

1					
2					
3	Streptococcus alactolyticus was the dominating culturable lactic acid				
4	bacterium species in canine jejunum and feces of four fistulated dogs				
5					
6	Minna L. Rinkinen [*] , Joanna M.K. Koort [†] , Arthur C. Ouwehand [‡] , Elias				
7	Westermarck [*] , K. Johanna Björkroth [†]				
8	*Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, P.O.				
9	Box 57, FIN-00014 University of Helsinki, Finland				
10	[†] Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine,				
11	P.O. Box 57, FIN–00014 University of Helsinki, Finland				
12	[‡] Department of Biochemistry and Food Chemistry, University of Turku,				
13	FIN-20014 Turku, Finland				
14					
15					
16					
17	Corresponding author:				
18					
19	Minna Rinkinen, Department of Clinical Veterinary Sciences, Faculty of Veterinary				
20	Medicine, P.O. Box 57, FIN-00014 University of Helsinki, Finland				
21	Tel: +358-50-549 78 38				
22	Fax: +358-9-191 49 670				
23	E-mail: Minna.Rinkinen@helsinki.fi				

24 Abstract

26	Canine intestinal lactic acid bacterium (LAB) population in four fistulated dogs was							
27	cultured and enumerated using MRS agar. LAB levels ranging from 1.4×10^6 to							
28	1.5×10^7 CFU ml ⁻¹ were obtained in jejunal chyme. In the fecal samples 7.0×10^7 and							
29	2.0×10^8 CFU g ⁻¹ were detected. Thirty randomly selected isolates growing in the							
30	highest sample dilutions were identified to species level using numerical analysis of							
31	16 and 23 S rDNA RFLP patterns (ribotyping) and 16S rDNA sequence analysis.							
32	According to these results, Streptococcus alactolyticus was the dominant culturable							
33	LAB species in both faeces and jejunal chyme. In addition, Lactobacillus murinus and							
34	Lactobacillus reuteri were detected.							
35								
36								
37								
38								
39								
40								
41	Keywords: Culturable canine intestinal lactic acid bacteria, Streptococcus							
42	alactolyticus, jejunal chyme							

43 Introduction

45	LAB are gram-positive, aerotolerant, catalase negative rods or cocci producing						
46	lactic acid as their main fermentation product. They form a heterogenous group of						
47	bacteria, the genera of Enterococcus, Lactobacillus, Lactococcus, Leuconostoc,						
48	Pediococcus, Streptococcus and Weissella being the best known. Most LAB are non-						
49	pathogenic and they are associated with a wide variety of sources, such as plant						
50	material and various foods [1]. They also form a substantial part of the intestinal						
51	microbiota, and are believed to have a major effect on host's well-being [2].						
52							
53	The knowledge of the canine intestinal LAB is scarce. Only few studies have						
54	previously addressed the canine intestinal microbiome [3-7]. Most of these studies						
55	date back to times when novel molecular techniques were not available and LAB were						
56	not identified to species level. Also the classification and nomenclature of LAB has						
57	been subjected to various changes during recent years.						
58							
59	In order to obtain knowledge of the culturable LAB species in canine intestinal						
60	microbiome, we enumerated and identified jejunal and fecal LAB associated with four						
61	permanently fistulated beagles. Culturing was done using anaerobic incubation and						
62	MRS agar and the predominating LAB species were identified to the species level						
63	using molecular methods.						
64							
65							

69	The dogs used in the study originated from the experimental animal colony of				
70	Helsinki University. They all had permanent jejunum nipple valve fistulas operated				
71	into the proximal jejunum, 60 cm distally from pylorus. The operations had been				
72	performed one to three years before this study took place according the method				
73	described by Wilsson-Rahmberg and Jonsson [8]. The fistulas did not cause any				
74	clinical discomfort or gastrointestinal symptoms to the dogs. The dogs had been used				
75	only for sampling of jejunal chyme and were not medicated. At the time of this study,				
76	the dogs were from three to six years of age. They were fed canned commercial				
77	balanced dog food, the main ingredients of which were cereal, meat, animal				
78	derivatives, oils and fats, vegetable protein extract and vegetable derivatives. The				
79	composition was as follows: raw protein 9 %, raw fat 6 %, raw fiber 0.4 %, calcium				
80	0.3 % and phosphorus 0.25 %; moisture 80 %. The study had been approved by the				
81	Helsinki University ethics committee.				
82					
83	For the microbiological analyses, a sample of approximately 8 ml of jejunal				
84	chyme was collected from 4 permanently fistulated, healthy castrated male beagles 2				
85	hours postprandial. Fecal samples were collected manually from rectum of two dogs.				
86	All samples were immediately submitted to the laboratory for microbiological				
87	analyses.				
88					
89	Samples were homogenized in 0.1% peptone water using a Stomacher blender				

90 Serial 10-fold dilutions of the homogenized samples were made from 10^{-2} to 10^{-8} in

91 0.1% peptone water. LAB were enumerated on MRS agar (Oxoid, Basingstoke,

92	England) inoculated using the spread plate technique. All plates were incubated in an
93	anaerobic CO2 atmosphere (Anaerogen, Oxoid, 9-13% CO 2 according to the
94	manufacturer) at 30°C for 3 to 4 days. Five colonies from each sample were picked
95	randomly from the plates showing growth of less than 100 colonies. Depending on the
96	sample, these dilutions were $10^6 \times \text{ or } 10^7 \times \text{ of the original sample}$. Isolates were
97	cultured to purity using MRS agar/broth for species identification. Gram staining and
98	catalase testing were performed before the molecular analysis.

100 Two ml of cultures grown overnight at 30°C in MRS broth were used for 101 DNA isolation. DNA was isolated by guanidium thiocyanate method by Pitcher and 102 others [9] as modified by Björkroth and Korkeala [10] by the combined lysozyme and 103 mutanolysin (Sigma) treatment. HindIII and EcoRI enzymes were used for restriction 104 endonuclease treatment of 4 µg of DNA as specified by the manufacturer (New 105 England Biolabs), and Restriction Endonuclease Analysis (REA) was performed as 106 described previously [10]. Southern blotting was done using a vacuum device 107 (Vacugene, Pharmacia), and the rDNA probe for ribotyping [11] was labelled by 108 reverse transcription (AMV-RT, Promega and Dig Labelling Kit, Roche Molecular 109 Biochemicals) as previously described [12]. Membranes were hybridized at +58 °C 110 overnight, and the detection of the digoxigenin label was performed as recommended 111 by the manufacturer.

112

For pattern analysis, the membranes were scanned with a Hewlett-Packard (Boise, Idaho, USA) Scan-Jet 4c/T scanner. The *Eco*RI and *Hin*dIII ribopatterns were compared with the corresponding patterns in the previously established LAB database at the Department of Food and Environmental Hygiene. Ribopatterns were analyzed

using the BioNumerics 3.0 software package (Applied Maths, Sint-Martens-Latem,
Belgium). The similarity between all pairs was expressed by Dice coefficient
correlation, and UPGMA clustering was used for the construction of the dendrogram.
Based on the use of internal controls position tolerance of 1.5% was allowed for the
bands. For the dendrogram combining the information from *Eco*RI and *Hin*dIII
ribopatterns, equal weight was given to both banding pattern types.

123

124 Chromosomal DNA for use in PCR was isolated as for ribotyping. The nearly 125 complete (at least over 1400 bases sequenced) 16S rRNA gene was amplified by PCR 126 with a universal primer pair, 5'-CTGGCTCAGGAYGAACGCTG-3' as the forward 127 primer, corresponding to positions 19-38 in Escherichia coli 16S numbering, and 5'-128 AAGGAGGTGATCCAGCCGCA-3' as the reverse primer, complementary to 129 positions 1541-1522. Sequencing of the purified (QIAquick PCR Purification Kit, 130 Qiagen) PCR product was performed by Sanger's dideoxynucleotide chain 131 termination method as two long and two shorter reactions. Samples were run in a Global IR³² using LiCor sequencing device with e-Seq 1.1 software (LiCor) according 132 133 to the manufacturer's recommendation. Overlapping complementary sequences were 134 joined by the Align IR 1.2 program (LiCor). Nucleotide sequence data were analyzed 135 with version 32.0 of the BioNumerics software package (Applied Maths). 136 Phylogenetic analysis of the 16S rDNA sequence of strains was performed by using 137 the Bionumerics 3.0 software package (Applied Maths). Calculation of the level of 138 similarity and construction of a phylogenetic tree was based on the neighbour-joining 139 method. Bootstrap probability values were calculated to branching points resampling 140 1000 trees.

141

142 Results

143

144 LAB levels ranging from 1.4×10^{6} to 1.5×10^{7} CFU ml⁻¹ were obtained in the 145 jejunal chyme. In the two fecal samples, 7.0×10^{7} and 2.0×10^{8} CFU g⁻¹ were detected. 146 All isolates were gram positive and catalase negative. Twenty of them possessed 147 coccal morphology while 10 were rod shaped.

148

149 Three LAB species, S. alactolyticus, L. murinus and L. reuteri were detected 150 by the means of the RFLP database and 16 S rDNA sequencing. Fig. 1 a and b show 151 the dendrograms generated by *Eco*RI and *Hin*dIII restriction enzymes, respectively. 152 Fig. 1c was made by combining the information from both restriction enzyme 153 analyses together. All types of analyses resulted in species-specific clusters showing 154 pattern similarity values ranging from 46.2 to 100%. In the distance matrix tree based 155 on the 16S sequences (Fig. 2), strains were located in 3 branches corresponding well 156 to the species-specific clusters obtained by ribotyping. 157 158

Table 1 shows the LAB species distribution within the 30 randomly selected isolates identified to the species level. Within a species, identical ribopatterns were obtained from the isolates by both enzymes used. Fig 1. shows the representative patterns of all different types obtained. *S. alactolyticus* was found to be the dominant LAB species isolated from both faeces and jejunal chyme. *L. murinus* was associated with 3 of the dogs while 2 dogs were found to carry *L. reuteri* (Table 1).

S. alactolyticus was found to be the dominating culturable LAB species in the
jejunal and faecal samples associated with the dogs in the present study. It was found
in all the dogs and in every sample. In addition to *S. alactolyticus*, strains belonging to
species *L. reuteri* and *L. murinus* were detected to a lesser extent (Table 1).

171

172 To our knowledge, this is the first report on the composition of the most 173 prevalent culturable LAB species in the canine jejunal chyme and faeces. S. 174 alactolyticus was described by Farrow and others [13], they isolated it from the 175 intestines of pigs and the faeces of chicken. This organism has also been documented 176 to reside in the pigeon intestines, although only as a minor part of the microbiota [14]. 177 Ureolytic Streptococcus intestinalis was reported to be the predominant member of 178 the pig colonic microbiota [15]. Later work by Vandamme and co-workers [16] 179 revealed that S. intestinalis is a junior subjective synonym of S. alactolyticus and 180 therefore pigeons must also be considered as a host of S. alactolyticus. 181

182 In a recent study [7], the faecal microbiota of four Labrador retrievers was 183 examined, and S. bovis and L. murinus were found to be the most prevalent culturable 184 LAB species. In this study, there was variation in the occurrence of LAB species 185 between the different samples. This was not clearly evident in our work. However, it 186 has been documented that the canine intestinal microbiota may change in time [6], so 187 the finding could reflect natural variation. The composition of intestinal bacterial flora 188 is known to be host species specific and dependent on dietary and environmental 189 factors [17]. This may also explain the differences in LAB strains between the present

190 study and the work published by Greetham and co-workers [7]. In addition, their 191 study dealt only with the faecal microbiota whereas we identified the most prevalent 192 culturable small intestinal LAB, too. However, the dogs we studied live in a colony of 193 experimental animals. They have very few contacts with dogs outside the colony and 194 their lives do not fully resemble the life of a domestic pet. On the other hand, the 195 possibilities to examine the small intestinal microbiota in healthy, non-medicated pet 196 dogs are practically nonexistent.

197

LAB are reported to have several beneficial effects on host's well being. They may suppress the growth of intestinal pathogens by the means of competitive exclusion [18, 19], and they have been documented to enhance the immune functions in humans and mice [20, 21]. It is noteworthy that with the exception of *L. reuteri*, none of the LAB strains detected in this study are used in commercial probiotic products.

204
205 Human gut microbiome has already been studied using various culture206 independent methods whereas in association with canine intestinal microbiome these
207 studies are only on their way. Therefore, our results form a basis for the future either
208 culture-dependent or independent studies dealing with canine intestinal microbiota.
209 We conclude that knowledge of the dominant culturable LAB in the dog is necessary
210 for further studies on the canine intestinal microbial ecology.
211

212 Acknowledgements

- 213
- 214 We would like to thank Ms. Henna Niinivirta for the excellent technical
- assistance. Financial support from the Academy of Finland (project 100479) for the
- 216 identification of the LAB strains is gratefully acknowledged.
- 217

220	[1].	Axelsson, L. (1998) Lactic acid bacteria: classification and physiology. In:
221		Lactic acid bacteria. Microbiology and functional aspects. (Salminen,S. and von
222		Wright, A., Eds.), 2nd ed. pp. 369-383. Marcel Dekker Inc. New York,
223		
224	[2].	Vaughan, E.E., de Vries, M.C., Zoetendal, E.G., Ben-Amor, K., Akkermans,
225		A.D. and de Vos, V.M. (2002) The intestinal LABs. Antonie van Leeuwenhoek,
226		82, 341-352.
227		
228	[3].	Smith, H.W. (1965) Observations on the flora of the alimentary tract of animals
229		and factors affecting its composition. J Path. Bact. 89, 95-122.
230		
231	[4].	Clapper, W.E., (1970) Microbiology. Gastrointestinal tract. In: The beagle as an
232		experimental dog. (Anderson, A.C. and Good, L.S., Eds.) pp. 469-473. Ames
233		Ia.: Iowa State University.
234		
235	[5].	Davis, C.P., Cleven, D., Balish, E. and Yale, C.E. (1977) Bacterial association in
236		the gastrointestinal tract of beagle dogs. Appl. Environ. Microbiol. 34, 194-206.
237		
238	[6].	Benno, Y., Nakao, H., Uchida, K. and Mitsuoka, T. (1992) Individual and
239		seasonal variations in the composition of fecal microflora of beagle dogs.
240		Bifidobact. Microfl. 11, 69-76.
241		

242	[7].	Greetham, H.L., Giffard, C., Hutson, R.A., Collins. M.D. and Gibson, G.R.
243		(2002) Bacteriology of the Labrador dog gut: a cultural and genotypic approach.
244		J. Appl. Microbiol. 93, 640-646.
245		
246	[8].	Wilsson-Rahmberg, M. and Jonsson, O. (1997) Method for long-term intestinal
247		acces in the dog. Laboratory Animals 31, 231-240,
248		
249	[9].	Pitcher, D. G., Saunders, N. A. and Owen, R. J. (1989) Rapid extraction of
250		bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8,
251		151-156.
252		
253	[10].	Björkroth, J. and Korkeala, H. (1996) Evaluation of Lactobacillus sake
254		contamination in vacuum-packaged sliced cooked meat products by ribotyping.
255		J. Food Protect. 59, 398-401.
256		
257	[11].	Grimont, F. and Grimont, P. A. D. (1986) Ribosomal ribonucleic acid gene rest-
258		riction as potential taxonomic tools. Ann. Inst. Pasteur/Microbiol. 137B, 165-
259		175.
260	[12].	Blumberg, H.M., Kielbauch, J.A. and Wachsmuth, K. (1991) Molecular
261		epidemiology of Yersinia enterocolitica O:3 infection: use of chromosomal
262		DNA restriction fragment length polymorphism of rRNA gene. J. Clin.
263		Microbiol. 20, 2368-2374.
264		
265	[13].	Farrow, J.A.E., Kruze, J., Philips, B.A., Bramley, A. J. and Collins, M.D.
266		(1984) Taxonomic studies on Streptococcus bovis and Streptococcus equinus:

267	description of Streptococcus alactolyticus sp. nov. and Streptococcus
268	saccharolyticus sp. nov. Syst. Appl. Microbiol. 5, 467-482.
269	
270	[14]. Baele, M., Devriese, L.A., Butaye, P. and Haesebrouck, F. (2002) Composition
271	of enterococcal and streptococcal flora from pigeon intestines. J. Appl.
272	Microbiol. 92, 348-351.
273	
274	[15]. Robinson, I.M., Stromley, J.M., Varel, V.H and Cato, E.P. (1988) Streptococcus
275	intestinalis, a new species from the colons and feces of pigs. Int. J. Syst.
276	Bacteriol. 38, 245-248.
277	
278	[16]. Vandamme P., Devriese L.A, Haesebrouck F. and Kersters K. (1999)
279	Streptococcus intestinalis Robinson et al. 1988 and Streptococcus alactolyticus
280	Farrow et al. 1984 are phenotypically indistinguishable. Int J Syst Bacteriol. 49,
281	737-741.
282	
283	[17]. Salminen, S. and Deighton, M. (1992) Lactic acid bacteria in the gut in normal
284	and disordered states. Dig. Dis.10, 227-238.
285	
286	[18]. Hudault S, Lievin, V., Bernet-Camard, M.F. and Servin, A.L. (1997)
287	Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain
288	GG) against Salmonella typhimurium C5 infection.
289	Appl. Environ. Microbiol. 63, 513-518.
290	

291	[19]. Pascual M., Hugas M., Badiola J.I., Monfort J.M. and Garriga M. (1999)
292	Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization
293	in chickens. Appl. Environ. Microbiol. 65, 4981-4986.
294	
295	[20]. Gill, H.S., Rutherfurd, K.J., Prasad, J. and Gopal, P.K. (2000) Enhancement of
296	natural and aquired immunity by Lactobacillus rhamnosus (HN001),
297	Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J.
298	Nutr. 83, 167-176.
299	
300	[21]. Vitini, E., Alvarez, S., Medina, M., Medici, M., de Budeguer, M.V. and
301	Perdigon, G. (2000) Gut mucosal immunostimulation by lactic acid bacteria.
302	Biocell. 24, 223-232.
303	
304	
305	
306	
307	
308	

Table 1. Species division (number of isolates) within the LAB 30 isolates cultured
pure from jejunal chyme or feces of 4 castrated male dogs with permanent jejunum
nipple valve fistulas. Species were identified by the means of a RFLP database and
16S rDNA sequencing.

	Dog 1		Dog 2		Dog 3	Dog 4
LAB species	jejunal	feces	jejunal	feces	jejunal	jejunal
	chyme		chyme		chyme	chyme
Streptococcus	4	5	3	3	2	3
alactolyticus						
Lactobacillus					2	2
reuteri						
Lactobacillus	1		2	2	1	
murinus						

- Fig. 1. (a), (b) and (c) present numerical analysis of 16 and 23S RFLP patterns
- 316 (ribotypes) generated by *Eco*RI, *Hin*dIII and an analysis combining the information of
- 317 both restriction enzymes, respectively. Clusters show representative patterns of all
- 318 different types obtained. Numerical analyses of the patterns are presented as
- dendrograms, left side of the *Eco*RI and *Hin*dIII banding patterns possesses high
- 320 molecular weights, < 23 kbp, and right side >1000 bp.
- 321 Scales show percentual similarities of the patterns.
- 322
- 323 Fig. 2. Phylogenetic tree based on similarity values of almost entire 16S rDNA
- 324 sequences (at least 1400 bp). Bootstrap probability values from 1000 trees resampled
- 325 are given at the branch points. *C. jejuni* was used to root the tree.
- 326 Scale shows 5% difference.
- 327

328 Fig. 1, Rinkinen et al.

Fig. 2, Rinkinen et al.