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Abstract 

 

Canine intestinal lactic acid bacterium (LAB) population in four fistulated dogs was 

cultured and enumerated using MRS agar. LAB levels ranging from 1.4×106 to 

1.5×107 CFU ml-1 were obtained in jejunal chyme. In the fecal samples 7.0×107 and 

2.0×108 CFU g-1 were detected.  Thirty randomly selected isolates growing in the 

highest sample dilutions were identified to species level using numerical analysis of 

16 and 23 S rDNA RFLP patterns (ribotyping) and 16S rDNA sequence analysis. 

According to these results, Streptococcus alactolyticus was the dominant culturable 

LAB species in both faeces and jejunal chyme. In addition, Lactobacillus murinus and 

Lactobacillus reuteri were detected.  

 

 

 

 

 

 

Keywords: Culturable canine intestinal lactic acid bacteria, Streptococcus 

alactolyticus, jejunal chyme 
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Introduction 

 

LAB are gram-positive, aerotolerant, catalase negative rods or cocci producing 

lactic acid as their main fermentation product. They form a heterogenous group of 

bacteria, the genera of Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, 

Pediococcus, Streptococcus and Weissella being the best known. Most LAB are non-

pathogenic and they are associated with a wide variety of sources, such as plant 

material and various foods [1]. They also form a substantial part of the intestinal 

microbiota, and are believed to have a major effect on host’s well-being [2]. 

 

 The knowledge of the canine intestinal LAB is scarce. Only few studies have 

previously addressed the canine intestinal microbiome [3-7]. Most of these studies 

date back to times when novel molecular techniques were not available and LAB were 

not identified to species level. Also the classification and nomenclature of LAB has 

been subjected to various changes during recent years. 

 

In order to obtain knowledge of the culturable LAB species in canine intestinal 

microbiome, we enumerated and identified jejunal and fecal LAB associated with four 

permanently fistulated beagles. Culturing was done using anaerobic incubation and 

MRS agar and the predominating LAB species were identified to the species level 

using molecular methods. 
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Materials and methods 

 

The dogs used in the study originated from the experimental animal colony of 

Helsinki University. They all had permanent jejunum nipple valve fistulas operated 

into the proximal jejunum, 60 cm distally from pylorus. The operations had been 

performed one to three years before this study took place according the method 

described by Wilsson-Rahmberg and Jonsson [8]. The fistulas did not cause any 

clinical discomfort or gastrointestinal symptoms to the dogs. The dogs had been used 

only for sampling of jejunal chyme and were not medicated. At the time of this study, 

the dogs were from three to six years of age. They were fed canned commercial 

balanced dog food, the main ingredients of which were cereal, meat, animal 

derivatives, oils and fats, vegetable protein extract and vegetable derivatives. The 

composition was as follows: raw protein 9 %, raw fat 6 %, raw fiber 0.4 %, calcium 

0.3 % and phosphorus 0.25 %; moisture 80 %. The study had been approved by the 

Helsinki University ethics committee.  

 

For the microbiological analyses, a sample of approximately 8 ml of jejunal 

chyme was collected from 4 permanently fistulated, healthy castrated male beagles 2 

hours postprandial. Fecal samples were collected manually from rectum of two dogs. 

All samples were immediately submitted to the laboratory for microbiological 

analyses.  

 

Samples were homogenized in 0.1% peptone water using a Stomacher blender. 

Serial 10-fold dilutions of the homogenized samples were made from 10-2 to 10-8 in 

0.1% peptone water. LAB were enumerated on MRS agar (Oxoid, Basingstoke, 
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England) inoculated using the spread plate technique. All plates were incubated in an 

anaerobic CO
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2 atmosphere (Anaerogen, Oxoid, 9-13% CO 2 according to the 

manufacturer) at 30°C for 3 to 4 days. Five colonies from each sample were picked 

randomly from the plates showing growth of less than 100 colonies. Depending on the 

sample, these dilutions were 106 × or 107 × of the original sample.  Isolates were 

cultured to purity using MRS agar/broth for species identification. Gram staining and 

catalase testing were performed before the molecular analysis. 

 

Two ml of cultures grown overnight at 30°C in MRS broth were used for 

DNA isolation. DNA was isolated by guanidium thiocyanate method by Pitcher and 

others [9] as modified by Björkroth and Korkeala [10] by the combined lysozyme and 

mutanolysin (Sigma) treatment. HindIII and EcoRI enzymes were used for restriction 

endonuclease treatment of 4 μg of DNA as specified by the manufacturer (New 

England Biolabs), and Restriction Endonuclease Analysis (REA) was performed as 

described previously [10]. Southern blotting was done using a vacuum device 

(Vacugene, Pharmacia), and the rDNA probe for ribotyping [11] was labelled by 

reverse transcription (AMV-RT, Promega and Dig Labelling Kit, Roche Molecular 

Biochemicals) as previously described [12]. Membranes were hybridized at +58 ºC 

overnight, and the detection of the digoxigenin label was performed as recommended 

by the manufacturer. 

 

For pattern analysis, the membranes were scanned with a Hewlett-Packard 

(Boise, Idaho, USA) Scan-Jet 4c/T scanner. The EcoRI and HindIII ribopatterns were 

compared with the corresponding patterns in the previously established LAB database 

at the Department of Food and Environmental Hygiene. Ribopatterns were analyzed 
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using the BioNumerics 3.0 software package (Applied Maths, Sint-Martens-Latem, 

Belgium). The similarity between all pairs was expressed by Dice coefficient 

correlation, and UPGMA clustering was used for the construction of the dendrogram. 

Based on the use of internal controls position tolerance of 1.5% was allowed for the 

bands. For the dendrogram combining the information from EcoRI and HindIII 

ribopatterns, equal weight was given to both banding pattern types. 

 

Chromosomal DNA for use in PCR was isolated as for ribotyping. The nearly 

complete (at least over 1400 bases sequenced) 16S rRNA gene was amplified by PCR 

with a universal primer pair, 5’-CTGGCTCAGGAYGAACGCTG-3’ as the forward 

primer, corresponding to positions 19-38 in Escherichia coli 16S numbering, and 5’-

AAGGAGGTGATCCAGCCGCA-3’ as the reverse primer, complementary to 

positions 1541-1522. Sequencing of the purified (QIAquick PCR Purification Kit, 

Qiagen) PCR product was performed by Sanger’s dideoxynucleotide chain 

termination method as two long and two shorter reactions. Samples were run in a 

Global IR32 using LiCor sequencing device with e-Seq 1.1 software (LiCor) according 

to the manufacturer’s recommendation. Overlapping complementary sequences were 

joined by the Align IR 1.2 program (LiCor). Nucleotide sequence data were analyzed 

with version 32.0 of the BioNumerics software package (Applied Maths). 

Phylogenetic analysis of the 16S rDNA sequence of strains was performed by using 

the Bionumerics 3.0 software package (Applied Maths). Calculation of the level of 

similarity and construction of a phylogenetic tree was based on the neighbour-joining 

method. Bootstrap probability values were calculated to branching points resampling 

1000 trees. 
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Results 

 

LAB levels ranging from 1.4×106 to 1.5×107 CFU ml-1 were obtained in the 

jejunal chyme. In the two fecal samples, 7.0×107 and 2.0×108 CFU g-1 were detected.  

All isolates were gram positive and catalase negative. Twenty of them possessed 

coccal morphology while 10 were rod shaped.  

 

Three LAB species, S. alactolyticus, L.  murinus and L. reuteri were detected 

by the means of the RFLP database and 16 S rDNA sequencing. Fig. 1 a and b show 

the dendrograms generated by EcoRI and HindIII restriction enzymes, respectively. 

Fig. 1c was made by combining the information from both restriction enzyme 

analyses together. All types of analyses resulted in species-specific clusters showing 

pattern similarity values ranging from 46.2 to 100%. In the distance matrix tree based 

on the 16S sequences (Fig. 2), strains were located in 3 branches corresponding well 

to the species-specific clusters obtained by ribotyping.  

 

Table 1 shows the LAB species distribution within the 30 randomly selected 

isolates identified to the species level. Within a species, identical ribopatterns were 

obtained from the isolates by both enzymes used. Fig 1. shows the representative 

patterns of all different types obtained. S. alactolyticus was found to be the dominant 

LAB species isolated from both faeces and jejunal chyme. L. murinus was associated 

with 3 of the dogs while 2 dogs were found to carry L. reuteri (Table 1).  
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Discussion 

 

S. alactolyticus was found to be the dominating culturable LAB species in the 

jejunal and faecal samples associated with the dogs in the present study. It was found 

in all the dogs and in every sample. In addition to S. alactolyticus, strains belonging to 

species L. reuteri and L. murinus were detected to a lesser extent (Table 1).  

 

 To our knowledge, this is the first report on the composition of the most 

prevalent culturable LAB species in the canine jejunal chyme and faeces. S. 

alactolyticus was described by Farrow and others [13], they isolated it from the 

intestines of pigs and the faeces of chicken. This organism has also been documented 

to reside in the pigeon intestines, although only as a minor part of the microbiota [14]. 

Ureolytic Streptococcus intestinalis was reported to be the predominant member of 

the pig colonic microbiota [15]. Later work by Vandamme and co-workers [16] 

revealed that S. intestinalis is a junior subjective synonym of S. alactolyticus and 

therefore pigeons must also be considered as a host of S. alactolyticus.   

 

In a recent study [7], the faecal microbiota of four Labrador retrievers was 

examined, and S. bovis and L. murinus were found to be the most prevalent culturable 

LAB species. In this study, there was variation in the occurrence of LAB species 

between the different samples. This was not clearly evident in our work. However, it 

has been documented that the canine intestinal microbiota may change in time [6], so 

the finding could reflect natural variation. The composition of intestinal bacterial flora 

is known to be host species specific and dependent on dietary and environmental 

factors [17]. This may also explain the differences in LAB strains between the present 
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study and the work published by Greetham and co-workers [7].  In addition, their 

study dealt only with the faecal microbiota whereas we identified the most prevalent 

culturable small intestinal LAB, too. However, the dogs we studied live in a colony of 

experimental animals. They have very few contacts with dogs outside the colony and 

their lives do not fully resemble the life of a domestic pet. On the other hand, the 

possibilities to examine the small intestinal microbiota in healthy, non-medicated pet 

dogs are practically nonexistent.  

 

LAB are reported to have several beneficial effects on host’s well being. They 

may suppress the growth of intestinal pathogens by the means of competitive 

exclusion [18, 19], and they have been documented to enhance the immune functions 

in humans and mice [20, 21]. It is noteworthy that with the exception of L. reuteri, 

none of the LAB strains detected in this study are used in commercial probiotic 

products.  

 

 Human gut microbiome has already been studied using various culture-

independent methods whereas in association with canine intestinal microbiome these 

studies are only on their way. Therefore, our results form a basis for the future either 

culture-dependent or independent studies dealing with canine intestinal microbiota. 

We conclude that knowledge of the dominant culturable LAB in the dog is necessary 

for further studies on the canine intestinal microbial ecology.  
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Table 1. Species division (number of isolates) within the LAB 30 isolates cultured 

pure from jejunal chyme or feces of 4 castrated male dogs with permanent jejunum 

nipple valve fistulas. Species were identified by the means of a RFLP database and 

16S rDNA sequencing. 

 

 Dog 1 Dog 2 Dog 3 Dog 4 

LAB species jejunal 

chyme 

feces jejunal 

chyme 

feces jejunal 

chyme 

jejunal 

chyme 

Streptococcus 

alactolyticus 

4 5 3 3 2 3 

Lactobacillus 

reuteri 

    2 2 

Lactobacillus 

murinus 

1  2 2 1  

314  
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Fig. 1. (a), (b) and (c) present numerical analysis of 16 and 23S RFLP patterns 

(ribotypes) generated by EcoRI, HindIII and an analysis combining the information of 

both restriction enzymes, respectively. Clusters show representative patterns of all 

different types obtained. Numerical analyses of the patterns are presented as 

dendrograms, left side of the EcoRI and HindIII banding patterns possesses high 

molecular weights, < 23 kbp, and right side >1000 bp.  

Scales show percentual similarities of the patterns. 

 

Fig. 2. Phylogenetic tree based on similarity values of almost entire 16S rDNA 

sequences (at least 1400 bp). Bootstrap probability values from 1000 trees resampled 

are given at the branch points. C. jejuni was used to root the tree. 

Scale shows 5% difference. 
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