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1 INTRODUCTION 
 
The common bean (Phaseolus vulgaris L.) has two possible centers of origin, the Andes 

and Mesoamerica. Studies of chloroplast and mitochondrial DNA polymorphisms have 

supported this hypothesis and allowed classifying beans from the centers of origin into 

diverse racial groups and even different domestication moments (Khairallah et al., 

1992; Bofana et al., 1999; Chacón et al., 2005). 

The common bean is a diploid crop (2n=22) belonging to the family Leguminoceae. 

The genus Phaseolus has 55 species, of which four are cultivated. The cultivated 

species are Phaseolus vulgaris L. (Common bean); P. coccineus L. (Scarlet runner 

bean), P. lunatus (Lima bean) and P. acutifolius A. Gray (frijol tepari). There are no  

inter-species genetic barriers that would prevent crosses between wild relatives and 

cultivated species (Mora, 1997). 

Since its domestication, common bean has been one of the most important crops 

around the world. In Africa and Latin America, beans represent the cheapest source of 

protein, fiber, complex carbohydrates, folic acid, vitamin B, potassium, and zinc 

(Santalla et al., 1999). In Central America, common bean production was about two 

million hectares in 2007 (FAO, 2007). 

Beans represent one of the most important crops for Nicaraguan families. In rural 

areas, where people live in extreme poverty, beans are the sole protein source. This fact 

positions bean as a key crop in the current Nicaraguan Food Security Program. 

Unquestionably, common bean is and will be an important component to be improved 

for achieving sustainability in rural families. 

In Nicaragua, the main bean production areas are located in the following regions: I 

(Estelí), IV (Rivas, Granada, and Carazo), VI (Matagalpa and Jinotega) and in RAAS 

(Región Autónoma del Atlántico Sur, Nueva Guinea). In these areas, bean varieties 

meet the best environmental conditions for production. According to Ministerio 

Agropecuario y Forestal (MAGFOR) (2007a), the national production was estimated to 

be 179,716.5 tm in 2006 with an average yield of 780 kg.ha-1. The highest yields (1,287 

kg.ha-1) are obtained from bred varieties, among which red-colored seed cultivars are 

most important (‘INTA MASATEPE’, ‘INTA CANELA’, and ‘INTA ROJO’). 

However, black-colored seed cultivars, such as ‘INTA CARDENAS’ and ‘INTA 

NUEVA GUINEA’, have risen in importance due to the interest of other countries in 

importing them. These varieties have higher protein contents and a high acceptance in 

international markets. 
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In spite of governmental efforts to improve common bean production, Nicaraguan bean 

farmers harvest one of the lowest yields in the Central American region (760 kg.ha-1).  

Every year, bean farmers have to face several problems during the production process, 

such as unpredictable raining seasons, presence of pests and diseases, low soil fertility, 

and low quality of seeds (INTA, 2004). All these factors are translated into low 

production. Recently, the Nicaraguan government has identified the high quality of 

seeds as one of the most important inputs in crop production. Therefore, many efforts 

have been focused on the Seed Production Program, which will provide a better seed 

quality to the farmers at low costs.  

 

1.1 Bean seed production in Nicaragua 
 

According to MAGFOR (2007b), bean production remained almost constant during the 

period from 2001 to 2006, showing a yearly average of 198,412.9 tm. Contrary to this 

tendency, seed production showed an increase from 897 tm to 2,260 tm during this 

period (figure 1). Nonetheless, the seed production system still covers only  about 17 % 

of the national seed demand. The rest of the farmers use their “own seeds”, that are 

produced on traditional farming systems. These seeds are produced below an artisanal 

system that hardly ever follows a seed certification process. The first observed 

consequence of this fact is the low plant densities on fields. 

Bean seed production starts with the materials that are provided by the Regional 

Bean Breeding Program. This program together with different authorities breeds new 

varieties and releases them to the Central American Region. After receiving elite 

material from the Regional Bean program, national breeders start to increase the seed 

amount from breeder’s seed to certified seed (figure 2). However, it is possible to start 

the bean seed production program by selecting from a bean population (with a known 

origin) around 400-500 individuals that exhibit the features of the cultivar. Each 

individual is harvested as an independent sample (lines) and sown in a row for several 

cycles. While plants are growing on the row, breeders select the lines that display the 

attributes of the cultivar and whose variation among individuals within the row is not so 

high. This process of varietal deputation is carried out together with several authorities 

from MAGFOR and the Instituto Nicaraguense de Tecnología Agropecuaria (INTA).  
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After being harvested, the seeds of selected lines are evaluated according to the seed 

features of the cultivar. Color, shape, and size of seeds are evaluated with awareness by 

bean researchers.  It is noticeable that the criteria of the involved people prevail during 

this process. The promissory lines are mixed as a whole seed lot and they become in the 

breeder’s seed. 

The breeder’s seed is the first seed category in the chain of production and it is 

managed by INTA at the Centro Nicaraguense de Investigación Agropecuaria y 

Biotecnología (CNIAB). The volumes of seed managed during this stage are small, 

therefore the varietal maintenance can be carried out without any problems related to 

technical issues. From 140 to 270 kg of seeds can be produced for the category 

breeder’s seed at any cropping season. 
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Figure 1. Bean seed production in Nicaragua during the period 2001-2008. 

(source: MAGFOR, 2009). The bean seed production in 2008 was based 

on prognostics, taking into accounts the current areas and historical 

production indexes.  
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Figure 2. Diagram of the common bean seed production in Nicaragua. The red-colored 

box represents the start point in the system. The white, pink and blue colored boxes 

represent the label color depending on the seed category (MAGFOR, 2002). Notice that 

the seed production from breeder’s seed to certified seed are inspected by MAGFOR. 
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The seed produced from the breeder’s seed is known as foundation seed. During this 

increasing of seed, no selection must be carried out on the population, instead a varietal 

depuration is accomplished and offtype plants are discarded from the seed lot as well as 

weak plants and plants with symptoms of diseases.  

An offtype plant is a plant that exhibits a different phenotype from the one reported 

by the plant breeder during the registration (MAGFOR, 1998b). A seed sample of one 

kilogram is sent to the Centro Nacional de Diagnostico Fitosanitario Y Semillas (CNDF 

y Semillas) for carrying out the external control. During this quality control, seed lots 

are screened by seed specialists looking for offtype seeds.  An offtype seed is a seed that 

exhibits a phenotype different from the one reported by the plant breeder during the 

registration (MAGFOR, 1998b). Offtype plants and seeds have a limit of tolerance 

stated by the national regulations for seed production and certification.  

Registered and certified seed are the product of subsequent generations where the 

varietal depuration is carried out constantly.  During all these stages seed inspectors 

from MAGFOR examine the seed quality on fields. Additionally, in concordance to the 

Law 280 (Ley de la Produccion y Comercio de Semillas) (MAGFOR, 1998a & 1998b) 

it is possible to use the seed category “able for cultivation”. This is an extraordinary 

seed category that can be used if there is no seed in the market or after facing a national 

urgency. During this process seed inspectors select a known commercial bean lot 

(preferable before flowering) and the offtype plants are roughed out, and the quality 

control is carried out as for certified seed. 
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1.1.1 Bean seed quality 

 

Thompson (1980) defined seed quality as the sum of several components, where the 

genetic, physical, physiological and pathological components are the most important 

ones. During the quality control of seeds, all these quality components are tested. 

However, unfortunately, the genetic component has not received attention in the last 

years, although it determines the genetic quality of the materials. This quality can also 

be named genetic purity.  

Genetic purity is a key component in seed production, because it involves the 

expression of the genetic potential into a cultivar, sometimes expressed in high yields 

and resistance to diseases. Also, it can be observed as uniform rates of growth and 

uniformity in flowering, maturing and harvesting. All these characteristics facilitate the 

maximization of production, and are important in national and international seed 

markets where uniform products are highly demanded. 

Indeed, a new cultivar must meet several criteria of distinctness, uniformity and 

stability (DUS) in order to be considered a cultivar (UPOV, 2005). Throughout the 

process of seed certification, inspectors verify these criteria on fields and laboratories 

through the application of diverse national regulations. Abnormal plants found on fields 

are classified as offtype plants, and the seeds that exhibit patterns different from the 

parental lot are reported as pure seeds of other cultivar (ISTA, 2004). 

Nicaraguan government approved a regulation for common bean seed production in 

2002. It states that a seed lot should not have more than 0.2% offtype plants on field and 

less than six seeds of other varieties per kilogram in the storage (MAGFOR, 2002).  

Nevertheless, in recent years the authorities have found that some lots exceed these 

limits. For example, red-colored varieties show different seed patterns in color, shape 

and size. These variations have not been explained, and sometimes they are ascribed to 

natural variation in populations.  
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Figure 3. Offtype seeds found in a seed lot, cultivar ‘INTA ROJO’. Right: light red 

seeds. Left: frijol rojo oscuro seeds. Seed Laboratory, CNDF y Semillas (MAGFOR). 

Photo: Oswalt Jiménez. 

 

 

The most common seed variation observed in the bean cultivar ‘INTA ROJO’ is known 

as “frijol viterra”. These seeds are bigger than normal seeds and sometimes have low 

intensity in color. Another variation found in ‘INTA CANELA’, ‘INTA ROJO’ and 

‘INTA MASATEPE’ is named “frijol rojo oscuro”, commonly confused with the 

cultivar ‘DOR 364’, which has bright dark red color, kidney shape and about 0.21 

g.seed-1 (Rosas et al., 2004) (Figures 3 and 4). This situation has bent confusion among 

producers, researchers, and certification authorities. This phenomenon has been ascribed 

to environmental effects without clear evidence. 
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Figure 4. Frijol viterra (a), normal seed (b), and frijol rojo oscuro (c). Photo: Oswalt 

Jiménez.  

 

 

It is known that the genetic purity of a cultivar deteriorates along the several cycles of 

production. Desai et al (1997) stated that developmental variation, mechanical mixtures, 

mutations, natural crossing, minor genetic variation, selected influence of diseases, and 

the technique of the plant breeder are the most important factors that deteriorate the 

genetic purity of a cultivar.  

Nowadays molecular tools have been used in studies that aim at the molecular 

characterization of germplasm and marker assisted selection in plant breeding. 

Nonetheless, not many studies have aimed to study the genetic structure and cultivar 

identification of bred bean cultivars. However, some molecular markers, most 

importantly microsatellites or simple sequences repeats (SSRs), have been developed 

for common bean and some of them have been shown to be highly polymorphic (Yu et 

al., 2000; Gaitan et al., 2002; Guerra, 2004; Blair et al., 2006; Buso et al., 2006; Blair et 

al., 2008). The highly polymorphic characteristic of microsatellites can be exploited for 

detecting small changes in the genetic purity of a bean cultivar, and this may be 

extremely useful when evaluating the genetic purity of a bean cultivar during the seed 

production.  

 

 

 

 

a b c 
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The genetic quality of bean varieties has never been studied by applying molecular tools 

in Nicaragua. Also, the seed production as a whole process has been evaluated 

following traditional methods that only give a phenotypic estimation. These phenotypic 

values have a high environmental component that easily leads us to a wrong estimation 

creating confusion and probably accelerating the deterioration of the quality of materials 

evaluated on field.  

The study and understanding of the factors that affect the genetic purity of a bean 

cultivar are very important for bean seed production. Additionally, it is important to 

consider that seeds are the main input during bean production and that all improvements 

in bean production will be translated to benefits for the poorest families in rural areas 

where common bean is considered an important part of people’s incomes and food 

security.  

 

2 OBJECTIVES 
 

The present study was focused on the following objectives: 

 

 To compare the genetic composition of different seed categories in the 

bean cultivar ‘INTA ROJO’.   

 

 To confirm the genetic identity of offtype plants and seeds found in the 

cultivar ‘INTA ROJO’. 

 

We hypothesized that there are changes in genotype frequencies during the process of 

seed production and that at least one of the offtype groups is different from the 

breeder’s seed at the loci analyzed. 
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3 MATERIALS AND METHODS 
 

3.1 Seed lots used in this study 
 

The cultivar used in this study was ‘INTA ROJO’. The selection of this cultivar was 

based on the fact that it represented about 77% of the areas destined to bean seed 

production in 2008 (MAGFOR, 2008). Therefore, it can be considered as a 

representative cultivar of Nicaraguan bean seed production.   

‘INTA ROJO’ is a small red dry bean that was created under the name ‘EAP 9510-

77’. This cultivar was developed at The Escuela Agricola Panamericana (EAP), 

Zamorano, Honduras, and released in Central America in a collaboration with the 

national programs of Honduras, El Salvador, Nicaragua and Costa Rica, and the 

University of Puerto Rico in 2003 (Rosas et al., 2004). It was obtained through the cross 

between the lines ‘TIO CANELA’ and ‘DICTA 105’. ‘TIO CANELA’ has small red 

seeds and resistance to Bean Golden Yellow Mosaic Virus (BGYMV, a Geminivirus) 

(Rosas et al, 1997). On the other hand, ‘DICTA 105’ is a small red-seeded cultivar with 

resistance to pod weevil (Trichapion godmani Wagner). This line was bred at the Centro 

Internacional de Agricultura Tropical (CIAT), Cali, Colombia and the Dirección de 

Ciencia y Tecnología Agropecuaria (DICTA), Tegucigalpa, Honduras. 

‘INTA ROJO’ has an intermediate upright bush, Type II growth habit with short 

vine. It flowers in 36 to 38 days. Stem color is green with red pigmentation. Green pods 

turn yellow with red pigmentation at physiological maturity. Additionally, it has long 

pods containing seven to eight seeds per pod. Also, it has ovoid elongated seeds, 

averaging 25g.100seeds-1. Seed coat color is shiny red (Rosas et al, 2004). This color 

quality placed ‘INTA ROJO’ in an advantageous position in the national market, where 

landraces are preferred due to their color and culinary properties.  

The study was conducted for the following seed categories: breeder’s seed, 

foundation seed, registered seed, and certified seed. One population or seed lot was 

taken from each seed category. For the three first seed categories only the existing lot 

was sampled. In contrast, for certified seed one representative lot was chosen following 

a random process from the lot list. Additionally, one population of offtype plants and 

seeds were included in the study. 
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3.2 Seed and plant sampling 
 
3.2.1 Seed lots sampling 
 

All the chosen populations were sampled following the international rules for seed 

sampling (ISTA, 2004) and the recommendations stated by the seed inspectors from 

MAGFOR. However, the intensity of sampling was greatly increased (between ten 

primary samples for breeder’s seed and 30 for certified seed) in order to obtain a 

representative sample for each seed lot and thus to have a better estimation of the 

genetic changes among populations.   

Breeder’s seed, foundation seed and registered seed were produced at the research 

station “La Compañia” in Carazo and sampled at CNIAB INTA. The certified seed was 

produced in Matagalpa and sampled in situ in collaboration with the seed inspectors 

from MAGFOR (table1). After sampling each lot, the composed sample was reduced to 

one-kilogram sample (sending sample). 

 

 

 Table1. Seed lots sampled during this study. 

Seed category Lot size 

(tm) 
Date of harvesting Origin 

Breeder’s seed 1.74 September 9, 2008 
CNIAB-INTA San 

Marcos , Carazo 

Foundation seed 2.64 September 9, 2008 
CNIAB-INTA San 

Marcos, Carazo 

Registered seed 5.72 December, 2007 
CNIAB-INTA San 

Marcos, Carazo 

Certified seed 13.64 October, 22  2008 
EMPROSECAGRO, 

Matagalpa 
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3.2.1.1 Seed analyses in laboratory 
 

The samples were homogenized using a heavy duty boerner divider (Seedburo) and 

reduced (until 100 seeds) following recommendations stated by the Seed Laboratory of 

the CNDF y Semillas, and the spoons methodology cited by ISTA (2004). Nonetheless, 

in this case 8 centimeter petri plates were used. Standard germination rates, 1000 seed 

weight, and moisture content were determined for each sample following the rules 

stated by ISTA (2004) (table 2). This information provided valuable information for the 

next steps in this research and an estimation of the physiological quality of each lot.  

 

 

    Table 2. Physiological and physical quality of the seed lots used in this study. 

Seed category 
Germination 

rate (%) 

Moisture content 

(%) 

Weight of 1000 seeds 

(g) 

Breeder’s seed 90 12.2 254.6* 

Foundation seed 92 12 248.3 

Registered seed 91 11 246.8 

Certified seed 92 12 241.0 

     *=value taken from MAGFOR (2002) 

 

 

3.2.2 Screening for offtype seeds 

 

In collaboration with the Seed Laboratory of the CNDF y Semillas, all samples 

evaluated from the national production between September and November 2008 were 

screened for offtype seeds. The evaluation was carried out by contrasting the offtype 

seeds found with a reference sample provided by a plant breeder. The offtype seeds 

were classified in “frijol viterra” and “frijol rojo oscuro”. Before evaluating the seed 

analysts explained how they evaluate the presence of offtype seeds in the samples. 

Briefly, they screen about 700 g from the sample. All the seeds are compared with the 

reference sample (provided by the plant breeder). Only the offtype seeds that showed a 

clear difference in shape, size and color were selected. Ten offtype seeds (the most 

extreme ones) were compared with our reference population at molecular level.  
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3.2.2.1 Phenotypic analyses of offtype seeds 
 

When all offtype seeds were classified, a phenotypic analysis was carried out in order to 

describe and contrast the frijol viterra and rojo oscuro seeds with ‘INTA ROJO’ varietal 

features.  Three offtype seed features were recorded (color, shape and weight) in one 

hundred seeds. The shape and kind of seed was determined following the methodology 

described by Muñoz et al. (1993) (figure 5). The average weight of one seed in ‘INTA 

ROJO’ was calculated as follows: ten groups containing 100 seeds (following a 

randomized process) were weighted. As the variation coefficient was less than four 

percent, the weight of an individual seed was determined by averaging weights.  For 

offtype seeds, all seeds were weighted and the average was calculated.  

 

 

 

                        
 

 

Figure 5. Left: Bean shapes evaluated in viterra, rojo oscuro, and breeder’s seed.  Right: 

Different brown red color intensities evaluated in the viterra, rojo oscuro  and breeder’s 

seed. (These colored squares and bean seed shapes are a representation of those showed 

in Muñoz, et al., 1993, but recreated using MACROMEDIA FLASH SORFTWARE 

8.0v.) 

 

 

3.2.3 Plant sampling 

 

Over the last week of November 2008, varietal depuration was carried out in most of the 

bean seed lots in Nicaragua.  The offtype plant sampling was carried out on certified 

seed lots at “La Compañia”, Carazo. The field trip was carried out in cooperation with 

seed inspectors from MAGFOR and a plant breeder from INTA. They previously 

described how the varietal depuration is carried out and what criteria they take into 

account during this activity. The offtype plants were chosen according to these criteria 

and based on the experience of the field workers who collaborate in this process. 

4 6 10 

Ovoid Long ovoid Long almost 
squared 

Kidneyed 
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The sampled area was about five ha. Five kinds of offtype plants were found and 

sampled on that research station. They were: plants with a growth habit type III and 

green stems (undetermined prostrated non climbing or viny semi climbing), contrary to 

type II found in ‘INTA ROJO’, plants with a growth habit type III and red pigmentation  

on stems, plants with red pigmentation on pods, plants showing over growth, and a plant 

with four foliar lobules instead three (figures 6 and 7). In order to avoid confusing the 

evaluated traits with environmentally masked effects the sampled plants were first 

identified on the field by contrasting them with the phenotype described by the plant 

breeder during the registration. Also, when plants showing over-growth were found they 

had to have neighbor plants at 10-cm distance. Plants were removed from the field and 

examined carefully on a table. Disease-affected plants were not sampled, because of the 

complex symptoms that virus-affected plants can show.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Offtype plants found in an ‘INTA ROJO’ population during the plant 

sampling at the research station “La Compañia” (Carazo, Nicaragua). Left: INTA field 

worker showing an abnormal long red pigmented main stem previously marked for 

further observations.  Right: unusual red pigmented pods at the beginning of the 

physiological maturity. Photo: Oswalt Jiménez. 

 

 

At the end of the field trip, sixty putative offtype plants were sampled. However, only 

the ten more extreme ones were chosen and analyzed each plant representing a group 

(table 3).  After classifying the plants as offtypes, seven leaves were taken from each 

individual, one leave was used for DNA extraction and the other six leaves were dried at 

room temperature (about 26 oC) and conserved for further DNA extraction if needed.  
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Figure 7. ‘INTA ROJO’ offtype plant exhibing an over-growth when compared with 

other normal plants. Photo: Oswalt Jiménez 

 

 

Table 3. Offtype plants found into a ‘INTA ROJO’ seed lot and sampled in the 

research station “la Compañia” 

Individual Characteristics that make them offtypes 

1 Long green main stem 

2 
Long green main stem, leaves showing over-growth, and 

red* pigmentation in pods 

3 Long red* main stem 

4 Five-leaved plant, red* long main stem 

5 Red* long main stem, over-growth 

6 Long green main stem 

7 Long red* main stem 

8 Red* pigmentation in pods 

9 Red* pigmentation in pods, over-growth 

10 Long green main stem, over-growth 

*Notice that even registers notified this possible red pigmentation in stems and pods 

(Rosas et al., 2004), certification authorities and even plant breeders point out them as 

offtypes. Observations show than in some cases red pigmentation in stems is almost 

total and in pods cover about 15% of the surface. 
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3.3 Laboratory analyses 
 
3.3.1 DNA extraction 
 

After sampling and reducing the samples, four populations and two groups of offtype 

seeds (frijol viterra and rojo oscuro) were obtained. From each population, 100 

randomized individuals were taken. Those seeds were sown in plastic trays containing 

sterilized soil and kept in a room at 30oC for six days (figure 8). Forty individuals from 

each population, ten individuals of offtype plants and ten individuals of offtype seeds 

were analyzed. 

The DNA extraction was carried out at The Biotechnology Laboratory placed at 

CNIAB-INTA in Nicaragua. The Mini mini preparation protocol (Dellaporta et al, 

1983) was modified for being used in common bean.  Briefly, about 20 mg of leaf tissue 

was taken from each individual. The plant material was placed into an Eppendorf tube. 

After that, 200 µl of cold miniprep II extraction buffer (containing 100 mM Tris-HCl, 

50 mM EDTA, 500 mM NaCl, and 20 mM 2-mercaptoethanol) was added, and the 

tissue was macerated and homogenized using a plastic pestle. After that, 24 µl of 

sodium dodecyl sulfate (SDS) (10%) were added and mixed. Subsequently, the samples 

were placed into a wet cabin at 65 oC for ten minutes. After that, 111.6 µl of 3M 

potassium acetate (KAc) was added and the samples were incubated on ice for 30 

minutes. The samples were centrifuged at full speed (14,800xg) at 5oC for 15 minutes. 

Then, the supernatant was removed carefully and placed into a clean Eppendorf tube 

avoiding the debris. Afterward, 0.6 volumes of isopropanol were added and the samples 

were kept at -22oC for 30 minutes. Then, the samples were centrifuged at full speed 

(14,800xg) at 5oC for 15 minutes, the isopropanol was removed, and the pellet was 

washed twice with ethanol (70%) and left to dry. The pellet was dissolved into 100 µl of 

TE (containing 10 mM Tris-HCl pH 8, and 1 mM EDTA). Then, 1 µl of RNAse (10 ng. 

µl-1) was added and the DNA samples were placed into a warm wet cabin at 37oC for 

one hour. Finally, the samples were placed into a freezer at -24oC. The DNA amount 

was checked by running it on an agarose gel (1%).   

 



20 
 

 
Figure 8. Seedlings obtained from offtype seeds. Seedlings placed at right in red and 

blue trays are frijol viterra, seedlings at left and right in red and yellow trays 

respectively are frijol rojo oscuro, and the two seedlings placed at left in the yellow and 

blue trays are breeder’s seed seedlings. CNIAB-INTA, Nicaragua. Photo: Oswalt 

Jiménez 

 

 

3.3.2 Microsatellite genotyping 

 

Microsatellite genotyping was carried out in the Laboratory of the Department of 

Applied Biology, University of Helsinki, Finland. Twelve microsatellites markers (at 

least one per linkage group) were selected for this study: BM-053, BM-143, BM-172, 

BM-199, BM-175, BM-137, BM-210, BM-189, BM-188, BM-212, BM-184, and 

GATS091 (table 1A). All these primers were developed by Gaitán et al (2002) and they 

were selected attending their high polymorphism values and good discrimination power 

shown in many studies on bean landraces (Blair & Díaz 2006; Blair et al., 2007).  

The PCR reactions were carried out in 10 µl volumes by mixing the following 

components: 1µl of 10x buffer, 0.2 µl of dNTPs (10 mM each 500 µl), 6 µl of MQ 

water, 1 µl of each primer (5 pmol). The forward primers were fluorescently labeled 

(Applied Biosystems).  Finally, 0.3 µl of DNA polymerase (Dynazyme, 2U.µl-1) was 

added. All these components were mixed with 0.5 µl DNA template (about 40 ng). The 
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PRC reactions were carried out as follows: DNA denaturation at 94oC for 4 minutes 

followed by 30 cycles of denaturation at 94oC for 45 seconds, annealing at 50-62oC 

(depending on the primer) for 45 seconds, and elongation at 72oC for 1 minute, with a 

final elongation at 72 oC for 10 minutes. After amplification the PCR products were 

diluted with MQ water at 1:20 ratio. From this dissolution 0.5 µl of each template was 

mixed with 20 µl of HiDi-formamide and 0.15 µl of size standard (GeneScan 500 

ROX). After mixing, the samples were denatured for five minutes at 95 oC. Finally, 

DNA fragments were analyzed in a capillary electrophoresis system 3730 DNA 

Analyzer (Applied Biosystems) in the Sequencing Laboratory of the Institute of 

Biotechnology, University of Helsinki, Finland. The different peaks showing the 

fragment sizes were read using PEAK SCANNER v1.0 software (Applied Biosystems).  

 

3.4 Statistical analyses 
 
3.4.1 Genetic assumptions 

 

Before analyzing the data, we must state some assumptions about the nature of this 

study. Common bean is a self-pollinated species, expected to form very homogeneous 

population composed by very homozygous individuals for the loci involved (Acquaah, 

2007). ‘INTA ROJO’ a bred cultivar obtained as a F2:6 line derived from a cross 

between two lines (Rosas et al., 2004). At least the breeder’s seed should be a 

homogenous population. The successive generations can exhibit some changes in the 

allele frequencies as Rodrigues & Santos (2006) suggested in their study. These changes 

were ascribed to fitness differences and natural crossings, but in this study we have to 

take into account that in the successive seed generations following breeder’s seed 

(foundation seed, registered seed, and certified seed) the plant breeder, the seed farmers 

and the seed inspectors from MAGFOR rough out all the offtype plants from the seed 

lots, and try to keep the population as original as possible in genetic terms. Before this 

constant depuration process, it makes sense to consider the breeder’s seed as a reference 

population when comparing the next generations. 
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3.4.2 Genotype frequency analysis 
 

All genotypes found at the different loci were recorded (as a binary combination of 

successive alleles as: A1, A2, A3,…, An). The genotype frequencies of the reference 

population (breeder’s seed) were compared with the successive seed categories 

(foundation, registered, and certified seeds) through Fisher’s exact test using R software 

(Bioconductor).  

 

3.4.3 Comparison between seed populations 

 

The genetic structure of the reference population was contrasted with the foundation, 

registered and certified seed populations. The genetic diversity parameters were 

estimated (total number of alleles, and observed and expected heterozygosity; Hobs and 

Hexp). Genetic distances of the reference population and successive seed generations 

were tested for the level of significance with a pairwise t-test. Furthermore, the FIS 

index was calculated for each population. 

Additionally, the offtype individuals were subdividided into three groups: offtype 

plants, frijol viterra and frijol rojo oscuro. To estimate pairwise differences between 

these groups and the reference population, FST values were calculated using 

ARLEQUIN 3.1. The pairwise matrix was contrasted by UPGMA test and the 

phylogenetic tree was plotted using MEGA 4.1v software.   
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4 RESULTS 
 

4.1 Phenotypic analysis of offtype seeds 

 

The breeder’s seed used as a reference population showed a very uniform pattern, 

contrary to the frijol viterra and rojo oscuro seeds with considerably ranging seed 

features. We can summarize the phenotypic results as follows: breeder’s seed had a 

medium weight, was entirely long-ovoid in shape, and brown-red in color.  Frijol viterra 

was predominantly of medium weight, long-ovoid in shape and brown-red in color. 

However, the color was the same, but the intensity was different frijol viterra being 

lighter. On the other hand, frijol rojo oscuro was predominantly small weight seed,   

long-ovoid shaped and brown-red colored (with a darker color, 10) (Table 4). 

 

 

 Table 4. Seed features of the materials used in this study 

Material 
Shape (%) 

 Red color 

intensity (%) 

 Weight (Muñoz 

et al., 1993) 

2 5 7 8  4 6 10  S M B 

Breeder’s seed - 100 - -  - - 100  - X - 

Frijol viterra 19 59 1 21  87 3 10  - X - 

Frijol rojo oscuro 31 61 7 1  1 49 50  X - - 

Shape: 2= ovoid, 5= long ovoid, 7= long almost squared, and 8= kidneyed.  Size: S= 

small, M= Medium, and B= big. 

       

 

4.2 Genetic structure of ‘INTA ROJO’ 

 

Among the set of twelve microsatellites, ten worked adequately. The microsatellites 

BM-053 and BM-212 did not produce any PCR products, even after testing several PCR 

programs. The other primers were successful in amplifying DNA fragments. GATS091 

and BM-199 were the most informative or polymorphic loci, while BM-175 and BM-

188 were the least variable loci. Some examples of the genotyping peaks are showed in 

figure 9. 
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BM-175

BM-199 BM-188

GATS091

 
 

Figure 9. Examples of peaks obtained in this study. When tested on seed categories, loci 

GATS091 and BM-199 showed the highest allele numbers (5 and 4 alleles 

respectively). In contrast, BM-188 and BM-175 were monomorphic.  However, when 

tested on offtypes, they discriminated them from breeder’s seed. The upper line shows 

the peak sizes in basepairs (Images generated using PEAK SCANNER SOFTWARE 

v1.0, Applied biosystems) 

 

 

A total of 27 different alleles were identified in the four seed categories at the ten 

microsatellite loci, with an average of 2.7 alleles per locus. In each seed group, from 

two to five loci were monomorphic. Registered seed group showed the least number of 

monomorphic loci (2) and foundation seed group the highest (5). When the Hexp and 

Hobs were contrasted it was evident that the observed heterozygocity values of these 

groups (breeder’s seed, 0.0075; foundation seed, 0.0000; registered seed, 0.0075; and 

certified seed, 0.0100) were very low. The average FIS showed that the four groups were 

highly homozygous, with the exception of the locus BM-189 with an average value of 

0.6556 (table 5). 
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Table 5. Number of alleles and FIS index found in the four seed categories at ten 

microsatellite loci.  

Locus 

Seed category 

Mean 

Total 

number 

of alleles 

FIS 
Breeder’s 

seed 
Foundation Registered Certified 

Number of alleles 

BM-143 2 1 1 1 1.25 2 1.000 

BM-172 2 2 2 2 2.00 2 1.000 

BM-199 3 3 3 3 3.00 4 1.000 

BM-175 1 1 2 1 1.50 2 1.000 

BM-137 2 2 2 2 2.00 2 1.000 

BM-210 1 1 3 2 1.75 4 0.883 

BM-189 2 2 2 2 2.00 2 0.656 

BM-188 1 1 1 1 1.00 1 1.000 

BM-184 1 1 2 1 1.25 2 1.000 

GATS091 4 2 4 1 2.75 6 0.937 

Average 1.9 1.6 2.2 1.6 1.83 2.7 0.948 

 

 

The FST values between the four groups of seed categories ranged from 0.0635 to 

0.2894 (table 6). In all comparisons, the difference was statistically significant (table 6). 

The average FST value was 0.1390.  

 

 

 Table 6. FST values between different seed categories at ten microsatellite loci. 

Seed category Breeder’s 

seed 

Foundation 

seed 

Registered 

seed 

Certified seed 

Breeder’s seed 0    

Foundation seed 0.0747* 0   

Registered seed 0.0641* 0.0635* 0  

Certified seed 0.2288* 0.2894* 0.1136* 0 

*Significant at P < 0.05 
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A phylogenetic tree of the four seed categories showed a strong differentiation of the 

certified seed from the other seed categories. Breeder’s seed was in the same main 

branch as registered and foundation seed. Nonetheless, registered and foundation seed 

were considered as one group (figure 10) 

 

 

 

 

 

 

 

 

Figure 10. Rectangle cladogram showing the relatedness among the four seed categories 

analyzed in the cultivar ‘INTA ROJO’ during seed production in Nicaragua.  

 

 

4.3 Genotype frequency analysis 
 
4.3.1 Genetic structure of breeder’s seed as reference population 

 

The ten microsatellites revealed in total 19 different alleles and five different genotypes 

(table 2A). Four loci were monomorphic (BM-210, BM-175, BM-184, and BM-188). 

The loci BM-137, BM-143, BM-189 and BM-172 had two alleles, and the loci BM-199 

and GATS091 possessed three and four alleles, respectively.  The average number of 

alleles per locus was 1.9 (table 5) 

 

 

 

 

 
 
 
 
 
 
 
 

Breeder’s seed 

Registered 

Certificated 

Foundation 

0.10 0.08 0.06 0.04 0.02 0.00 
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4.3.2 Comparison between breeder’s seed and foundation seed 
 

Foundation seed population showed 16 alleles and six different genotypes at ten loci 

analyzed. The loci BM-143, BM-175, BM-210, BM-188 and BM-184 exhibited only 

one allele.  In contrast, BM-172, BM-189, BM-137 and GATS091 showed two alleles. 

Only the locus BM-199 had three alleles.  

When this population was contrasted with breeder’s seed, the Fisher’s exact test 

revealed changes at genotype frequencies at the locus GATS091 (table 2A).  This locus 

showed a new genotype not detected before. The other loci exhibited no new genotypes. 

 

4.3.3 Comparison between breeder’s seed and registered seed 
 

Registered seed population exhibited 22 alleles and seven genotypes at ten loci.  Only 

the loci BM-143 and BM-188 were monomorphic. Loci BM-172, BM-175, BM-137, 

BM-189 and BM-184 showed two alleles. Loci BM-199 and BM-210 exhibited three 

alleles. Finally, locus GATS091 exhibited four alleles. When compared with the 

reference population through Fisher’s exact test, registered seed showed changes at 

genotype frequencies at the locus GATS091 (table 3A). As well, two new genotypes 

appeared in registered seed at the locus GATS091. 

 

4.3.4 Comparison between breeder’s seed and certified seed 
 

Certified seed population showed 16 alleles and six genotypes at ten loci. The allele 

distribution was as follows: loci BM-143, BM-175, BM-188, BM-184 and GATS091 

were monomorphic. In contrast, loci BM-172, BM-137, BM-210 and BM-189 exhibited 

two alleles and BM-199 showed three alleles. The Fisher’s exact test revealed that 

certified seed exhibited changes at genotype frequencies at the loci BM-172, BM-137 

and GATS091 when compared with breeder’s seed (table 4A). 
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4.4 Comparison of offtype plants and seeds with breeder’s seed 
 

A total of 30 different alleles were identified in the four populations, breeder’s seed and 

the offtype individuals (offtype plants, frijol viterra, and rojo oscuro). On average three 

alleles per locus were found. Frijol viterra population showed nine monomorphic loci. 

Breeder’s seed, offtype plants and frijol rojo oscuro showed four monomorphic loci. 

When the Hexp and Hobs were contrasted it was evident that the observed heterozygocity 

values in these groups (breeder’s seed, 0.00750; offtype plants, 0.0125; frijol viterra, 

0.0000; and frijol rojo oscuro, 0.0000) was very low. The average FIS showed that the 

four groups at the ten loci were highly homozygous, ranging from 0.9592 to 1.0000 

(table 7). Five out of ten microsatellites analyzed (BM-175, GATS091, BM-210, BM-

137, and BM-188) were showed to be useful in discriminating offtypes plants and seeds 

from breeder seed, because they possessed at least one new allele (not found in breeder 

seed, therefore foreign one) in one individual from each group. Four out ten 

microsatellites (BM-175, BM-137, BM-188 and GATS091) identified alleles not found 

in the four seed categories (tables 5A and 6A). 
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Table 7. Number of alleles and FIS index found in breeder’s seed and three kind of 

offtype individuals at 10 microsatellite loci.  

Locus 

Breeder’s 

seed 

Offtypes groups 

Mean 

Total 

number of 

alleles 

FIS Plants 
Frijol 

viterra 

Frijol rojo 

oscuro 

Number of alleles 

BM-143 2 1 1 1 1.25 2 1.0000 

BM-172 2 1 1 1 1.25 2 1.0000 

BM-199 3 1 1 2 1.75 3 1.0000 

BM-175 1 3 1 2 1.75 3 1.0000 

BM-137 2 3 2 2 2.25 3 1.0000 

BM-210 1 1 1 2 1.25 2 1.0000 

BM-189 2 2 1 1 1.5 2 1.0000 

BM-188 1 2 1 1 1.25 3 1.0000 

BM-184 1 2 1 2 1.5 3 1.0000 

GATS091 4 4 1 2 2.75 7 0.8197 

Average 1.9 2.0 1.1 1.6 1.65 3 0.9820 

 

The test result showed that only frijol viterra was similar to breeder’s seed. The FST 

values in the different groups described a range between 0.0777 and 0.4343. All the 

comparisons showed significan differences, with exception of frijol viterra which was 

similar to breeder’s seed and offtype plants (table 8).  

 

 

Table 8. FST values between different seed group s within ‘INTA ROJO’ cultivar 

based on 10 microsatellite loci. 

Groups 
Breeder’s 

seed 

Offtype 

plants 

Frijol 

viterra 

Frijol rojo 

oscuro 

Breeder’s seed 0    

Offtype plants 0.2485* 0   

Frijol viterra 0.0777 0.1593 0  

Frijol rojo oscuro 0.4343* 0.2390* 0.3879* 0 

*Significant at P < 0.05 
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The average FST value was 0.2576. A phylogenetic tree for the four groups showed 

breeder’s seed and frijol viterra as one group, offtype plants in another group, even in 

the same main branch as breeder’s seed and frijol viterra, and finally frijol rojo oscuro 

was totally a different group than the others (figure 11). 

 

 

 

 

 

 

  

  

Figure 11. Rectangle cladogram tree showing the relatedness among the three offtype 

groups and the breeder’s seed.  
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5 DISCUSSION 
 

The study of the genetic composition of a bean bred cultivar has not been targeted in the 

recent research, were biotechnological tools have been applied. Most of the studies have 

focused on the quantification of the genetic diversity in landraces along the 

Mesoamerican and Andean centers of origin (Gomez et al., 2004; Gomez et al., 2005; 

Diaz & Blair, 2006; Maras et al., 2006; Blair et al., 2007; Masi et al., 2009). 

Nonetheless, molecular tools can be incorporated to plant breeding and seed production 

programs when we lack other precise methodologies and the results will solve a critical 

situation in a short period of time (Svetleva, et al., 2003; Campos et al., 2007). The 

genetic purity of a released cultivar is one of the most important topics to assess. 

Molecular markers have been successfully used to evaluate the genetic purity of 

different cultivars (Smith & Register, 1998; Crocket et al., 2002; Yashitola, et al., 2002; 

Ilbi, 2003; Mongkolporn et al., 2004) 

 Bean seed production in Nicaragua encourages keeping the genetic purity of 

cultivars as pure as possible. The bred cultivar ‘INTA ROJO’ is broadly used and its 

genetic purity is often questioned during the certification process. This situation drove 

this research with aim to compare the genetic composition of different seed categories 

and to confirm the genetic identity of offtype plants and seeds found in this cultivar. 

 

5.1 Genetic changes in different seed categories during seed production  
 
Genotype frequency changes taking place at many loci during seed production, visible 

as differences as between seed categories, and the clustering of the seed categories as 

two main groups can be explained by carefully analyzing the genetic population 

dynamics. 

From population genetic point of view, systematic (migration, mutation and 

selection) and dispersive process (genetic drift) are two agencies that interact jointly 

changing the genotype frequencies of populations (Falconer & Mackay, 1996). Seed 

production can be affected by these agencies altering the proportion of different 

genotypes of the population between generations. However, not all the agencies have 

the same impact in the population structure. Systematic processes (migration mutation, 

and selection) in the seed production will be analyzed and their impacts discussed. 
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Selection as a systematic process during seed production has to be seen as a 

deteriorative factor in the cultivar already released.  However, before presenting the 

hypotheses, we must define and differentiate three important concepts, artificial 

selection, natural selection, and varietal depuration. 

Basically, artificial selection is the recognition of the target genotypes in a matrix of 

variable individuals and letting them to increase their descendents in next generations. 

Thus these genotypes will increase their frequency until achieving a significant change 

in the population structure (Briggs & Knowles, 1967; Simmonds, 1979; Bos & Caligari, 

1995). Natural selection also lets certain genotypes increase in frequency because they 

have a high fitness. However, the natural forces, such as droughts, diseases, and floods, 

act on these individuals. Under this scheme of selection many landraces have been 

improved, achieving high levels of adaptation to variable environments.  

In contrast, varietal depuration is an activity that aims to keep a cultivar as 

genetically pure as possible by removing offtypes plants and seeds from the seed lots. 

According to Nicaraguan bean seed production normative, NTON-11006 02, Norma 

Tecnica Obligatoria Nicaraguense para la Produccion de Semilla de Granos Básicos y 

Soya (MAGFOR, 2002), the varietal depuration is an activity carried out constantly 

during seed production. Indeed, we can appreciate the difference between these 

concepts. While selection tends to modify the genetic structure of the population, 

varietal depuration aims to keep it as original as possible.  

We can find out that without a careful plan it is not easy to select when we are 

supposed to depurate. Desai et al (1997) mentioned the technique used by the plant 

breeder and the selection of the diseases as two agents in the varietal deterioration. 

However, it is important to remark that more than one person take part in the varietal 

depuration in Nicaragua. Therefore a good plan and the creation of guidelines easy to 

follow will facilitate this activity. Indeed, the lacking guidelines for this activity and the 

absence of a specific office with a duty to organize the varietal depuration suggest that 

in some cases the cultivar can be improved instead depurated, altering their genotypic 

proportions. If this selection take part in high hierarchical levels, such as breeder’s seed 

and foundation seed, the impact will be greater in certified seed. 

It is possible to considerably change the allele or genotype frequencies in few 

generations. Delaney & Blis (1991) demonstrated that in three generations of selection 

the allele frequency of loci linked to phaseolin content drastically changed in bean 

seeds. Therefore we can realize that phenotypes (easy to recognize on fields) can be 
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selected during seed production and their genotype frequencies change in few 

generations. 

Natural selection can also change the genotype frequencies. Seed production takes 

place in different contrasting regions with very particular environmental conditions. For 

example, as the seed lots evaluated in this study (table 1), registered seed initially 

produced in Carazo and after produced in Jinotega and Matagalpa as certified seed 

should have faced a change in historical precipitations from about 1,451 mm to 1,206 

mm and from 24oC to 20.7oC in temperatures (INETER, 2000). Additionally, many 

diseases and pests are quite specific in these places. Under those conditions the 

genotype frequencies can change. The production of seed categories in different regions 

is a common practice in Nicaraguan system (MAGFOR, 2008). Cregan & Busch (1978) 

stated that natural selection favored the most drought insensitive wheat genotypes 

(Triticum aestuvum L.), when they were cultivated in drought environment.  These 

contrasting conditions altered the genetic constitution of the populations.  

Bean populations can change their genotype frequencies depending on the 

environmental conditions. These changes have been well documented when the bulk 

breeding method is analyzed through several Fn generations on bean families bulks 

(Pirola et al., 2002; Silva et al., 2004; Rodrigues & Santos, 2006). 

Migration is the movement of one individual from one population to another. This 

individual has to be capable to mate with the individuals present in the population and 

add new alleles to the genetic structure. In seed technology, migration can be exampled 

as gene flow among cultivars and accidental seed mixtures that take place during seed 

production. Depending on the quantity of seed that are mixed, the genotype frequencies 

can change in the seed categories. Even though, the alien individuals are supposed to be 

removed from fields, it has been possible to detect them in the seed lots in different 

species accumulating evidence about a migration of individuals from one cultivar to 

another during seed production (Schuster et al., 2004; Ikeda et al., 2007). 

Mutations can create new alleles in a population. However, their contribution to 

changes in genotype frequencies is less significant during seed production and in most 

cases difficult to estimate (at genotype frequency level). Mutants and recombinant 

individuals can be identified on bean fields, more when their novel features are easily 

discernible from the wild types. This phenomenon will be explained in more details in 

the next part, where it has more implications. 

As it was mentioned before, it is difficult to estimate changes in genotype frequencies 

coming from different agents from one seed generation to another. Nonetheless, these 
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changes have been reported during plant breeding experiments, suggesting that we must 

consider how the genetic purity has to be idealized within a cultivar. Perhaps one 

consideration to be stated is the fact that populations within a bred cultivar are supposed 

to vary the genetic structure without changing their genetic identity. This variation is a 

response to environmental differences among the seed production areas, some 

agronomic practices and finally genetic drift derived from sampling. 

 

5.2 Comparisons between offtype individuals and breeder’s seed 

 

Even though all the offtype plant and seeds were phenotypically different to breeder’s 

seed, the molecular results clustered rojo oscuro seeds and the offtype plants as different 

genotypes from ‘INTA ROJO’, but not frijol viterra which was the same cultivar 

(figures 11 and 12). These results suggest that at least the removing of the offtype seeds 

named frijol rojo oscuro and the offtype plants described on this paper (table 3) 

contribute to the conservation of the genetic purity of the cultivar. As well, the 

discarding of seed lots due to frijol viterra presence must be reconsidered carefully. The 

more important remarks derived from this appreciation are discussed in next sections.    

 

 

 
Figure 12.  Even thought almost indistinquible at naked eye, differences between 

breeder’s seed (BS) and frijol rojo oscuro (17, 20) at two microsatellites. Agarose gel 

(1%) ran at 100 V for 45 min. 
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5.2.1 Non-differentiation of frijol viterra 
 
Frijol viterra was considered offtype because it is bigger than the normal seed and it has 

light red-colored seeds (table 4). However, frijol viterra was quite similar to breeder’s 

seed when contrasted at ten loci. When Wilhem Johannsen in 1909 stated the pure line 

theory, he evaluated the selection on different seed weights, obtaining selection gains in 

each generation, until the pure lines were stable for this trait (Roll-hansen, 1989). 

However, after this notable discovery many other studies have shown that seed size or 

seed weight is determined by quantitative gene action, something strongly influenced by 

the environment and difficult to select in most of the cases (Falconer & Mackay, 1996). 

Nowadays, we know that during the domestication process two main origin centers gave 

birth to two kinds of different beans with seeds differing in size, among other features,  

Andean beans being bigger than Mesoamerican ones. Within these groups, Nicaraguan 

bean cultivars can exhibit differences in sizes (Carballo & Jenkins, 2002; Marenco & 

Montserrat, 2003; Suárez & Solis, 2006; MAGFOR, 2004). For this reason, Nicaraguan 

certification authorities have paid attention to this trait in ‘INTA ROJO’ and reported 

the frijol viterra as offtype.   

We must consider that even though it is possible to select pure lines for seed 

weight; the heritability of this trait is strongly influenced by the environment. Therefore, 

it is difficult to know at least based on weight differences if it is the same cultivar or 

not, even though we know the expected seed weight for each cultivar. We can state at 

least under the conditions of the current research that the frijol viterra seeds analyzed 

have the same genetic identity than ‘INTA ROJO’ and the differences in weight are 

likely the response to environmental conditions or agronomic practices. 

Bean plants respond to different plant densities. When the densities are higher than 

recommended, bean plants decrease seed weight during seed filling. Contrary, if plant 

densities are lower bean plants increase seed weight considerably (Shimada & Arf, 

2000; Njoka et al., 2005). If we consider that non-uniform plant densities are some of 

the problems that bean farmers face in Nicaragua (INTA, 2004), we can find seeds than 

differ in weight (produced from different plants at non-uniform densities on fields).  

Indeed, the environmental effects can alter the phenotype of plants and seeds and 

not all the putative offtypes have to be real offtypes. Schuster et al., (2004) after testing 

eleven soybean [Glycine max (L.) Merr.] seed lots labeled as genetically contaminated 

found that only four were really contaminated with other cultivars. That study 
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demonstrated the usefulness of the SSRs for detecting seed mixtures when 

environmental effects difficult a phenotypic test.  

 

5.2.2 Differentiation of frijol rojo oscuro and offtype plants 

 

Rojo oscuro beans and offtype plants showed to be a confirmed offtypes and probably 

other cultivars distinct to ‘INTA ROJO’. The phenotypic analysis showed frijol rojo 

oscuro was already more contrasting compared with breeder’s seed, and it was 

molecularly confirmed. The microsatellite markers used on this study showed to be 

useful for identifying bean cultivars, because they found in these offtypes alleles not 

identified on the array of individuals in ‘INTA ROJO’ along the four seed categories. 

Yashitola et al., (2002) also reported that in hybrid rice production, it was possible to 

identify offtypes in the seed lots using one or two very discriminating microsatellite 

loci. 

The study of offtype individuals within a cultivar has relevance from two points of 

view. First, they represent an undesired variation that affects the certification process 

when their frequencies are higher than those allowed. Second, some of these offtypes 

can be new genotypes for a further plant breeding program if their characteristics are 

(extremely) novel and useful.  

There are some examples of cultivars originating from offtypes individuals. The 

soybean cultivar ‘CEA-CH-86’ was identified as a single offtype plant in a seed lot in 

the Brazilian bred cultivar ‘CRISTALINA’. After several cycles of selection the new 

cultivar was successfully released and currently broadly cultivated in Nicaragua 

(Villalobos & Camacho, 2003). The rusty leaf peanut genetic stock registered by Branch 

(1999) was originated as an offtype plant found in a foundation seed lot in the cultivar 

‘VIRGINIA BUNCH 67’. Its name comes from the fact that it has a pale green leaf 

color with small white speckled areas on the youngest leaves, mimicking rusty plants.  

It is difficult to estimate the origin of the offtypes analyzed in this study, because 

they can come from different sources. Nonetheless, we discovered that they were not 

formally other cultivars, at least the registered ones in the national varietal register 

(MAGFOR, 2009). Therefore, even discussed, seed mixtures are not considered as the 

main candidate source.  Their origin can be rooted by mutations or crosses between 

different cultivars. These possible factors will be examined carefully below.  
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Accidental seed mixtures are undesirable during seed production, but they arise at some 

point in the system. These seed mixtures can take place from harvest to the storage, 

more when the cultivars involved are quite similar in phenotypic features.  

Based on our experience, bean plants are harvested as small groups on fields and 

left to dry on the ground. After plants are dried, they are placed into a bag and hit until 

the pods deliver the seeds into the bag. The harvester should be careful in placing the 

right cultivar in the labeled bag, because sometimes more than one cultivar is harvested 

at the same time during the production of high seed categories. Some seeds can pass 

from one lot to another one without being noticed at all.  

After drying the bean seeds, they are submitted to a manual selection whose 

objective is to remove inert matter, damaged seeds, small seeds and offtypes seeds. 

During this activity field personnel screen the whole seed lot looking for impurities. All 

putative offtype seed has be removed from the lot. Even though some offtype seeds 

escape, they can be roughed out in the next seed generation from the fields as offtype 

plants.  

According to MAGFOR (2002), during all these activities one seed inspector from 

MAGFOR has to supervise the proper following of the guidelines, guaranteeing an 

acceptable genetic purity. However, it is not always possible to inspect the bean fields 

during all the stages, because lacking funds and scarce personnel. Therefore, many of 

the tasks rest on INTA-CNIAB which manages the seed increasing at highest levels in 

the seed production system (figure 2). Additionally, the seed increasing is not always 

carried out under the supervision of the same personnel and in the same geographical 

area.  

Despite this situation, a proper manual screening of the seeds is a key stage that 

must give confidence about the purity of the materials. Otherwise, the effect of 

divergent criteria or lacking supervision increases the number of offtype plants and 

seeds into the populations. The level of accidental seed mixtures is difficult to estimate 

accurately because it implies human errors at bean seed processing something that 

varies depending on the planning and farming conditions.  
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Common bean is a self-pollinated species which out-crossing rate is thought to be very 

low, because bean floral morphology in which stamens are quite close to the stigmas 

and fertilize them before the floral buds open (Webster et al, 1977; Adams et al, 1985).  

Nevertheless, Webster et al (1977) stated that one different pistil which stigma remains 

receptive after the floral bud opens is able to cross pollinate in presence of insects. 

Unfortunately, information about this variation in Nicaraguan bean cultivars is not 

available to date. 

Bean seed production has to be carried out on isolated fields. MAGFOR (2002) 

states that the distance between two seed lots from different cultivars must be five 

meters. However, many studies have shown that this out-crossing rate is higher (from 

0.71 to 39.3%) and it depends on the environmental conditions and the cultivar (Wells 

et al., 1988; Brunner & Beaver, 1989; Ibarra et al., 1996; Ibarra et al., 1997; Royer et 

al., 2002; Hoc et al., 2006; Ferreira et al., 2007). It is difficult to estimate a value 

because it can change drastically from one region to another. Ferreira et al., (2000) 

found no hybrid individuals in their study remarking that at least at Austurias conditions 

(Northern Spain) common bean out-crossing was about 0.74%.  

In consequence, taking into account the flowering correspondence among bean 

cultivars in Nicaragua: ‘INTA ROJO’, 36-38 days; ‘INTA CARDENAS’, 35-40 days; 

‘INTA NUEVA GUINEA’, 34-36 days; INTA MASATEPE’, 32-34 days; and ‘INTA 

CANELA’, 36-38 days (PROMESA, 2002; Rosas et al., 2004), it is possible that a 

higher out-crossing rate in some regions is contributing to genetic segregations among 

bean cultivars, producing these offtypes difficult to identify as registered cultivars. 

Unfortunately, the out-crossing rate for Nicaraguan conditions remains unknown.  

Spontaneous mutations arise at very low rates in most organisms (10-5 or 10-6 per 

generation in most loci). That means about one in 100,000 or one in 1,000,000 gametes 

(Falconer & Mackay, 1996; Acquaah, 2007). Even though natural mutation rates are 

very low in plants, they have been an important agent for the occurrence of offtype 

plants on bean fields. Additionally, these mutations have helped to understand the gene 

action related to seed traits such as color, size and shapes.  

McClean et al., (2002) constructed a gene map for the genes that interacts in seed 

color and color patterns. They described one single locus that determines the presence 

of color in the seed coat (P_) or the absence (pp), three possible genotypes for flower 

colors: purple (V_), pink (Vlae) and white (vv), and about nine genes interacting for 

different coat patterns (Gy, C, Z, R, J, G, B, Rk, T, L, Bip). After that Bassett & Miklas 

(2007) proposed the gene bic with pleiotropic relation between flower and seed coat 
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colors. Recently, the recesive allele j was ascribed to the postharvest darkening in seeds 

(Junk-Knievel et al., 2008). Some mutations have risen in these genes showing strange 

seed coat patterns never seen before. Ernest & Kelly (2005) found in a bean foundation 

seed strange offtype seeds with seed patterns suggesting a recessive mutation at T locus. 

This mutation conferred a self colored seed coat and masking the expression of the gene 

z and others. We can find out the usefulness and importance of these mutations for 

different applications.   

Frijol rojo oscuro can result from crossing among cultivars, spontaneous mutations 

in the genes above described, or both.  These offtypes appear in ‘INTA ROJO’ seed lots 

often. As well, the occurrence of violet flowers (instead white) in the same ‘INTA 

ROJO’ seed lots suggests that they could be related in some way (Aurelio Llano, 

personal communication). Unfortunately, during our field sampling no violet-flowered 

plants were detected. However, the field personnel were willing to mark those plants 

and harvest the seeds (separated) for further analysis.  

In the same way, Ikeda et al., (2007) carried out a study where different rice 

offtypes were analyzed into NERICA varieties. They suggested that the main offtype 

sources were: mechanical seed mixtures, segregations, out-crossing among cultivars, 

and natural mutations. These results and conclusions are in concordance with the 

findings and hypothesis presented on this paper. 

Additionally, many seed farmers have expressed (unpublished information) the 

presence of other offtypes with attractive features, such as higher number of pods per 

plant, resistance to environmental stresses, and high yield in the Northern Nicaragua. 

These occurrences must be studied carefully because they can represent new genotypes 

highly adapted to specific conditions.  
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6 CONCLUSIONS 
 
The changes detected in the genotype frequencies of the microsatellite loci showed that 

the genetic composition of the common bean is affected during seed production. These 

changes are associated to selection processes imposed during the seed certification and 

varietal depuration, and the changes in the environmental conditions when the seed 

production is moved from one region to another. These results and the available 

literature suggest that we must reconsider this variation when evaluating the genetic 

purity in a seed lot, taking into account the contrasting environments where seed 

production is carried out.  

Frijol rojo oscuro seeds were really another unknown cultivar mixed with ‘INTA 

ROJO’. The origin of these seeds seems to be rooted in mutations or natural 

segregations more than in seed mixtures. Frijol viterra was the same ‘INTA ROJO’ 

genotype. Therefore, the phenotype differences were associated to environmental 

effects on the seed weights.  

 

7 FUTURE PERSPECTIVES 
 
Bean seed production is a very important activity in Nicaraguan agriculture. Many of 

the current efforts point to improve the quality of the seeds that are distributed to the 

bean farmers. To improve genetic quality imposes several challenges. The lacking 

information and the scarce use of biotechnological tools make this activity more 

difficult. The study of the genetic quality of the cultivar ‘INTA ROJO’ was the start 

point of this improvement. 

National regulations must be reconsidered taking into account the real conditions 

where the seed production is carried out and the challenges and changes that global 

warming represents. In addition, it is necessary to create reliable varietal depuration 

protocols adjusted to the nature of the cultivars that are multiplied in the national seed 

system. The methods described in this paper can be integrated to the seed quality 

control in order to quantify the genetic purity of the cultivars, at least at higher level in 

the seed categories, to avoid wrong estimations derived from phenotypic methods.   
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10 APPENDICES 
 

Table 1A. Microsatellites analyzed in this study. 

Locus LG Size Motif Repeat 
No. Primer Sequence_FORWARD Primer Sequence_REVERSE 

BM053 b01 287 CT 21 AACTAACCTCATACGACATGAAA AATGCTTGCACTAGGGAGTT 
BM143 b02 143 GA 35 GGGAAATGAACAGAGGAAA ATGTTGGGAACTTTTAGTGTG 
BM172 b03 107 GA 23 CTGTAGCTCAAACAGGGCACT GCAATACCGCCATGAGAGAT 
BM199 b04 304 GA 15 AAGGAGAATCAGAGAAGCCAAAAG TGAGGAATGGATGTAGCTCAGG 
BM175 b05 170 GA 19 CAACAGTTAAAGGTCGTCAAATT CCACTCTTAGCATCAACTGGA 
BM137 b06 155 CT 33 CCGTATCCGAGCACCGTAAC CGCTTACTCACTGTACGCACG 
BM210 b07 166 CT 15 ACCACTGCAATCCTCATCTTTG CCCTCATCCTCCATTCTTATCG 
BM189 b08 114 CT 13 CTCCCACTCTCACCCTCACT GCGCCAAGTGAAACTAAGTAGA 
BM188 b09 177 CA 18 TCGCCTTGAAACTTCTTGTATC CCCTTCCAGTTAAATCAGTCG 
BM212 b10 214 CA 13 AGGAAGGGATCCAAAGTCACTC TGAACTTTCAGGTATTGATGAATGAAG 
BM184 b11 160 AC 11 AGTGCTCTATCAAGATGTGTG ACATAATCAATGGGTCACTG 
GATS091 b02 229 GA 17 GAGTGCGGAAGCGAGTAGAG TCCGTGTTCCTCTGTCTGTG 

LG=Linkage group. (Gaitán et al., 2002; Blair et al., 2003) 
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Table 2A. Comparison between breeder’s seed and foundation seed at genotype frequency level 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

*= Statistically significant values from Fisher’s exact test. 
 
 
 
 
 
 
 
 
 
 
 

Locus 
Breeder’s seed   Foundation seed 

P value  Genotype frequencies  Genotype frequencies 
A1A1 A1A2 A1A5 A2A2 A3A3 A4A4  A1A1 A1A2 A1A5 A2A2 A3A3 A4A4 

BM-143 39 0 0 1 0 0  40 0 0 0 0 0 1.0000 
BM-172 26 0 0 14 0 0  31 0 0 9 0 0 0.3232 
BM-199 33 0 0 6 1 0  35 0 0 4 1 0 0.8661 
BM-175 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 
BM-137 22 0 0 18 0 0  24 0 0 16 0 0 0.8212 
BM-210 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 
BM-189 39 0 0 1 0 0  37 0 0 3 0 0 0.6153 
BM-188 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 
BM-184 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 

GATS091 1 2 1 35 1 0  0 0 0 24 0 16 0.0000* 
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Table 3A. Comparison between breeder’s seed and registered seed at genotype frequency level 

Locus 
Breeder’s seed  Registered seed 

P value Genotype frequencies  Genotype frequencies 
A1A1 A1A2 A1A5 A2A2 A3A3 A4A4 A5A5  A1A1 A1A2 A1A5 A2A2 A3A3 A4A4 A5A5 

BM-143 39 0 0 1 0 0 0  40 0 0 0 0 0 0 1.0000 
BM-172 26 0 0 14 0 0 0  34 0 0 6 0 0 0 0.0691 
BM-199 33 0 0 6 1 0 0  32 0 0 4 0 4 0 0.1470 
BM-175 40 0 0 0 0 0 0  36 0 0 4 0 0 0 0.1155 
BM-137 22 0 0 18 0 0 0  14 0 0 26 0 0 0 0.1151 
BM-210 40 0 0 0 0 0 0  36 0 0 1 3 0 0 0.1155 
BM-189 39 0 0 1 0 0 0  37 3 0 0 0 0 0 0.2405 
BM-188 40 0 0 0 0 0 0  40 0 0 0 0 0 0 1.0000 
BM-184 40 0 0 0 0 0 0  39 0 0 1 0 0 0 1.0000 

GATS091 1 2 1 35 1 0 0  6 0 0 27 0 5 2 0.0018* 
*= Statistically significant values from Fisher’s exact test. 
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Table 4A. Comparison between breeder’s seed and certified seed at genotype frequency level 

Locus Breeder’s seed  Certified seed 
P value Genotype frequencies  Genotype frequencies 

 A1A1 A1A2 A1A4 A1A5 A2A2 A3A3  A1A1 A1A2 A1A4 A1A5 A2A2 A3A3 
BM-143 39 0 0 0 1 0  40 0 0 0 0 0 1.0000 
BM-172 26 0 0 0 14 0  38 0 0 0 2 0 0.0015* 
BM-199 33 0 0 0 6 1  34 0 0 0 5 1 1.0000 
BM-175 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 
BM-137 22 0 0 0 18 0  3 0 0 0 37 0 0.0000* 
BM-210 40 0 0 0 0 0  39 0 1 0 0 0 1.0000 
BM-189 39 0 0 0 1 0  39 1 0 0 0 0 1.0000 
BM-188 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 
BM-184 40 0 0 0 0 0  40 0 0 0 0 0 1.0000 

GATS091 1 2 0 1 35 1  0 0 0 0 40 0 0.0000* 
                *= Statistically significant values from Fisher’s exact test. 
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Table 5A. Fragment sizes in basepairs (bp) of the different alleles found at ten microsatellite loci in four seed categories. 

Allele 
Locus 

BM-143 BM-172 BM-199 BM-175 BM-137 BM-210 BM-189 BM-188 BM-184 GATS091 
Fragment size (bp) 

A1 153 76 278 186 100 179 104 150 159 252 
A2 155 78 280 158 98 187 102 - - 254 
A3 - - 270 - - 177 - - - 258 
A4 - - - - - 267 - - - 250 
A5 - - - - - - - - - 256 

 
 

Table 6A. Fragment sizes in basepairs (bp) of the different alleles found at ten microsatellite loci in offtype individuals. 

Allele 
Locus 

BM-143 BM-172 BM-199 BM-175 BM-137 BM-210 BM-189 BM-188 BM-184 GATS091 
Fragment size (bp) 

A1 153 76 278 186 100 179 104 150 159 252 
A2 155 78 280 158 98 187 102 380* - 254 
A3 - - 270 160* 88* 177 - - - 258 
A4 - - - - - 267 - - - 250 
A5 - - - - - - - - - 256 
A6 - - - - - - - - - 246* 

*= New alleles not found in the four seed categories. 


