on different objects (or on the same object at different
times). This is especially important for comets, since the brightness variations
with the distances to the Sun and to the Earth depend not only upon the distances
but also upon changes in the activity of the comet and upon the size of the coma.

Both types of objects have been widely modeled using the ever-increasing amount
of observational data. It is fairly obvious that the models for bodies with an atmo-
sphere have been successful and have produced unique knowledge of the physical
structure. The basic reason for this is that light-scattering models are much easier
to apply to atmospheres because the basic constituents are much smaller than
the wavelengths used. Then the Rayleigh-type light scattering approach is quite
adequate.

Seeliger’s work (1887) on Saturn’s rings was obviously the first attempt to gain
quantitative information of the ring particles. He introduced the basic idea of the
mutual shadowing concept which since then has been widely used for the regolith
studies to explain the classical opposition effect, the nonlinear brightening seen
near the backscattering direction. The fundamental difficulty in the shadowing
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Chapter 1. Introduction

scheme is the question how to separate the shadowing contribution and that origi-
nating from a single particle because both depend on the same scattering angle or
phase angle. The implicit and completely unjustified assumption normally made
was that small ring or regolith particles do not have their own strong opposition
brightening. It was not until much after Seelinger’s work when the dynamicists
realized that the packing density of Saturn’s rings is about ten times as high as
predicted by the shadowing mechanism (Dones et al. 1993, Mishchenko 1993).

At about the same time computer capabilities had increased so much that exact
wave-optical calculations became possible for small non-spherical particles and
their aggregates. This allowed a better interpretation of polarimetric data. In-
deed, the question of negative polarization, sometimes wrongly called anomalous
polarization, has recently been a widely studied subject in planetary research (see
e.g. Muinonen, Piironen, Shkuratov, Ovcharenko & Clark 2002, Muinonen 2004,
Shkuratov et al. 2004). Here the fundamental question is why the inversion angle
is so insensitive to parameters like albedo or wavelength.

For very small particles in an atmosphere or for liquid (and thus spherical)
aerosols, the Mie scattering theory can be used. However, such an approach
is not always adequate for solid particles (see Hadamcik et al. 2003 for soot par-
ticles). Lumme et al. (2003) started a systematical study of light scattering by
various aggregates of wavelength-sized constituents. These studies unequivocally
show that both nonlinear backward scattering and negative polarization naturally
follow without any restrictive assumptions. Unfortunately computer capabilities
still limit the aggregate sizes to a few hundred constituents. Calling these aggre-
gates a single particle allows radiative transfer calculations for large aggregates
and regoliths.

An increasing amount of observational data has been compared to numerical data
for modeled particles to obtain clues about the dust physical properties. These
comparisons need a continuous curve to fit the data and if possible to predict the
values for phase angles where data are missing. Therefore the topic of this thesis,
the different models to the polarization phase curve and methods to estimate the
model parameters and their errors, offers useful tools for the photopolarimetry.

1.1 Polarimetric observations on asteroids and co-
mets

The light is electromagnetic wave-motion and the scattering of light refers to the
change in the wave-motion when the incident wave confronts an interface between
two media. The details of electromagnetic scattering is a vast topic and is not
covered here. Instead, one can refer to e.g. van de Hulst (1957) or to more recent
Mishchenko et al. (2006). It is probably sufficient just to mention that the state
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of the (average) electric field vector can be expressed with the intensity and the
polarization. The scattering event can change both the intensity and the polari-
zation of the light. The polarization state can be described with the polarization
ellipse in general, with the special cases of linear or circular polarization which
are schematically shown in Fig. 1.1. The polarimetric observations of the light
scattered from asteroids or comets measure usually the linear polarization ratio
P, the ratio between the difference and the sum of the flux Z in perpendicular
(⊥) and parallel (‖) polarized components:

P(α) = Z⊥(α)− Z‖(α)
Z⊥(α) + Z‖(α) , (1.1)

usually given in percent. The phase angle α is the angle between the light source
(the Sun), the target and the observer (the Earth, usually) as shown in Fig. 1.2.
These three objects also define the so-called scattering plane, in which the direc-
tions parallel and perpendicular are defined. It is common that the flux is mostly
perpendicularly polarized making the linear polarization ratio positive, but also
negative P is regularly observed with small phase angles from e.g. asteroids and
comets.
Numerous polarimetric measurements for asteroids and comets can be found in
published papers. Some compilations were attempted for asteroids (available

Figure 1.1: A schematic description of the electric field vector traveling upward
with linear polarization state in the left and with circular polarization state in
the middle. The shapes that the field vectors trace as traveling though a plane
are shown in the right (blue is linear and red is circular polarization). The
combination of these two states would lead to the general elliptic polarization
state.
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Figure 1.2: A schematic representation of the observation geometry and the de-
finition of the phase angle α between the Sun, the target (asteroid in this case),
and the Earth. The plane through these three objects is the scattering plane.

on the Internet at the SBN, the Small Bodies Node∗). Except for some near-
Earth objects, unfortunately, the explored phase angles are smaller than 30◦. For
cometary data, a general electronic database does not yet exist and it is thus
necessary to use the published papers on polarimetric observations of comets.

For all these objects (asteroidal surfaces and cometary comae), phase curves at
least within a given wavelength range present similar smooth shapes with a small
negative branch, an inversion region where P turns from negative to positive, and
a wide positive branch with a maximum near 90◦. Data retrieved near opposition
(phase angle equal to 0◦) correspond to extremely small polarizations. Although
no data have ever been obtained at 180◦, with a current maximal phase angle
for comets equal to 121◦ (Hadamcik & Levasseur-Regourd 2003b), polarization
seems to significantly decrease near forward scattering. Maybe the best example
of the polarization from atmosphereless Solar System object is available from the
Moon, e.g. from Lyot (1929). The Fig. 1.3 shows the very same overall shape of
the polarization phase curve as for the asteroids or comets with the maximum of
α at 159.4◦.

1.1.1 Asteroidal database

The asteroidal polarimetric data used in this thesis come mainly from the SBN
database†. They include 1635 entries for 137 asteroids (number, date of obser-
vation, filter, phase angle, polarization, measurement error, position angle etc.).
More than 85 percent of the measurements are in the U filter 362 nm, B filter
(435 nm) and V filter (559 nm) and only 7 percent in the R filter (685 nm). The
phase angle range is from 0.1◦to 120◦, but in most cases the phase angles are
∗http://pdssbn.astro.umd.edu
†http://www.psi.edu/pds/archive/radarpol.html
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Figure 1.3: Polarization of the Moon, Lyot (1929).

limited to less than 30◦. Only some near-Earth objects were explored at large
phase angles. A classification based on spectra obtained in the visual and near
infrared domains, and data on the physical parameters of the asteroids are also
available at the same address. Further data, not included in the SBN at the time,
have been published by e.g. Goidet-Devel et al. (1995), Mukai et al. (1997) and
Kiselev et al. (1999, 2002).

1.1.2 Cometary database

Polarimetric observations of cometary dust are not easy. First, it is necessary
to use filters to avoid the gaseous emissions. If the filters are not correctly cho-
sen or the measured intensities are not corrected for the gaseous emissions by a
study of their spectrum close to the period of observations in polarization, the
measurements are not adequate for a comparison with other comets. The se-
cond difficulty is related to the variation of the polarization with the aperture
due to differences of dust properties in the coma (Jockers 1997, Hadamcik &
Levasseur-Regourd 2003a,b). To build up a database for cometary dust it is thus
necessary to use large enough apertures (depending on the comet). The variation
in the observations at a fixed phase angle is mainly due to aperture differences.
With the imaging polarimetry technique it is possible to observe the coma regions
and to better choose an aperture that includes the main structure (Hadamcik &
Levasseur-Regourd 2003a,b). However, polarimetric observations do not require
normalization and give fundamental information on the physical properties.
Levasseur-Regourd et al. (1996) used all the data already published by various
groups (see references therein) to derive a first classification of comets from their
polarimetric properties. The data from new observations were later added to
this database (Hadamcik & Levasseur-Regourd 2003a,b, and references therein).
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Finally, S. Kikuchi (personal communication with E. Hadamcik) added data,
mainly for the comet 109P/Swift-Tuttle. The database includes 36 comets with
more than 1000 data points between the near ultraviolet and near-infrared spec-
tral domains, but mainly in the green and red domains. Two comets have been
extensively observed, comet 1P/Halley at its 1985-1986 apparition (for which the
Vegas and Giotto space probes provided some ’ground truth’) and the bright
comet C/1995 O1 Hale-Bopp in 1995-1997. The generally used continuum filters
are from the International Halley Watch program (IHW) or later from NASA
(see wavelengths and eventual contamination in Jockers 1997). The phase angle
range is from 0.6◦to 121◦.

The cometary data that is analyzed in this article consist of observations of
comets C/1995 O1 Hale-Bopp, 1P/Halley, C/1996 B2 Hyakutake, 109P/Swift-
Tuttle and C/1975 V1 West. Comets will be referred hereafter in the text without
the catalogue identifier number.

1.1.3 The wavelengths and error estimates in the observations

The properties of the wavelength filters that are used in the observations can vary
between the measurement campaigns and the telescopes. For example, the width
of the wavelength acceptance region can differ. In this thesis I want to compare
different models for polarization for both asteroids and comets from all available
data sources, and therefore the different filters need to be regrouped into more
coarse but common scale. I will use the visible wavelength domains violet (380–
450 nm), blue (450–490 nm), green (490–560 nm), yellow and orange (560–630
nm) and red (630–760 nm), and outside visible the ultraviolet (UV, below 380
nm) and infrared (IR, 760–2200 nm).

Estimates for the measurement errors in polarization observations are given in
the asteroid and comet databases. These errors are generally instrumental errors
and the rotation of asteroids whose surface may be inhomogeneous (variegation
effects) or the spatial variations in a cometary coma are not taken into account.
For these reasons the errors are not realistic as deviations between the obser-
vations and a unique and smooth polarization phase curve of the object. For
example the asteroid Vesta has two observations P (5.05◦) = −0.81 ± 0.01 and
P (5.4◦) = −0.45 ± 0.01 (in %-units). The phase angles α are so close that the
observations should lie within, say two to four standard errors of each other while
the difference is actually 36 standard errors. However, if the error estimates are
at least in the same scale with each other, these can still be used as weights in
the regression analysis. One has only to bear in mind that any quantity that
is computed from the weighted residuals, e.g. the residual sum, might have an
arbitrary scale.
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1.1.4 The structure of this thesis

The purpose of this thesis is to study different models suitable to asteroid and
comet polarization data, and their estimation techniques. First, in Sec. 2 three
empirical models for polarization phase curve are compared using data from dif-
ferent asteroids. The models are estimated using nonlinear regression. Second,
in Sec. 3 the issues encountered with the models and the regular frequentists
regression are tried to tackle with a Bayesian approach, and this approach is also
tested on some data from asteroid Juno and comet Halley, and on the so-called
high Pmax comets. Third, in Sec. 4 the polarization is modeled as a function of
the wavelength in addition to the phase angle. The possible wavelength effect on
polarization is studied with either multiple response regression model, or with a
Bayesian model.
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A. Penttilä Licentiate thesis

Chapter 2

Selection of the polarization phase
curve model

2.1 Empirical models for the polarization

There has been two efforts at the Helsinki University Observatory to produce
a suitable model function to describe the polarization phase curve (PPC). Both
of these models have a fully empirical basis and there is no attempt to actually
model the physics involved in the scattering event that produces the polarization
state. A stable, robust and realistic empirical fit accompanied with reliable error
estimates alone would already be useful in the studies about the polarization
behavior of Solar System objects.

2.1.1 Trigonometric model

The first suggestion for PPC model was made by Lumme & Muinonen in a poster
at ACM (Asteroid, Comets, Meteors) meeting in 1993, the so-called trigonometric
fit. The idea behind the model was that, instead of the local polynomial fits, the
model should be able to describe the whole phase curve from α = 0◦ to α = 180◦.
This model has since been used by numerous authors to fit the observational data
(e.g. Goidet-Devel et al. 1995, Levasseur-Regourd et al. 1996, Kiselev et al. 2002,
Hadamcik & Levasseur-Regourd 2003a,b), but formally published as late as 2005
in Penttilä et al. The model is of the form

P1(α) = b sinc1(α) cosc2(α2 ) sin(α−α0),

where b ∈ [0, 1], c1, c2 > 0, and α0 ∈ [0◦, 180◦]. (2.1)

There are few appealing properties in this model, which I will refer as trigono-
metric model (TRIM) hereafter. Firstly, the function values are by definition
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Chapter 2. Selection of the polarization phase curve model

always limited between -100% and 100% and the values at α = 0◦ and α = 180◦
are zero, as it should be for the polarization ratio. Secondly, the TRIM nicely
produces first a negative phase that turns into a positive phase before going again
to zero at α = 180◦. This is the typical behaviour of the PPC from almost any
atmosphereless Solar System object. The negative phase can also be bypassed, if
needed, by letting the α0 → 0◦.

The TRIM in Eq. 2.1 has four parameters: b, α0, c1 and c2. The parameter b is
mainly connected to the amplitude of the polarization. The physically reasonable
range for b is [0, 1]. With a choice of α0 = 0◦, c1 = 3, c2 = 0 and b = 1 we
approximately get the PPC of Rayleigh scattering∗ with a maximum polarization
of 100% at phase angle α = 90◦. Parameter b also affects the slope of the phase
curve at α0.

The parameter α0 is the inversion angle, the phase angle where the PPC turns
from negative to positive. The phenomenon of a negative branch of polarization,
which will turn positive in the neighborhood of α = 20◦, is common for Solar
System dust where multiple scattering and interactions between the constituent
grains inside aggregates play an important role. A physically reasonable range
for α0 is obviously [0◦, 180◦], although in observations the inversion angle seems
to stay below ∼ 30◦.

The powers c1 and c2 have an influence on the shape of the phase curve. The
parameter c1 mainly affects the position of the minimum and the second derivative
of the curve, while c2 has influence on the maximum and on the asymmetry of
the curve, moving the angle for maximum polarization away from 90◦. These two
parameters should have positive values.

The collection of these four parameters offers a wide variety of different, realistic
shapes for phase curves. These are outlined in Fig. 2.1.

2.1.2 Restricted version of the trigonometric model

There are some parameter identification problems in the TRIM if there are only
a few observations and/or they belong to a small phase angle range. The power
parameter of the cosine, c2, is usually the most challenging to estimate, since its
effect is seen mostly in the positive branch with large phase angles where there is
commonly a lack of observation points. Originally Lumme & Muinonen tackled
this problem by setting both the power parameters c1 and c2 as constants which
were estimated by fitting the TRIM to all available observations, separately to
asteroids and comets. As a consequence, the TRIM would reduce to a linear

∗Rayleigh scattering refers to scattering law named after Lord Rayleigh applicable for single
particles much smaller than the wavelength.
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Figure 2.1: The effect of the parameters on the TRIM (given in percent). In all
figures only one parameter changes, which is denoted in the corresponding legend
label. The other parameters have values b = 0.1, α0 = 20◦, c1 = 0.7, c2 = 1.

model:

P1(α; c1 = cc1, c2 = cc2) = b sin(α)cc
1 cos(α2 )cc

2 sin(α− α0)

= b sin(α)cc
1 cos(α2 )cc

2 [sin(α) cos(α0)− cos(α) sin(α0)]

= b cos(α0)[sin(α)cc
1+1 cos(α2 )cc

2 ]− b sin(α0)[sin(α)cc
1 cos(α) cos(α2 )cc

2 ]

= θ1 x1 − θ2 x2, (2.2)

where the θi are the two new parameters (e.g. θ1 = b cos(α0)) and xi are the new
variables (e.g. x1 = sin(α)cc

1+1 cos(α/2)cc
2). The linearization makes the model

estimation more straightforward.

To my mind the restrictions to the TRIM by setting both the c1 and c2 as con-
stants are too limiting, and I propose rather a restricted version of the TRIM
where only the more problematic parameter c2 is set to a constant value. The
suitable value cc2 for the c2 can be found by fitting the TRIM beforehand to the
whole observation set in hand, e.g. to all the asteroid observations in the SBN
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database. This submodel of the TRIM is now of the form

P2(α) := P1(α; c2 = cc2) (2.3)

with cc2 as a beforehand estimated constant, and will be referred as the sub-
trigonometric model (sub-TRIM) hereafter.

2.1.3 The linear-exponential model

The second model to PPC developed at the Helsinki University Observatory is the
so-called linear-exponential model (LEM), which was introduced for polarimetry
by Muinonen, Piironen, Kaasalainen & Cellino (2002). The main idea behind
the LEM is that the same function can be used to model also the photometric
observations (i.e. intensity of light) (see e.g. Piironen et al. 2000, Kaasalainen
et al. 2001, 2003). With the intensity the so-called backscattering effect has been
under interest in the recent years among the light scattering community (see e.g.
Muinonen 2004, Mishchenko 2008, Tyynelä et al. 2008). The backscattering effect
is observed from various scattering targets with small phase angles, α . 5◦. This
effect was previously explained by mutual shadowing mechanisms of the target,
but it has not been able to explain fully the strong nonlinear growth of the
intensity. In addition to mutual shadowing, the so-called coherent backscattering
or weak localization of waves has been offered to explain the observations and
laboratory measurements.

The LEM for photometry is of the form I(α) = a exp(−α/d) + b + kα, where
a, b, d > 0 and k < 0. The exponential part is strong at small phase angles
but approaches to zero with larger α, where the linear part dominates. For the
polarimetry one essential demand for a model is that P(0) = 0. For the LEM
this is fulfilled if b ≡ −a. Thus, the LEM for polarimetry is of the form

P3(α) = a(exp(−α
d

)− 1) + kα, where a, d, k > 0. (2.4)

The exponential part can model the often seen asymmetry in the negative polari-
zation phase with the steep decrease in PPC after α = 0◦ and the linear part can
model the steady increase from negative to positive around the inversion angle
α0. Obviously the LEM is not suitable for large α, since the linear part keeps the
model increasing when α grows toward 180◦. The model is still useful in the phase
angle range where most of the observations are. The effects of the parameters on
the PPC in the LEM is showed in Fig. 2.2.
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Figure 2.2: The effect of the parameters on the LEM (given in percent). In all
figures only one parameter changes, which is denoted in the corresponding legend
label. The other parameters have values a = 0.03, d = 0.02, k = 0.01.

2.2 Comparison between the empirical models for
the PPC

In the following section I will compare the three aforementioned nonlinear models
(TRIM, sub-TRIM and LEM) in terms of the statistical goodness and reliability of
the fits. I have chosen to use a subset of the asteroid polarization data at the SBN
for testing. Since the LEM is designed to model only the first negative phase and
the turning from negative to positive, I will restrict the observed phase angles
to corresponding range, say α ∈ [0◦, 60◦]. Furthermore, I have required that
there are enough observations per an asteroid to reliably fit the models. I have
set the limit here to at least 18 observations. It is quite common that observed
targets have less observations than this, and that is just the case where reliable
model estimation is a challenge. Thus, for a useful model the estimation should
succeed without major problems with this test dataset. The suitable objects in
the asteroid dataset were, at the time of this analysis, the asteroids 324 Bamberga
(CP), 1 Ceres (G), 511 Davida (C), 433 Eros (S), 8 Flora (S), 19 Fortuna (G),
40 Harmonia (S), 704 Interamnia (F), 7 Iris (S), 3 Juno (S), 39 Laetitia (S), 141
Lumen (CPF), 9 Metis (S), 2 Pallas (B), 4179 Toutatis (S) and 4 Vesta (V). The
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number preceding the asteroid name is the catalogue identification number, and
the letter(s) following the name indicate the asteroid class (after classification by
Tholen & Barucci 1989). These asteroids are hereafter referred with the name
only, without the identification number.

2.2.1 Nonlinear regression model and its estimation

All the three PPC models are nonlinear models, i.e. the outcome of the model
function is not a linear combination of the parameters and functions of the ex-
planatory variable as in linear models, but they are connected together by a
nonlinear function(s). The nonlinear regression model is of the form

y = f(x;θ) + ε, (2.5)

where y is the dependent variable vector being modeled, f the vector-valued model
function with argument x, the vector of explanatory variables, and the parameters
θ whose values are estimated†. The ε is the vector of random errors between the
model f and the observed y. By definition, the expected value E(ε) = 0, and
thus the expected value of the model is

E(y) = E(f(x;θ)) = ŷ, (2.6)

with ŷ being called the fitted, estimated or predicted value of y. The estimation
of the best-fit model parameters θ̂ is done by minimizing the sum of the squared
residual errors ε̂ between the observed y and the modeled ŷ,

θ̂ := argminθ ‖ ε̂‖2 = argminθ ‖ y− ŷ ‖2 = argminθ ‖ y− f(x;θ) ‖2 . (2.7)

The aforementioned Eq. (2.7) defines the least squares (LS) estimator for the non-
linear model. If we add an assumption that the random errors ε are distributed
following the multinormal distribution with zero expected value and diagonal
variance matrix σ2I, the LS estimator will coincide with the maximum likelihood
(ML) estimator of the model. We can write the log-likelihood function of the
model as

l(θ, σ2) = −n2 log σ2 − 1
2σ2 ‖ ε̂‖

2, (2.8)

where the n is the number of observations in the model. The ML estimator for
θ, the value that maximizes the log-likelihood, is clearly the same as the LS
estimator in Eq. (2.7), and for the σ2 the ML estimate is

σ̂2 = 1
n
‖ ε̂‖2 . (2.9)

†If not otherwise noted, all the formulae and results in this section and the following sec-
tion 2.2.2 are based on Saikkonen (2004), but can also be found in e.g. Bates & Watts (1988)
or Seber & Wild (1989).
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The minimization in Eq. (2.7) is often impossible to calculate analytically, and
needs to be solved numerically. The Levenberg-Marquardt algorithm (see e.g.
Gill & Murray 1978) is often used in practice to estimate nonlinear regression
models.

Properties of the maximum likelihood estimates of the nonlinear model

The precise statistical properties of the ML estimates θ̂ and σ̂2 for nonlinear
regression model are often impossible to derive. However, it can be shown that
under quite general assumptions of the model behavior, the statistical properties
of the linear model estimates are also asymptotically valid for nonlinear models.
So, for nonlinear regression model

θ̂ ∼
as
N (θ, σ2 (F(θ)′F(θ))−1 ), (2.10a)

σ̂2 ∼
as
N (σ2,

2σ4

n
), and (2.10b)

θ̂ ⊥⊥
as

σ̂2, (2.10c)

where
F(θ) = ∂f(θ)

∂θ′
, (2.10d)

and where ⊥⊥ marks that the variables are statistically independent. The sta-
tistical significance test about the θ̂ or the σ̂2 are based on these asymptotic
distributions.

Weighted nonlinear regression model

In all the aforementioned results we have assumed that the errors between the
model and the observed values are all the same, i.e. σ2. The more realistic
assumption in some cases is, however, that while still being mutually independent,
each yi has its own error σ2

i . This can easily be due to different conditions during
the measurement of each yi, for instance. For the model in Eq. (2.5) this means
that the covariance matrix of the ε can be expressed as

Cov(ε) = σ2 diag( 1
δ1
, . . . ,

1
δn

) (2.11)

with ’diag’ denoting diagonal matrix. This can be further generalized to a case
where the covariance matrix is of the form

Cov(ε) = σ2 V. (2.12)

The assumption that we will make with Eq. (2.12) is that the matrix V is known
beforehand, and only the general residual variance parameter σ2 needs to be
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estimated. The square roots of the δi = σ2/ σ2
i in the diagonal form of the V are

called the observation weights.
The estimation and the statistical properties of the weighted nonlinear model in
the case of a known V is quite straightforward. The matrix V is always possible
to present as a product of a non-singular matrix C and its transpose, V = CC′.
Now, if we will multiply the model equation Eq. (2.5) from the left with the
matrix C−1, we will get

C−1y = C−1f(θ) + C−1ε, (2.13a)

which can also be denoted as

y∗ = f∗(θ) + ε∗, (2.13b)

a new nonlinear regression model with new, transformed variables and model
function. For the new model it holds that

Cov(ε∗) = Cov( C−1 ε ) = C−1 Cov(ε) (C−1)′ = C−1 (σ2V) (C−1)′

= σ2 C−1 C C′ (C′)−1 = σ2I (2.14)

Thus, the weighted model can be transformed into a normal non-weighted model,
and therefore all the results in Eq. (2.10) apply for weighted model, too, with only
a small change in Eq. (2.10a):

θ̂ ∼
as
N (θ, σ2 (F(θ)′V−1 F(θ))−1 ). (2.15)

2.2.2 Estimated models

The weighted nonlinear regression introduced in the previous section is used to
fit the three models for the test dataset of 16 asteroids. The data includes an
error estimate for each polarization observation, and these are used as regression
weights. The best-fit models are shown graphically, together with the data, in
Figs. 2.3a and 2.3b.

Goodness-of-fit graphically

Firstly, the goodness of the model fit can be studied graphically. While being a
subjective method, the human eye of the researcher is still a very good judge of
the overall soundness of the result. It is quite clear that all the three models fit
very well the observations — in those phase angles where the observations are.
Also, if the (weighted) residuals of the model are plotted against the explanatory
variable α, one can see that the residuals are, approximatively, both random
and homoscedastic. When residuals are ’random’, i.e. no trends can be found in
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the ε̂ as a function of x, it implies that the model can reproduce correctly the
variability in y, and no additional functions or explanatory variables are needed.
When residuals are homoscedastic the assumption of a constant residual variance
σ2 is correct for non-weighted regression, or the weight matrix V is properly
known for weighted regression.
Some insight of the possibilities to use the models to extrapolate the PPC be-
yond the observations can be gathered from the Figs. 2.3a and 2.3b. It seems
that the TRIM will generally predict lower values for polarization than the two
other models at larger α values. In many cases (Davida, Flora, Harmonia, Inter-
amnia, Iris, Juno, Laetitia, Lumen, Pallas and Vesta) the Pmax, the maximum
value of polarization, is located at unrealistically low values of α, below 50◦. This
unwanted feature with the TRIM is due to the problems in identifying the para-
meter c2 that mainly controls the location of the Pmax. This is seen in e.g. the
p-values of the estimated ĉ2 later in this section. The sub-TRIM and LEM are
quite consistent in their extrapolations.

Residual error variance

Secondly, the goodness of the model fit can be assessed by comparing the (weigh-
ted) residual error variances, σ̂2’s, of the models. The σ̂2 is the ML estimate of
the model σ2, as mentioned in Sec. 2.2.1, but it is a biased estimator. Therefore
the estimator ŝ2 = 1

n−p ‖ ε̂‖
2, where the p is the number of the model parameters,

is preferred. For linear models, the estimator ŝ2 can be shown to be non-biased.
The ŝ2’s for all the 16 asteroids and the three models are shown in Table 2.1,
together with the Ŝ2, a ’total’ residual variance over all the asteroids, calculated
by

Ŝ2 = 1
N − k p

k∑
i=1
‖ ε̂i ‖2, (2.16)

where i goes through the asteroids in the data, from 1 to k, and the N is the
total number of the observations in the data. The best model in terms of total
residual variance is LEM, followed by sub-TRIM and TRIM, but the differences
are not large. The worst fits are received from Ceres, Vesta and Interamnia in
terms of the weighted ŝ2, and the best fits from Lumen and Metis. However, it is
highly questionable if the observation error estimates that are used as weights are
really comparable between different objects and/or telescopes, so the comparison
between the ŝ2 for different asteroids can be misleading.

Parameter p-values

Thirdly, the goodness of the individual parameter estimates can be studied. Fol-
lowing Eq. (2.15), the ML estimates of the parameter values should follow asymp-
totically the multinormal distribution, and an individual parameter estimate θ̂i
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Table 2.1: Residual error variances ŝ2 for the 16 asteroids and the three models,
together with the total error variance Ŝ2 over all the asteroids.

Name TRIM sub-TRIM LEM
Bamberga 2.20 2.34 2.30
Ceres 16.39 15.61 17.10
Davida 1.39 2.04 1.67
Eros 8.28 8.43 8.45
Flora 1.58 1.97 1.63
Fortuna 4.29 3.89 4.10
Harmonia 1.22 1.15 1.15
Interamnia 11.81 8.50 8.40
Iris 3.05 4.03 3.48
Juno 2.73 4.56 2.79
Laetitia 1.23 1.22 1.40
Lumen 0.20 0.37 0.39
Metis 0.74 0.70 0.76
Pallas 3.71 3.89 3.65
Toutatis 2.83 2.81 2.81
Vesta 16.85 16.88 16.50

Ŝ2 6.77 6.71 6.67

follows the normal distribution. From the test theory we know that using the
definition of the T -distribution and the fact that θ̂i ⊥⊥

as
ŝ2 it follows that

t = θ̂i − θi

ŝ
√

( F(θ̂i)′V−1 F(θ̂i) )−1
∼
as
Tn−1. (2.17)

The hypothesis (H0) that we want to test is that the θi is zero, and would not have
any effect in the model. The counter-hypothesis (H1) is that it differs from zero.
Based on the Eq. (2.17), the variable t, under the H0 when θi = 0, should follow
the T -distribution with n−1 degrees of freedom. Unusually small or large values
of t are suspicious if the H0 is true. The p-value is the probability of the t to be
as large (small) or larger (smaller) as it is. Thus the small p-values, traditionally
below 5%, indicate that the H0 is not probable and should be rejected in favor of
the H1. For a good model it is quite the necessity that all the model parameters
are important for the model, and thus their p-values should be small at least in
the majority of the cases. The values for the models and their parameters are
shown in Table 2.2.
The fact that the H0 cannot be rejected for some model parameter can be inter-
preted in two ways. The first interpretation is that the corresponding parameter
is not necessary for the model and should be removed. The other is that the data
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Table 2.2: The p-values from the t-test for the parameter significance in the
TRIM and the LEM for the 16 asteroids. For the sub-TRIM all the p-values for
the parameters b, α0 and c1 were below 0.01 in all the cases and are not shown
here.

TRIM LEM
Name b α0 c1 c2 a d k

Bamberga .00 .00 .00 .09 .09 .00 .00
Ceres .00 .00 .00 .77 .00 .00 .00
Davida .00 .00 .00 .00 .00 .00 .00
Eros .00 .00 .90 .28 .00 .02 .00
Flora .00 .00 .00 .00 .00 .00 .00
Fortuna .00 .00 .00 .95 .26 .04 .04
Harmonia .00 .00 .00 .28 .00 .00 .00
Interamnia .59 .00 .00 .00 .00 .00 .00
Iris .00 .00 .00 .00 .00 .00 .00
Juno .00 .00 .00 .00 .00 .00 .00
Laetitia .00 .00 .00 .03 .00 .00 .00
Lumen .00 .00 .00 .00 .56 .28 .27
Metis .00 .00 .00 .57 .03 .00 .00
Pallas .03 .00 .01 .27 .00 .00 .00
Toutatis .02 .00 .11 .62 .00 .00 .00
Vesta .00 .00 .00 .14 .00 .00 .00

at hand does not give enough information to identify the correct parameter value.
The latter interpretation is probably the case with the parameter c2 in the TRIM
model. From Table 2.2 we can see that the c2 has p-values larger than 5% in 9
cases out of 16. The c2 could be better estimated if some data should be available
from larger phase angles showing the PPC behavior near the Pmax. However, if
the model is intented to be used regularly with data lacking the larger values of
the α, then the TRIM cannot be recommended. For the sub-TRIM however, the
parameter identification is not a problem since all the p-values for the parame-
ter significance test for that model are below 1% level. The uncertainty in c2
for the TRIM reflects also to the other parameters because they are somewhat
correlated. While the sub-TRIM without the c2 has no problems, there are large
p-values for the TRIM for b with Interamnia and for c1 with Eros and Toutatis.
For the LEM there are no major problems with this data. The asteroids Fortuna
and Lumen show large p-values for all a, d and k. From Figs. 2.3a and 2.3b it
seems that the change in LEM from the exponential part to the linear part is
harder to find with these objects. The parameter a seems to be the hardest to
estimate in LEM, the p-values are large in three cases.
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Indicators for ill-conditioned model

The ill-conditioned model is a model where there are structural problems with
the parameter identification. The parameter θ is said to be non-identifiable if
f(x;θ∗) = f(x;θ0) with some θ∗ 6= θ0 and ∀x, and in ill-conditioned cases we are
close to this, i.e. f(x;θ∗) ≈ f(x;θ0). The underlying problems in the structure of
the nonlinear model might be hard to see if good data is at hand, but they will
aggravate the problems in the parameter estimation in the cases where we lack
either the number of observations or the coverage of the model space in the data.

The bad cases of non-identifiable parameters can be seen also in the p-values of
significance tests for the individual parameter θi, but in general the problems
show in the multicollinearity of the θ. Multicollinearity means that there are
strong correlations between the parameters in the asymptotic covariance mat-
rix Cov(θ) = σ2 (F(θ)′F(θ))−1 (see Eq. (2.10a) or Eq. (2.15) for the weighted
model).

In fact, all the problems in an ill-conditioned model can be traced to the matrix
G = F(θ)′F(θ) or F(θ)′V−1 F(θ) in the weighted case. The Fig. 2.4 sketches
the situation with two different models in a 2-dimensional case — a case (I)
where G ∝ I and a case (II) where G is far from identity- or diagonal matrix.
The confidence ellipsoids for θ, for example, are proportional to the contours of
the quadratic form of the G−1, which are shown in the figure. The area of the
confidence ellipsoids are the same for both the cases, but the projections into
1-dimensional confidence intervals are not the same size. The interval (a1, a2)
for the ’nice’ case I is quite small compared to the interval (b1, b2) for the ’bad’
case II although they have the same confidence level. For the three PPC models
this multicollinearity is especially bad with the LEM. With all the 16 asteroids
the correlations (not shown here) between the LEM parameters a, d and k are
typically around 0.99 or more! This means that the best-fit values for θ actually
lie in a small but very elongated volume in the 3-dimensional parameter space.
There are large correlations for the other models, too. For the sub-TRIM there
is typically a considerable correlation between the b and the c1. With the TRIM
the b is typically correlated with both the c1 and c2 which are also mutually
correlated.

The elongated ellipsoidal shape of the contours of the quadratic form of the G−1

imply not only multicollinearity problems for the parameters, but also difficulties
in the numerical estimation of the model. The iterative numerical methods like
the Gauss-Newton and similar will use the linear approximation for the function
g(θ) = ‖ε(θ)‖2 that is being minimized in the nonlinear regression. The approx-
imation is that g(θ) ≈‖ ε(θ(k)) − F(θ(k)) (θ − θ(k)) ‖2 which, in turn, leads to
an update scheme θ(k) → θ(k+1) involving the matrix G−1 = (F′F)−1. If the G
is close to being a singular matrix the inversion of G is a numerically unstable
operation.
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The measure of the possible instabilities in matrix inversion is the matrix con-
dition number κ. The condition number in a sense of the l2 norm for the G is
calculated by κ2(G) = σmax/ σmin, where the σmin and σmax are the smallest and
largest eigenvalues of the G. Very large values of κ indicate that the matrix is
almost singular and that the model is ill-conditioned. The condition numbers for
the asteroid test data for the three PPC models are shown in Fig. 2.5. The κ’s for
the LEM are very large for every asteroid and several orders of magnitude larger
than for TRIM or sub-TRIM. The sub-TRIM is by far the most stable model in
this sense.

2.2.3 Conclusions from the PPC model comparison

The conclusions that at least I will make is that the sub-TRIM is the best choice
of the models to be used for the PPC, at least for data that is similar to this test
set or smaller (in number or in α-coverage). Practically this applies to almost all
the current PPC data from asteroids, with the Toutatis as the only exception.
The TRIM had the worst overall residual variance, and there were cases where
parameter significance tests gave large p-values for the model parameters. Fur-
thermore, the extrapolation seems to be very unstable with this model.
The LEM performed quite nicely with only some problems with the parameter
significance, but the correlations between the model parameters are huge and the
model is ill-conditioned so troubles start to grow if the quality of the data should
be worse. Also the extrapolation with this model is dangerous since the model
is, by definition, non-physical as the α grows.
The sub-TRIM is a nice compromise between the physically realistic TRIM and
the fact that the area near Pmax cannot usually be observed. If, however, a more
flexible model than the sub-TRIM is needed, the TRIM could be used together
with some knowledge about the typical behavior of the c2. This can nicely be
done in the framework of Bayesian regression, which is discussed in Sec. 3.
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Figure 2.3a: The polarization observations and the fitted models for the first
eight asteroids in the test dataset. The TRIM, sub-TRIM and LEM are shown
with blue, red and yellow colors, respectively.
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Figure 2.3b: The polarization observations and the fitted models for the last eight
asteroids in the test dataset.
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Figure 2.4: An example of the contours of the quadratic form of the G−1 for two
illustrative cases I (diagonal G) and II (non-diagonal G).

Figure 2.5: The condition number κ in logarithmic scale for the G for the 16
asteroids and for the three models. The number of asteroid in the x-scale refers
to a rank when alphabetically ordered, as in e.g. Table 2.1.
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Chapter 3

Bayesian approach in the model
estimation

The common problem with empirical phase curve fitting is that, especially for
asteroids, there is a lack of good datasets. For a single asteroid, there might be
just a few data points from a limited phase angle range. Phase angles above ∼ 30◦
are rare, and the measurement errors can be noticeable. This heavily affects the
goodness and reliability of the phase curve fit, which is a nonlinear regression
problem for our model. For the four parameters at least four observations is
needed, but in practice only datasets starting from, say eight or ten observations,
can be considered useful. Furthermore, the model parameters are not totally
independent from each other, so there is multicollinearity in the model, i.e. a
unique solution to the model fit is hard to find.
In many nonlinear regression procedures, the problems mentioned can result in
physically unrealistic estimates, e.g. negative values for the power parameters
c1 and c2 in the TRIM. While the fit is usually good in that small phase angle
range where our observations are, any kind of extrapolation from that range is
dangerous, as polarization might have values above one etc. In some applications
this is not a problem, but in this study I want to examine the polarization from
the whole phase angle range and consider also prediction of polarization. In some
regression procedures it might be possible to introduce limits for parameters, but
in practice we have noticed that this is not always reliable.
A very elegant solution to the problems of the standard nonlinear regression is the
framework of Bayesian analysis and regression, where the posterior distribution of
model parameters is a product of the prior distribution of the parameters and the
likelihood of the parameters given by the regression model. In Bayesian regression
the prior knowledge and physical limitations of the model parameters can be used
in the prior distribution. Physical limitations for parameter values are handled
by using distributions that have probability densities greater than zero only in
the reasonable parameter range. Furthermore, since we have been working with
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the asteroid and comet data for quite a while, we have acquired a good insight
into the typical phase curves for different types of objects. Using this knowledge
by assigning larger probabilities to the expected values of the parameters, the
model fit can be guided toward a good, robust and realistic estimate. For a more
detailed description of the Bayesian paradigm see e.g. Box & Tiao (1973).

3.1 Nonlinear Bayesian regression and model esti-
mation

3.1.1 Nonlinear Bayesian regression

The Bayes formula, in short, is a simple result regarding the conditional and
marginal probabilities P of the events A and B: P(A|B) = P(A) P(B|A)/P(B).
The same form applies also to the probability density functions p, but with p the
scaling factor in the denominator can often be discarded and the proportional
form p(a|b) ∝ p(a) L(b|a) can be used. With L I denote the likelihood function,
which is proportional to the density function, and can thus be used instead.
With the case of regression model the distribution D for y|(θ,Σ) is known (or at
least assumed) from the specification of the model:

y|(θ,Σ) ∼ N (f(x;θ),Σ). (3.1)

In model estimation the interest is in knowing the D of the model parameters.
Using the Bayes formula for probability densities it can be written as:

p((θ,Σ) | y) ∝ p(θ,Σ) L(y | (θ,Σ)). (3.2)

The Bayesian terminology is that the p((θ,Σ) | y) is called a posteriori distribu-
tion Dp of (θ,Σ) and the p(θ,Σ) is a priori distribution Dpr. The philosophy of
the Bayesian approach is in the use of Dpr. If it would be assumed that there is no
prior information about the variable under interest, a flat (i.e. non-informative)
a priori could be assumed. This would, in most cases, make the inference coin-
cide with the traditional frequentist approach. But with Bayesian inference the
researcher can also use her subjective insight and decide to use a Dpr that will
give information about the variable.
The Bayesian regression suits well to cases where the most flexible PPC model
TRIM is preferred and where extrapolation of polarization values and estimation
of some polarization features usually not well supported by the data, like the
Pmax, is needed. In Sec. 2 and especially in 2.2.2 it can be seen that the TRIM
can not be well estimated as it is, but if the knowledge about the typical and
probable parameter values for the PPC in the form of Dpr is used the TRIM could
be guided to give more robust and sensible estimates.
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3.1.2 Estimation of a nonlinear Bayesian regression model by
the MCMC

The ’estimation’ in Bayesian sense means that the a posteriori distribution of the
model parameters in Eq. (3.2) needs to be calculated or numerically computed.
The likelihood function L in the case where Σ is diagonal is just the L of n
independent normal-distributed variables, and with a certain choice of Dpr for
(θ,Σ) it is possible to calculate Dp analytically. In a more general case, either
with a more complicated model or with an unrestricted choice of Dp, the closed
analytical form is impossible to find.

In the cases where Dp cannot be found analytically, the Markov chain Monte
Carlo (MCMC) algorithm can be used. The MCMC is a way to form a chain
X1,X2, . . . where the values Xi in the chain will converge to follow the desired
but unknown distribution, the Dp of the regression model in this case. I will not
go into details of the theory of the MCMC here, instead one can turn into e.g.
Gilks et al. (1995) or Robert & Casella (1999) for that. I will just mention that
actually a Gibbs sampler (GS), a special case of the MCMC chain, is formed
with the regression model estimation. The computations needed for the Gibbs
sampling are done with the WinBUGS∗ software (Lunn et al. 2000).

3.1.3 The convergence of the sampler

While a modern Bayesian software packages, such as the BUGS, can form the GS
for the model at hand, the researcher has to take care that the GS will converge
before the sampled values are used in the analysis. The GS will, in theory,
converge when i in Xi approaches infinity, but there is no guarantee that it will
be converged after some large i. Therefore the convergence must be checked as
the model is being sampled.

Some points about the convergence can be seen in Fig. 3.1 where two independent
chains approach the same distribution. The use of two or more chains by using
different starting points for the iteration is most useful. It is evident that at
least the different chains should be converged to the same distribution before the
chain values can be used. In the Fig. 3.1 it seems that this convergence takes
place after ∼ 500 iterations. The iterations before convergence form a so-called
burn-in period and are not used in the final analysis.

In Fig. 3.1 the chains seem to converge to a distribution with expected value
of one, and the chain variance seems constant and similar between the chains.
The convergence can be followed, in addition to the raw chain values, with e.g.
∗The project BUGS — Bayesian inference Using Gibbs Sampling is available on the Internet

in http://www.mrc-bsu.cam.ac.uk/bugs/.
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Figure 3.1: Simulated example of two MCMC chains that approach the same
distribution.

running means and running confidence levels or with some dynamic estimation
of the chain distribution, e.g. kernel estimation.

3.2 The specification and estimation of the TRIM
in Bayesian approach

3.2.1 Model specification

The specification of the TRIM for the Bayesian regression can be presented as a
graphical model, as in Fig. 3.2. First, the observed y together with its distribution
and the functions modeling the distribution parameters are presented on a plate
(large dashed square). The plate presents the data from 1 to n, and objects on
the plate are dependent on the ith value of the data. The distributions are marked
with dashed ellipses, random variables with solid ellipses and known constants
with solid squares. The objects on the plate form the same regular nonlinear
model as in Sec. 2.1.1. The wi’s are the (known) weights for the corresponding
observations.
The Bayesian part of the model is presented outside the plate, where the a priori
distributions for the model parameters are presented. I choose to use the Beta
distribution as a priori distribution for parameter b, and Weibull distributions
for α0, c1 and c2. In theory, the support for the a priori distribution should
coincide with valid range for the model parameter. For c1 and c2 this is true,
since they should be always positive (see Eq. (2.1)) and the support for the
Weibull distribution is the positive half-space, and for b because the support for
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Figure 3.2: The TRIM for the Bayesian regression as a graphical model presen-
tation.

Beta is [0, 1]. The parameter α0 should be in the range [0◦, 180◦]. The practical
support for the Weibull distribution for α0 with any reasonable choice for the
shape of the Weibull distribution can ensure that the probabilities are practically
zero long before 180◦.

In the previous Sec. 2 I used the PPC data for the asteroids, but I will include
also the cometary data to be used with the Bayesian regression. The parameters
for Dpr, called hyperparameters, can be different for asteroids and comets, thus
taking into account the basic differences in their polarization behavior, mainly
the greater values of polarization of comets especially on the positive branch.
After an intensive analysis I ended up with a suggestion for the hyperparameters,
presented in Table 3.1. The corresponding distributions are also shown in Fig. 3.3.
For Dpr for the residual error variance σ2 I choose to use an uninformative uniform
distribution with a range of (0, 2). Other uninformative Dpr could be used as well.

A priori distributions are always based on a subjective decision, and thus other
choices for distributions and hyperparameters could be possible. Among the most
important things to consider when choosing a priori is that the expected shape of

Page 39 of 68



Chapter 3. Bayesian approach in the model estimation

Table 3.1: Hyperparameters for a priori distributions for the TRIM for both
asteroids and comets. The p(x) for Beta distribution is xα−1(1− x)β−1/B(α, β),
where the B is the Euler beta function. The p(x) for Weibull distribution is
α−ββxβ−1 exp(−(x/α)β).

para-
meter

a priori
distribution

hyperparameters
for asteroids

hyperparameters
for comets

b Beta α1 = 3.70 α1 = 1.43
β1 = 32.23 β1 = 2.39

α0 Weibull α2 = 0.42 α2 = 0.38
β2 = 2.69 β2 = 2.38

c1 Weibull α3 = 0.47 α3 = 0.64
β3 = 1.74 β3 = 1.97

c2 Weibull α4 = 1.41 α4 = 1.02
β4 = 2.20 β4 = 1.56
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Figure 3.3: A priori distributions for the parameters in the TRIM, blue curve for
asteroids and red for comets.

the PPC reflects the overall behavior of polarization observations. The expected
PPC’s are shown in Fig. 3.4, and they seem to cover the typical shapes of the
PPC quite well. Another important subject is that Dpr and L that comes from

Page 40 of 68



3.2. The specification and estimation of the TRIM in Bayesian approach

the data and the model are in balance. If Dpr has too much information, Dp
will not be sensitive to the observations anymore but will only reflect the a priori
information. I will study this sensitivity in Sec. 3.3.2.

Figure 3.4: The expected shapes of the PPC (given in percents) for asteroids
and comets. The median, 50% confidence level and the 90% confidence level of
the shape are shown. Confidence levels are empirical, computed by simulating
observations of the parameter vector (b, α0, c1, c2) from the corresponding Dpr and
using the simulated parameter values in the TRIM (Eq. (2.1)).

3.2.2 Derived polarization features from the PPC model

There are a few important, widely used features of polarization that are interes-
ting and are often reported in polarization studies. These include the inversion
angle α0 where the negative branch turns to positive, the values of maximum neg-
ative and positive polarization Pmax and Pmin, and the phase angles where these
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are reached αmax and αmin, and the slope s of the curve at α0. The α0 is included
in the TRIM, but other features have to be calculated from the estimated para-
meters. For the slope s there is a simple expression, s = b sinc1(α0) cosc2(1

2α0).
The parameters αmax and αmin can also be derived analytically in closed form but
the resulting formulae are too long and complicated to be useful.† In practice,
Pmax, Pmin, αmax and αmin can be derived either numerically or analytically.
Within the Bayesian framework analytical results can be derived only for a li-
mited family of parameter distributions, and I do not see any good reason to be
limited by that family of conjugate a priori distributions. Instead, in the general
case, the GS algorithm converges to sample from the a posteriori distribution
of model parameters and after converging can produce an unlimited number of
samples. The further analysis is based on these samples. The point-estimates for
the model parameters are the median values of parameters sampled from their
Dp. Also the error estimates and different confidence intervals (called sometimes
the credible intervals in Bayesian language) can be calculated from these sam-
ples. In the framework of standard nonlinear regression, the errors for different
derived features of polarization could be estimated by the propagation of errors
–method. In the MCMC case, it is more straightforward to use the a posteriori
samples of the model parameters, form the model function for each and derive the
feature under interest. These samples will form an estimate to the a posteriori
distribution of the feature, and the confidence intervals can be found numerically.

3.3 Applications to polarization phase curve mode-
ling

Some case studies of the possible uses of the TRIM with Bayesian regression are
presented in the following sections. First, the PPC fit for one asteroid and one
comet is considered in Sec. 3.3.1. Second, a possibility to predict (extrapolate)
polarization values for large phase angles is studied in Sec. 3.3.2.

3.3.1 Phase curves for asteroid Juno and comet Halley

I will demonstrate the use of the TRIM with observations from the main belt as-
teroid 3 Juno (S) and from the comet 1P/Halley. I have a total of 46 observations
of Juno’s polarization with phase angles ranging from 2◦ to 28.7◦. These obser-
vations have been made at different wavelengths from 333 nm to 952 nm, but
†The αmax and αmin can be derived by solving the equation ∂P(α)

∂α = 0, but the solution in
closed form is quite cumbersome. With a help of some small simplifications the Mathematica®,
a software package designed for symbolic calculation, will provide the answers. Without any
further simplifications the so-called leaf count, the number of atomic expressions in the formula,
is ∼ 10 000 for both the αmin and αmax.
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Figure 3.5: PPC fit for Juno. In the upper figure the fit is plotted for the range
for which we have observations, and in the lower figure for the whole phase angle
range. Estimated fit together with 90% confidence interval for the fit are plotted.
Polarization is given in percent.

the (possible) wavelength effect at these phase angles is weak, and the number of
observations for each wavelength is too small, so these observations are treated
as one phase curve. I will discuss the wavelength effect later in Sec. 4.

Fig. 3.5 shows the estimated phase curve for Juno together with its observations.
It can be seen from the figure that the fit is very good and accurate in the range
where there is data. However, the confidence intervals of the fit grow noticeably
at large phase angles where the data is lacking. Nevertheless, it seems that some
extrapolation can be done with a reasonable accuracy, e.g. to something like
α . 60◦. In Table 3.2 the key features of the polarization and their confidence
intervals are presented. It can be noticed that features which are supported by
the data — α0, s, αmin and Pmin — can be estimated quite accurately, while the
extrapolated features αmax and Pmax have very limited accuracy.
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Table 3.2: Polarization features for Juno. The 5% column is the lower limit of
the 90% confidence interval, and the 95% column is its upper limit. Median is
the actual estimate of the feature.

feature 5% median 95%
α0 19.8◦ 20.1◦ 20.4◦
s 0.0895 0.0963 0.103
αmin 7.20◦ 7.63◦ 8.05◦
αmax 71.6◦ 80.3◦ 88.8◦
Pmin -0.715% -0.681% -0.647%
Pmax 4.65% 6.08% 8.25%

In Fig. 3.6 and Table 3.3 the phase curve and its features are presented for comet
Halley (see references in Levasseur-Regourd et al. 1996). For Halley there are
observations for phase angles up to 66◦. In that range the wavelength effect can
be noticeable, so instead of all wavelengths only the red wavelengths, 630–760
nm, are included. This gives a total of 186 observations. Because of the larger
phase angle range, the polarization near the maximum can be predicted with
good accuracy.

Table 3.3: Polarization features for Halley. Notations as in Table 3.2.

feature 5% median 95%
α0 21.6◦ 22.2◦ 22.9◦
s 0.234 0.246 0.259
αmin 10.1◦ 10.7◦ 11.3◦
αmax 80.3◦ 84.9◦ 89.1◦
Pmin -1.59% -1.47% -1.35%
Pmax 26.4% 27.0% 27.4%

Estimates for the measurement errors in polarization observations are given in
the asteroid and comet databases. These errors are generally instrumental errors
and the rotation of asteroids whose surface may be inhomogeneous (variegation
effects) or the spatial variations in a cometary coma are not taken into account.
For these reasons the errors are not realistic as deviations between the obser-
vations and a unique and smooth polarization phase curve of the object. The
analysis of Juno and Halley gives an estimate that the residual errors between
observations and the fitted phase curve are approximately two times as large as
the measurement errors for Juno, and 5.8 times as large as those for Halley.
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Figure 3.6: PPC fit for Halley. In the upper figure the fit is plotted for the range
for which we have observations, and in the lower figure for the whole phase angle
range. Estimated fit together with 90% confidence interval for the fit are plotted.
Polarization is given in percents.

3.3.2 Prediction of polarization

The Bayesian approach for regression is used because the prior knowledge of the
phase curve parameters is needed to obtain a good fit for the TRIM. With any
kind of Bayesian analysis, though, one needs to confirm that the a priori distri-
butions do not dominate the a posteriori’s. This is especially important if the
model is fitted by using just a few observations. If Dpr carry too much informa-
tion, the fit is biased toward a priori. To check the possible bias in the model
some simulation studies are done. I simulate a small number of observations from
a phase curve that is different from the a priori phase curve (see Fig. 3.4) and
fit the model. If this is repeated many times, it can be seen whether the fits
are concentrated properly around the phase curve they were simulated from. In
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this case it seems that Dpr’s are flexible enough, and even a data set consisting
of only five observations contains adequate information, and the fit is unbiased
(these results are not shown here).
The model can be further investigated with simulation studies. From the ob-
servational point of view, it is important to have some idea on how the number
of observations and the phase angles they are taken from affect the accuracy of
the fit. This is extremely important if prediction or extrapolation of polarization
is needed, or if a given accuracy for some polarization feature is sought. Some
results of the TRIM fit with a different number of observations and phase angle
ranges are shown next.
The focus is on the prediction of a typical asteroid PPC. A PPC that is slightly
different from the a priori distribution is chosen. This allows to check the afore-
mentioned bias of the fit at the same time. As observations from this phase curve
are simulated, a typical measurement error calculated from the SMB asteroid
data is added, and multiplied by two to obtain a realistic residual error. The
multiplication by two was found realistic in the study of Juno in Sec. 3.3.1. By
simulating observations and fitting the model over and over again, the confidence
limits to the PPC estimate can be set. In Fig. 3.7 the results are shown in the
case where 10 or 50 observations only at phase angles below 30◦ are available.
Fig. 3.8 shows how the fit and its capabilities for accurate prediction are im-
proved if the same 50 observations from the range [0◦, 50◦] could be used. In that
same figure there is also an example of a quite typical PPC for a comet, and the
confidence intervals in the situation where observations from the range [0◦, 111◦]
are available. It can be clearly seen that if the polarization near its maximum is
predicted, then the available phase angle range is the most important factor for
an accurate fit.
The phase angle range of the observations has different effects on the four para-
meters in the model and on their accuracy. The shape parameters c1 and c2 are
more sensitive. The c1 affects the curvature of the PPC. If the observations can
be done only with small angles, a limited information on the curvature is received
which also limits the accuracy in the estimate of c1. The estimation of c2 is even
more difficult, since the main effect of c2 is to make the phase curve asymmet-
ric and define the angle of maximum polarization. If the observations are from
such a range that the second derivative of the curve after the inversion angle is
still positive, a very poor information of the possible place of the maximum is
gathered. Thus, of all four parameters, c2 has the lowest accuracy.

High Pmax comets

The behavior of the TRIM can also be studied with real observations instead
of simulations — a subgroup of our comet data, the so-called high Pmax comets
(Levasseur-Regourd et al. 1996). In the comet data the comets Halley, Hyakutake
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Figure 3.7: Simulated 90% confidence intervals for the PPC estimate when 10 or
50 observations are done from the phase curve marked with a solid blue line. The
observations are simulated from evenly distributed angles in the range [0◦, 30◦].
On the left there is a more detailed plot from that area, and on the right the plot
for the whole phase angle range [0◦, 180◦]. The larger confidence interval (dashed
yellow lines) is for 10 observations, and the smaller interval (dashed red lines) is
for 50 observations.
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Figure 3.8: The effect of a larger phase angle range for the observations. On
the left there is the 90% confidence interval for the PPC estimate when 50 ob-
servations are simulated from the range [0◦, 30◦] (dashed yellow lines), and when
the same number of observations is retrieved from the range [0◦, 50◦] (dashed red
lines). On the right, there is a confidence interval for the estimate for a typical
comet phase curve (solid line) when 50 observations are retrieved from the range
[0◦, 111◦].

and West belong to this group. These comets have similar polarimetric properties
at large phase angles, so it is reasonable to fit a single PPC for all the comets in
this group.

The observations in the red wavelength domain are used, resulting in 229 obser-
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vations in the phase angle range [1.57◦, 111.3◦] for two experiments. In the first
experiment the observations at phase angles up to 70◦ are used to fit the PPC. In
the second experiment, only the observations at phase angles up to 30◦ are used.
The results of these experiments are shown in Fig. 3.9, where the resulting fits
and the corresponding confidence intervals are compared to the global PPC fit for
the high Pmax comets using all the observations. In both experiments the fit using
a limited number of observations is very close to the global fit. The confidence
interval for the polarization phase curve is significantly smaller at large phase
angles for the fit using observations up to 70◦, but the fit using observations up
to 30◦ has also enough accuracy to be useful in prediction at phase angles up to,
say, 60◦–70◦.

Figure 3.9: Prediction of polarization for the high Pmax comets. On the upper
figure the local PPC fit using observations up to 30◦ and on the lower figure the
fit using observations up to 70◦ are shown. In both figures the global fit, using
all the observation points, is shown together with the local fit using the limited
range of observations and its 90% confidence intervals.
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Chapter 4

Modeling multi-wavelength data

Until this point I have modeled the PPC without taking into account the wave-
length λ with which the observations have been made. This approach is feasible
when the observations are taken only with a single wavelength or wavelength fil-
ter, or if the effect of different wavelengths is weak in the observations. Whether
the wavelength effect (WE) is weak or significant is however a question for which
it is hard to answer without analyzing the data at issue.

In principle the (linear) polarization, as well as all electromagnetic scattering, is
a function of the wavelength. Or, to be exact, a function of the combination of λ,
the refractive index of the material with given λ, and the size of the object. For
wavelengths from totally different λ domains, e.g. from radio and X-ray domains,
there is surely a significant change in the polarization. For the data in the visible
λ domain and its neighborhood the near-infrared and near-UV domains from
where the polarimetric observations in the data are, however, the WE can be
weak. Several studies (e.g. Gehrels & Teska 1963, Rosenbush 2005, Kiselev et al.
2008) have been made on the possible WE on the polarization observations from
comets. Usually the comets provide more fruitful data for the study since the WE
tends to be weak in the small phase angles from where the asteroid observations
are.

Studying the WE can be quite tricky, since in many cases the different errors, like
the measurement error of the instrument or the error due to the evolution of the
comet over observation time, can be of the same magnitude as the possible WE.
As there are so many error sources, the PPC model and the estimation procedure
should be as robust and reliable as possible. In this section I extend the models
discussed in Secs. 2 and 3 to be used with the multi-wavelength data, and use
the derived models in studying the WE. First in Sec. 4.1 a (regular) nonlinear
regression model with multiple response is introduced, and in Sec. 4.2 a Bayesian
approach is studied together with some applications to the polarization data.
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4.1 Multiple response regression model

One possibility to model the multi-wavelength data is to use a multiple response
(MR) regression model, where the dependent variable Y is a matrix and each
observed yi is a vector containing multiple responses to the model. With the
PPC data this means that for each observation angle αi there are the observa-
tions yi1, . . . , yik for the k wavelengths λ1, . . . , λk. To put it into a mathematical
notation, the MR model is

Y = F(x;θ) + E, (4.1)
where the Y is n×k matrix, F is a composite function of the n×1-valued functions
f j(x;θ) for each λj, j = 1, . . . , k and E is the n×k error matrix.
The difference between the simple one-response regression model and the MR
model lies in the θ and E. The parameter vector θ needs not to be the same
as for the one-response model — this θ can have additional parameters that are
effective for only certain f j’s. For E it is usually assumed that

εij ⊥⊥� εij′ for any j and j′, but (4.2a)
εij ⊥⊥ εi′j′ for any i 6= i′, j and j′. (4.2b)

This assumption implements the underlying idea in the MR model that the mul-
tiple responses for a single xi are correlated. If there were no correlation between
the components in the response vector yi the model in Eq. (4.1) could be re-
written to k regular one-response models and estimated separately.
As a result of the model formulation, the covariance structure of the error (and
thus the response Y, too) differs from the the regular model. The covariances in
Eq. (4.2a) can be gathered into a matrix Σ so that Cov(εi) = Σ for any row
vector εi in E. The covariance matrix for the whole E is

Cov( vec(E) ) =


Σ 0

. . .
0 Σ

 = In ⊗Σ, (4.3)

where the function vec converts the matrix E into a long vector where the rows
of E are stacked one after another, and ⊗ is the Kronecker product between
matrices.

4.1.1 Likelihood and estimation in the multiple response model

Starting from the joint probability density function of the observations yi one can
derive the log-likelihood function of the model parameters θ and Σ, which can
be written as

l(θ,Σ) = −n2 log(|Σ|) − 1
2

[
n∑
i=1

(yi − f i(θ))′Σ−1 (yi − f i(θ))
]
. (4.4)
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If we compare this log-likelihood to the one from the one-response model in
Eq. (2.8) we can see one important difference. In the one-response model it is
possible to maximize the log-likelihood of θ regardless of the σ2 and vice versa.
For MR model this is not possible in general, since the Σ is so profoundly entan-
gled with the θ.

There are a few ways to find the ML estimates θ̂ and Σ̂ in this case. The
straightforward way is to maximize the log-likelihood numerically as a function
of (θ,Σ). This can be computationally challenging in some cases. The other way
is to iteratively maximize the profile log-likelihood for θ and Σ successively. I
have chosen the first method of direct numerical optimization to be used in the
following section where the MR model is used with the polarization data.

4.1.2 Wavelength effect modeled with the multiple response
regression

The wavelength λ from which the observations are done is a continuous variable in
principle. Continuous variable could be added to model as it is, but in the case of λ
there are several reasons against it. Firstly, the observations are not actually done
with a single monochromatic value of λ, but instead with a wavelength filter with
a continuous absorption pattern over the spectra with the midpoint at λ. The
pattern of the filter can vary from one observation set to another, so the different
values of λ are not strictly speaking comparable. Secondly, the functional form
of the effect of the λ should be set beforehand, which is more complicated with
the nonlinear model than with a linear model. With linear model the additional
variable λ, or some function of λ would be multiplied with its parameter estimate
and summed up to the model. With nonlinear model the λ could be involved
in the model in any imaginable way. To choose the proper functional form for
the λ in the model one would have to know the WE beforehand. So, instead
of a continuous variable, the different values of λ are divided into a more coarse
classification of colors as mentioned in Sec. 1.1.3 making the MR model a suitable
tool for the analysis.

There are some requirements to the data that can be used with the MR model.
Most importantly there cannot be any missing values in the data matrix. This
turns out to be quite limiting demand to the polarization data in hand. With
a chosen set of filters, i.e. wavelengths λ1, . . . , λk there should be polarization
observation for every λi with every α. When observing an object, however, using
all the filters simultaneously is usually not possible and the filter in use must be
changed before making another observation. Due to this it is common that one
set of observations are done with one filter, and another set with another filter at
some later time resulting that the observation angles α are never the same. The
best complete dataset can be found from the comet Halley. This dataset consists

Page 51 of 68



Chapter 4. Modeling multi-wavelength data

of 22 observations from the phase angle range of (1.6◦, 64.4◦) using three colors:
blue, yellow and red domain. The data is presented in Fig. 4.1.
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Figure 4.1: The dataset from comet Halley to be used with different MR models.
Three wavelength domains, blue, yellow and red are plotted with the correspon-
ding colors.

Different models

The MR framework can be used to specify models that will model the WE in
different ways. This is done by specifying different versions of the model function
F and its parameters θ and of the Σ.
First, a basic form of the model is specified to the observations. It can be seen
from Fig. 4.1 that the data does not provide good information about the value
of Pmax or its location αmax. As discussed in Sec. 2.2, the LEM is ill-conditioned
and perhaps not valid for this large α range, and the TRIM has parameter iden-
tification issues if the data does not support the estimation of the Pmax. Thus, I
choose the sub-TRIM as the basic shape for the PPC.
The ’full model’, i.e. the model where there are no shared parameters between the
f j’s and no limitations are set to the error matrix Σ has a total of 15 parameters to
be estimated: the bj, αj0 and cj1 for the three wavelength domains j = 1, 2, 3 and a
3×3 matrix Σ with six free entries, the residual covariances σ11, σ22, σ33, σ12, σ13 and
σ23. Note that if the residual covariances between the wavelengths (σ12, σ13, σ23)
are set to zero this model can be decoupled into three separate models.
The estimation of the full model is very challenging, at least it was with the Halley
dataset of only 22 observations, so I tried assumptions that would reduce the

Page 52 of 68



4.1. Multiple response regression model

number of free parameters. I restricted myself to models where a single parameter
c1 is shared between the wavelengths instead of the three separate cj1’s, reducing
the number of parameters from 15 to 13. This did not help, and the optimization
of the log-likelihood in Eq. (4.4) did not succeed.∗ While the optimization did not
converge well enough, it seemed however that the residual covariances between
the wavelengths could be quite small. This can imply that as the modeled part is
subtracted from the observations the residuals are not anymore correlated, which
would be a very desirable feature and would tell that the model is adequate.
Therefore I made a further assumption that the between-λ covariances are set to
zero and the error matrix is of diagonal form, Σ = diag(σ11, σ22, σ33).
With the aforementioned restriction the following types of models M were finally
estimated and compared:

short
name

parameters to be estimated
in θ

note

M0 b1, α1
0, c

1
1, b

2, α2
0, c

2
1, b

3, α3
0, c

3
1 full model, separable into three models

M1 b1, α1
0, b

2, α2
0, b

3, α3
0, c1 only joint c1

M2 b1, b2, b3, α0, c1 joint c1 and α0

M3 α1
0, α

2
0, α

3
0, b, c1 joint c1 and b

M4 b, α0, c1 same model for all, except for σjj

For all the models, in addition to θ, the residual covariances (σ11, σ22, σ33) need
also to be estimated, resulting the number of estimated parameters to vary from
12 for M0 to 6 for M4. All the models are nested, i.e. the model M0 is the full
model and all the other models M1–M4 are derived from the M0 by setting re-
strictions for the parameters, such as c1

1 = c2
1 = c3

1 when moving from M0 to
M1.

Model comparison

The fact that the models are nested is important for the comparison of the models
and for choosing the proper statistics for the comparison. The likelihood ratio
(LR) is a suitable test statistic to compare nested models and the (asymptotic)
distribution of the LR can be derived under the hypothesis (H0) that the full
model and the restricted model are equally good. The LR statistics is

LR = −2
[

l(θ̂, Σ̂) − l(θ̃, Σ̃)
]
, (4.5)

where the (θ̃, Σ̃) are estimated parameters for the full model, and (θ̂, Σ̂) for the
restricted model. By definition the maximum of the log-likelihood for the full
∗The built-in Nelder-Mead simplex algorithm in Mathematica® with multiple random seeds

is used in the optimization.
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model is always non-positive but as large or larger than for the restricted model.
Thus, for equally good models the LR is 0 and large values of the LR indicate
that the restricted version is worse. Under H0 the asymptotic distribution of the
LR is

LR ∼
as
X 2
q , (4.6)

the chi-squared distribution with q degrees of freedom, the q being the difference in
the number of parameters for the models. The LR values and the p-values for the
hypothesis H0 that the models are equally good are presented in Table 4.1. From
the p-values we can see that only the model M4 seems to be inferior, statistically
speaking, to the full model in modeling the observations. The M4 was a model
where the different wavelengths shared all the model parameters b, α0, c1, so this
implies that there actually is some kind of wavelength effect that needs to be
modeled.

Table 4.1: Comparison of the nested models M0–M4. The last column is the
p-value for the LR test.

Model l(θ̂, Σ̂) LR q p

M0 -19.4
M1 -20.0 0.965 2 0.62
M2 -20.2 1.51 4 0.82
M3 -22.0 5.02 4 0.29
M4 -29.8 20.7 6 0.002

The models M2 and M3 both have the same number of parameters. The wave-
length effect is modeled with varying b in M2 and with varying α0 in M3. From
these two models the M2 is better in terms of the LR statistics. The conclusion
is that the wavelength effect is not so strongly visible in the inversion angle α0 as
it is in the overall amplitude b.

When comparing the more complicated M1 to M2 we see that the LR is only
slightly better for the M1 and the larger degrees of freedom makes the p-value
of the M1 smaller. Thus, it is perhaps not wise to include both the wavelength-
dependent b and α0 to the model since including only wavelength-dependent b
seems to be enough.

In addition to the statistics about the model goodness we should also try to
compare the models and their soundness visually, and by studying the possible
wavelength effect they propose for some interesting polarization features. The
estimated models, together with the data, are shown in Fig. 4.2. There seems
to be no large differences between the models. Estimates for the range α ∈
[0◦, 30◦] or so are quite similar between all the models, except for M3 where the
λ-dependence is modeled with varying α0.

Page 54 of 68



4.1. Multiple response regression model

Figure 4.2: The different MR models M0–M4 for the data from comet Halley.
The line and dot colors indicate the three wavelength domains, blue, yellow and
red.

All the models in the aforementioned figure seem to be quite similar globally.
However, there are some fine differences if we study some important features of
polarization and the modeled wavelength effect in those. Based on the conclu-
sions made from the LR statistics in Table 4.1 the models M1–M3 are the most
prominent. The estimates for the Pmin, Pmax, and slope at α0, the s, are plotted in
Fig. 4.3. The λ-dependence is not modeled similarly in the models. If we assume
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that WE is a monotonic in these colors the estimates should be ordered as blue,
yellow and red, or vice versa. ForM2 andM3 this is true, but not forM1 for Pmin
or s. The estimation of both the λ-dependent b and α0 simultaneously with M1
might be too delicate task and I might judge the result to be highly questionable.
WithM2 andM3 we have the problem that their prediction for the WE with Pmin
and s are the opposite. The M2 predicts that the Pmin decreases with increasing
λ and that the s increases with increasing λ, but the M3 predicts otherwise. So,
the nature of the modeled WE depends on which model we choose.
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Figure 4.3: The polarization features Pmin, Pmax and s for the MR models M1–
M3. The estimates are presented as dots with color corresponding the wavelength
domain blue, yellow or red.

I tend to favor the M2, because the WE with M1 supports more the effect with
M2, and because the LR statistics is best with M2. It is however clear that we
need either more suitable data for the MR model analysis or other approaches
to draw any final conclusion about the WE in cometary data. The Bayesian
approach that is dealt in the next section can give a more confident answer to
the question about the nature of the WE.

4.2 Bayesian approach for multi-wavelength obser-
vations

The downside with the classical frequentist MR modeling in previous section is
the lack of datasets that are of proper form to be used in the analysis. Because
the continuous wavelength variable was divided into more coarse color classes, one
common approach is to include the class information into the model as a set of
so-called dummy variables, i.e. k classes are coded into k−1 binary and mutually
independent explanatory variables. The evident change to the MR model is
that the multiple responses are exchanged into one response per one explanatory
variable, but the dimension of the explanatory variable vector increases to include
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the wavelength information as the dummy variables. There are no requirements
anymore that for a given α there should be observations for every color class, and
this makes it possible to include all the observed data in the analysis.
While the dummy variable approach is certainly superior to the MR modeling
in that sense that it can take advantage of all the available data, the classical
(nonlinear and multiple) regression analysis has one weakness. The idea in the
MR modeling was to include the correlation between the observations with similar
λ and with the same α value in the model and use it to increase the information
about the WE. The simple regression does not offer tools to gain from the fact
that some observations should be correlated.
The approach that I will use is to introduce a sort of hierarchy into the model.
There is a branch in classical statistics called hierarchical modeling or multi-level
modeling, but I have used a Bayesian approach to the model. The approach is
described in the following section.

4.2.1 Bayesian model for multi-wavelength observations

The shape of the model function is basically the TRIM, the same as in the case
of one-wavelength data in Sec. 3.2. The addition is that the wavelength variable
will be added to the explanatory variables in a form of a dummy variable set λ.
With k different wavelength (color) classes or domains an arbitrary color will be
the ’reference group’ with λ = 0 and the other k− 1 colors will be coded with λ
having components λi=j = 1 and λi 6=j = 0 for a color j.
The possible WE is set to manifest itself in the model via the parameters b and
α0, but the parameters c1 and c2 are left untouched. This is because the shape
parameters c1 and c2 are the most difficult to estimate, and in most cases the
shapes of different wavelength phase curves are very similar. Thus, the wavelength
effect is only studied through the inversion angle α0 and the magnitude parameter
b. The model is of the form

P(α,λ) = (b+λ′ b∗) sinc1(α) cosc2(α2 ) sin(α−(α0+λ′α∗
0)), (4.7)

where the parameters for the WE, b∗ and α∗
0 are vectors of the length k−1 as the

λ, and components b∗j and α∗0j model the difference between the reference group
and the corresponding color domain j. The λ′ is the transpose of the vector λ.
The one arbitrary reference color will use the same parameters and a priori distri-
butions as in the one-wavelength Bayesian model described graphically in Fig. 3.2.
For other colors the parameters b∗j and α∗0j introduce deviations from that ’main’
curve. By using suitable a priori distributions for the parameters b∗ and α∗

0 we
can force the phase curves for different colors to have similar shapes. This is a
very important feature because it is known from practice that the PPC at diffe-
rent wavelengths for the same object correlate strongly. If a completely separate
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modeling for each wavelength would be used, also quite a lot of information would
be lost making the already difficult analysis of the WE even more cumbersome.
Both the vectors b∗ and α∗

0 are chosen to have a multinormal distribution Nk−1 as
a priori distribution. The expected value in the a priori will be zero vector, thus
assuming no WE a priori. The covariance matrices are set to diagonal matrices
σ2
b I and σ2

α0I. If the values for the hyperparameters σ2
b and σ2

α0 are kept small the
a priori belief is that the PPC’s for all the colors are highly correlated, unless the
observations strongly indicate otherwise. The asteroids and the comets can have
somewhat different WE, and I will use values σ2

b = 0.015, σ2
α0 = 2◦ for asteroids

and σ2
b = 0.03, σ2

α0 = 3◦ for comets.

4.2.2 Bayesian modeled wavelength effect

The comets Hale-Bopp, Halley, Hyakutake, Swift-Tuttle and West are included
in the analysis because these objects can be studied at different wavelengths
with data at phase angles larger than 40◦. For asteroids, the only good dataset
for this purpose is available from Toutatis. When asteroid datasets are divided
into different color domains, there are usually just a few observations per domain.
Furthermore, these observations tend to be at small phase angles, where the WE is
nearly inexistent between the visible color domains compared to the measurement
errors. There are 174 observations of Toutatis ranging from 13.55◦ to 111◦, which
makes it possible to use it in the analysis.
The wavelength filters used in polarimetric measurements can be slightly different
between instruments, and also it seems possible that the practice of reporting the
filters can vary inside the database from one observer to another. The filters
for cometary measurements have to be adapted to avoid the gaseous emission
lines and, when possible, narrow band filters are used and the results eventually
corrected by the knowledge of the emission spectrum. Therefore, as mentioned in
Sec. 1.1.3, the wavelengths of the observations are divided into UV, violet, blue,
green, yellow and orange, red and IR.
Figs. 4.4a and 4.4b present the observations and the fitted multi-wavelength mo-
dels for the data. The model seems to behave reasonably, the PPC for the different
wavelengths tend to be roughly the same, and the differences are quite logical,
e.g. the curves are more or less ordered according to the wavelength.
From the fitted models in Figs. 4.4a and 4.4b the estimates and confidence in-
tervals for polarization features as a function of the wavelength can be derived.
There are some notable WE, but in most cases these effects are not similar for all
the comets, which implies that these are not global effects, but only applicable
to that particular comet. An example of this is in Fig. 4.5, where the wavelength
effect for Hale-Bopp is presented for polarization features α0, αmin and Pmin. As
seen in Fig. 4.5, Hale-Bopp shows a clear WE in the inversion angle. On the
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Figure 4.4a: The polarization observations in the left panel and the estimated
PPC models in the right panel for one asteroid and two comets.
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Figure 4.4b: The polarization observations and the estimated PPC models for
three comets.
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other hand, the inversion angle for comet Halley is practically constant at all the
wavelengths. Comets Hyakutake and Swift-Tuttle have no observations near the
inversion angle and therefore it is impossible to draw conclusions about the WE
in the inversion angle, and the same applies for comet West, for which there is a
lack of data at some wavelengths.

Figure 4.5: Wavelength effects for comet Hale-Bopp in α0, αmin and Pmin. The
vertical lines are the 90% confidence intervals, and the horizontal bars are the
point-estimates. The y-scale is the wavelength with background color showing
either the visible spectra color, or UV with gray and IR with white.

The only clear WE is seen either in the minimum value of polarization, or much
clearer in the maximum value of polarization Pmax in Fig. 4.6. For all the comets
the Pmax increases with wavelength, and an inverse effect is observed for the
S-type asteroid Toutatis.

4.3 Condluding remarks

If there is a need to fit a continuous curve to a sufficient number of polarization
observations from small phase angles and perhaps use the model to interpolate
polarization values between the observations, the task is quite trivial. Any of
the three models introduced here, TRIM, sub-TRIM or LEM, can be used in a
standard (nonlinear) regression analysis, or even just a polynomial fit could be
adequate. The problem becomes more cumbersome in the cases where there is
a lack of observations, some extrapolation needs to be done, or some detailed
analysis of e.g. the wavelength effect is required. In these complex cases more
effort needs to be given to the selection of proper model and suitable regression
procedure. In Sec. 2 I compared the three PPC models and found severe problems
in LEM and also in TRIM to some extent. The models are ill-conditioned by
construction which manifests in high correlations between the parameters for the
LEM or problems in parameter identification for the TRIM. The sub-TRIM is the
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Figure 4.6: Wavelength effects for all objects in maximum polarization Pmax. The
vertical lines are the 90% confidence intervals, and the horizontal bars are the
point-estimates. The y-scale is the wavelength with background color showing
either the visible spectra color, or UV with gray and IR with white.

most stable model and recommended to be used in regular (nonlinear) regression
analysis. The robustness and physically realistic structure of the model are the
advantageous features of the sub-TRIM.

If the more flexible form of the full TRIM model is needed, it is mandatory in
many cases to guide the regression procedure to overcome the parameter identi-
fication issues. This can be done in the Bayesian regression framework, as shown
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in Sec. 3. Informative a priori distributions are a necessity. The result of the
Bayesian regression is robust to be used in e.g. extrapolation and the MCMC
sampling scheme offers a straightforward sample-based method to empirically
derive estimates together with error estimates to virtually any property of the
PPC.
The most sophisticated methods must be used if we want to gain from the corre-
lation between the observations at different wavelengths. The multiple response
method could be suitable in observation campaigns where practically simultane-
ous observations at multiple wavelengths can be made, as discussed in Sec. 4.1.
If we want to study the existing data catalogues a more suitable method is the
multiwavelength Bayesian model developed in Sec. 4.2. This model enables e.g.
the analysis of the possible wavelength effect in the polarization. The conclusion
about the WE is, that within the wavelength range of our observations, from UV
to near-IR, there are only a few cases where the hypothesis of the WE is strongly
enough supported by the data. These include the WE in comet Hale-Bopp obser-
vations and the WE in Pmax for comets and the asteroid Toutatis. The possibility
of the WE is not debarred in other cases, but more supporting data should be
observed.
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