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Inbreeding depression—reduced fitness caused by mating
among relatives—is well documented for a wide range of
taxa (Charlesworth and Charlesworth 1987; Ralls et al. 1988;
Thornhill 1993; Saccheri et al. 1996; Ballou 1997; Weste-
meier et al. 1998; Antolin 1999; Madsen et al. 1999; Morjan
et al. 1999; Weeks et al. 1999; van Oosterhout et al. 2000).
The most likely mechanism of inbreeding depression is the
expression of deleterious recessive alleles in the offspring of
close relatives (Charlesworth and Charlesworth 1987; Lande
1995; Ballou 1997; Bijlsma et al. 1997; Tanaka 1998). A much
more controversial issue is the extent to which inbreeding
depression influences the dynamics of natural populations,
including the risk of population extinction. Following a
period in the 1970s when much emphasis in conservation
biology was placed on genetic causes of extinction (e.g.,
Frankel and Soulé 1981), a consensus emerged in the 1980s
that emphasized the primary role of ecological factors in
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reducing population size and causing the ultimate demise
of small populations (e.g., Lande 1988). Nevertheless, in-
tegration of ecological, genetic and environmental factors
remains critically important for a thorough understanding
of the risk of population extinction (e.g., Dunham et al.
1999).

Though the primary role of ecological factors in pop-
ulation extinction is now widely accepted, some results,
especially on plant populations, suggest that inbreeding
and genetic drift in small populations may influence dy-
namics and ultimately increase the risk of population ex-
tinction (Charlesworth and Charlesworth 1987; Newman
and Pilson 1997). Observations on reptiles and birds (Kel-
ler et al. 1994; Madsen et al. 1996, 1999; Westemeier et
al. 1998) and results from small-scale field experiments on
mammals and plants (Jiménez et al. 1994; Newman and
Pilson 1997) also indicate that inbreeding may significantly
increase extinction risk. Recent theoretical studies have
suggested that slightly deleterious alleles may accumulate
in small populations to the point that their impact on
population dynamics cannot be ignored (Hedrick 1994;
Frankham 1995; Lynch et al. 1995), though an experi-
mental test using Drosophila failed to support this genetic
“meltdown” model (Gilligan et al. 1997).

In a previous observational study on the Glanville frit-
illary butterfly (Melitaea cinxia), Saccheri et al. (1998)
found that the extinction risk of small local populations
increased with the degree of inbreeding, which they in-
ferred from the average heterozygosity of the field pop-
ulations. Laboratory results showed a reduction in several
fitness components, such as larval survival, adult longevity,
and egg-hatching rate, after just one generation of full-sib
mating (Saccheri et al. 1998). Because the Glanville frit-
illary metapopulation is structured into many very small
local populations, which often consist of just one family
group of larvae (Hanski 1999), the observation that in-
breeding increases extinction rate is not very surprising.

The purpose of this study was to experimentally test
the hypothesis that inbreeding depression increases the
risk of extinction of small populations. Melitaea cinxia
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Figure 1: Left, Map of the Åland Islands in SW Finland. Symbols indicate the origins of the laboratory stock (filled circle, Hammarland, Sålis; filled
triangle, Kumlinge). The dashed line shows the location of the map in the right panel. Right, Locations of the experimental populations: for crossbred
experimental populations, produced offspring; for inbred experimental populations, offspring, andasterisks p all filled circles p produced

offspring).open circles p no

is an appropriate species for such an experiment because
of its metapopulation structure (Hanski 1999) and be-
cause of the previous observational findings (Saccheri et
al. 1998). We established experimental populations in the
field from laboratory-reared families of M. cinxia. Half
of the populations were started with offspring of full-sib
matings; the rest, with offspring of outbred matings. We
recorded the subsequent performance of these experi-
mental populations.

Material and Methods

Life Cycle of Melitaea cinxia

Larvae use two host plants in the Åland Islands in SW
Finland, Plantago lanceolata and Veronica spicata. The hab-
itat patches suitable for Melitaea cinxia (dry meadows) can
be readily delimited based on the occurrence of the host
plants (Kuussaari 1998). Eggs are laid in large batches, and
the gregarious larvae spin a conspicuous web on the host
plant. The suitable habitat patches are generally very small
(0.14 ha on average; M. Nieminen, J. Pöyry, and I. Hanski,
unpublished data), and hence, most local populations are
also small, often consisting of just a single larval group
(Hanski et al. 1995; Hanski 1999). The larvae diapause
within densely spun webs called “winter nests,” which are
easy to find in the field in early autumn. Larvae resume
feeding in early April, and they remain gregarious until

the last instar. Based on 3 yr of data, the average size of
postdiapause larval groups has been 22–42 larvae per
group with a maximum of 183 larvae in one group (Kuus-
saari 1998). Larval survival increases with group size, and
there is no reduction in survival in the very largest groups
(Kuussaari 1998). The postdiapause larvae are relatively
mobile, especially in the final instar when a large propor-
tion of the growth takes place, and they can, therefore,
find new host individuals within a distance of several me-
ters. Females mate soon after emergence and typically only
once in their lifetime (Kuussaari 1998). Though a sub-
stantial fraction of butterflies migrate during their lifetimes
(Hanski et al. 1994; Kuussaari et al. 1996), most matings
occur among butterflies in the natal population.

Laboratory Studies

A laboratory stock of M. cinxia was established by col-
lecting mated females from two large metapopulations
(Kumlinge and Sålis) in Åland in 1995 (fig. 1; table 1). In
1995, the maximum and median local population sizes
were 20 and 2 in the Kumlinge metapopulation and 26
and 2.5 in the Sålis metapopulation. From 1993 to 1999,
none of the habitat patches in Kumlinge were continuously
occupied, whereas during this same period, two patches
in Sålis have had a local population. One of these two
patches, with six to 30 larval groups per year, is the source
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Table 1: Numbers of individuals in different treatments

Treatmenta Grandmothers Mothers

Mothers with
offspring released

to Föglö

Mothers with
offspring released

to Vårdö

Crossbred:
Kumlinge # Sålis 12b 19 7 13

Inbred:
Kumlinge 5 13 6 7
Sålis 4 13 3 10

Note: Number of grandmothers (P-generation) and number of mothers (F1-generation) gives the number of

females used in rearings to produce the experimental material.
a Individuals from Kumlinge originated from two source populations (no. 1286 and no. 1309) and those from

Sålis originated from one source population (no. 22).
b Six grandmothers from Kumlinge and six from Sålis.

population for this study. The numbers of larval groups
in the two patches from which the Kumlinge sample was
collected were three each in spring 1995. We started the
laboratory rearings with two families from Kumlinge and
six from Sålis, numbers that are within the normal range
of population sizes in these populations. The first labo-
ratory generation was reared by mating butterflies with
individuals from their original population (grandmothers
in table 1). In the next generation, female butterflies were
mated either to brothers (inbred lines; table 1) or to males
from the other population (crossbred lines; table 1).

The field sites available for experimental populations were
so limited that we could not include within-population but
between-family crosses in this experiment, which would
have been helpful for the interpretation of the results. Other
material was collected from the same two metapopulations
as used here and from two other metapopulations in Åland
in 1995. This material was used in a laboratory experiment
on inbreeding depression in M. cinxia (S. Haikola, W. For-
telius, B. O’Hara, M. Kuussaari, N. Wahlberg, I. J. Saccheri,
M. C. Singer, and I. Hanski, unpublished data). The results
of these experiments showed no difference in egg-hatching
rate between within-population, between-family crosses,
and between-population crosses (Kruskal-Wallis test:

, , ), which differed from within-H p 1.89 N p 55 P p .170
family crosses (Kruskal-Wallis test with within-population,
between-family crosses and between-population crosses
combined: , , ). Therefore, ourH p 16.4 N p 129 P p .0001
results are unlikely to be due to any added positive effect
of between-population outbreeding.

Crossbred and inbred offspring were reared following
the same procedure. Mated females laid eggs on potted
host plants (P. lanceolata), and egg batches were incubated
under standard conditions (20�–24�C, 60%–80% rH). The
egg-hatching rate of each egg batch was recorded. The
larval families were regularly moved onto fresh potted host
plants, thus providing unlimited food resources. When the
larvae reached the overwintering instar and made the win-

ter nest for diapause, they were moved outside to an un-
heated shed and were thus exposed to seminatural dia-
pause conditions during autumn and winter. At this point,
the condition of the winter nest was examined, and the
larval families were grouped according to the experimental
design (see “Field Studies”). At the end of diapause in the
following spring, all larvae were counted and weighed, and
the dead ones were removed.

Some of the postdiapause larvae could not be used for
the field experiment because equal numbers were required
for each experimental population. These larvae were reared
to adult butterflies in the laboratory to record their lon-
gevity. When butterflies hatched, they were individually
marked, and their hatching date was recorded. Marked
butterflies were placed in cages (diameter 41 cm, height
47 cm) in indoor conditions, protected from direct sun-
light, and fed with an approximately 10% honey solution.
Cages were monitored twice a day for dead butterflies.

Field Studies

The 12 habitat patches (dry meadows) used for the field
experiment are located on large islands in the eastern
Åland archipelago where no M. cinxia populations are
currently present (fig. 1, Vårdö and southern Föglö). In a
survey conducted in 1993, there was one local population
in the middle of the study area in Föglö, and in 1993–1994,
there was one population in the southwestern part of
Vårdö. There was no difference in the average patch quality
measures between these two study areas and those parts
of Åland that are currently populated by M. cinxia. There-
fore, we suggest that the current absence of M. cinxia from
these areas is caused by geographical isolation and sparse
habitat patch networks, which makes entire metapopula-
tions vulnerable to extinction (Hanski 1999), rather than
to unsuitable habitat for M. cinxia. Out of the suitable
habitat patches on the study islands, we selected the habitat
patches with the highest quality, taking into consideration
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the patch area, the amount of host plants, and an index
of overgrowth.

The experimental populations were randomly assigned
to the 12 habitat patches (four patches with crossbred and
four patches with inbred experimental populations in
Vårdö, two patches with crossbred and two patches with
inbred experimental populations in Föglö; fig. 1; table 1).
The experimental populations each consisted of three lar-
val families of originally 100 larvae each, which gave a
total of 300 larvae per experimental population before
larvae were exposed to diapause mortality. Larval families
were unrelated in crossbred experimental populations. In
the inbred experimental populations, larval families were
highly related, usually with sib-mothers all mated to their
brothers (in some groups the sib-mated mothers were first
cousins). After considerable mortality during diapause in
some of the families, the larval number in each experi-
mental population was standardized to the lowest number
then possible, which was 178 larvae. Because of mortality,
two of the original families were very small (or nonexist-
ent) after diapause and so were combined with one of the
larger larval groups in the same family. Therefore, the
average larval group sizes in the experimental populations
were 59 (three groups per experimental population; 10
populations) or 89 (two groups per experimental popu-
lation; two populations) larvae. These figures are higher
than the average postdiapause larval group sizes but much
lower than the maximum group sizes observed in the field
(see “Life Cycle of Melitaea cinxia”).

The experimental populations were introduced to the
habitat patches on April 11 and 12, 1998. Host plants onto
which the larvae were introduced were selected because
they were within dense stands and surrounded by low
vegetation, a microhabitat that egg-laying females prefer
(M. Kuussaari, unpublished data; M. Nieminen, M. C.
Singer, W. Fortelius, K. Schöps, and I. Hanksi, personal
observations). The larvae were counted in the field on
either April 27 or April 28.

Adult butterflies were captured and marked in the eight
populations on the island of Vårdö between June 7 and
June 25 (fig. 1). Each patch was visited on every sunny
day with constant searching effort per unit space (1 min/
100 m2). Because of the exceptionally cloudy and rainy
weather in June 1998, there were only 7 d on which but-
terflies could be captured.

The breeding success in the 12 experimental populations
in the first field generation was examined in the beginning
of September 1998, when the surviving larval groups had
built the conspicuous winter nest and are easiest to survey
(M. Nieminen, J. Pöyry, and I. Hanski, unpublished data).
The experimental patches and their surroundings within
a 1-km radius were searched thoroughly. The overwinter-
ing success in the field was recorded in late April 1999.

The surviving larvae were collected to restore the pre-
experimental unoccupied status of the habitats.

Statistical Analyses

We used parametric ANOVA when data were approximately
normally distributed for testing categorical data, and if this
expectation was not fulfilled, we used the Kruskal-Wallis
nonparametric test. For testing differences in two-by-two
tables, we used Fisher’s exact test. Logistic regression was
used to test for differences between proportions. We tested
the causes of mortality during diapause with generalized
linear modeling (accumulated analysis of deviance; see
McCullagh and Nelder 1983), which is analogous to log-
linear models. We only analyzed the full model. A gen-
eralized linear model was performed with GENSTAT 5
(version 3.2; GENSTAT 5 Committee 1987); two-factor
ANOVAs, with SYSTAT 7 (Wilkerson 1993); and all other
statistical tests, with Statistix 4.1 (Analytical Software, Tal-
lahassee, Fla.).

Results

Laboratory Studies

The egg-hatching rate was significantly lower in egg
batches laid by inbred females ( ) than itmedian p 70.7%
was in those laid by crossbred females (median p

; table 2), and it did not differ significantly between89.8%
inbred lines from the two source populations (table 2).
The integrity of the winter nest is important for the over-
wintering survival of Melitaea cinxia larvae, which
promptly attempt to repair a broken nest (Kuussaari 1998).
In our experiment, winter nests were perforated signifi-
cantly more often in inbred larval groups than in crossbred
larval groups, evidence of poor winter-nest construction
in the inbred groups (table 2). In a more conservative
analysis, in which larval groups were pooled within fam-
ilies, there was still a difference between inbred and cross-
bred larval groups (table 2). This result indicates reduced
larval activity and capacity to construct a high-quality win-
ter nest in inbred larval groups.

Larval survival through diapause did not differ signif-
icantly between inbred lines from the two source popu-
lations (table 2). The average percentage of dead larvae
after diapause was higher in inbred than in crossbred fam-
ilies: 13% of larvae in the inbred groups (range: 0%–100%;

) and 0.5% in the crossbred groups (range:SD p 25.1
0%–2.2%; ) died during the winter. The dif-SD p 0.812
ference is highly significant (table 3). Independent of the
association with inbreeding, the numbers of dead larvae
following diapause significantly increased with perforation
of winter nests (table 3). The variances of inbred and
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Table 2: Results of statistical tests

Variable Test

Inbred sample size
Crossbred

sample

size df

Test

statistic PKumlinge Sålis Total

Laboratory studies:

Egg-hatching rate between inbred originsa Kruskal-Wallis 13 13 26 … … 2.45 .118

Egg-hatching rate between inbred and crossbred Kruskal-Wallis 13 13 26 19 … 16.7 !.001

Nests with hole(s) vs. nests without holes Fisher’s exact test 11 12 23 21 … … .006

Families with perforated nest(s) vs. families with

intact nests(s) only Fisher’s exact test 9 9 18 18 … … .008

Mortality of larvae in diapause between inbred

originsa,b Logistic regression 9 9 18 … 16 .95 .342

Average dry weight of dead larvae in inbred vs.

crossbred familiesb ANOVA 5 9 14 5 1, 17 15.9 .001

Average dry weight of dead larvae between inbred

originsa,b Kruskal-Wallis 5 9 14 … … .02 .894

Average weight of surviving larvae in inbred vs.

crossbred familiesb ANOVA 9 9 18 18 1, 34 1.70 .202

Average weight of surviving larvae between inbred

originsa,b ANOVA 8 9 17 … 1, 16 .71 .412

Longevity of inbred vs. crossbred butterfliesc ANOVA … … 52 21 1, 70 2.19 .143

Longevity of female vs. male butterfliesc ANOVA … … 28/24 15/6 1, 70 15.7 !.001

Field study:

Breeding success: inbred vs. crossbred experimental

populations Kruskal-Wallis 3 3 6 6 … 6.47 .011

Note: Parametric ANOVA was used with normally distributed data and Kruskal-Wallis nonparametric test with data with skewed distribution. Logistic

regression was used for testing proportions.
a Tests between inbred origins were performed to test for the possible difference between inbred lines originating from different source populations.
b Sample size gives the number of larval groups.
c The source populations of inbred butterflies were pooled in rearing.

crossbred treatments in table 3 differ significantly from
each other (ratio of variances is 32.8; , F-testP K .0001
with 31, 31 df), as the crossbred treatment survived so
well. In our test, we used the average dispersion parameter,
but the result is not dependent on this. If we had used
the dispersion parameter estimated for crossbred treat-
ment separately (0.644), all factors in table 3 would have
been significant; and if we had used the dispersion pa-
rameter estimated for the inbred treatment separately
(21.1), the three factors that are now significant still would
have been significant. Furthermore, when we compare the
deviances of the different factors, it is evident that factors
“died” (which is not interesting in this context),
“ ,” and “ ” have by far the larg-died # holes died # inbred
est deviances; that is, they are by far the most significant
factors.

The average dry weight of larvae that died during the
diapause was significantly lower in inbred than in cross-
bred families (inbred: 1.0–2.1 mg, mean 1.7 mg, SD p

; crossbred: 2.1–2.6 mg, mean 2.4 mg, ; ta-0.31 SD p 0.21
ble 2). In contrast, the average weight of surviving larvae
did not differ between the two groups (inbred: 3.2–5.9 mg,
mean 4.3 mg, ; crossbred: 2.6–5.5 mg, meanSD p 0.72

4.0 mg, ; table 2). The significant difference inSD p 0.66
the weights of dead larvae between the treatments suggests
different causes of death in the two groups. Neither the
dry weight of dead larvae nor the weight of surviving larvae
differed between inbred lines from the two source pop-
ulations (table 2).

The overall longevity of butterflies reared from the post-
diapause larvae not used in the field experiment did not
differ between inbred and crossbred butterflies, but fe-
males lived significantly longer than males (table 2). The
interaction between treatment and sex was not significant.

Field Studies

The numbers of larval groups and the number of larvae
per experimental population, which were counted 16 d
after the release, did not differ between inbred and cross-
bred populations. Inbred and crossbred experimental pop-
ulations did not differ significantly in the numbers of
marked butterflies, the numbers of recaptured butterflies,
nor in the longevity of butterflies. However, the sample
size remained so small (95 marked and 21 recaptured but-
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Table 3: Statistical tests for the causes of mortality during diapause (generalized
linear model: accumulated analysis of deviance)

Source df Deviance
Mean

deviance
Deviance

ratio P

Died 1 2912.291 2912.291 293.40 !.001
Holes 1 12.828 12.828 1.29 .260
Inbred 1 4.901 4.901 .49 .485
Died # holes 1 200.653 200.653 20.22 !.001
Died # inbred 1 85.720 85.720 8.64 .005
Holes # inbred 1 10.580 10.580 1.07 .306
Died # holes # inbred 1 15.587 15.587 1.57 .215
Residual 64 635.255 9.926 … …

Total 71 3877.815 54.617 … …

Note: Variables: versus survived larvae, versus solid“died” p died “holes” p perforated

winter nests, and versus crossbred treatments.“inbred” p inbred

terflies), because of the exceptionally poor weather in June
1998, that the tests have very limited statistical power.

All six crossbred populations but only two inbred pop-
ulations produced offspring that survived until late sum-
mer 1998 (fig. 1). The numbers of larval groups per pop-
ulation were significantly higher in crossbred populations
(numbers of larval groups: 1, 1, 1, 2, 2, and 5) than in
inbred populations (numbers of larval groups: 0, 0, 0, 0,
1, and 1; table 2). After diapause, larvae were found in
four crossbred populations, but both larval groups in the
inbred populations that had existed in the previous au-
tumn had disappeared.

Discussion

The results show a significant difference in the perform-
ance of experimental inbred and crossbred populations,
which supports the previous observational results on
inbreeding-related extinctions in Melitaea cinxia (Saccheri
et al. 1998) and highlights the potential importance of
inbreeding depression in the dynamics of small and iso-
lated local populations. Because many formerly continu-
ous habitats are becoming increasingly fragmented (e.g.,
McNeely et al. 1995), thus forcing many species and pop-
ulations to live in small and isolated habitat patches, in-
breeding depression poses a potential threat to many taxa.
Inbreeding depression may have particularly strong neg-
ative effects in populations with minimal inbreeding in
the past, thus making populations currently experiencing
fast habitat fragmentation especially vulnerable. Such
strong effects of inbreeding depression occur frequently in
artificial selection (Barrett and Charlesworth 1991). More
research is needed to determine the frequency of substan-
tial inbreeding depression in populations living in frag-
mented landscapes, but in the mean time, those involved

in conservation and habitat management should consider
inbreeding depression to be a potentially serious threat.

Inbreeding depression may be a particularly potent
threat in insect species, such M. cinxia, with gregarious
larvae: because larvae in the same group are generally the
offspring of one female, the effective population sizes tend
to be extremely small, which may practically force breeding
among close relatives in small populations. It was also
evident that inbreeding depression strongly affected the
integrity of winter nests, which are built cooperatively by
the larvae, and that this reduction in winter-nest quality
seriously affected the overwintering success of larvae (table
3). We are not aware of previous findings of this type,
which suggests that inbreeding may have an especially
strong impact in species with social cooperation.

Environmental stress often interacts with inbreeding de-
pression, and when these factors act together, they may
amplify the extinction rates of local populations (Gilpin and
Soulé 1986; Keller et al. 1994; Bijlsma et al. 1997). In our
study, there was a great difference between the inbred and
crossbred treatments in larval survival during winter dia-
pause, which may be one of the most stressful periods in
the life cycle of M. cinxia. Furthermore, the very poor breed-
ing success in the field of the inbred populations probably
was caused by a low-egg-hatching rate, which is reduced by
25%–50% by just one generation of inbreeding in M. cinxia
(Saccheri et al. 1998; S. Haikola, W. Fortelius, B. O’Hara,
M. Kuussaari, N. Wahlberg, I. J. Saccheri, M. C. Singer, and
I. Hanksi, unpublished manuscript). A large decrease in egg-
hatching rate as a result of inbreeding has been previously
detected in the butterfly Bicyclus anynana (Saccheri et al.
1996), which shows that inbreeding has similar effects in
various butterflies. The weather was exceptionally rainy dur-
ing the flight season of M. cinxia in 1998, which may have
restricted mating and oviposition and perhaps adversely af-
fected the already small larval groups in the inbred exper-
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imental populations. The rainy weather may have decreased
the breeding success of the experimental crossbred popu-
lations, too, even though it was significantly higher than the
breeding success of the inbred populations. Furthermore,
it is possible that laboratory-reared individuals do relatively
poorly in nature on average, especially when the environ-
mental conditions are unfavorable.

Saccheri et al. (1998) found that the larval weight in
the spring was positively correlated with individual hetero-
zygosity in M. cinxia. In this study, we found a difference
in the weights of larvae that died during winter diapause:
dead inbred larvae were lighter than dead crossbred larvae,
although there was no difference among the living larvae.
This result suggests that the growth rate of many inbred
larvae was severely reduced, and thus the strongest effect
of inbreeding on larval survival seems to occur during the
winter diapause. The difference in the results of the two
studies may have resulted from differences in the treat-
ments of the larvae: we reared larvae in seminatural out-
door conditions during the winter, whereas Saccheri et al.
(1998) kept diapausing larvae in constant laboratory con-
ditions, which may have facilitated the survival of inbred
larvae over diapause.

The increased extinction risk of inbred populations ob-
served in this study has several implications for metapop-
ulation dynamics. If all or most local populations in a
metapopulation are small, the entire metapopulation
might suffer from an increased extinction risk caused by
inbreeding effects. Increased population extinctions caused
by inbreeding would reduce the total number of migrants,
the potential colonizers, within a metapopulation, which,
in turn, would decrease the colonization probability of
unoccupied habitat patches. Moreover, inbreeding may af-
fect the colonization rate by making successful population
establishment less likely: many new small populations re-
main short lived, unless they are rescued demographically
and genetically by immigrants from other, genetically more
diverse local populations. In urgent conservation situa-
tions, such genetic rescue could be achieved by judicious
translocation of individuals in order to increase genetic
variability and to reduce the adverse effects of inbreeding
(Madsen et al. 1999). All metapopulation dynamical con-
sequences of inbreeding increasing extinction risk would
be especially critical in metapopulations close to the min-
imum viable metapopulation size (Hanski et al. 1996),
where any even slightly negative factor could turn the
population trajectory toward metapopulation extinction.

In summary, the most severe effects of inbreeding de-
pression in small M. cinxia populations are manifested
during the winter diapause and at reproduction, when low-
egg-hatching rate in inbred populations result in small
larval groups, which are known to have reduced survival
(Kuussaari 1998). Consequently, inbreeding creates a neg-

ative cascade effect that is amplified by environmental
stress: low-egg-hatching rate in inbred females leads to
small larval groups, which leads to low survival of larvae,
especially under unfavorable conditions. Therefore, ge-
netic, demographic, and environmental causes of local ex-
tinction cannot be easily separated in M. cinxia nor, most
likely, can they be in many other species with small local
populations.
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Charlesworth, D., and B. Charlesworth. 1987. Inbreeding
depression and its evolutionary consequences. Annual
Review of Ecology and Systematics 18:237–268.

Dunham, J., M. Peacock, C. R. Tracy, J. Nielsen, and G.
Vinyard. 1999. Assessing extinction risk: integrating ge-
netic information. Conservation Ecology [online] 3:2.
http://www.consecol.org/vol3/iss1/art2.

Frankel, O. H., and M. E. Soulé. 1981. Conservation and
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