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Abstract
Background: We have previously reported that the apathogenic Tula hantavirus induces
apoptosis in Vero E6 epithelial cells. To assess the molecular mechanisms behind the induced
apoptosis we studied the effects of hantavirus infection on cellular signaling pathways which
promote cell survival. We previously also observed that the Tula virus-induced cell death process
is augmented by external TNF-α. Since TNF-α is involved in the pathogenesis of hantavirus-caused
hemorrhagic fever with renal syndrome (HFRS) we investigated its effects on HFRS-causing
hantavirus-infected cells.

Results: We studied both apathogenic (Tula and Topografov) and pathogenic (Puumala and Seoul)
hantaviruses for their ability to regulate cellular signaling pathways and observed a direct virus-
mediated down-regulation of external signal-regulated kinases 1 and 2 (ERK1/2) survival pathway
activity, which was dramatically enhanced by TNF-α. The fold of ERK1/2 inhibition correlated with
viral replication efficiencies, which varied drastically between the hantaviruses studied.

Conclusion: We demonstrate that in the presence of a cytokine TNF-α, which is increased in
HFRS patients, hantaviruses are capable of inactivating proteins that promote cell survival (ERK1/
2). These results imply that hantavirus-infected epithelial cell barrier functions might be
compromised in diseased individuals and could at least partially explain the mechanisms of renal
dysfunction and the resulting proteinuria seen in HFRS patients.

Background
Hantaviruses (Family Bunyaviridae, Genus Hantavirus) are
viruses which chronically infect rodents and insectivores
with no apparent disease but in humans they cause two
major clinical symptoms: HFRS in Eurasia and hantavirus
cardiopulmonary syndrome (HCPS) in the Americas.
Some hantaviruses also seem to be apathogenic, including
Tula (TULV) and Topografov (TOPV) virus [1,2]. Depend-

ing on the causative virus, HFRS manifests as mild (Puu-
mala virus; PUUV), moderate (Seoul virus; SEOV) or
severe disease (Hantaan virus; HTNV). Hantaviruses are
negative-sense single-stranded RNA viruses with a tripar-
tite genome of large (L), medium (M) and small (S) seg-
ments encoding the RNA-dependent RNA polymerase, the
envelope precursor protein of two glycoproteins Gn and
Gc, and the nucleocapsid protein N [3].
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The multi-organ hantaviral disease is characterized by
local induction of cytokines but their role in the mecha-
nisms of pathogenesis is still poorly understood. Tumor
necrosis factor-α (TNF-α) is a pro-inflammatory cytokine
associated with hantavirus infections in vivo. Elevated
TNF-α levels are found in plasma of HFRS [4,5] and HCPS
[6] patients and TNF-α has been detected directly in the
kidneys of NE patients [7]. TNF-α is implicated in the
pathophysiology of, for example, septic shock and is capa-
ble of inducing adult respiratory distress syndrome
(ARDS) in experimental animals and humans. The strong
similarity of these effects to the manifestations in hantavi-
rus diseases [8], together with the evidence of association
of TNF-α polymorphism of high-producer haplotype in
the severe course of PUUV infection [9], makes TNF-α a
factor in hantavirus pathogenesis which deserves further
attention. TNF-a is a conditional death inducer with pro-
apoptotic capacity only uncovered when cell survival
mechanisms are hindered. TNF-α-induced programmed
cell death occurs via the cleavage of procaspase-8 to its
active form, thereby initiating the caspase cascade leading
to poly ADP-ribose polymerase (PARP) cleavage among
others and eventually apoptosis [10].

Previous work done in our laboratory demonstrated that
TULV infection induces apoptosis in Vero E6 cells and that
externally added TNF-α enhances the cell death process
[11]. To shed light on the molecular mechanisms which
facilitate TNF-α mediated apoptosis in hantavirus-
infected cells, we studied the activation of extracellular-
signal regulated kinases 1 and 2 (collectively referred to as
ERK1/2), a well-known group of mitogen-activated
kinases (MAPKs) and regulators of cell survival. We now
show that both apathogenic and HFRS-causing hantavi-
ruses act in synergy with TNF-α to inactivate the ERK sur-
vival pathway.

Results and discussion
TULV inhibits ERK1/2 activity in Vero E6 cells
We studied the cellular signaling pathways which pro-
mote cell survival in hantavirus-infected cell cultures in
order to get insight on the mechanisms behind hantavi-
rus-induced apoptosis. We infected Vero E6 cells with
Tula hantavirus and investigated the responses of one of
the best-known cellular signaling mediators ERK1/2, the
activation state of which is known to be regulated by
phosphorylation [12]. We detected ERK1/2 proteins
phosphorylated on tyrosine-204 by immunoblotting.
Cells were infected with multiplicity of infection (MOI)
between 1 and 0 of TULV or a cell death-inducing concen-
tration of TNF-α. The cells were collected at 11 days post
infection (p.i.), when cell death with the highest MOIs
used was evident. We could confirm that increasing MOI
resulted in higher degree of apoptosis, as judged by the
amount of cleaved PARP (Figure 1A). In contrast to

enhanced PARP cleavage, TULV infection resulted in a
MOI-dependent reduction in phosphorylated ERK1/2 (p-
ERK1/2) protein levels. The magnitude of ERK1/2 inhibi-
tion correlated directly with increasing MOI and apopto-
sis. However, we could also see ERK1/2 inhibition in cells
where no apoptosis was detected (cells infected with
MOIs 0.01 and 0.1). This implies that ERK1/2 inactivation
is at least partially a direct cause of TULV infection and not
solely an indirect event due to apoptosis. We also studied
the amount of virus replication in infected cells by immu-
noblotting of the nucleocapsid protein and quantification
of released infectious virus. Our results showed that virus
replication was severely compromised in infected cells
undergoing apoptosis (amount of released virus was
decreased ~1000 times compared to viable cells). The
treatment of Vero E6 cells with a high concentration of
TNF-α resulted in a similar level of apoptosis and reduc-
tion of ERK1/2 activity compared to cells infected with 0.5
MOI of TULV (Figure 1B). This in turn suggested that the
higher level of ERK1/2 inactivation which was seen in
cells infected with MOIs from 1 to 0.2, as compared to
lower MOIs used, was not only due to viral replication but
also due to induced apoptosis. These results show that
PARP cleavage in Vero E6 cells is accompanied by ERK1/2
inactivation and confirm that ERK1/2 activity is an impor-
tant factor for maintaining cell viability.

To verify that ERK1/2 down-regulation was mediated by
virus replication and not merely by adsorbed viruses or
some other agents derived from infected cell culture
supernatants, we used UV-inactivated TULV as a control in
ERK1/2 phosphorylation analysis. Vero E6 cells were
infected with non-treated or UV-inactivated TULV (MOI
0.1) for 4 and 10 days (Figure 2). We could confirm that
TULV inhibited ERK1/2 phosphorylation as compared to
UV-inactivated virus at both time points, indicating
dependence on virus replication. Immunoblotting of the
nucleocapsid protein and quantification of infectivity of
released virus revealed that virus replication was relatively
high already at 4 days p.i. (108 FFU/ml) and then
decreased slightly at 10 days p.i.. Interestingly, replication
efficiency correlated with the magnitude of ERK1/2 inacti-
vation.

HFRS-causing hantaviruses do not have the same 
capability as TULV to inhibit ERK1/2 activity
Since Tula hantavirus is considered to be an apathogenic
hantavirus we wanted to know whether pathogenic hanta-
viruses have the same capability as TULV to inhibit ERK1/
2 activity. Hantaviruses are well known to replicate slowly
in cell cultures, which might reflect the long incubation
times of the virus seen also in HFRS patients [2]. We there-
fore incubated the infected cell cultures for up to 25 days
p.i.. In addition to TULV, we used TOPV, an apparently
apathogenic hantavirus, and SEOV and PUUV, two HFRS-
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TULV inhibits ERK1/2 cell survival pathway in Vero E6 cellsFigure 1
TULV inhibits ERK1/2 cell survival pathway in Vero E6 cells. A. In order to determine the relationship between TULV-
induced apoptosis and ERK1/2 activity, Vero E6 cells were infected with 0.01, 0.1, 0.2, 0.5 or 1.0 multiplicity of infection (MOI) 
of TULV or mock-infected with fresh cell culture medium. B. Vero E6 were also treated (+) or non-treated (-) with a cell 
death-inducing concentration of TNF-α (100 ng/ml). Cells were collected at 11 days post infection or post TNF-α addition and 
100 μg of protein lysate immunoblotted to detect cleaved PARP, phosphorylated ERK1/2 (p-ERK1/2), total ERK1/2 and hanta-
virus nucleocapsid protein N. Virus titers were determined as focus forming units (FFU) from conditioned media of infected 
cell cultures. Error bars for virus-titer measurements represent standard deviation. Experiments showing ERK1/2 dephosphor-
ylation in TULV-infected cells are representative of multiple studies.
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TULV-induced ERK1/2 inactivation correlates with replication efficiencyFigure 2
TULV-induced ERK1/2 inactivation correlates with replication efficiency. To confirm that TULV-mediated ERK1/2 
inactivation is replication-dependent, we employed UV-inactivated TULV as a replication-incompetent negative control in 
ERK1/2 phosphorylation assay. Vero E6 cells were infected with a 0.1 multiplicity of infection of TULV or mock-infected with 
UV-inactivated virus (UV). Cells were collected at 4 and 10 days post infection and 100 μg of protein lysate immunoblotted to 
detect phosphorylated ERK1/2 (p-ERK1/2), total ERK1/2 and hantavirus nucleocapsid protein N. Bands were subjected to 
intensity analysis (ImageJ software; http://rsb.info.nih.gov/ij) and the amount of p-ERK1/2 related to the amount of total ERK1/2 
in individual samples. Fold change was calculated in relation to mock-infected sample at the respective day post infection (p.i.). 
Virus titers were determined as focus forming units (FFU) from conditioned media of cell cultures. Error bars for virus titer-
measurements represent standard deviation.
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causing hantaviruses. All hantaviruses had a minor or
indiscernible negative effect on ERK1/2 activity at 14 days
p.i. (Figure 3A). At 25 days p.i. ERK1/2 activity was almost
totally abolished in TULV-infected cells whereas no dra-

matic changes, as compared to 14 days p.i., were seen with
other hantaviruses studied. To compare the effect of virus
growth rates on ERK1/2 activity, we measured virus titers
from supernatants of the infected cells. We observed strik-

HFRS-causing hantaviruses do not have the same capability as TULV to inhibit ERK1/2 activityFigure 3
HFRS-causing hantaviruses do not have the same capability as TULV to inhibit ERK1/2 activity. To assess the 
ability of hantaviruses other than TULV to inhibit ERK1/2, Vero E6 cells were mock-infected with fresh cell culture medium or 
infected with TULV, PUUV, TOPV and SEOV at a multiplicity of infection of 0.01 for 14 and 25 days. Cell lysates (50 μg pro-
tein) were immunoblotted for detection of phosphorylated ERK1/2 (p-ERK1/2) or total ERK1/2 (A). Bands were subjected to 
intensity analysis (ImageJ software; http://rsb.info.nih.gov/ij) and the amount of p-ERK1/2 related to mock sample at 14 and 25 
days post infection. To investigate the correlation between ERK1/2 inhibition and the amount viral replication, virus titers were 
determined as focus forming units (FFU) from conditioned media of cell cultures and plotted together with fold inhibition of 
ERK1/2 activity in respective cells (B). Error bars for virus-titer measurements represent standard deviation. p.i. post infection.
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ingly different amounts of virus released from cells
infected with the different hantaviruses. The highest virus
titers were obtained with TULV and were of the order of
107 FFU/ml, which is about ten to hundred times more
than with other hantaviruses. The titers at 14 and 25 days
p.i. are shown in Figure 3B, where they are compared with
the magnitude of ERK1/2 inhibition. The amount of
released virus correlated with the respective levels of
ERK1/2 inhibition at 14 days p.i. for TULV, TOPV and
SEOV. In PUUV-infected cells, which had the lowest virus
production, we could not see any ERK1/2 inhibition. At
25 days p.i. the amount of released virus was generally
lower than at 14 days p.i., possibly reflecting the deterio-
rated state of Vero E6 cell culture in terms of virus produc-
tion after such a long period of incubation. The lower
level of virus replication at this time point probably
explains the lower level of ERK1/2 inhibition seen in
TOPV- and SEOV-infected cells. Only in the case of TULV
was ERK1/2 inhibition increased with simultaneous
decrease in virus production. This might reflect the com-
paratively high amount of virus release from TULV-
infected cells that could lead to an irreversible ERK1/2
inhibition due to apoptosis. Taken together, ERK1/2 inac-
tivation by PUUV, TOPV and SEOV is directly correlated
with virion production which suggests that there might

exist a threshold level of hantavirus replication under
which hantaviruses are still able to maintain host cell via-
bility. However, an inherent difference in TULV among
hantaviruses to cause marked ERK1/2 inactivation and
apoptosis cannot be excluded.

Hantaviruses and TNF-α act synergistically to inhibit 
ERK1/2 activity
Our previous results indicate that TNF-α augments TULV-
induced apoptosis [11] and as TNF-α is considered to be
an important factor in hantavirus pathogenesis, we
wanted to evaluate its effect on hantavirus-mediated
ERK1/2 inhibition. We incubated infected cells in the
presence or absence of TNF-α and collected the cells con-
currently (same samples as analyzed in Figure 3). Our
results demonstrate that TNF-α acted in synergy with
hantaviruses to inhibit ERK1/2 activity. The additional
effects of TNF-α on ERK1/2 inhibition were from 2- to 20-
fold (Figure 4). Interestingly, TNF-α could inhibit ERK1/2
also in PUUV-infected cells, where no ERK1/2 inhibition
was seen by infection alone. Altogether, these results indi-
cate that there are differences between hantaviruses in
their ability to reduce ERK1/2 activity but that TNF-α has
a general synergistic inhibitory effect on this pathway.
Despite our efforts, even though these cells produce high

Hantaviruses and TNF-α synergistically inhibit ERK1/2 activityFigure 4
Hantaviruses and TNF-α synergistically inhibit ERK1/2 activity. To evaluate the role of TNF-α in hantavirus-mediated 
ERK1/2 inactivation, Vero E6 cells infected with different hantaviruses (see Figure 3) were incubated with (+) or without (-; 
same samples as in Figure 3) TNF-α (20 ng/ml). Fresh TNF-α was added together with fresh cell culture medium once a week. 
Cell lysates (50 μg protein) were immunoblotted for detection of phosphorylated ERK1/2 (p-ERK1/2) or total ERK1/2. Bands 
were subjected to intensity analysis (ImageJ software; http://rsb.info.nih.gov/ij) and the amount of p-ERK1/2 related to mock 
sample without TNF-α treatment at 14 and 25 days post infection (p.i.).
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amounts of virus, we could not detect any cleaved PARP
by immunoblotting. This result implies that TULV-
induced apoptosis is not directly associated with viral rep-
lication but is a consequence of a high MOI applied on
cell culture. This in turn argues that also pathogenic
viruses could cause apoptosis in Vero E6 cells if a high
enough MOI is applied. However, because of their inabil-
ity to replicate to similar high titers as TULV in these cells
(see Figure 3), obtaining such high MOIs with pathogenic
viruses was not feasible. In addition, our attempts to
increase virus titers of pathogenic hantaviruses by ultra-
centrifugation have so far been unsuccessful. Also, as Vero
E6 cells, to our knowledge, is the only cell type which pro-
motes such a high replication-efficiency of hantaviruses,
obtaining similar results as presented here with another
commonly used cell line is unlikely.

Conclusion
In characterization of the mechanisms of hantavirus-
mediated apoptosis further, we demonstrated virus repli-
cation-dependent down-regulation of ERK1/2 by TULV,
TOPV and SEOV, which was synergistically enhanced by
TNF-α. ERK1/2 inhibition was induced by TNF-α also in
PUUV-infected cells. ERK1/2 refers to prototype members
of the mitogen-activated protein kinase (MAPK)-family
that regulate cell proliferation, cell differentiation, cell
cycle and cell survival [12]. ERK1/2 is activated by phos-
phorylation to threonine and tyrosine residues, which
results in ERK1/2 translocation from the cytosol to the
nucleus to regulate transcription. The ERK1/2 pathway is
activated in many types of cancer and it promotes cell sur-
vival, i.e. it induces anti-apoptotic genes such as Bcl-2 and
inactivates the pro-apoptotic Bad [13]. In addition, activa-
tion of the ERK1/2 pathway has been shown to protect
cells from TNF-α-induced apoptosis [14,15]. ERK1/2
activity has been shown to be required for the efficient
replication of many viruses [16-21]. In contrast, some
viral proteins, like Ebola virus glycoprotein [22], hepatitis
C virus non-structural protein NS5A [23], and human
immunodeficiency virus (HIV) type 1 vpr protein [24]
have been shown to down-regulate ERK1/2 activity. To
our knowledge, however, our results are the first showing
a direct virus replication-mediated down-regulation of
ERK1/2 survival pathway in cell culture. Our results show
a high basal ERK1/2 activity in confluent mock-infected
Vero E6 cells that promotes cell survival even in the pres-
ence of sustained TNF-α treatment. However, in the
infected cells ERK1/2 activity is reduced, which might at
least in part render these cells sensitive to external TNF-α-
mediated apoptosis. It would be of interest to understand
the role of ERK1/2 activity in terms of viability of hantavi-
rus-infected cells in more detail. Whether external activa-
tion of this pathway can rescue from hantavirus-mediated
cell death remain to be answered.

The first evidence of hantavirus-induced apoptosis in cul-
tured cells was described in Vero E6 cells with Hantaan
virus, the prototype hantavirus to cause HFRS, and with
Prospect Hill, an apparently apathogenic hantavirus [25].
Vero E6 cells are derived from monkey kidney epithelium
and another kidney epithelial cell line, HEK-293, was later
also shown to be susceptible to hantavirus-mediated
apoptotic cell death [26]. Besides regulating apoptosis,
ERK proteins have other essential roles in the kidneys.
They promote tubular epithelial cell proliferation [27,28]
and epithelial cell barrier resistance [29,30] thereby main-
taining the integrity of a functional organ. Taken together
with our previous work on TULV-induced apoptosis of
Vero E6 cells [11,31] the present findings show that
hantaviruses can hazard epithelial cell viability through
apoptosis and ERK1/2 inactivation, at least in the pres-
ence of TNF-α.

In HFRS, one of the most prominent clinical manifesta-
tions is renal dysfunction leading to proteinuria. Kidney
tubular epithelium degeneration and tubular epithelial
cell death have been suggested to occur in PUUV-caused
HFRS [32]. Also, hantaviral antigens have been detected
in the renal tubular epithelial cells of HTNV- [33] and
PUUV-infected patients [34]. Although epithelial cells
may not be the main site of viral replication in man in the
case of HFRS, viral replication in renal tubular epithelial
cells could be the direct cause of renal epithelium dysfunc-
tion through direct virus-induced inhibition of signaling
pathways necessary for cell viability (ERK1/2), which
would be amplified by cytokines elevated in HFRS (TNF-
α). Interestingly, Klingström et al. [35] showed recently an
increase in the caspase cleavage product CK18, a marker
for epithelial cell apoptosis, in sera of patients infected
with PUUV. While the apathogen TULV also has the
capacity to induce apoptosis and ERK1/2 inactivation in
epithelial cells, one might rationalize that due to uniden-
tified viral determinants apathogenic hantaviruses never
make contact with the renal epithelium in vivo or are effi-
ciently eliminated without causing notable renal symp-
toms or disease.

Methods
Viruses and cell cultures
TULV Moravia strain 5302, TOPV, SEOV and PUUV
Sotkamo strain were propagated in Vero E6 cells in which
they have been isolated and to which they are adapted
producing titers of 104-107 focus forming units (FFU)/ml
conditioned medium [1,36,37]. Vero E6 cells (green mon-
key kidney epithelial cell line; ATCC: CRL-1586) were
grown in minimal essential medium supplemented with
10% heat-inactivated fetal calf serum, 2 mM glutamine,
100 IU/ml of penicillin and 100 μg/ml of streptomycin, at
37°C in a humidified atmosphere containing 5% CO2.
For the experiments, Vero E6 cell monolayers were grown
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to confluence, virus adsorbed for one hour at 37°C and
growth medium added. For mock infections, either fresh
culture medium or UV-inactivated virus was used. UV-
inactivation was achieved using a stock of virus on ice in
a lid-less 3 cm diameter culture dish, which was irradiated
at 254 nm using a 30 W UV lamp at a distance of 10 cm
with an exposure time of 30 min. The medium of infected
and mock-infected cultures was changed once a week. In
experiments where TNF-α was used, fresh TNF-α was
added together with medium change. Viral titers in super-
natants of infected cells were determined as described by
Kallio et al. [38]. Briefly, 10-fold diluted supernatants
were grown in Vero E6 cells on a 10-well microscopic slide
and fluorescently stained for virus. Standard deviations
were calculated from 4 individual wells. TULV-condi-
tioned medium collected at 7 days p.i. and TOPV-, SEOV-
and PUUV-conditioned media collected at 14 days p.i.
were stored at -70°C and used as virus inocula.

Antibodies and reagents
Mouse monoclonal antibody against phosphorylated
form of ERK1/2 was from Santa Cruz Biotechnology Inc.
Mouse monoclonal antibody against cleaved PARP and
rabbit polyclonal antibody against ERK1/2 were from Cell
Signaling Biotechnology. Rabbit polyclonal antibodies
against Puumala hantavirus N have been described previ-
ously [39]. Recombinant human TNF-α was from R&D
Systems.

Immunoblotting
Infected and mock-infected Vero E6 cells (grown in 75-
cm2 or 25-cm2 flasks) were scraped off into medium,
washed twice with phosphate-buffered saline (PBS) and
lysed in radioimmunoprecipitation (RIPA) buffer con-
taining 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 3 mM
EDTA, 1% NP-40, 1 mM dithiothreitol (DTT), 1 mM
Na3VO4, 20 mM NaF and EDTA-free cocktail of protease
inhibitors (Roche). The protein concentrations of the cell
lysates were determined using BCA Protein Assay Kit
(Pierce). Laemmli gel loading buffer was added into sam-
ples, which were denatured at 95°C for 5 min and stored
at -20°C. Samples were analyzed by immunoblotting
according to standard protocols using 10% sodium
dodecyl sulfate – polyacrylamide gel electrophoresis
(SDS-PAGE).
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