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Abstract 

Glycogen debranching enzyme (GDE) is together with glycogen phosphorylase responsible 

for the degradation of glycogen. The present study compares the post-mortem activity of GDE 

and breakdown of the glycogen pools in M. longissimus dorsi of RN- carrier pigs and in wild 

type animals. The activity of GDE (n=14) and pH (n=20) was measured 0.5, 3, 5, 24 and 48 h 

post-mortem. The change in pro-glycogen and in macro-glycogen content (n=20) was 

followed until 216 h post-mortem and the transcription level of GDE, glycogenin and 

glycogen synthase m-RNA (n=19) were measured 0.5 h post-mortem. Both the activity of 

GDE and the transcription level of GDE were found to be similar in RN- carriers and wild 

type animals shortly after slaughter. However, the activity declined faster in wild type animals 

compared with RN- carriers with increasing time post-mortem. The contents of both pro-

glycogen and macro-glycogen were higher in RN- carriers compared with wild type animals, 

and further, the proportion of macro-glycogen was higher in RN- carriers compared with wild 

type animals. During the post-mortem period, only degradation of pro-glycogen was observed 

in both genotypes. The decrease in pH was faster and the ultimate pH lower in RN- carriers 

than in wild type animals. It was suggested that the higher GDE activity in the late phase of 

the post-mortem period in muscles from RN- carriers renders the extended pH decrease in 

these muscles.  

 

Keywords: Gglycogen debranching enzyme; RN-genotype; Pig; Pro-glycogen; Macro-
glycogen 
 

1 Introduction 

The increased introduction of the Hampshire breed within pig breeding has caused a 

widespread frequency of the RN- gene in many countries, e.g. the frequency approach 70 % in 

Swedish Hampshire crossbreeds (Enfält, Lundström, Karlsson, & Hansson, 1997b). The RN- 

allele in the PRKAG3 gene on chromosome 15 is dominant and associated with an increased 

glycogen content in porcine glycolytic muscles (Enfält et al., 1997b; Estrade, Vignon, Rock, 

& Monin, 1993; Fernandez, Tornberg, Naveau, Talmant, & Monin, 1992). This has been 

shown to result in a faster pH decrease (Josell, von Seth, & Tornberg, 2003a, b; Lindahl et al., 

2004) and lower ultimate pH in meat from RN- carriers compared with the wild type (Enfält et 

al., 1997b; Josell et al., 2003a; Le Roy et al., 2000; Lindahl et al., 2004).  

 

Although the effects of the RN- gene on the pH fall in post-mortem muscle and subsequent 

influence on meat quality have been studied extensively (Enfält et al., 1997b; Josell et al., 

2003a; Lindahl et al., 2004), the understanding of the underlying mechanisms in the post-
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mortem glycogen metabolism between carriers and non-carriers of the RN- gene is almost 

absent. Considering that the differences in the post-mortem metabolism of glycogen between 

genotypes are highly important for the quality of meat (Bendall & Swatland, 1988; Briskey, 

1964; Monin & Ouali, 1991), a thorough understanding of the physiological mechanisms 

giving rise to the fast rate of post-mortem pH decrease and low ultimate pH in meat of RN- 

carriers may be crucial in the identification of biological markers of importance for future 

breeding strategies aiming at production of high quality meat. 

 

The biosynthesis of glycogen is initiated by a self-glucosylating protein, glycogenin 

(Goldsmith, Sprang, & Fletterick, 1982; Gunja-Smith, Marshall, Mercier, Smith, & Whelan, 

1970; Lomako, Lomako, & Whelan, 1988; Meléndez-Hevia, Waddell, & Shelton, 1993). 

Subsequently, glycogen synthase and glycogen branching enzyme then complete the glycogen 

molecules. Muscle glycogen exists in two forms: the acid-soluble, high molecular weight 

(107 Da) macro-glycogen rich in glucose molecules, and the acid-insoluble, low molecular 

weight (400,000 Da) pro-glycogen, which is characterised by a higher protein to glucose ratio 

(Lomako et al., 1991, 1993). These two glycogen pools seem to be metabolically distinct 

(Graham, Adamo, Shearer, Marchand, & Saltin, 2001; Shearer, Marchand, Tarnopolsky, 

Dyck, & Graham, 2001), although the physiological nature of the regulation of muscle 

glycogen stores is poorly understood (Roach, 2002). It seems that macro-glycogen is 

mobilised during aerobic exercise, while pro-glycogen is mobilised during anaerobic exercise 

(Essén-Gustavsson, Jensen-Waern, Jonasson, & Andersson, 2005; Graham et al., 2001; 

Shearer et al., 2001). 

 

The degradation of glycogen progresses by cooperation of two enzymes: glycogen 

phosphorylase (phosphorylase) and glycogen debranching enzyme (GDE) (Brown & 

Illingworth-Brown, 1966). The phosphorylase breaks down linear glucose chains to the so-

called limit dextrin state whereupon GDE takes over and breaks down the branching point, 

which enables the further action of phosphorylase (Brown & Illingworth-Brown, 1966; 

Nelson, Kolb, & Larner, 1969). It has been suggested that GDE catalyses the rate-limiting 

step in post-mortem glycogenolysis and thus glycolysis (Kylä-Puhju, Ruusunen, & Puolanne, 

2005; Taylor, Cox, Kernohan, & Cohen, 1975; Ylä-Ajos, Ruusunen, & Puolanne, 2006).  

 

The aim of this study was to further elucidate basic factors of importance for post-mortem 

glycogen metabolism in relation to the pH fall by comparing the transcription levels of central 

genes (GDE, glycogenin and glycogen synthase) involved in the glycogen metabolism, and 
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measuring the activity of GDE and degradation of pro-glycogen and macro-glycogen in M. 

longissimus dorsi from Hampshire crossbred animals with and without presence of the RN- 

allele. 

   

2 Materials and Methods 

2.1 Animals and sampling 

This study was part of a larger project studying the effect of the RN-gene on meat colour 

stability and glycogen metabolism, described by Lindahl, Enfält, Andersen and Lundström (in 

preparation). For the present study, twenty crossbred slaughter pigs, Hampshire x (Swedish 

Landrace x Yorkshire) from four herds were stunned in CO2 and slaughtered at a commercial 

slaughterhouse in Sweden. Small muscle samples (M. longissimus dorsi and M. 

semimembranosus) were obtained 0.5, 3, 5, 24 and 48 hours after bleeding. After 48 hours the 

whole muscles were excised from the carcasses, vacuum-packed and stored at 5°C for another 

2, 5 or 7 days before sampling. The collected samples were frozen in liquid nitrogen 

immediately after sampling and stored at -80ºC. The pH was measured (Knick portable pH-

meter equipped with a combination gel electrode, SE104, Knick Berlin, Germany) in M. 

longissimus dorsi at the last thoracic vertebra and in the middle of M. semimembranosus at 

0.5, 3, 5, 24 and 48 hours after bleeding. The pH electrode was calibrated in pH 4.01 and 7.00 

buffers (Radiometer, Denmark) at ambient temperature when pH was measured 30 min post-

mortem, and at 4°C at the other time points.  

 

2.2 Genotyping 

The PRKAG3 alleles were identified with a DNA test using the polymerase chain reaction 

(PCR) method described by Milan et al. (2000). Three alleles were designated as follows: RN- 

(199V-200Q), rn+ (199V-200R) and rn* (199I-200R). RN- carriers had the combinations: RN-

/rn+, RN-/rn*, and the wild type animals had: rn+/rn+, rn+/rn*, rn*/rn*. 

  

2.3 The activity of GDE 

The post-mortem activity of GDE was determined from M. longissimus dorsi (n=14) and M. 

semimembranosus (n=6) using the method of Nelson, Palmer & Larner (1970) with minor 

modifications (Kylä-Puhju et al., 2005). The method is a colorimetric assay based on a shift in 

the absorbance at 525 nm upon GDE-catalysed conversion of limit dextrin to glycogen. The 

GDE activity measurements were made at 39°C in triplicate at three time points and the 

activity was calculated from the slope of the linear phase of the absorbance curve. In addition, 

the absorption spectra between 375 nm and 800 nm of the blank and the reaction mixtures 
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were obtained to ensure the conversion of limit dextrin to glycogen (results not shown). The 

assay measures the combined activity of GDE, i.e. glycan transferase (EC 2.4.1.25) and 

amylo-1,6-glucosidase (EC 3.2.1.33) activities. 

 

The reproducibility of the assay was determined as follows: a large muscle sample was 

ground in liquid nitrogen, aliquoted, stored at -80ºC, and used as an internal standard. The 

coefficient of variation (CV) for the internal standard was ±18.3% for the GDE activity. 

  

2.4 Glycogen content 

Pro-glycogen and macro-glycogen were separated as described by Adamo and Graham 

(1998). In short, the pro-glycogen was precipitated by perchloric acid. After centrifugation 

pro-glycogen in the pellet and macro-glycogen in the supernatant were hydrolysed for 2 h in 

1M HCl. Glucose from the hydrolysed homogenates were analysed according to the 

procedure of Passonneau & Lowry, 1990. The analysis method does not distinguish the origin 

of the glucose molecules, thus glycogen, glucose and glucose-6-phosphate all contribute to 

the total glucose amount in the two fractions. Since pro-glycogen is precipitated in the pellet, 

the free glucose and glucose-6-phosphate will be included in the macro-glycogen fraction. 

Thus, in the present study “macro-glycogen” = macro-glycogen + free glucose + glucose-

phosphates.    

 

2.5 Gene expressions  

The transcription levels of three genes (GDE, glycogen synthase and glycogenin) and two 

housekeeping genes (the structural protein β-Actin and the glycolytic enzyme glyceraldehyd-

3-phosphate dehydrogenase i.e. GAPDH) were quantified in M. longissimus dorsi of RN- 

carriers (n=9) and wild type animals (n=10). However, the housekeeping gene GAPDH was 

excluded from the analyses because its transcription differed significantly between genotypes.  

The samples for gene expression analyses were taken 0.5 h after slaughter and frozen in liquid 

nitrogen. The RNA was purified from 30 mg of muscle sample using the method described by 

Chomczynski and Mackey (1995). In short, muscle tissue was homogenised in TriReagent 

(Molecular Research Center Inc. Cincinnati, Ohio), the phases were separated with 1-bromo-

3-chloropropane and finally the RNA was precipitated with isopropanol. The dry pellet, 

containing RNA was solubilised in H2O and stored at -80°C. Total RNA was determined by 

measuring the absorbance at 260 nm. Equal amounts of RNA were reverse transcribed with 

oligo-dT and Superscript II RNase H reverse transcriptase kit (Invitrogen, Taastrup, 

Denmark) and ultrapure dNTPSet (Pharmacia Amersham) as described by Theil, Sørensen, 
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Therkildsen and Oksbjerg (2006). Reverse transcribed material (1 μl) was amplified with 

TaqMan Universal PCR Master Mix (Applied Biosystems, Stockholm, Sweden) using 

primers specific for each gene. The signal was detected quantitatively by gene specific probes 

labelled with FAMTM fluorophore in the 5’end. Primers and probes were designed by using 

Primer Express (Applied Biosystem, Stockholm, Sweden) version 2.0 software, and either a 

primer or a probe was designed to anneal to a splice site to avoid amplification of genomic 

DNA. The primer pairs predicted 78, 74, 80, 113 and 76 bp fragments for GDE, glycogen 

synthase, glycogenin, β-Actin and GAPDH, respectively. For real time RT-PCR, 40 cycles at 

95°C for 15 s and 60°C for 60 s were applied to amplify the PCR products. The number of 

PCR cycles required to reach the threshold for a gene of interest (Ct value) was used in the 

statistical analysis. Serial dilutions for obtaining a standard curve were analysed in triplicate, 

whereas unknown samples were analysed in duplicates using ABI 7900HT Sequence 

Detection System (Applied Biosystems, Stockholm, Sweden).  

The sequences of forward primers, MGB probes and reverse primers were as follows: 

GDE: 5’-TGTTCTTTCTCGACATTATGTTCATCT-3’, 5’-

AGCGATCCCCTTGGAAAGGACTTCCA-3’, 5’-TGTCCATTCTCGTTGGTCAGTT-3’ 

Glycogen synthase: 5’-CCGGCTTCGGCTGCTT-3’, 5’-

CGCAGACCCCTCGGCTTACGGTATC-3’, 5’-CCGCCGGTCCAGAATG-3’ 

Glycogenin: 5’-ATCAGCTGTTGCACCTTGCTT-3’, 5’-

TGAGCAAGGTAGTTTTGATGGTGG-3’, 5’-

GCTGCTAAAAAATGTGTTCAGTAAACC-3’ 

β-Actin: 5’-ACCCAGATCATGTTCGAGACCTT-3’, 5’-

CTGTATGCCTCTGGCCGCACCA-3’, 5’-TCACCGGAGTCCATCACGAT-3’ 

GAPDH: 5’-GTCGGAGTGAACGGATTTGG-3’, 5’-CGCCTGGTCACCAGGGCTGCT-3’, 

5’-CAATGTCCACTTTGCCAGAGTTAA-3’ 

 

2.6 Statistical analysis 

The statistical analysis was carried out using the Statistical Analysis System version 8.02 

(SAS Institute Inc., 1999). The MIXED procedure was applied when testing the differences in 

the activity of GDE, pH and in the pro-glycogen and “macro-glycogen” content between the 

genotypes. The model included the fixed effects of genotype, sex, time and interaction 

between genotype and time and a random animal effect to account for repeated measurements 

performed within the same animal. The correlation between pro-glycogen content and pH was 

tested by using the GLM procedure with the factors sex, slaughter date and herd. Also the 

differences in transcription levels between RN-genotypes were tested by using the GLM 
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procedure. The model included the following factors: RN-genotype, sex, slaughter date and 

interaction between RN-genotype and sex. The normalisation of transcriptional data was 

obtained with the transcription of the housekeeping gene β-actin by calculating ΔCt values 

(ΔCt = Ct of the target gene - Ct of the housekeeping gene). The calculations were made as 

described by Theil et al. (2006). The difference between the genotypes was considered to be 

significant when P<0.05. 

 

3 Results  

The total muscle glucose content 0.5 h post-mortem was 77% higher in RN- carriers compared 

with wild type animals, 101.9 and 57.6 mmol/kg w.w., respectively (Table 1). Pro-glycogen 

corresponded to 57% of the total muscle glucose content in RN- carriers and to 66% in wild 

type animals. Independent of genotype, only pro-glycogen was broken down post-mortem, 

while no degradation of “macro-glycogen” was registered.  

 

The degradation of muscle pro-glycogen continued until 96 h post-mortem in RN- carriers, 

while it was already abated 48 h post-mortem in muscles from wild type animals. 

Interestingly, an increase in “macro-glycogen” content simultaneously with the decrease in 

pro-glycogen content was observed in muscles from RN- carriers in the period 48 h to 96 h 

post-mortem. The “macro-glycogen” fraction, however, includes also glucose-6-phosphate 

and free glucose and the observed increase in this fraction could be due to an increase in 

content of these compounds.  

 

In M. longissimus dorsi, the activity of GDE decreased slowly as a function of time post-

mortem, and the decrease was statistically significant in all animals until after 5 hours post- 

mortem. The activity of GDE was similar in both RN-genotypes up to 5 hours after slaughter 

(Figure 1). However, 24 h post-mortem the activity of GDE was significantly higher in RN- 

carriers compared with wild type animals, and this difference was maintained up to 48 h post-

mortem.  

 

In M. semimembranosus, no significant difference in the post-mortem activity of GDE 

between the two genotypes was found (Figure 2). There was a tendency to a decrease in 

activity of GDE with increasing time post-mortem, but it became significant only in the 

muscles from wild type animals after 48 h. 
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The transcription levels of GDE and glycogen synthase were similar in both genotypes, while 

a greater transcription of glycogenin was found in RN- carriers.  Thus, the glycogenin m-RNA 

was more abundant in RN- carriers compared with wild type animals (Table 2). 

 

The pH 0.5 h post-mortem was not significantly different between the two genotypes 

(Table 3). However, the rate of pH decrease was faster, and the ultimate pH was lower in the 

M. longissimus dorsi from RN- carriers compared with wild type animals. The correlation 

between the degradation of pro-glycogen and pH decrease was high in RN- carriers (r=0.89) 

and in wild type animals (r=0.93). The pro-glycogen content 0.5 h post-mortem explained 44 

and 48% of the variation in ultimate pH in RN- carriers and in wild type animals, respectively. 

No significant differences in pH in M. semimembranosus were found between the two 

genotypes. 

 

4 Discussion 
The present study showed in accordance with a vast number of earlier studies that RN- 

carriers possess a higher glycolytic potential, a faster initial pH decrease and a lower ultimate 

pH than wild type animals. This results in a larger drip loss and cooking loss, a lower Napole 

Yield, but improved tenderness in most cases (Enfält 1997a, b; Josell et al. 2003b; Lindahl et 

al., 2004). 

 

Glycogen exists in two forms in skeletal muscle: acid-soluble, high molecular weight macro-

glycogen and acid-insoluble, low molecular weight pro-glycogen (Lomako et al., 1991, 1993). 

In the present study, the high glycolytic potential in RN- carriers was found to result from 

accumulation of both glycogen types, pro-glycogen and “macro-glycogen”, in the muscle. In 

contrast, Essén-Gustavsson et al. (2005) reported that high glycogen content in RN- carriers is 

exclusively due to increased macro-glycogen content. The pigs were, however, younger and 

lighter than in the present study.  In RN- carriers the proportion of “macro-glycogen” was 

higher than in the wild type animals, which is consistent with several studies showing that the 

macro-glycogen fraction increases with increasing muscle glycogen content (Adamo & 

Graham, 1998; Adamo, Tarnopolsky, & Graham, 1998; Asp, Daugaard, Rohde, Adamo, & 

Graham, 1999; Derave, Gao, & Richter, 2000; Shearer, Marchand, Sathasivam, Tarnopolsky, 

& Graham, 2000). The pro-glycogen to “macro-glycogen” ratio in wild type animals was 

similar as reported for pigs by Rosenvold, Essén-Gustavsson and Andersen (2003).  
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Only pro-glycogen was used for muscle energy production post-mortem (from 0.5 to 48 h), 

which is consistent with the results of Rosenvold et al. (2003) who observed only pro-

glycogen degradation during the first 45 minutes post-mortem. Essén-Gustavsson et al. (2005) 

showed recently that the breakdown of macro-glycogen takes place during aerobic, low 

intensity exercise in both RN-genotypes. In the present study, the analytical method for 

measuring “macro-glycogen” fraction included also glucose-6-phosphate and free glucose. 

Thus, it could be possible that also some of the macro-glycogen has broken down 

post-mortem although the analytical method does not detect that. The “macro-glycogen” 

content in M. longissimus dorsi in RN- carriers increased in the period from 48 h to 96 h post-

mortem. The increase might be explained by accumulation of glucose-6-phosphate and free 

glucose as a function of pro-glycogen degradation. This is supported by the results from 

Monin and Sellier (1985), who found that the glucose-6-phosphate content, a day after 

slaughter, was significantly higher in the Hampshire breed pigs (11 mmol/kg), which were 

very likely RN- carriers, compared with pigs from Large White (6 mmol/kg) and Pietrain 

(6 mmolg/kg) breeds. In pig muscle an hour after slaughter, the content of free glucose is 

3-6 mmol/kg (Monin and Sellier, 1985). Furthermore, the action of GDE results in liberation 

of free glucose (Brown & Illingworth-Brown, 1966). GDE, and probably also phosphorylase, 

is still active 48 h post-mortem and hereby enables the accumulation of glucose-6-phosphate 

and free glucose. Thus, this suggests that in RN- carriers muscle glycolysis is ceased due to 

inhibition of phosphofructokinase, which is generally considered a rate-limiting enzyme in 

glycolysis (Stryer, 1988). The rate and quantity of muscle H+ production are consequences of 

ATP hydrolysis coupled with glycolysis (Bendall, 1973; Hamm, 1977; Robergs, Ghiasvand & 

Parker, 2004). Lactate production coincides with pH decrease, but against general belief this 

is not a causal relationship, since lactate production retards, not causes, muscle acidosis 

(Bendall, 1973; Robergs et al., 2004). The proposed hypothesis on inhibition of 

phosphofructokinase in RN- carriers agrees with studies reporting similar ultimate lactate 

contents in RN- carriers and in wild type animals despite differences in ultimate pH (Enfält, 

Lundström, Hansson, Johansen & Nyström, 1997a; Lundström, Enfält, Tornberg & Agerhem, 

1998). In wild type animals no change in the “macro-glycogen” fraction was observed. 

 

The decrease in pH was faster, and the ultimate pH was lower in M. longissimus dorsi of RN- 

carriers than in wild type animals, which agrees with earlier findings (Enfält et al., 1997b; 

Josell et al., 2003a; Lindahl et al., 2004). The extended pH decrease in RN- carriers is possibly 

a result of longer maintenance of the high activity of GDE in these animals. The activity of 

GDE was similar for RN- carriers and wild type animals during the first five hours post-
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mortem, which is in agreement with Estrade, Ayoub, Talmant & Monin (1994) who reported 

an uniformity in the activity of GDE and of glycogen phosphorylase between the 

RN-genotypes five minutes after slaughter. In both genotypes, the activity of GDE remained 

at the level found shortly after slaughter for several hours, but was reduced significantly after 

24 h post-mortem. However, the decrease was more pronounced in wild type animals. It is 

possible that high muscle glycogen content protects the GDE from denaturation, since binding 

on glycogen limit dextrin or to lesser extent on glycogen serves as protection from denaturing 

agents (Gillard, White, Zingaro, & Nelson, 1980; Scraba, Bradley, Fitzgerald, & Madsen, 

1988). Then again, the RN- mutation is located in the gene coding for adenosine 

monophosphate-activated protein kinase (AMPK), which is a key metabolic enzyme (Milan et 

al., 2000). Activated AMPK inhibits the ATP-consuming pathways, stimulates ATP-

generating pathways (Hardie & Carling, 1997) and as reported recently by Shen and Du 

(2005) is important for maintaining the activity of glycogen phosphorylase in post-mortem 

muscle. Thus the mutation in the AMPK gene might explain why RN- carriers exhibit a 

prolonged high GDE activity, as found in the present study. The pH itself has only a minor 

effect on the activity of GDE when the pH ranges between 5.5 and 7 (Kylä-Puhju et al., 

2005).  

 

The differences between the studied muscles offer indirect support to the importance of the 

activity of GDE in the development of ultimate pH between RN-genotypes. The change in the 

activity of GDE was followed from 0.5 h to 48 h post-mortem. The activity was stable, 

particularly in M. semimembranosus of RN- carriers, where no significant decrease in the 

activity of GDE with increasing time was found. Furthermore, in M. semimembranosus (n=6), 

unlike in M. longissimus dorsi, the activity of GDE, the rate of pH decrease or ultimate pH 

did not differ between the RN-genotypes. It seems that the activity of GDE might be related to 

the formation of ultimate pH, and it remains to be investigated if a difference in the activity of 

GDE late post-mortem between the RN-genotypes would lead to differences in ultimate pH 

also in M. semimembranosus. Lindahl et al. (in preparation) found, with a larger number of 

pigs from the same project, a faster pH decline and lower pH 3 and 5 h post-mortem  in the M. 

semimembranosus of the RN- carriers compared with wild type animals, however, no 

difference in ultimate pH. Although M. longissimus dorsi and M. semimembranosus are very 

similar to each other in glycolytic potential, the activity of glycogenolytic enzymes (Fischer & 

Dobrowolski, 2002; Ylä-Ajos et al., 2006) and fibre type composition (Ruusunen & Puolanne, 

2004), the pH decrease is slower in M. semimembranosus (Henckel, Karlsson, Oksbjerg, & 
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Petersen, 2000). However, combining the data obtained from the present study concerning the 

studied muscles, indicate that the activity of GDE affects the pH decline post-mortem.  

 

It seems that immediately post slaughter, the glycogenolytic enzymes are not more active in 

RN- carriers than in wild type animals despite the higher glycogen content in RN- carriers. 

Besides the activity of GDE, also the transcription level of GDE was similar between the 

genotypes. Thus, the differences in the activity of GDE between the genotypes do not explain 

the faster pH decrease early post-mortem in RN- carriers compared with wild type animals. 

Hedegaard et al. (2004) found indications of an up-regulation of phosphofructokinase enzyme 

in RN- carriers, which is the rate-limiting enzyme in glycolysis, and this would explain the 

fast glycolysis during early post-mortem in RN- carriers. 

 

The mechanisms behind the high glycogen content in the glycolytic muscles of RN- carriers 

are not well described. Estrade et al. (1993) reported that the localization and ultrastructural 

pattern of glycogen was similar in both genotypes, but the density of the glycogen particles 

was higher in muscle fibres from RN- carriers, which may indicate higher glycogenin activity. 

The present study showed a slightly higher expression of glycogenin in RN- carriers compared 

with wild type animals. Glycogenin is an autocatalytic protein serving as substrate for 

glycogen synthase, and theoretically, the number of glycogenin molecules available within 

skeletal muscle would dictate the number of glycogen particles and hence the amount of 

glycogen stored. Therefore the production of active glycogenin primer in the muscle fibre 

could be the overall rate-limiting process in glycogen formation, capable of overriding the 

role of the activity of glycogen synthase (Alonso, Lomako, Lomako, & Whelan, 1995). 

Furthermore, Shearer et al. (2000) found a positive correlation in human muscle between 

glycogenin activity and total glycogen content, pro-glycogen content as well as macro-

glycogen content. 

 

Alternatively, the hyperaccumulation of glycogen in RN- carriers could originate from the 

higher expression of UDP-glucose pyrophosphorylase protein and high activity of the enzyme 

reported by Hedegaard et al. (2004). Furthermore, Hedegaard et al. (2004) suggested that the 

synthesis of glycogen in the muscles of RN- carriers was increased due to increased influx of 

glucose into the muscle fibres. Estrade et al. (1994) reported a tendency of higher glycogen 

synthase activity in RN- carriers compared with wild type animals. In the present study, no 

difference in the transcription of the glycogen synthase between genotypes was found, 

however, the transcription of a gene does not necessarily correspond to the activity of the 
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enzyme for which it is coding. In the present study, the activities of glycogenin and glycogen 

synthase were not analysed.  

 
5 Conclusions 

In M. longissimus dorsi, the decrease in the activity of GDE with increasing time post-mortem 

is slower and less pronounced in RN- carriers than in wild type animals. At the same time the 

decrease in pH is faster and the ultimate pH lower in RN- carriers than in wild type animals. 

The long period of high GDE activity in RN- carriers may enable the extended pH decrease. 

The transcription of the glycogenin gene is slightly higher, and both pro-glycogen and macro-

glycogen are more abundant in RN- carriers than in wild type animals, however, only the pro-

glycogen is degraded post-mortem irrespective of genotype. 

 

Acknowledgements 

The present study was supported by the Finnish Graduate School Program ‘Applied 

Bioscience - Bioengineering, Food & Nutrition, Environment’ (ABS), the Nordic Network in 

Meat Science (NNMS) and the Ministry of Food, Agriculture and Fisheries, Denmark. The 

authors wish to thank Ronnie Samuelsson, Swedish Meats, Uppsala, for information about 

herds and slaughter planning and Gertrud Andersson and Jens Askov Jensen for their 

invaluable help during sampling and sample preparation. Acknowledgements are also given to 

Head laboratory assistant Marianne Rasmussen, Laboratory technician Irja Korhonen, Senior 

laboratory assistant Inge Lise Sørensen and Laboratory technician Anne-Grete Dyrvig 

Petersen for their skilled technical assistance in the analyses. 

 

References 

Adamo, K. B., & Graham, T. E. (1998). Comparison of traditional measurements with 
macroglycogen and proglycogen analysis of muscle glycogen. Journal of applied 
physiology: respiratory, environmental and exercise physiology, 84(3), 908-913.  

Adamo, K. B., Tarnopolsky, M. A., & Graham, T. E. (1998). Dietary carbohydrate and 
postexercise synthesis of proglycogen and macroglycogen in human skeletal muscle. The 
American Journal of Physiology, 275(2 Pt 1), E229-34.  

Alonso, M. D., Lomako, J., Lomako, W. M., & Whelan, W. J. (1995). A new look at the 
biogenesis of glycogen. The FASEB journal, 9(12), 1126-1137 (review).  

Asp, S., Daugaard, J. R., Rohde, T., Adamo, K., & Graham, T. (1999). Muscle glycogen 
accumulation after a marathon: roles of fiber type and pro- and macroglycogen. Journal 
of Applied Physiology, 86(2), 474-478.  

Bendall, J. R. (1973). Postmortem changes in muscle. In H. G. Bourne, The structure and 
function of muscle (Vol II) (pp. 243-309). New York: Academic Press. 

  



   

Ylä-Ajos et al. (2007). Post-mortem activity of the glycogen… Meat Science, 75(1), 112-119.          13

409 
410 

411 
412 

413 
414 
415 

416 
417 

418 
419 

420 
421 
422 
423 

424 
425 
426 
427 

428 
429 
430 
431 

432 
433 
434 
435 

436 
437 
438 
439 

440 
441 
442 

443 
444 

445 
446 
447 
448 

Bendall, J. R., & Swatland, H. J. (1988). A review of the relationships of pH with physical 
aspects of pork quality. Meat Science, 24(2), 85-126.  

Briskey, E. J. (1964). Etiological status and associated studies of pale, soft, exudative porcine 
musculature. Advances in food research, 13, 89-178.  

Brown, D. H., & Illingworth-Brown, B. I. (1966). Enzymes of glycogen debranching: Amylo-
1,6-glucosidase (I) and oligo-1,4->1,4-glucantransferase (II). In S. P. Colowick, & N.O. 
Kaplan, Methods in Enzymology (Vol 8) (pp. 515-524). New York: Academic Press. 

Chomczynski, P., & Mackey, K. (1995). Substitution of chloroform by bromo-chloropropane 
in the single-step method of RNA isolation. Analytical Biochemistry, 225(1), 163-164.  

Derave, W., Gao, S., & Richter, E. A. (2000). Pro- and macroglycogenolysis in contracting rat 
skeletal muscle. Acta Physiologica Scandinavica, 169(4), 291-296.  

Enfält, A., Lundström, K., Hansson, I., Johansen, S., & Nyström, P. (1997a). Comparison of 
non-carriers and heterozygous carriers of the RN- allele for carcass composition, muscle 
distribution and technological meat quality in Hampshire-sired pigs. Livestock 
Production Science, 47(3), 221-229.  

Enfält, A. C., Lundström, K., Karlsson, A., & Hansson, I. (1997b). Estimated frequency of the 
RN allele in Swedish Hampshire pigs and comparison of glycolytic potential, carcass 
composition, and technological meat quality among Swedish Hampshire, Landrace, and 
Yorkshire pigs. Journal of animal science, 75(11), 2924-2935.  

Essén-Gustavsson, B., Jensen-Waern, M., Jonasson, R., & Andersson, L. (2005). Effect of 
exercise on proglycogen and macroglycogen content in skeletal muscles of pigs with the 
Rendement Napole mutation. American Journal of Veterinary Research, 66(7), 1197-
1201.  

Estrade, M., Vignon, X., Rock, E., & Monin, G. (1993). Glycogen hyperaccumulation in 
white muscle fibres of RN- carrier pigs. A biochemical and ultrastructural study. 
Comparative biochemistry and physiology. B: Comparative biochemistry, 104(2), 321-
326.  

Estrade, M., Ayoub, S., Talmant, A., & Monin, G. (1994). Enzyme activities of glycogen 
metabolism and mitochondrial characteristics in muscles of RN- carrier pigs (Sus scrofa 
domesticus). Comparative biochemistry and physiology. Biochemistry and molecular 
biology, 108(3), 295-301.  

Fernandez, X., Tornberg, E., Naveau, J., Talmant, A., & Monin, G. (1992). Bimodal 
distribution of the muscle glycolytic potential in french and swedish populations of 
hampshire crossbred pigs. Journal of Science in Food and Agriculture, 59, 307-311.  

Fischer, K., & Dobrowolski, A. (2002). Topographic variation of the glycolytic potential in 
the muscles of slaughter pigs. Fleischwirtschaft, 82(2), 78-82. (In German).  

Gillard, B. K., White, R. C., Zingaro, R. A., & Nelson, T. E. (1980). Amylo-1,6-
glucosidase/4-alpha-glucanotransferase. Reaction of rabbit muscle debranching enzyme 
with an active site-directed irreversible inhibitor, 1-S-dimethylarsino-1-thio-beta-D-
glucopyranoside. Journal of Biological Chemistry, 255(18), 8451-8457.  

  



   

Ylä-Ajos et al. (2007). Post-mortem activity of the glycogen… Meat Science, 75(1), 112-119.          14

449 
450 
451 

452 
453 
454 

455 
456 
457 

458 
459 

460 
461 

462 
463 

464 
465 
466 

467 
468 

469 
470 

471 
472 

473 
474 
475 

476 
477 

478 
479 

480 
481 

482 
483 
484 

485 
486 
487 

Goldsmith, E., Sprang, S., & Fletterick, R. (1982). Structure of maltoheptaose by difference 
Fourier methods and a model for glycogen. Journal of Molecular Biology, 156(2), 411-
427.  

Graham, T. E., Adamo, K. B., Shearer, J., Marchand, I., & Saltin, B. (2001). Pro- and 
macroglycogenolysis: relationship with exercise intensity and duration. Journal of 
applied physiology: respiratory, environmental and exercise physiology, 90(3), 873-879.  

Gunja-Smith, Z., Marshall, J. J., Mercier, C., Smith, E. E., & Whelan, W. J. (1970). A 
revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS letters, 12(2), 
101-104.  

Hamm, R. (1977). Postmortem breakdown of ATP and glycogen in ground muscle: A review. 
Meat Science, 1(1), 15-39.  

Hardie, D. G., & Carling, D. (1997). The AMP-activated protein kinase--fuel gauge of the 
mammalian cell? European journal of biochemistry / FEBS, 246(2), 259-273.  

Hedegaard, J. et al. (2004). UDP-glucose pyrophosphorylase is upregulated in carriers of the 
porcine RN- mutation in the AMP-activated protein kinase. Proteomics, 4(8), 2448-2454.  

Henckel, P., Karlsson, A., Oksbjerg, N., & Petersen, J. S. (2000). Control of post mortem pH 
decrease in pig muscles: experimental design and testing of animal models. Meat Science, 
55(1), 131-138.  

Josell, A., Martinsson, L., & Tornberg, E. (2003a). Possible mechanism for the effect of the 
RN- allele on pork tenderness. Meat Science, 64(4), 341-350.  

Josell, A., von Seth, G., & Tornberg, E. (2003b). Sensory and meat quality traits of pork in 
relation to post-slaughter treatment and RN genotype. Meat Science, 66(1), 113-124.  

Kylä-Puhju, M., Ruusunen, M., & Puolanne, E. (2005). Activity of porcine muscle glycogen 
debranching enzyme in relation to pH and temperature. Meat Science, 69(1), 143-149.  

Le Roy, P. et al. (2000). Comparison between the three porcine RN genotypes for growth, 
carcass composition and meat quality traits. Genetics, selection, evolution. : GSE, 32(2), 
165-186.  

Lindahl, G. et al. (2004). A second mutant allele (V199I) at the PRKAG3 (RN) locus. I. 
Effect on technological meat quality of pork loin. Meat Science, 66(3), 609-619.  

Lomako, J., Lomako, W. M., & Whelan, W. J. (1988). A self-glucosylating protein is the 
primer for rabbit muscle glycogen biosynthesis. The FASEB journal, 2(15), 3097-3103.  

Lomako, J., Lomako, W. M., & Whelan, W. J. (1991). Proglycogen: a low-molecular-weight 
form of muscle glycogen. FEBS letters, 279(2), 223-228.  

Lomako, J., Lomako, W. M., Whelan, W. J., Dombro, R. S., Neary, J. T., & Norenberg, M. D. 
(1993). Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen. 
The FASEB journal, 7(14), 1386-1393.  

Lundström, K., Enfält, A. C., Tornberg, E., & Agerhem, H. (1998). Sensory and technological 
meat quality in carriers and non-carriers of the RN- allele in Hampshire crosses and in 
purebred Yorkshire pigs. Meat Science, 48(1/2), 115-124.  

  



   

Ylä-Ajos et al. (2007). Post-mortem activity of the glycogen… Meat Science, 75(1), 112-119.          15

488 
489 
490 

491 
492 

493 
494 
495 

496 
497 
498 

499 
500 

501 
502 
503 

504 
505 

506 
507 

508 
509 
510 

511 
512 
513 

514 
515 
516 

517 

518 
519 

520 
521 
522 
523 

524 
525 
526 
527 

Meléndez-Hevia, E., Waddell, T. G., & Shelton, E. D. (1993). Optimization of molecular 
design in the evolution of metabolism: the glycogen molecule. The Biochemical journal, 
295(2), 477-483.  

Milan, D. et al. (2000). A mutation in PRKAG3 associated with excess glycogen content in 
pig skeletal muscle. Science, 288, 1248-1251.  

Monin, G., & Sellier, P. (1985). Pork of low technological quality with a normal rate of 
muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. 
Meat Science, 13, 49-63.  

Monin, G., & Ouali, A. (1991). Muscle differentiation and meat quality. In R. A. Lawrie, 
Developments in Meat Science-5(pp. 89-157). Essex, England: Elsevier Science 
Publishers LTD. 

Nelson, T. E., Kolb, E., & Larner, J. (1969). Purification and properties of rabbit muscle 
amylo-1,6-glucosidase-oligo-1,4->1,4-transferase. Biochemistry, 8(4), 1419-1428.  

Nelson, T. E., Palmer, D. H., & Larner, J. (1970). An investigation of the properties of rabbit 
muscle oligo-1,4->1,4-glucantransferase. Biochimica et Biophysica Acta, 212(2), 269-
280.  

Passonneau, J. V., & Lowry, O. H. (1993). Enzymatic Analysis: a Practical Guide. New 
Jersey, USA, The Humana Press. 

Roach, P. J. (2002). Glycogen and its metabolism. Current Molecular Medicine, 2(2), 101-
120.  

Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced 
metabolic acidosis. American Journal of Physiology. Regulatory, Integrative and 
Comparative Physiology, 287(3), R502-16.  

Rosenvold, K., Essén-Gustavsson, B., & Andersen, H. J. (2003). Dietary manipulation of pro- 
and macroglycogen in porcine skeletal muscle. Journal of Animal Science, 81(1), 130-
134.  

Ruusunen, M., & Puolanne, E. (2004). Histochemical properties of fibre types in muscles of 
wild and domestic pigs and the effect of growth rate on muscle fibre properties. Meat 
Science, 67(3), 533-539.  

SAS Institute Inc. (1999). SAS OnlineDoc®, Version 8. Cary, NC, SAS Institute Inc. 

Scraba, D. G., Bradley, R. D., Fitzgerald, P. M., & Madsen, N. B. (1988). Electron 
microscopy of glycogen degrading enzymes. FEBS letters, 240(1-2), 133-138.  

Shearer, J., Marchand, I., Sathasivam, P., Tarnopolsky, M. A., & Graham, T. E. (2000). 
Glycogenin activity in human skeletal muscle is proportional to muscle glycogen 
concentration. American Journal of Physiology. Endocrinology and Metabolism, 278(1), 
E177-80.  

Shearer, J., Marchand, I., Tarnopolsky, M. A., Dyck, D. J., & Graham, T. E. (2001). Pro- and 
macroglycogenolysis during repeated exercise: roles of glycogen content and 
phosphorylase activation. Journal of applied physiology: respiratory, environmental and 
exercise physiology, 90(3), 880-888.  

  



   

Ylä-Ajos et al. (2007). Post-mortem activity of the glycogen… Meat Science, 75(1), 112-119.          16

528 
529 

530 

531 
532 
533 

534 
535 
536 

537 
538 
539 
540 

Shen, Q., W., & Du, M. (2005). Role of AMP -activated protein kinase in the glycolysis of 
postmortem muscle. Journal of the Science of Food and Agriculture, 85(14), 2401-2406.  

Stryer, L. (1988). Biochemistry. 3rd edn. New York, Freeman. 

Taylor, C., Cox, A. J., Kernohan, J. C., & Cohen, P. (1975). Debranching enzyme from rabbit 
skeletal muscle. Purification, properties and physiological role. European Journal of 
Biochemistry, 51(1), 105-115.  

Theil, P. K., Sørensen, I. L., Therkildsen, M., & Oksbjerg, N. (2006). Changes in proteolytic 
enzyme mRNAs relevant for meat quality during myogenesis of primary porcine satellite 
cells. Meat Science, 73(2), 335-343.  

Ylä-Ajos, M., Ruusunen, M., & Puolanne, E. (2006). The significance of the activity of 
glycogen debranching enzyme in glycolysis in porcine and bovine muscles. Meat 
Science, 72(3), 532-538.  

 

  



   

Ylä-Ajos et al. (2007). Post-mortem activity of the glycogen… Meat Science, 75(1), 112-119.          17

541 
542 
543 
544 
545 
546 
547 

Figure 1. Activity of GDE (Δabs/Δmin, means and standard deviations) in M. longissimus 
dorsi of different RN-genotypes (♦ RN- carriers, n=7, ■ wild type (rn+), n=7). Asterisks 
indicate significant difference between the two genotypes (*** P<0.001, ** P<0.01). 
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Figure 2. Activity of GDE (Δabs/Δmin, means and standard deviations) in M. 
semimembranosus of different RN-genotypes (♦ RN- carriers, n=3, ■ wild type (rn+), n=3). 
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Table 1. LSMeans and SEM for pro-glycogen, “macro-glycogen” and total glucose contents 
in M. longissimus dorsi of RN- carriers and wild type (rn+) animals during the post-mortem 
period 

 Pro-glycogen, mmol/kg “Macro-glycogen”, 
mmol/kg  

Total glucose content, 
mmol/kg 

Time post-mortem RN- rn+ RN- rn+ RN- rn+

0.5 h 57.8±2.5a 38.2±2.7a 44.2±2.7a 19.3±2.9 101.9±3.9a 57.6±4.1a 
5 h 46.8±3.8 b 30.0±3.7b 46.1±2.5ab 16.9±2.7 92.8±4.6b 47.0±4.9b 
24 h 34.2±1.7c 9.4±1.8c 44.3±1.8a 15.7±1.9 78.4±2.4c 25.1±2.5c 
48 h 22.9±1.1d 2.7±1.2d 49.0±1.8b 17.6±1.9 71.8±2.7d 20.4±2.8d 
96 h 7.3±0.4e 1.6±0.4d 58.3±1.9c 15.4±2.0 65.5±2.0e 17.2±2.1d 
168 h 6.8±0.5e 1.6±0.5d 60.6±2.4c 15.2±2.5 67.3±2.5de 17.0±2.7d 
216 h 6.8±0.4e 1.5±0.4d 59.8±2.0c 14.5±2.1 66.5±2.3e 16.1±2.4d 
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When comparing the genotypes, both pro-glycogen content and “macro-glycogen” content as well as total 

glucose content differed significantly (p <0.001) between the genotypes at each stage. 

Different letter within a column indicates significant (P<0.05) difference between values. 

 

 

 

 

Table 2. Relative transcription of GDE, glycogen synthase and glycogenin genes in 
M. longissimus dorsi of RN-carriers and wild type (rn+) animals.a  

Gene RN- rn+ p-value  
GDE 0.75 1 0.142 

glycogen synthase 1.14 1 0.330 
glycogenin 1.62 1 0.0361 

569 
570 

571 

572 

573 

574 
575 

a Data are normalised according to the transcription level observed in wild type animals. 
 

 

 

 

Table 3. Decrease in pH (LSMeans±SE) in RN-carriers and wild type (rn+) animals. For 
M. longissimus dorsi n=20 and for M. semimembranosus n=6. 

 M. longissimus dorsi  M. semimembranosus  
Time post-mortem RN- rn+ p-value RN- rn+ p-value 
0.5 h 6.53±0.06a 6.65±0.06a 0.223 6.59±0.09a 6.58±0.09a 0.979 
3 h 6.14±0.08b 6.48±0.08a 0.007 6.11±0.09b 6.18±0.09b 0.595 
5 h 5.96±0.07c 6.25±0.07b 0.004 6.21±0.09b 6.04±0.09b 0.169 
24 h 5.38±0.03d 5.51±0.03c 0.017 5.36±0.09c 5.37±0.09c 0.894 
48 h 5.21±0.03e 5.36±0.03d 0.002 5.29±0.09c 5.33±0.09c 0.709 

576 Different letter within a column indicates significant (P<0.05) difference between values 
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