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abstract: Reserve design is concerned with optimal selection of
sites for new conservation areas. Spatial reserve design explicitly con-
siders the spatial pattern of the proposed reserve network and the
effects of that pattern on reserve cost and/or ability to maintain
species there. The vast majority of reserve selection formulations have
assumed a linear problem structure, which effectively means that the
biological value of a potential reserve site does not depend on the
pattern of selected cells. However, spatial population dynamics and
autocorrelation cause the biological values of neighboring sites to be
interdependent. Habitat degradation may have indirect negative ef-
fects on biodiversity in areas neighboring the degraded site as a result
of, for example, negative edge effects or lower permeability for animal
movement. In this study, I present a formulation and a spatial op-
timization algorithm for nonlinear reserve selection problems in grid-
based landscapes that accounts for interdependent site values. The
method is demonstrated using habitat maps and nonlinear habitat
models for threatened birds in the Netherlands, and it is shown that
near-optimal solutions are found for regions consisting of up to
hundreds of thousands grid cells, a landscape size much larger than
those commonly attempted even with linear reserve selection for-
mulations.

Keywords: spatial reserve design, reserve selection, site selection al-
gorithm, habitat model, stochastic optimization, genetic algorithm.

Reserve selection is concerned with efficient use of con-
servation resources (see Pressey 1999; Margules and Pres-
sey 2000; Noss 2003; Cabeza et al. 2004b; Williams et al.
2004 for recent reviews). Biological reserves can also hold
economic or recreational values, but from the perspective
of conservation biology, the question is essentially about
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the allocation of resources so that long-term biodiversity
persistence is ensured to a satisfactory degree (Margules
and Pressey 2000; Cabeza and Moilanen 2001). One aspect
of this problem is a decision about which particular parcels
of land (e.g., areas, sites, patches, cells, selection units) one
should purchase to achieve a given conservation goal. This
study concentrates on a single critical assumption com-
monly made by reserve selection algorithms, that selection
units are independent of each other; that is, the biological
value of a selection unit does not depend on the structure
of the rest of the landscape.

The assumption of independence of selection units is
false when selection units are of the size commonly used
in landscape planning (ha, km2) because at these scales,
spatial population dynamics influence species distribution
patterns strongly. The idea that landscape structure influ-
ences species distribution patterns is the fundamental tenet
of metapopulation biology, landscape ecology, and spatial
ecology in general (e.g., MacArthur and Wilson 1967;
Levin 1974; Hanski 1998; King and With 2002). The hab-
itat pattern of the selected reserve network and the habitat
around it could influence the biological value of the net-
work. Nevertheless, this fact is in general ignored by re-
serve selection formulations (Cabeza and Moilanen 2003)
possibly because of computational difficulties implied by
the interdependence of sites. In this study, I emphasize
that if the biological value contained by a reserve network
is calculated in a realistic manner, one ends up with a
nonlinear formulation for the reserve selection problem
not readily solvable by standard reserve selection ap-
proaches. I show how such a problem can be solved, even
for large landscapes, using a combination of a genetic
algorithm variant tailored for spatial optimization and a
local improvement method acting on detailed reserve
structure.

A reserve selection problem can be divided into two
parts: first, definition of the conservation goal (target, ob-
jective, objective function) and constraints (available re-
sources, money, etc.) and, second, an analytical or nu-
merical solution. Typical goals include the following: find
the cheapest solution that gives at least one population
per species with a given probability (Haight et al. 2000;
Polasky et al. 2000; Williams and Araújo 2000, 2002; Ar-
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thur et al. 2002), find the cheapest solution that includes
a given proportion of the distribution of the species
(ReVelle et al. 2002; Cabeza 2003; Cabeza et al. 2004a,
2004b; Sarkar et al. 2004), find the cheapest solution that
includes a given proportion of each land cover type in the
region (Pressey and Tully 1994; Pressey et al. 1997;
McDonnell et al. 2002; Leslie et al. 2003), and maximize
the number of species covered adequately by the available
resource (the maximum coverage problem; Csuti et al.
1997; Pressey et al. 1997; Snyder et al. 1999; Camm et al.
2002).

There are three general optimization frameworks that
have been used for solving reserve selection problems. The
oldest of these is a complementarity-based deterministic
greedy stepwise heuristic (e.g., Kirkpatrick 1983; Margules
et al. 1988; Csuti et al. 1997; Pressey et al. 1997), which
adds to the solution, one site at a time, so that at each
step one achieves maximal increase in the value (number
of species represented) of the solution. Stepwise heuristics
are not guaranteed to find the global optimum of a reserve
selection problem (Cocks and Baird 1989; Underhill 1994;
Camm et al. 1996; Önal 2004). Linear and integer pro-
gramming are so-called exact (or complete or exhaustive)
optimization techniques, which are guaranteed to find the
global optimum of an optimization problem given that
both the objective and the constraints are linear functions
(Underhill 1994; see Williams et al. 2004 for review). Cer-
tain objective functions, such as the “probability of having
at least one population,” may also be modeled linearly via
linearization techniques (Haight et al. 2000; Camm et al.
2002). Although these studies have a nonlinear objective
function, the model is linear in the sense that the prob-
abilities of occurrence do not depend on the pattern of
the selected habitat. A third and less precisely defined class
of optimization methods used for reserve selection is sto-
chastic global optimization, including simulated annealing
(Possingham et al. 2000; McDonnel et al. 2002; Westpahl
and Possingham 2003) and genetic algorithms (Moilanen
and Cabeza 2002). These techniques use intelligent ran-
domization to guide the search process to near-optimal
solutions. Stochastic global optimization methods can, in
principle, be applied to any problem structure. However,
the global optimum is not guaranteed, and the perfor-
mance of the optimization in terms of convergence speed
will be highly dependent on the details and implemen-
tation of the optimization technique.

All of these objectives and solution methods depend on
a particular way of calculating the value of a site. In par-
ticular, direct application of linear or integer programming
methods (see Williams et al. 2004) requires that the bio-
logical value of a site does not depend on the spatial pat-
tern of the selected habitat. Even taking into account that
integer programming can capture many nonlinear rela-

tionships via linearization techniques or piecewise ap-
proximation (Hof and Bevers 2002), more complex (and
possibly more realistic) relationships can be captured if
the optimization method allows direct use of nonlinear
formulations. The structure of the landscape does affect
the distributions of species there. If the landscape changes,
one should expect the distribution of species within it to
change. For example, if a suburb is built next to a piece
of old-growth forest, the biological value of the forest edge
can be expected to decline because of negative edge effects:
increased disturbance, invasive species, and changes in abi-
otic conditions at the edge (see, e.g., Debinski and Holt
2000; Gaston et al. 2002).

If the probability of a species j being present at any site
i, pij, depends on the distribution of the species elsewhere
in the landscape, one may write

p p f(h , p (x)), (1)ij ij j

in which hij is a vector of habitat quality variables for
species j at site i, is the vector of proba-p (x) p {p (x)}j ij

bilities of occupancy for the species j given a particular
landscape structure, and is a selection vector withx p {x }i
element if site i is selected and 0 if not. Equationx p 1i

(1) is an implicit nonlinear equation solvable via iteration.
It states that the probability of the species being present
at a site depends on the quality of the habitat at the location
and the probability of presence of the species at other
locations in the landscape. Most spatial population models
would acknowledge such a structure because in such mod-
els, the probability of a species being present at a location
would depend on (among other things) immigration into
the site, which would be affected by the distribution of
the species elsewhere in the landscape (e.g., MacArthur
and Wilson 1967; Hanski 1998; Moilanen and Nieminen
2002). Another reason why pij might depend on x is an-
thropogenic threat. Habitat near human activity may be
in danger of being degraded, which could be accounted
for in reserve planning via nonlinear reserve selection
formulations.

Nonlinear models have rarely been used in reserve se-
lection, probably because of the computational difficulty
involved, and when they have been considered, the land-
scapes have been small (see Moilanen and Cabeza 2002;
Cabeza 2003; Westpahl et al. 2003; van Teeffelen et al.
2005). Because equation (1) is implicit, it needs to be
iterated until convergence for each species separately for
each habitat configuration x evaluated. Such iteration
might be computationally very expensive for even mod-
erately large landscapes, which are difficult to handle even
with linear problem formulations. Williams et al. (2004)
state that integer programming reserve selection formu-
lations tend to reach their limit at 10,000 landscape ele-
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ments because of combinatorial explosion of the search
space. Westpahl and Possingham (2003) use simulated an-
nealing on a large landscape, “select 3,000 out of 80,000
sites,” in the context of habitat restoration for birds in
South Australia. Their model is nonlinear in the sense that

and that probabilities depend on a logistic re-p p f(x)ij

gression that accounted for measures of habitat structure
in the neighborhood of the focal cell. This work differs
from that of Westpahl and Possingham (2003) in that the
implementation of equation (1) here assumes an autolo-
gistic structure: pij depends on . The use of anf(x, p (x))j

autologistic model structure comes from population dy-
namical reasoning; landscape structure affects occupancy
at a location both directly (via local habitat quality and
neighborhood habitat structure) and indirectly (via oc-
cupancy of the rest of the landscape; migrants come only
from occupied sites).

Note that any reserve selection formulation might be
nonlinear even if the species distribution model is linear.
This happens, quite realistically, if a nonlinear utility func-
tion for the value of the representation of a species is used
(Arponen et al. 2005). Typically, and in this study as well,
a species is counted as represented if the species repre-
sentation level exceeds a given target, such as a number
of occurrences or a proportion of the distribution. Thus,
the value of a species representation is essentially a step
function of representation with the step located at the
species-specific target. However, for reserve selection pur-
poses, it might be better to be able to differentiate between
how much over or under the target the representation of
the species is. For example, 100 populations would be
better than 50, but using a step function with a target of
20 would not differentiate between these two cases.
Equally, something just barely under the target is in reality
much better than zero representation. Valuing of over-
and underrepresentation can be achieved via the use of a
nonlinear monotonically increasing value function for spe-
cies representation.

In this study, I present an optimization framework for
nonlinear reserve selection problems on large grids. The
technique is based on a genetic algorithm (GA) variant
specially tailored for spatial problems. Nonlinearity in the
proposed framework arises from population-dynamical
connectivity calculated using a species-specific dispersal
kernel (Hanski 1994; Moilanen and Nieminen 2002),
which allows for long-distance interactions. A critical com-
ponent of the proposed framework is calculation of the
connectivity via the use of fast Fourier transforms (FFT;
Brewster and Allen 1997), which enable such calculations
for landscapes of the order of hundreds of thousands of
grid cells. To improve search efficiency, the GA is combined
with a local search method, which optimizes the fine details
of the solutions. The proposed method is introduced in

the context of nonlinear habitat models, but the algorithm
can also be used for optimizing spatial pattern using linear
species distribution models or simple presence-absence
data.

Methods

Overview

The objective function of the nonlinear reserve selection
problem studied here is explained first below. The opti-
mization solution for this problem has two components:
a stochastic global search method (a spatial GA with self-
adaptation of control parameters) and a local improve-
ment method. The GA searches for large-scale reserve con-
figurations that give good performance, and its most
relevant feature is recombination, the way two different
parent solutions (reserve structures) are combined to pro-
duce a new, hopefully improving, solution. The local
search manipulates the details of the reserves to converge
to locally optimal solutions. Most successful GA applica-
tions have often used local search (Blum and Roli 2003).
The solution method used for solving the nonlinear reserve
selection problem is described in detail in appendix A in
the online edition of the American Naturalist. Appendix
B in the online edition of the American Naturalist describes
a method for computing a lower bound for the optimal
solution size of the nonlinear optimization problem. Hav-
ing a lower bound estimate changes the present algorithm
from a heuristic to an approximation in the sense that the
maximum level of suboptimality of the proposed solution
is known. Table 1 gives a summary of the symbols used
in the study.

Objective Function of Optimization

The optimization problem used here is a proportional cov-
erage variant of the minimum set covering problem, where
the objective is to cover a given proportion of the distri-
bution of the species with minimal cost:

N

min F(x) p x c , (2)� i i
ip1

given that for all j.R (x) ≥ Tj j

In equation (2), ci is cost of site i; further, Tj is the
representation target level for species j, and is theR (x)j

representation of species j in solution . The targetsx p {x }i
Tj were calculated as a proportion of the number of pop-
ulations predicted by the habitat model to be present in
the full original landscape.

In itself, there is not necessarily anything nonlinear
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Table 1: Explanations for symbols used in problem formulation, the objective function, and the genetic algorithm

Symbol Definition

i Index for site i
(k, m) or (x, y) Indexes for site i on a grid; (x, y) is for focal cell, and (k, m) is for another cell
N Number of sites in landscape
xi Equals 1 if site i is included in solution x, 0 if not
x {xi}, solution vector
ci Cost of site i
j Index for species
pij Probability of presence of species j in site i
Tj Target for species j
Rj(x) Representation level of species j in solution x
hij Vector of habitat variables relevant for species i in site j
a Parameter of negative exponential dispersal kernel; small a indicates that the species has good dispersal

ability
Bij Buffer connectivity of habitat suitable for species j in the immediate neighborhood of site i
Iij Incidence function model connectivity for species j in site i (eq. [4])
b Penalty for the boundary length of solution
B1(T), B2(T) Two different lower bounds for smallest possible solution size for target T (defined in app. B in the

online edition of the American Naturalist)
GAM Population size
GAG Number of generations
GAXN Maximum number of crossover blocks in recombination
GAXS Maximum size of a crossover block as a fraction of edge length of study area
GAMN, GAMS As GAXN and GAXS but for the mutation operator
LSrnds Number of local search rounds used by the algorithm

Note: See appendix A in the online edition of the American Naturalist for GA details.

about equation (2). Rather, the nonlinearity arises from
the way is calculated:R (x)j

N

R (x) p x p (x),�j i ij
ip1

p (x) p f(h , n , p (x)). (3)ij ij ij j

Equation (3) states that the probability of species j being
present at site i, pij, depends on the set of selected sites,
that is, the spatial structure of the reserve network (Moi-
lanen and Cabeza 2002; Cabeza 2003; van Teeffelen et al.
2005). Here it is assumed that nonselected sites will even-
tually be lost, and thus they will not contribute to any
connectivity measures calculated for the species (Cabeza
and Moilanen 2003), but it is possible to include a statis-
tical model for the changes in the quality of nonselected
sites if such a model exists. The probability pij would also
typically depend on local species-specific habitat quality
variables (hij) and the habitat quality of the immediate
neighborhood of the site (nij). The actual species distri-
bution models used here are logistic regression habitat
models with connectivity-like autocovariates (Augustin et
al. 1996; Ferrier et al. 2002; Cabeza 2003; van Teeffelen et
al. 2005):

pijlog p a � b h � g B (x)j ij j ij( )1 � pij

� J I (x) � interaction terms, (4)j ij

in which is a vector of coefficients for local habitatbj

variables and Jj and gj are coefficients for two different
autocovariates; is a measure over the (eight) cellsB (x)ij

neighboring i, which means that it essentially measures
neighborhood habitat quality and structural habitat con-
nectivity; and is an incidence function model-typeI (x)ij

connectivity measure (IFM; Hanski 1994; see Moilanen
and Nieminen 2002) calculated for the species over the
entire landscape. The IFM connectivity measure relates to
the number of immigrants arriving to the focal location—
the occupancy probability of the species at the site would
depend in part on that quantity. Marking by (x, y) the
coordinates of cell i on a grid of dimensions x-dim #

, the IFM connectivity can be calculated for any celly-dim
in the landscape as a sum over those selected cells in the
rest of the landscape that have a positive occupancyx (k, m)

probability taking into account the distance betweenp(k, m), j

the cells and the habitat quality (surrogate for pop-dx-k, y-m

ulation size and number of emigrants leaving the location)
at source locations, :h (k, m), j
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x-dim y-dim

I (x) p I (x) p x p� �ij (x, y), j (k, m) (k, m), j
kp1 mp1

# exp (�ad )h . (5)x-k, y-m (k, m), j

The problem with equation (5) is that it needs to be
calculated multiple times for all cells and for each species
when evaluating a single reserve structure. The multiple
evaluations are needed because equations (4) and (5) need
to be iterated until probabilities in all cells converge (this
is the nonlinearity caused by the landscape structure).
Connectivity for all cells, even those not in x, is needed
because a local improvement method requires information
on the potential connectivity of each cell when evaluating
whether a cell should be joined to x.

Direct calculation of equation (5) for all cells is essen-
tially an operation, which becomes impossibly slow2O(N )
for even moderately large N (order of 104). Luckily, there
is a computational method that facilitates the calculation
of equation (5). It can be solved in time as aO(N log N)
two-dimensional convolution in the spectral domain using
the FFT algorithm to facilitate the transition to spectral
domain and back. The same technique has been employed
successfully in the context of integrodifference models of
spatial population dynamics (see, e.g., Brewster and Allen
1997). For N in the order 107, direct calculation of equation
(5) would take weeks or months, but it can be solved in
seconds using an efficient FFT subroutine library (Frigo
and Johnson 1998). See appendix A for a description of
the optimization method used for solving the nonlinear
reserve selection problem.

Testing Algorithm Performance

Appendix B describes an algorithm for computing lower
bounds for the smallest solution size of the nonlinear re-
serve selection problem. The method is based on the anal-
ysis of the degree of overlap between species distributions.
Two different bounds are computed; the B1 bound assumes
that loss of connectivity does not affect probabilities of
occurrence. Bound B2 even allows that loss of connectivity
could in some cases increase probabilities of occurrence.
Both of these bounds are underestimates for the true so-
lution size required because they assume that connectivity
loss never decreases the probabilities of occurrence and
they assume that complementarity occurs in an optimal
manner in the data so that the highest overlap of species
distributions is at locations where the highest species-
specific probabilities also occur. Appendix C in the online
edition of the American Naturalist gives information con-
cerning algorithm performance with artificially enlarged
landscapes.

Material

This study is based on independent habitat suitability in-
dexes and presence-absence data for seven threatened birds
in a -km study area in the West Brabant province55 # 40
in the Netherlands (Rejnen et al. 2001). The statistical
habitat models with connectivity components used here
(eqq. [4], [5]) are the ones fitted by van Teeffelen et al.
(2005). Connectivity-based autocovariates were statisti-
cally highly significant and biologically important for all
species in these data. This indicates that habitat structure
had an effect on the distribution of all of the species at
the 1-km2 scale; a suitable but isolated plot was less likely
to be occupied than a suitable and well-connected one.
Average dispersal distances for the species varied from 4
to 12 km (see van Teeffelen et al. 2005 for details).

Results

Figure 1 shows a summary of 10 optimization runs for
the seven study species first separately and then together
with two different target levels. The best solutions for spe-
cies are quite different, reflecting differences in the pattern
of suitable habitat in the landscape (fig. 1). The best so-
lution for all species together shows a pattern that seem-
ingly captures the overlap regions of distributions of dif-
ferent species in a highly connected manner.

Table 2 demonstrates that the level of spatial informa-
tion used in the model strongly impacts the structure of
the optimal reserve as measured by the ratio of reserve
boundary length to area ( ). Use of presence-absenceBL/A
data results in a reserve structure for all species where

, meaning that on average around half of theBL/A p 1.96
edge of each cell is on the boundary of the reserve. Using
probabilities of occurrence based on local habitat quality
results in an optimal reserve structure with ,BL/A p 1.68
which still is highly fragmented. If connectivity compo-
nents are included in the models, the optimal reserve struc-
ture becomes much more compact and connected (which
naturally is to be expected if probability of occurrence is
positively affected by connectivity). The ratio BL/A p

for models with local habitat con-0.82 quality � buffer
nectivity, and for the full model structureBL/A p 0.70
with both buffer and long-distance connectivity.

A similar trend is seen though optimizations for indi-
vidual species (table 2). Figure 2 illustrates strong effects
of connectivity with one of the present study species; using
a nonlinear model with effects of connectivity (fig. 2B, 2C)
results in a much more aggregated reserve structure than
the use of a (linear) model that is based on local habitat
quality only (fig. 2A). Use of connectivity added significant
clustering also for species 6, for which the ratioBL/A
dropped from 1.53 to 0.93 when buffer connectivity was
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Figure 1: Optimal reserve selections for the species separately and together; summary of 10 replicate optimizations, for individual species.T p 0.5j

White indicates areas outside the study area, and light gray indicates unselected sites potentially suitable for the species. Not all optimizations
converge to the same spatial pattern, which is indicated by darkness of color: black indicates selection always, and shades of darker gray indicate
less frequent inclusion in the optimal result of an optimization run. Variation in the selected regions indicates multiple spatially different solutions
with equal biological value.

added to the model on top of habitat quality. Other species
were affected varyingly less by connectivity, and one spe-
cies (number 7) may even favor fragmentation in its hab-
itat choice, as shown by a slight increase in with theBL/A
addition of connectivity components into models (table
2).

Figure 3 is more relevant for conservation because it
concerns the multispecies optimizations. The reserve
structures produced using presence-absence data (fig. 3A)

or local habitat quality in a linear manner (fig. 3B) are
visibly highly fragmented and thus not particularly suitable
as a basis for conservation planning. Going from presence-
absence data to the full spatial model (fig. 3D) shows a
major drop in from 1.96 to 0.70. It is worth em-BL/A
phasizing that this large difference in reserve structures is
caused by the inclusion of connectivity components in the
statistical model fit (van Teeffelen et al. 2005). It is well
known that so-called neighborhood measures are often
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Table 2: Effects of the level of spatial information on the optimal
reserve structure

Species PA ML MB MF

1 2.06 1.47 .93 .60
2 2.37 1.72 1.47 1.44
3 2.30 1.64 1.43 1.52
4 1.88 1.45 1.34 1.34
5 2.76 1.92 1.57 1.60
6 1.46 1.53 .93 .78
7 2.46 2.02 2.34 2.13

E(sp.) 2.18 1.68 1.43 1.34
All spp. 1.96 1.65 .82 .70

Note: Shown are presence-absence data (PA), probabilities of occurrence

based on local habitat quality used in a linear nonspatial manner (ML), a

spatial model with local habitat quality and buffer-type connectivity included

in the model (MB), and a full model with habitat quality and both buffer

and long-distance connectivity components (MF). The ratio of reserve

boundary length to area is given for each species individually and then for

a joint estimation with all species included. E(sp.) is the average over the

single-species estimations. .T p 0.5j

Figure 2: Comparison of optimal reserve structures obtained for the bluethroat using different models. A, Local habitat quality only. B, Local habitat
connectivity. C, Local habitat distance (IFM) connectivity. Ratios of boundary length to area for A–C are 1.47, 0.93,quality � buffer quality � long

and 0.60, respectively.

important variables in habitat models (Guisan and Zim-
mermann 2000). If neighborhood measures or connectiv-
ity measures are significant in the habitat model for any
species, then effects such as those shown in figures 2 and
3 can be expected when going from linear reserve selection
models to nonlinear reserve selection models.

Even if the landscape used here is not very large (∼2,000
cells), the nonlinear reserve selection problem is not triv-
ially solvable computationally. The optimization method
described in appendix A produced consistent performance
over all optimizations tried in this study (table 2; app. C).
Best solutions found by different optimization runs were
highly consistent for the single-species optimizations, and
a near-optimal result is on average obtained in some tens
of seconds of computation on a fast desktop PC. The lower

bound estimates (app. B) show that maximum subopti-
mality of solutions varies from 0.7% to 15.8%. This sub-
optimality could in principle be a result of convergence
problems with the algorithm. However, the lower bound
estimate assumes no negative effects of connectivity loss,
which means that the lower bound estimates are optimistic
to a degree depending on the response of the particular
species to habitat loss. No improvement for the smallest
solution size could be found for any of the individual
species even with a computational effort 100 times greater
than that required to find one of the results in figure 1.
A stochastic search algorithm that incorporates a gradient-
type local search and that starts from random patterns can
be expected to behave like this only if the solution at this
point is one of the global optima or a locally optimal
solution with a very large basin of attraction.

Results are different when optimizing for all species si-
multaneously. Now convergence is slower, and there is
some variation between the spatial patterns of the best
solutions found by different optimization runs. Figure 1
shows that many regions (marked in black) are always
selected when optimizing for all species, whereas some
areas are selected only occasionally. Because minimal so-
lutions for the optimization replicates (table 3) were within
a couple of area units from the smallest result found (400–
403 and 714–716 for the and problems,T p 0.3 T p 0.5j j

respectively) and lower bound estimates indicate maxi-
mum suboptimality of 9.8% and 11.2%, it appears that
there are multiple almost equal near-global optima. Such
a result is not surprising because there can easily exist
multiple spatial patterns with essentially equal biological
value, which is helpful for conservation decision making
because there are options from which to choose.

The habitat models used by van Teeffelen et al. (2005)
include interaction components that allow connectivity
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Figure 3: Optimal reserve structure for all species ( ) using different models as in table 3. A, Presence-absence data. B, Only local habitatT p 0.5j

quality used in linear nonspatial manner. C, Local habitat connectivity. D, Local habitat -distancequality � buffer quality � buffer connectivity � long
connectivity. Ratios of boundary length to area for A–D are 1.96, 1.65, 0.80, and 0.70, respectively.

loss to have positive effects on probabilities of occurrence
for a minority of cells for some species (table 3). To get
an improved understanding of the optimality properties
of the algorithm, the negative interaction terms were
dropped from the models, leaving only positive effects of
connectivity and local habitat quality (now the B2 bound
equals the B1 bound, and the lower bound estimate is more
precise). For these models, the species-specific subopti-
mality varied from 0.0024% to 13.8%, with an average of
3.85%. Maximum suboptimality for the problemT p 0.5j

with all species was only 4.7%.

Discussion

Landscape structure affects the distributions of species.
Inclusion of realistic complications, such as spatial pop-

ulation dynamics, connectivity, edge effects, or spatially
correlated threats, can make species distribution models
nonlinear. A reserve selection formulation also becomes
nonlinear if any nonlinear transformation from species
representation to value of representation is used. Nonlin-
ear spatial population models have not been widely used
in reserve selection studies probably because of substantial
computational difficulties involved. This study describes
and tests a novel reserve selection algorithm that is ap-
plicable in the context of suitably formulated nonlinear
species distribution models, including those based on de-
terministic metapopulation models (Ovaskainen 2002;
Ovaskainen and Hanski 2004) or statistical habitat models
(e.g., Guisan and Zimmermann 2000) with dispersal
kernel–based autocovariates (Augustin et al. 1996; Ferrier
et al. 2002; Cabeza 2003).
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Table 3: Optimal results and timings for individual species
using targetsT p 0.5j

Species (a) Range (suboptimal) B1 B2 t(s)

1 (.23) 276–276 (�14.5%) 247 241 (.981) 38
2 (.15) 139–139 (�0.7%) 138 111 (.976) 21
3 (.23) 205–205 (�15.8%) 218 177 (.858) 19
4 (.23) 391–391 (�2.9%) 390 380 (.842) 16
5 (.08) 529–529 (�2.3%) 518 517 (.998) 15
6 (.23) 536–538 (�5.1%) 538 510 (.940) 46
7 (.08) 118–118 (�8.3%) 112 109 (.985) 22

Note: The table gives the cost (area) of the optimal (smallest) solution

for each species. Optimal result ranges give highest and lowest value of

the objective function in 10 replicate optimization runs using parameters

and . Bound B1 is the lower bound for optimalGA p 30 GA p 300G M

solution size on the assumption that loss of connectivity does not affect

probabilities of occurrence (app. B in the online edition of the American

Naturalist); B2 is the lower bound when taking into account that loss of

connectivity may even slightly increase probabilities of occurrence for some

cells (because of negative interaction terms involving connectivity; see app.

B). The number in parentheses following B2 is the proportion of cells (for

that species) for which the condition of a nonnegative derivative of con-

nectivity is satisfied (app. B). Maximum suboptimality of the best result

with respect to the B2 bound is given in parentheses. Time is the average

required by a small population genetic algorithm (GA; ) to findGA p 50M

a result equal in size to the smallest one found.

Inclusion of connectivity in the models had variable
effects for different species. Some were strongly affected
(fig. 2), whereas for others, inclusion of connectivity
caused only a minor increase in reserve compactness. It
is worth noting that inclusion of species with strong effects
of connectivity apparently causes the reserve structure for
all species to be strongly aggregated (figs. 1, 3); some spe-
cies are relatively indifferent to fragmentation, but others
are not, and those species drive the aggregation in the
all-species solutions. Consequently, one could hypothe-
size that if fragmentation-sensitive and fragmentation-
indifferent species have at least partially overlapping dis-
tributions of suitable habitat and unless some species are
actually hurt by reserve compactness, an optimal solution
for many species would be aggregated because of the pres-
ence of the fragmentation-sensitive species in the data. In
figure 1, is only 0.99 and 0.70 for the andBL/A T p 0.3j

problems, respectively. For comparison, optimi-T p 0.5j

zations for the same area using presence-absence data or
habitat models with only effects of local habitat quality
produced “optimal” reserve selections that were much
more fragmented, with ratios close to 2 (see also vanBL/A
Teeffelen et al. 2005).

Table 4 summarizes qualitative effects of the use of dif-
ferent kinds of data and models with and without con-
nectivity components on reserve selection. Optimization
based on presence-absence data or on probabilities of oc-
currence based on local habitat quality is likely to produce
very scattered reserve structures (e.g., Cabeza et al. 2004b;

van Teeffelen et al. 2005). Basing reserve selection on any
statistical habitat model with a positive effect of connec-
tivity (or a positive effect of the habitat neighborhood,
such as the amount of forest within a radius) will nec-
essarily result in more compact optimal spatial reserve
designs because in such models, compactness mathemat-
ically translates into higher probabilities of occurrence.
(The quantitative effects of the inclusion of connectivity
will be species and landscape specific.) In general, the use
of buffer-type connectivity measures alone may induce
more compact reserve structures than the use of IFM-type
connectivity, which allows connectivity not only to the
neighboring cells but also over longer distances. Even with-
out explicit consideration of quantitative effects of con-
nectivity, aggregation may be induced into reserves with
potentially little perceived loss of biological value via the
use of a penalty for reserve boundary length (not analyzed
here, but see Possingham et al. 2000; Nalle et al. 2002;
Önal and Briers 2002a, 2002b; Fischer and Church 2003;
Cabeza et al. 2004a).

Qualitatively, the optimal reserve structure will be af-
fected by the aggregation level of good-quality habitat,
species-specific dispersal distances, and the strength of the
effects of connectivity in the species models. The shorter
the dispersal distances, the stronger the effects of connec-
tivity on occupancy, and the more aggregated the habitat
is, the more aggregated the optimal reserve structure can
be expected to be.

Concerning the optimization method, a genetic algo-
rithm (as any stochastic search method) is a heuristic al-
gorithm in the sense that the global optimum is not guar-
anteed and it is not known how good the solution is
compared with the global optimum. However, for the pres-
ent reserve selection formulation, it was possible to for-
mulate a lower bound for the optimal (minimum) solution
size, which changes the method from a heuristic to an
approximation. The solutions found in this study were
from 0.024% to 16% suboptimal (depending on the prob-
lem) as compared with an optimistically calculated lower
bound for the solution size. This combined with consistent
convergence to a particular solution over multiple sto-
chastic optimization runs shows the ability of the algo-
rithm to consistently find near-optimal solutions. The pro-
posed algorithm has good time-scaling properties,

, as a function of problem size, which indicatesO(N log N)
that the method should be suitable for solving increasingly
large problems with the continuing increase of computing
power. Even with current PC computers, the algorithm
can be used with landscapes in the order of 104–105 cells.

Alternative approaches to the present reserve selection
problem include exhaustive search using nonlinear pro-
gramming and other stochastic search algorithms such as
simulated annealing (SA). Currently, exhaustive search us-
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Table 4: Qualitative effects of different levels of inclusion of connectivity into reserve selection

Model and data Qualitative characteristics of optimal reserve selection

1. P-A data, no effects of
connectivity Small solution sizes, with potentially very scattered/perforated spatial structures. Perceived

value of solution not affected by the spatial structure of the solution (no effects of habitat
loss). Number of persisting populations always less than the number of presences in data
(presence does not indicate long-term persistence, especially when using small selection
units).

2. Probabilities of occurrence
based on local habitat quality,
no connectivity Much as with presence-absence data but with slightly more continuous solution structures

because of autocorrelation of good habitat. Probabilities are used in a linear manner;
perceived value of solution is not affected by the spatial structure of the solution.

3. P-A or probability data,
clustering via penalty for
boundary length Arbitrary level of clustering can be achieved by varying the magnitude of a penalty given for

the boundary length of a solution. Quantitative effects of clustering to the number of
populations is unknown. A good default strategy, a cost-benefit analysis may reveal a level
of clustering that may be achieved with minor cost.

4. Habitat models with
neighborhood measures or
buffer connectivity measures Quantitative effects of connectivity and habitat loss. Potentially very strong clustering because

connectivity is between adjacent cells only, which induces the selection of continuous
blocks of habitat. No species-specific effects of distance in the connectivity measure.
Computationally yet moderately light.

5. Habitat models that include
long-distance (IFM-type)
connectivity (and possibly
also buffer connectivity) Species-specific dispersal kernels, quantitative effects of connectivity and habitat loss/

deterioration. Solution not necessarily as aggregated as with buffer measures only because
connectivity can occur over longer distances, not only to neighbors. No explicit effects of
habitat matrix structure (only distance) but still computationally heavy.

6. Population viability analysis
simulation models with
explicit effects of habitat
matrix structure on dispersal Very detailed effects of connectivity but models hard to parameterize for many species.

Computationally very heavy. Has been done in the context of comparison of conservation
scenarios for a few species but not as part of large-scale multispecies optimal reserve
selection.

Note: -absence. function model.P-A p presence IFM p incidence

ing integer programming becomes practically impossible
for linear reserve selection problems when the number of
landscape elements is around 104 (Williams et al. 2004),
which suggests that prospects are not promising for using
nonlinear programming on even larger landscapes. There
is a particular reason why local search was combined with
a GA but not SA. The performance of the proposed search
method is very much dependent on the use of an efficient
local search operator in the optimization process. Local
search combines naturally with a GA, in which selection
is constantly improving the average performance of the
solutions in the search point population and where local
search can be seen as a way of helping the convergence
of the population to good solutions. In contrast, SA uses

a single search point, which is roaming around the search
space. Importantly, SA allows nonimproving changes to
the search point so as to enable the search point to escape
local optima. Adding local search to SA would have the
effect of repeatedly forcing the single search point back to
a nearby local optimum, which fights against the need to
allow the point escape local optima. Thus, combining SA
and local search is conceptually harder than combining a
GA with local search.

Although there are an increasing number of exceptions,
reserve selection algorithms have not been extensively used
in real conservation planning, probably for three reasons
(see Margules and Pressey 2000; Faith et al. 2003). Al-
gorithm formulations have not allowed for important as-
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pects of planning (already included reserves, consid-
erations of connectivity and population persistence,
considerations of cost, threat, availability, scheduling, etc.),
the algorithms have been unable to handle landscapes at
the scale and resolution commonly used in planning, and
the algorithms have not been implemented in a decision-
making framework available for conservation planners.
This work contributes to the first two reasons, allowing
reserve selection using comparatively realistic habitat mod-
els with long-distance connectivity components at scales
that are relevant for practical applications.
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