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Network theory proved recently to be useful in the quantification of many

properties of financial systems. The analysis of the structure of investment

portfolios is a major application since their eventual correlation and overlap

impact the actual risk diversification by individual investors. We investigate

the bipartite network of US mutual fund portfolios and their assets. We follow

its evolution during the Global Financial Crisis and analyse the interplay be-

tween diversification, as understood in classical portfolio theory, and similar-

ity of the investments of different funds. We show that, on average, portfolios

have become more diversified and less similar during the crisis. However, we

also find that large overlap is far more likely than expected from models of

random allocation of investments. This indicates the existence of strong cor-

relations between fund portfolio strategies. We introduce a simplified model
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of propagation of financial shocks, that we exploit to show that a systemic risk

component origins from the similarity of portfolios. The network is still vul-

nerable after crisis because of this effect, despite the increase in the diversifi-

cation of portfolios. Our results indicate that diversification may even increase

systemic risk when funds diversify in the same way. Diversification and simi-

larity can play antagonistic roles and the trade-off between the two should be

taken into account to properly assess systemic risk.

Introduction

One of the most important issues that the Global Financial Crisis (GFC) of 2007-2008 has

highlighted concerns the effects on systemic risk of the increasing interdependence both be-

tween large institutional investors and among global assets. On the one hand, large institutional

investors allow for a better diversification of individual risk: the larger the number of different

assets in a portfolio, the smaller the fraction of an idiosyncratic shock an investor has to bear.

On the other hand, the GFC has shown that cross-sectional dependencies between assets can

cause idiosyncratic shocks (i.e. related to the distress/bankruptcy of a single specified asset)

to spread, ultimately substantially threatening the stability of the entire financial system. Ac-

cording to classical investment portfolio theory, risk depends on the share of individual stock

holdings and the variance–covariance matrix among its holdings [1]. Hence, theoretical models

imply that a portfolio should be fully diversified to reduce risks (unsystematic risks), but how

to construct a well-diversified portfolio still remains to be studied. There is consensus in the

literature that a strong risk reduction of holdings can be realized by increasing the number of

assets in a portfolio [2, 3, 4]. Indeed, between 1997 and 2012, assets in the equity, balanced,

and fixed income mutual funds have increased by more than 400 percent [5]. The efficacy of

diversification strategies depends, however, on market conditions and systemic risk that may
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moderate the relationship between diversification, fund performance, and risk. Recently, it has

been shown that the benefit of diversification increases within higher market volatility condi-

tions, such as the GFC of 2007-2008 meaning that the number of stocks needed to achieve a

well-diversified portfolio increases under those market conditions [6]. Unfortunately, the im-

plications of such an increase of portfolio diversification during crises are not fully understood.

Moreover, the empirical evidence accumulated during the GFC has raised legitimate doubts on

the effectiveness of portfolio diversification strategies to reduce risk.

Systemic risk in financial systems has been increasingly investigated through the lens of net-

work theory [7, 8, 9, 10, 11, 12, 13, 14]. Most of the work so far has focused on the network of

interbank loans, even though there is a paucity of data about the real-world structure of financial

networks. Interestingly, it has been found that, when the magnitude of negative shocks is large

and the network is scale-free, a more densely connected financial network (corresponding to a

more diversified pattern of investment) serves as a mechanism for the propagation of shocks,

leading to a more fragile financial system, thus increasing systemic risk.

Depending on the level of similarities across mutual funds, increasing portfolio diversifica-

tion during a crisis might increase the cross-correlation among assets thus amplifying systemic

risk. Therefore, the exact role played by the evolution of the financial network during crisis in

creating systemic risk remains, at best, imperfectly understood. The same holds for the role of

global fund managers which appears to have been studied mostly in simulated scenarios [15].

So far, most of the papers in the literature assume that the relationship between diversifica-

tion and risk is constant in the long run, regardless of market conditions. We contribute to fill

this gap in the literature by analysing the bipartite network of US mutual funds over time and

throughout the Global Financial Crisis.

Here, we provide an extensive characterization of the mutual fund universe covered by the

CRSP Survivor-Bias-Free Mutual Funds Database in 2005-2010. In particular, we consider the
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bipartite network of portfolio holdings and we perform a temporal analysis of its topology, fo-

cusing on the interplay between the complementary notions of diversification and similarity of

portfolio investments. We study how the systemic fragility of the system depends on the overlap

between portfolios due to correlated investment strategies. This is done through simulations of

a simple dynamics of distress propagation and through comparison with null models of random

investments. The fund holding network has been considered previously in [16] where the corre-

lation between changes in a firm’s position in the network and future stock market performance

is considered, and in [17] where the CRSP database was studied to detect possible conflicts of

interest in the strategies of multi-fund managers. In [18] the size distribution of funds has been

investigated in detail, while in [19] a size-dependent model of fund growth has been proposed

to explain its shape. However, to the best of our knowledge, this is the first attempt to provide

a comprehensive description of this system across years, from the point of view of network

science, and to disentangle the roles of diversification and similarity in determining distress

propagation and systemic fragility.

Results

We analyse the mutual funds market as a bipartite network where one of the two sets is formed

by the US mutual fund portfolios and the other set is made by the assets in those portfolios.

A detailed formalization is provided in Materials and Methods. Within this framework, we

perform an extensive statistical analysis of portfolio diversification from a twofold perspective.

On one side, we consider the usual notion of diversification within a single portfolio, dating

back to Markowitz [20]. This depends on the number of different assets in the portfolio, as well

as on their weights, and on the correlation between asset price variations. On the other side, we

add a second dimension to the analysis, by studying diversification across portfolios, defined

as the degree of similarity of the assets held by mutual funds and measured by suitable overlap
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indices. We compare the real data with two null models of random allocation of investments

to test for heterogeneity and non trivial correlations between portfolios. Finally, introducing a

simple model of distress propagation and exploiting the random benchmarks, we explore the

connection between similarity of portfolios, distress propagation and systemic fragility.

The above characterization is performed with special attention to the evolution of the net-

work throughout the GFC. In particular, we show how the systemic fragility of the network has

changed. As it is well known, the peak of the crisis has been reached in 2008, culminating in

the collapse of Lehman Brothers in September. In order to compare the structure of the network

over time, we select three reference quarters, 2006Q2, 2008Q2, 2010Q2, where the notation

“2006Q2”, for instance, stands for the second quarter of year 2006. Our goal is to identify three

moments in time before, during and after crisis.

Topology of fund holdings, concentration and similarity

In this Section we investigate diversification within and across portfolios, through the lens of

network science. These concepts are related to the degree of funds and assets in the holding

network.

The degree ki of fund i represents the number of different assets held at a given moment in

time, while the degree kα of an asset represents the number of funds that hold asset α in their

portfolio.

The probability distributions p(ki,α) for the fund and asset degree, respectively, are shown

in Fig. 1 for the selected reference quarters. The probability densities extend over several orders

of magnitude in both cases, with fat tails that are the typical signature of topologically heteroge-

neous systems. This means that most funds manage portfolios of just few tens of different assets

while the average degree is in the hundreds. However, there are funds for which the number of

assets is larger than the average by orders of magnitude (hubs). In between these two extremes

5



100 101 102 103 104

k

10 8

10 6

10 4

10 2

p(
k)

Funds

2006, Q2
2008, Q2
2010, Q2

100 101 102 103

k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

p(
k)

Assets

2006, Q2
2008, Q2
2010, Q2

A B

Figure 1: Degree distributions. Probability density functions of fund degree (A) and asset
degree (B) for the three reference quarters. Most funds invest in few tens of different assets
but some manage very diversified portfolios, with thousands of different holdings. The assets
present similar heterogeneity. During the crisis, the probability of holding many assets has
increased, while the probability for an asset to be held by many funds has fallen.

we find a wide spectrum of intermediate investment strategies. A similar heterogeneity charac-

terizes the assets: most assets are found in the portfolios of few funds, but some assets enjoy

huge popularity and are held by almost every fund.

During crisis, the tail of the distribution for funds has grown “fatter”, while an opposite be-

havior is observed for assets. We reckon that, during crisis, the probability of finding portfolios

with a small degree has decreased and, correspondingly, the probability for a fund to invest in

a large number of different financial products has increased. At the same time, the probability

of finding the same asset in many portfolios has become smaller, suggesting that the average

overlap between portfolios has decreased.
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Fund diversification

Fund-degree provides a first topological notion of diversification of an individual portfolio.

However, from a financial point of view we must take into account the weights of each asset in

a portfolio and consider a specialized index of concentration.

The Herfindahl–Hirschman index is a typical measure of concentration [21, 22, 23] and we

use its inverse to compare the diversification of mutual fund portfolios. Precisely, we consider

the following index

hi =

(∑
α

w2
iα

)−1
. (1)

If a fund manager invests primarily in a single asset, hi will be close to one; the opposite case

is represented by a uniform investment, with the same fraction of portfolio wealth invested in

each asset, when we have hi = ki. In this sense, hi can be regarded as the number of leading

assets in the portfolio. We will refer to the quantity defined in Eq. (1) as the “inverse Herfindahl

index”.

The larger the value of h, the more the portfolio can be considered as diversified. This notion

of diversification does not take into account how similar are different portfolios. Even though

diversification is believed to lower market risk in a portfolio, we will show that a systemic risk

component arises since portfolios tend to diversify in the same way. This adds a second systemic

dimension to the notion of diversification, that is of major interest in a network perspective.

Portfolio similarity

Portfolio similarity depends indeed on two factors: the number of assets they have in common,

and the similarity of the weights attached to common assets. Given two funds i and j, let Pi

and Pj be the sets of the indices of the assets in their portfolios, that is Pi = {α(i)
l }l=1,...,ki and

Pj = {α(j)
l }l=1,...,kj , with αl ∈ [1, Na]. We indicate as |P | the cardinality of the set of assets P .

A measure of overlap between the various choices is provided by the Jaccard Index [24], which
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is the size of the intersection of the two sets divided by the size of their union:

Jij =
|Pi ∩ Pj|
|Pi ∪ Pj|

. (2)

This shows which percentage of the assets included in Pi or Pj belongs to both. When two

portfolios contain exactly the same assets, the Jaccard Index equals one, J = 1.

We notice that asset degree is connected to the notion of overlap between portfolios. Indeed,

the larger the degree of an asset, the more “popular” it is in investment strategies and the larger

the probability of finding it in different portfolios.

The Jaccard index refers to a topological notion of similarity but portfolio weights must be

taken into account to provide a more relevant measure. Indeed, when two funds invest in the

same assets, their portfolios should be considered dissimilar in financial terms if the distribution

of the weights are different. To capture this, we sum the smallest of the weights attached to each

asset in the intersection and multiply this by the Jaccard index, obtaining a Similarity Index [16].

Formally, the latter can be defined as follows:

sij = Jij ×
∑

α∈Pi∩Pj

min (wiα, wjα) . (3)

This index is now equal to one for two portfolios that contain exactly the same assets in exactly

the same proportions, and it will be smaller than one otherwise. When the two portfolios do not

overlap at all its value is zero.

In Fig. 2 we show the level of concentration and similarity in the network over time, mea-

sured by the average of the indicators introduced before. A considerable increase of diversifi-

cation has taken place during the crisis, with an increment of 27% in the h-index in 2007Q2–

2008Q2. Conversely, the average amount of overlap between two portfolios has reduced, with

percentage variations of -13% and -17% for the Jaccard index and the similarity index respec-

tively. These results support the scenario outlined from the analysis of degree distributions:
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Figure 2: Portfolio diversification and similarity over time. Average values of Herfindahl
index (A), Jaccard index (B) and similarity index (C). During the global financial crisis, the level
of diversification within portfolios has increased while the level of similarity across portfolios
has reduced.

during crisis, fund managers raised the level of diversification within their portfolios; at the

same time, investment decisions of individual managers are more “diversified” from each other.

This picture is also in good agreement with trends in the basic quantities that define the topology

of the network (see the summary statistics reported in Table S1 in the Supplementary Materials

section). During the crisis the average degree of funds has nearly doubled. More evidently, the

total number of assets in the network has grown by an order of magnitude and the network den-

sity has reduced correspondingly. The growth in the number of assets in mutual funds during the

crisis has been recently documented also by using other data sources, such as the Pensions and

Investments survey [5]. It is worth noting that the enlargement of the set of different assets is

crucial for understanding the opposite trends of diversification and similarity in Fig. 2. Indeed,
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if the number of available asset stayed the same, we would expect an increase of diversification

of the portfolios to be reflected, to some extent, in an increase of their overlap.

From Fig. 2 we can also observe that the timeline of the similarity s closely mimics the

Jaccard index J . This suggests that, on average, the similarity between two portfolios in the

holding network is mainly determined by the commonality of their assets. This was only partly

predictable. Indeed, conditionally on the weights wi,α, the value of s is proportional to J (see

Eq. (3)). However, in principle the two indicators could have different behaviors and we could

imagine cases where, for instance, the relative size of the intersection of two portfolio increases

but the value of s decreases if the weights attached to common assets are tuned suitably.

Comparison to null models

We analyse the level of heterogeneity and information content in the network of holdings by

comparing the structure of the real network with two different “null” models. These models are

obtained through randomization of the original investments by two alternative strategies.

In the first case, we start from a graph with Nf funds, Na assets and no links, and then we

reassign the original E edges (with their original market values attached) drawing at random

and without repetition from the possible fund–asset pairs. Naively, we can think of this null

model as a representation of a scenario where portfolio managers choose at random in which

assets to invest and how much money to put on each of them. In the text and the figures we will

identify this null model with the abbreviation Rnd-1.

In the other case, we perform the randomization subjected to the constraint that the degree

and portfolio weights of each fund do not change. This is accomplished by reassigning the

original investments of each fund to randomly selected assets (by construction, this strategy

preserves the original value of the Herfindahl index of portfolios). This model represents a

network where fund managers set the level of diversification in advance; that is, they decide the
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number of distinct assets to invest in, as well as the relative proportions, and they then choose

the assets at random. We indicate in the following with the abbreviation Rnd-2 the second null

model. Since values of portfolio concentration in this model are the same as in the original

network, we shall exploit it to separate the contribution of similarity to systemic fragility. In

summary, while the number of edges is preserved in the both cases, the degree sequence of

funds is preserved only in the second one.

In Fig. 3 we compare the complementary cumulative distribution functions (CCDF ) of

the different indices (h, J, s) in a snapshot of the real network (2006Q2) compared with their

distribution measured in the two null models. The CCDF (x) gives the probability of finding

a value of the index that is greater or equal to x. The same analysis done in the other quarters

provides similar results. In particular, we find that the distribution of h provides a clear picture

of the system’s heterogeneity. In the real network, p(h) decays slowly and the number of

effective assets in portfolios ranges from few to thousands. Conversely, the distribution for

model Rnd-1 is concentrated and the probabilities of large h are smaller by orders of magnitude.

In the real case, the average value of leading assets in a portfolio is h̄ ≈ 58, while it is only 9 for

model Rnd-1. Similar considerations apply when we inspect the probability distributions of J

and s. In these cases, a comparison is also performed with model Rnd-2, which retains the same

values of diversification of the original network. We see that large values of the indices are more

likely to occur for model Rnd-2 than Rnd-1, but both models fail to capture the probability of

very large overlap that characterizes the real network. In particular, only in the real case we find

pairs of almost identical portfolios. As a matter of fact, community detection on the network

reveals the tendency of funds to cluster in small groups of portfolios with very similar structures.

As far as diversification of individual portfolios is concerned, the result of the comparison

supports intuition. Fund managers are professional investors whose diversification strategies

cannot be reduced to random selection of assets. As for the overlap of different portfolios, we
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Figure 3: Diversification and similarity: comparison to the null models. Complementary
cumulative distribution functions of Herfindahl index, h, (A), Jaccard index, J (B) and similar-
ity index, s (C). The real network in 2006Q2 is compared to the null models as described in
the text. The latter ones fail in reproducing the heterogeneous behaviour observed in the real
systems. In particular, large values of the number of effective assets (h) and of the similarity
between portfolios (s) are much more likely in the real world than in the randomised sets.

conclude that large similarities are considerably more likely than could be expected by chance.

This result still holds when the values of h of real portfolios are kept fixed during the ran-

domization procedure. This indicates that the effects of diversification per se are not sufficient

to explain the probability of large similarity observed in the network and suggests that invest-

ment strategies of different funds can be strongly correlated. Many different mechanisms have

been suggested in the literature to account for such a high degree of similarity across portfolios

including connections between mutual fund managers and corporate board members, herding

behavior and imitation of successful diversification strategies. We will show that such corre-
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lation between portfolios contributes to a large extent to the system’s vulnerability to financial

shocks.

Systemic risk and similarity

To test the effects of similarity on the network fragility, we consider a basic model of distress

propagation. An idiosyncratic shock in the value of an asset spreads across the network due

to common exposures of portfolios (more details are provided in Materials and Methods). The

shock propagates because individual investors sell their portfolio shares in response to a drop

in the value of the fund they invest in. Selling shares entails selling the individual assets in

the portfolio. This process, produces a negative effect on the market value of assets being sold

and triggers a new round of losses for the portfolios owning those assets. This is, of course,

a simplified view of the network dynamics which does not consider portfolio reallocations.

However, reallocation of mutual fund investments is a slow process which might only partially

ameliorate the negative impact of the asset sell-off process.

While being an approximation, the assumption of a static network can be justified with the

following arguments. First, we expect portfolio reallocations by fund managers to take place on

a time scale larger than the one of asset price movements on the market and of buying/selling

decisions of individual investors. Moreover, keeping the topology fixed, we can provide a

simple measure of fragility for each snapshot of the network and study its evolution during

crisis.

In the context of such dynamics, we measure network fragility by considering the total

percentage “loss of value” of the system. Since the total loss depends strongly on the asset

receiving the initial shock, we compute the average D of the losses induced by a shock to one

of the “top assets”. We define the latter as the assets whose market value in the portfolios of all

funds is larger than the percentile of order 0.999 of the distribution. The quantity D provides a
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Figure 4: Shock propagation before and after the global financial crisis. Systemic fragility
has fallen during the global financial crisis (A). Before the crisis, a single shock would have
provoked a considerable loss for the whole system after few time steps (B). The velocity of
damage propagation after the crisis is 1/4 than before but a systemic vulnerability still exists.
Both panels correspond to the results of an initial shock δ0 = 50%; panel A reports the damage
after t = 10 steps.

measure of the systemic damage produced by a single shock, as a function of the time elapsed

and of the shock entity.

Previously, we have shown that the average similarity between portfolios has decreased

during crisis, see Fig. 2. We observe from Fig. 4 that similarity is correlated with fragility, since

the network has indeed become more robust. The potential systemic damage in the network has

been progressively reduced in the years 2005–2010 (panel A). Before the crisis, a 50% shock

to just one of the top assets would give a 4–6% loss in the whole system’s value after 10 time

steps. To put this into perspective, such a loss would correspond to 120–180 billion dollars
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Figure 5: Effect of similarity on systemic fragility. Values of the systemic damage as a func-
tion of time for δ0 = 0.5 (A) and as a function of shock entity for t = 10 (B). Randomization
has a positive impact: damage propagation in the real case is 8.8 times faster than for model
Rnd-2 and 14.5 time faster than model Rnd-1. After randomization, the propagation is also
less sensitive to shock entity. Comparison of models Rnd-1 and Rnd-2 indicates that systemic
fragility can be ascribed mainly to the similarity between portfolios and that systemic damage
is minimum for completely random investments (Rnd-1).

in currency amount in 2006Q2. The loss reduces to 1% after crisis. As already observed for

the average similarity, this trend has already started at the beginning of the observation period

but has undergone a strong acceleration during the global financial crisis. Moreover, before the

GFC distress propagation was a fast process (panel B) and damage could hit the 10% barrier in

few steps. After the crisis the velocity of damage propagation, estimated by the slope of D(t),

is four times smaller. Nonetheless, a vulnerability still exists.

In the two panels of Fig. 5 we compare the systemic damage in a sample snapshot (2006Q2)

of the real system with its random counterparts.
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The comparison is performed for a fixed value of the shock (δ0 = 0.5) as a function of time,

and for a fixed time (t = 10) as a function of the shock, respectively.

The result is that systemic fragility reduces by at least an order of magnitude when a random-

ization is performed. In model Rnd-1, where the diversification profile of the original portfolios

is altered (we obtain a model of random investments), the values of h are concentrated, the

average is smaller that in the original network, and large values of h are simply not observed

(see Fig. 3). Furthermore, the overlap between portfolios is also largely suppressed. In model

Rnd-2, the original values of h are preserved and only the similarity is reduced since assets are

reassigned randomly. From that property follows that the reduction of systemic damage that we

observe for model Rnd-2 can be considered a direct effect of the reduction in the similarities

between portfolios. The damage for Rnd-1 is even smaller, the difference getting larger with

both time and shock entity. Counter-intuitively, a model of random investments, where port-

folios tend to have similar diversification and a small number of leading assets, is more robust

with respect to the simulated dynamics of shock propagation.

We conclude that significant similarities between portfolios, a statistical signature of the

holding network, is crucial in the transmission of financial distress and can make the network

more fragile. Moreover, in a network of random investments (Rnd-1) this systemic risk com-

ponent is reduced further and the network appears less fragile even though portfolios are more

concentrated.

Discussion

We perform the first extensive study of the structure and the evolution of the US mutual fund

network throughout the Global Financial Crisis (GCF) of 2007–2008. Even though in normal

times households rarely rebalance their retirement saving portfolios [25], it has been found that

21% of them changed investment strategy between February and November 2009 [26]. Such a
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dramatic recomposition of investment portfolios during crises can have severe consequences on

financial stability. The size of the “ecosystem” of different fund investments has grown steeply

over time [5] and, as an average, in the aftermath of the crisis mutual funds have become better

diversified and less similar. However, mean values do not tell the whole story. Inspection of

the probability density functions shows evidence of an heterogeneous system, with few largely

diversified hubs and many specialized funds. Moreover, the probability of the similarity be-

tween portfolios decays slowly and large similarities are far more likely that can be expected

from benchmark models of a random network of investments. We conclude that a high degree

of correlation exists between investment decisions of different funds. This correlation limits the

effectiveness of fund of funds diversification strategies.

One of the leading forces behind the emergence of such correlation can be found in the

social network of relationships between fund managers [27] and the effects of managerial shar-

ing. Other reasons may be due to herding behavior and the fact that professional investors with

similar targets and risk profiles are likely to adopt similar investment strategies. For instance,

portfolio managers try to maximize profits and the strategies of many of them will likely include

those assets that have proved to be profitable or that can be selected by shared quantitative anal-

ysis techniques. Extreme market uncertainty can act as a driver for fund investments during a

crisis, when an important fraction of their invested capital is moved from equity mutual funds to

fixed-income mutual funds. During the crisis, defined contribution equity mutual funds experi-

enced a large outflow of more that -15%, while flow into the fixed income mutual funds reached

an historical peak of +20% [5]. Similarly, many funds might be damaged during crisis at the

same time and trigger a second-order effect by which other funds get hit in a failure cascade. In

our stylized representation of distress propagation, such second-order effect is induced by the

many individual investors that simultaneously sell fund shares. However, a complete represen-

tation would also consider changes in the network topology as a result of the fact that portfolio
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managers will try to rebalance their portfolios. Massive co-movements in fund allocations as

a response to crisis may have an even higher impact on the market value of securities. This,

in turn, may result in significant effects back to the mutual fund network and possibly lead to

higher levels of overlap between funds.

Similarity of portfolios provides a different notion of diversification of investments. Exploit-

ing a stylized model of shock propagation on a static network, we have shown how strongly this

sort of systemic coupling can impact the fragility of the network. We find that the systemic

damage in the network is much larger than the damage that can be procured to a network of

random investments. Thus we quantify the systemic risk induced by the similarity of portfo-

lio investment strategies. The comparison between a completely random model and a model

where the diversification of original portfolios is preserved shows that similarity between port-

folios represents a major source of systemic risk that can make the network fragile. It also

emerges that completely random investments, even though corresponding to more concentrated

portfolios, would result in a less vulnerable network. That is not to say that diversification is

self-defeating per se, but indicates that it can make the system more fragile as funds tend to

diversify their portfolios with similar investment patterns. The global financial crisis has stim-

ulated an increase in the diversification of portfolios, but a systemic risk component still exists

because of the similarity of investments.

We believe that the evidences presented in our study have implications for both the modeling

and the regulation of financial networks. They show that similarity induces a systemic vulnera-

bility and that portfolio diversification may even play antagonistically when strong correlations

between investment strategies exist. Both aspects should be taken into account for the purpose

of assessing systemic risk in holding networks and for devising effective policy actions.
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Materials and Methods

Dataset The US Mutual Fund market is the largest in the world. With 15$ trillion assets under

management at year-end 2013, it accounts for about half the total value in mutual fund assets

worldwide. In this study, we analyse data from the CRSP Survivor-Bias-Free Mutual Fund

Database. It includes open-ended mutual funds registered with the Securities and Exchange

Commission and provides detailed information about the composition of managed portfolios.

A mapping of funds to the portfolios of assets they manage is provided and detailed information

about portfolio holdings, including the market value of each holding, is delivered on a quarterly

basis.

In the following, we provide a formal construction of the bipartite network of holdings. We

also present a schematic description of the model of distress propagation considered in the main

text.

Bipartite graph of portfolio holdings We represent portfolio holdings in terms of a bipartite

graph. The two vertex classes are the set of mutual funds i = 1, . . . , Nf , and the set of the

different assets α = 1, . . . , Na in their portfolios. The degree ki of vertex i is exactly the

number of distinct assets held in the portfolio of fund i. Edges incident at vertex i can be

assigned weights Wiα equal to the total market value of the shares of asset α and the graph is

also conveniently represented by aNf×Na matrixB with elementsBiα = Wiα. We indicate as

G(Nf , Na), or simplyG, the undirected bipartite network of portfolio holdings. If we wanted to

retain just the topological information of which asset is owned by which fund, we could define

an unweighted graph G0(Nf , Na). This would correspond [28, 29] to the incidence matrix B0

whose elements B0
iα are 1 if asset α is in the portfolio of fund i and 0 otherwise. A schematic

picture of the network of holdings is provided in Fig. 6.
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Figure 6: Graph of portfolio holdings. The network of portfolio holdings can be represented as
a bipartite graph. The two vertex classes are the funds {i, j, k, . . . } and the assets {α, β, γ, . . . }
in their portfolios. Each edge (i, α) represents a specific holding relationship. The edge weight
Wiα is equal to the total market value of security α owned by fund i in its portfolio.

The size of fund i is given by

Si =
Na∑
α=1

Wiα ,

where it is understood that wiα = 0 if asset α is not in the portfolio. The quantities Wiα We

easily see that, in network terms, fund size corresponds to node strength [30, 31]. We also

indicate as Mα the aggregate market value of an asset

Mα =

Nf∑
i=1

Wiα .

The sum Stot =
∑

i Si represents the total value of the system. By construction it holds∑Nf
i=1 Si =

∑Nα
α=1Mα.

The quantities Si and Wiα are expressed in currency units. We also define the portfolio

weights wiα = Wiα/Si, that represent the fraction of portfolio wealth corresponding to each

asset. The indices of diversification and similarity discussed in the main text are all expressed

in terms of the wiαs.

Due to portfolio reallocations, the set of assets in a portfolio and the edge weights can

change with time; also the number of indexed funds in the dataset depends on time. Report-
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ing of portfolio reallocations by funds are not synchronous and some choices are due in order

to aggregate the information about holdings over some time horizon and construct the graph

representing the system. Since portfolio composition is reported on a quarterly basis, in our

analysis we choose a three-month time frame for aggregation. We create quarterly snapshots

of the bipartite network by means of the following procedure. For each quarter, we consider

the set of the funds i = 1, . . . , Nf for which a mapping to a portfolio exists. For the given

quarter and for each fund i, we retrieve the holding information at the most recent report date

ti. Basically, this information is given by the set of assets in the portfolio and the corresponding

market values. Fund i is inserted into the graph for the current quarter and so are the links (i, α),

with α ∈ [1, Na], for all assets held by the fund. Each link is assigned weight Wiα equal to the

market value of the holding it represents.

When parsing the holding relationships in the dataset, attention has to be paid to the issue

of fund classes. As a matter of fact, a fund may issue different types of shares all corresponding

to the same underlying portfolio. In the database, different classes of a funds are associated to

different unique identifiers, as if they were distinct funds. For the purpose of our analysis, we

consolidated information about fund classes, to avoid including the same fund multiple times

when constructing the network snapshots.

Basic model of distress propagation Let us suppose that at time t the prices of some securi-

ties undergo a negative shock δα(t) = [vα(t+ 1)− vα(t)]/vα(t) ≤ 0, where vα(t) is the market

price of α. These downward moves produce a negative variation in the values of the portfo-

lios that hold the securities in object. As a consequence, we expect individual fund investors to

disinvest their shares, effectively selling the individual securities of the corresponding portfolio.

Generally, we expect that to a larger drop ∆i of the portfolio of fund i, corresponds a higher

probability p(∆i) for an investor to disinvest its shares of the fund. Let Vα be the total market
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value of α disinvested in the process of selling fund shares. The instantaneous increase in the

offer of α will have a negative impact in its value on the market. This reflects in a new drop

δα(t + 1) = λ(Vα(t)), where λ is some market impact function (deterministic or stochastic).

In the absence of large random effects and portfolio reallocations, in a connected network of

portfolio holdings such a recursive dynamics will bring a progressive reduction of the total value

of the system.

For the purpose of simplicity and clarity, the simulations discussed in the main text assume

the fraction of fund shares liquidated to be equal to the portfolio drop and the market impact to

be proportional to Vα. Such a model provides a simplified, schematic representation of shock

propagation within a bipartite network of portfolios and their holdings. It should be consid-

ered an approximation of the dynamics in the time span that divides subsequent reallocations

executed by fund managers, wherein the network can be regarded as static. It incorporates

contagion effects due to common exposures of overlapping portfolios and is a multiplicative

process where initial shocks get amplified over time.

To compare the systemic fragility of the network at different times, we performed simula-

tions where a single security α is given an initial shock. This shock propagates for a number

of steps and at each time the percentage total loss of value of the system is computed. So, the

damage at time t given a shock to α is computed as Dα(t) = (Stot(t + 1) − Stot(0))/Stot(0).

The process is repeated for a given set A of securities and we define the systemic damage by the

average D(t) = 1/|A|
∑

α∈ADα(t). In order to reduce the computational time and speed up

the process, we choose A as the set of assets for which the total value in the portfolios of funds

is individually above the quantile of order 0.999 (top assets).
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[30] A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, Proceedings of the National

Academy of Sciences of the United States of America 101, 3747 (2004).

[31] S.-H. Yook, H. Jeong, A.-L. Barabasi, Proceedings of the National Academy of Sciences

of the United States of America 99, 13382 (2002).

Acknowledgements: Guido Caldarelli acknowledges support from EU projects Multiplex 317532,

Simpol 610704, Dolfins 640772, CoeGSS 676547 and SoBigdata 654024.

Competing Interests The authors declare that they have no competing financial interests.

26



Supplementary Materials

Quarter Nf Na ρ k̄ Stot ($B)

2005Q3 2474 7498 0.015 109 2123.7
2005Q4 2233 7117 0.016 113 2523.8
2006Q1 2545 7810 0.015 121 2767.7
2006Q2 3128 10743 0.011 114 2944.9
2006Q3 3197 10878 0.010 112 2980.4
2006Q4 3186 11471 0.010 117 3221.5
2007Q1 3155 12410 0.010 123 3042.2
2007Q2 3609 12482 0.010 121 3738.0
2007Q3 3492 16303 0.008 128 3848.2
2007Q4 3414 37694 0.004 144 4319.9
2008Q1 3773 74875 0.003 189 4983.3
2008Q2 5007 158894 0.001 198 5617.8
2008Q3 5411 197897 0.001 194 4626.6
2008Q4 5453 136511 0.001 189 3718.1
2009Q1 5689 164507 0.001 200 4653.8
2009Q2 5733 152444 0.001 203 5355.9
2009Q3 5689 147706 0.001 205 6066.5
2009Q4 5751 119412 0.002 182 6036.0
2010Q1 5511 131137 0.001 187 6300.3
2010Q2 5022 122458 0.002 202 5957.7

Table S1: Summary statistics of the bipartite network of holdings. Number of fundsNf and
assetsNa, the network density ρ, the average number of assets in portfolios k̄ and the total value
of the network expressed in billion dollars. Network density is defined as ρ = E/(NfNa) where
E is the total number of investments (number of portfolio–asset holding relationships). The
number of indexed funds and different assets in their investments have grown systematically.
The average degree of funds nearly doubles during crisis and the network becomes less dense,
with ρ decreasing by an order of magnitude.
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