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abstract: Spatially structured populations in patchy habitats show
much variation in migration rate, from patchy populations in which
individuals move repeatedly among habitat patches to classic meta-
populations with infrequent migration among discrete populations.
To establish a common framework for population dynamics in patchy
habitats, we describe an individual-based model (IBM) involving a
diffusion approximation of correlated random walk of individual
movements. As an example, we apply the model to the Glanville
fritillary butterfly (Melitaea cinxia) inhabiting a highly fragmented
landscape. We derive stochastic patch occupancy model (SPOM)
approximations for the IBMs assuming pure demographic stochas-
ticity, uncorrelated environmental stochasticity, or completely cor-
related environmental stochasticity in local dynamics. Using realistic
parameter values for the Glanville fritillary, we show that the SPOMs
mimic the behavior of the IBMs well. The SPOMs derived from
IBMs have parameters that relate directly to the life history and
behavior of individuals, which is an advantage for model interpre-
tation and parameter estimation. The modeling approach that we
describe here provides a unified framework for patchy populations
with much movements among habitat patches and classic metapop-
ulations with infrequent movements.
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Populations and metapopulations inhabiting fragmented
landscapes show much variation in migration rate among
habitat patches. In one extreme, termed the patchy pop-
ulation model (Harrison 1991), individuals move fre-
quently among habitat patches and may reproduce in sev-
eral patches during their lifetime. In the other extreme,
most individuals remain all their life in the natal popu-
lation, and movements among populations are infrequent,
though migration rate is high enough to allow eventual
recolonization of habitat patches where a local population
has gone extinct (the classic metapopulation model; Levins
1969). Clearly, it would be helpful to have a theoretical
framework that allows the full range of migration rate to
be modeled. One such modeling framework is called struc-
tured metapopulation models, which are structured by the
distribution of local population sizes (Hastings and Wolin
1989; Gyllenberg and Hanski 1992; Lande et al. 1998, 1999;
Casagrandi and Gatto 1999; Saether et al. 1999) or by a
simple classification of population sizes (Hanski 1985;
Hastings 1991; Hanski and Zhang 1993). Local dynamics
and migration are modeled mechanistically, and there are
no restrictions on the rate of migration; the consequences
of emigration and immigration on local dynamics are fully
accounted for. However, these models make the simpli-
fying island model assumptions of global migration among
infinitely many identical habitat patches (the assumption
of identical patches was relaxed by Gyllenberg and Hanski
[1997]). These assumptions greatly facilitate the mathe-
matical analysis.

An important consideration in developing theory for
populations and metapopulations is the possibility of gen-
erating testable quantitative predictions. The traditional
island model in population ecology (Levins 1969) and
population genetics (Wright 1931) was a step forward in
introducing spatial population structure, but the island
model provides a limited framework within which to study
many important phenomena, such as the ecology and evo-
lutionary biology of source-sink dynamics (Kawecki 2004),
the effective population size (Whitlock 2004), and the evo-
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lution of migration rate (Heino and Hanski 2001). The
situation is worse when the focus is on quantitative ques-
tions, such as the viability of metapopulations in frag-
mented landscapes. In this case, it is clear that the as-
sumption of identical habitat patches has to be relaxed
and the influence of the spatial configuration of the habitat
on population processes has to be accounted for. The mod-
els that do so are typically based on individuals (e.g., Gaona
et al. 1998; Pettifor et al. 2000; Jager et al. 2001; King and
With 2002) and quickly become so complex that they can
be analyzed only through simulations (Schiegg et al. 2002).
Although it is possible to incorporate biological realism
into individual-based simulation models, the generality
of the results is questionable; individual-based models
(IBMs) are hard to develop, hard to communicate, and
hard to analyze (Grimm et al. 1999; Lorek and Sonnen-
schein 1999).

Another modeling approach, termed the spatially re-
alistic metapopulation theory (SMT; Hanski 1999, 2001;
Hanski and Ovaskainen 2003), aims at merging a realistic
landscape description with mathematically tractable pop-
ulation models. This combination is expected to facilitate
the development of models that can be rigorously pa-
rameterized and hence used to generate quantitative pre-
dictions. The models developed so far in the context of
SMT ignore local population dynamics and involve a phe-
nomenological description of migration. The habitat
patches are simply classified as occupied or empty, hence
the name stochastic patch occupancy models (SPOMs) by
Moilanen (1999). The SMT has turned out to provide an
effective framework both for parameter estimation (Moil-
anen et al. 1998; Hanski 1999; Moilanen 1999, 2000, 2002;
O’Hara et al. 2002; ter Braak and Etienne 2003) and math-
ematical analysis (Day and Possingham 1995; Hanski and
Ovaskainen 2000; Ovaskainen and Hanski 2001, 2002,
2003; Frank and Wissel 2002; Ovaskainen 2002), and it
has become a standard tool in quantitative metapopulation
studies (Sjögren-Gulve and Hanski 2000; Hanski 2001).

What has been largely lacking is a link relating IBMs to
SPOMs, though such integration has been called for by
ecologists for a long time (Ims 1995). A pioneering work
here is by Adler and Nuernberger (1994), who constructed
an individual-based simulation model for a network of
identical habitat patches. They assumed that migrants leave
their natal patch in a random direction and move away
along a straight path and that successful migration dis-
tances are exponentially distributed. Although Adler and
Nuernberger (1994) did not explicitly construct a SPOM
that would correspond to their IBM, they derived a se-
quence of analytical approximations for assessing the vi-
ability of the metapopulation in terms of the original
model parameters. These approximations ignored spatial
and temporal autocorrelations in patch occupancy (zero

correlation assumption). Another analysis of metapopu-
lation dynamics explicitly based on individual behavior is
from Keeling (2002), who assumed an assemblage of iden-
tical and equally connected local populations with logistic
dynamics. He calculated the extinction and recolonization
rates from the IBM and compared them with the rates
based on the simplest possible SPOM, the Levins model
(Levins 1969). Keeling (2002) found that the single-species
metapopulation dynamics predicted by the IBM agreed
with the dynamics predicted by the Levins model, but there
were deviations in multispecies models, which Keeling
(2002) attributed to the zero correlation assumption.

The aim of this article is to continue to develop links
between IBMs and SPOMs in a spatially realistic setting
in which the actual spatial configuration of a highly frag-
mented landscape is taken into account. A novel part in
the IBM is that we use a mechanistic description of the
movement behavior of individuals that obey the rules of
correlated random walk both within the habitat patches
and while dispersing through the matrix and that show
edge-mediated behavior at the habitat patch boundaries.
With these ingredients, the movement model generates
emigration and immigration events in a mechanistic man-
ner and avoids the need for particular assumptions about
how the areas and connectivities of the habitat patches
influence migration (as in, e.g., Hanski et al. 2000). Using
analytical formulas derived by Ovaskainen and Cornell
(2003), we can calculate without any simulations the prob-
abilities of migration and the times that individuals spend
in the habitat patches. Because some specific assumptions
have to be made about the life history and demography
of the species for quantitative predictions, we apply the
model to a well-studied species of butterfly, the Glanville
fritillary, that lives in a highly fragmented landscape in the
Åland Islands in southwest Finland (Hanski 1999). We
consider three different models, assuming constant envi-
ronment (pure demographic stochasticity), uncorrelated
environmental stochasticity, and (completely) spatially
correlated environmental stochasticity (an extreme version
of regional stochasticity). Having constructed the IBMs,
we derive the corresponding SPOMs on the basis of the
assumption that once a habitat patch is occupied, the size
of the local population can be replaced by a constant size.
Using parameter values that are realistic for the Glanville
fritillary, we demonstrate that the SPOMs thus derived
mimic the behavior of the IBMs well.

The Individual-Based Model

We construct an IBM of local population dynamics and
individual movement behavior. We make assumptions that
are motivated by the biology of the Glanville fritillary but-
terfly (Melitaea cinxia), but these assumptions would be



From Individuals to Metapopulations 000

Figure 1: Habitat patch network inhabited by the Glanville fritillary
butterfly (Melitaea cinxia) in the Åland Islands in southwest Finland and
used as an example in this article. The areas of the circles are proportional
to the sizes of the habitat patches (though not drawn to scale). The
network consists of 51 patches, the sizes of which vary from 0.0025 to
2.7 ha. Patches 1, 2, and 3 are further analyzed in figure 4. The spatial
unit is kilometers.

applicable to a wide range of other insects as well. It would
also be straightforward to modify specific assumptions to
make the model applicable to species with other life his-
tories. We start with a short description of the life cycle
of the Glanville fritillary in the Åland Islands in southwest
Finland (Hanski 1999; Nieminen et al. 2004).

The adult flight season lasts from early June until early
July. Males tend to emerge earlier than females, as is usual
in butterflies (protandry; Wiklund 1984), and females
mate soon after hatching. Females typically mate only
once, after which they lay several batches of 50–200 eggs
at intervals of one or more days, usually starting 2–3 days
after mating. Eggs are laid on two host plants, Plantago
lanceolata and Veronica spicata, which grow on dry mead-
ows ranging from dry rocky outcrops to grazed meadows
on deeper soils. Eggs hatch in 10–14 days, and the newly
hatched larvae spin a web around the host plant. During
the summer, a larval group typically defoliates the host
plant and moves as a group to another host plant indi-
vidual. In the autumn, the larvae spin a dense “winter
nest” in which they diapause as a group. Diapause is ter-
minated soon after snow melts in April, and the larvae are
ready to pupate in early May (Hanski 1999). Most mead-
ows are located within a few hundred meters from the
nearest other meadow, and a substantial fraction of adult
butterflies moves once or several times among meadows
(Hanski et al. 1994). Emigration rate decreases and im-
migration rate increases with the size of the meadow (Han-
ski et al. 2000).

While constructing the IBM, we split the life cycle into
two parts: local population dynamics and migration. We
ignore sex and thus consider only females. The suitable
habitat, which consists of dry meadows containing either
of the two host plants, occurs as a network of n habitat
patches. In the Åland Islands, there are altogether about
4,000 meadows, which are clustered into semi-indepen-
dent patch networks (Hanski et al. 1996). Figure 1 shows
one of these networks that we use as an example through-
out this article.

Local Population Dynamics

We let denote the number of egg groups that area (t)i

oviposited in patch i in year t, the number ofâ (t � 1)i

larval groups that survive over winter in patch i, and
the number of female butterflies that hatch tob (t � 1)i

patch i in year . We assume that each group has thet � 1
probability to survive over winter (mortality at thee (t)i

group level is especially great for newly hatched larvae).
Second, we assume that in the absence of density depen-
dence, the number of females that would hatch from each
surviving group follows the Poisson distribution with a
fixed mean . We assume that density dependence acts0nh

through scramble competition for food during the late
larval instars such that the number of females that hatch
has the mean . With0 0ˆn p n exp [�a (t � 1)n /(exp (1)K )]h h i h i

this assumption, the maximum mean number of individ-
uals that may hatch in patch i is , which is the case ifKi

the number of surviving groups is .0exp (1)K /ni h

In reality, there is environmental stochasticity both at
the level of groups and at the level of individuals, but for
simplicity, we include environmental stochasticity only at
the group level, where we expect it to be most important
(Hanski 1999). The survival probability of groups, , ise (t)i

assumed to depend on the environmental conditions in
patch i during the period from the end of the flight season
in year t until the spring in year according to onet � 1
of the following models.

Model A (constant environment). The environmental
conditions are fixed to a constant value, fore (t) e (t) p ei i m

all .i, t
Model B (uncorrelated environmental stochasticity). The

environmental conditions are independent randome (t)i

variables that follow the gamma distribution with mean



000 The American Naturalist

and standard deviation . We denote by the coefficiente e em j z

of variation, . As the range of the gamma dis-e p e /ez j m

tribution is in , may become larger than 1, in[0, �] e (t)i

which case we set . The reason for using thee (t) p 1i

gamma distribution instead of, for example, the beta dis-
tribution, which would have its range in , is that the[0, 1]
former turns out to have an advantage for the analysis.
The exact shape of the distribution does not have a large
effect on the behavior of the IBM.

Model C (correlated environmental stochasticity). The en-
vironmental conditions are fixed for each year,e (t)i

. The yearly values are independent randome (t) p e(t) e(t)i

variables that follow the truncated gamma distribution
with mean and standard deviation .e em j

Migration

We assume that once a female butterfly has eclosed in a
particular patch, it mates with probability 1, after which
it starts the migration phase. We assume that migrating
females move according to the rules of correlated random
walk both within habitat patches as well as in the sur-
rounding matrix, though possibly with different parameter
values in the habitat and the matrix. Correlated random
walk models have been frequently used in butterfly studies
(Odendaal et al. 1989; Turchin 1991; Schultz and Crone
2001; Fownes and Roland 2002). In addition to the cor-
related random walk, we assume that individuals show
edge-mediated behavior and bias their movements toward
the habitat patch when close to patch boundary. Butterflies
have been observed to respond to edges by avoiding
crossing them, by turning back once they have crossed an
edge, or by recognizing a patch from some distance (Con-
radt et al. 2000; Ries and Debinski 2001; Schultz and Crone
2001).

We assume that the oviposition rate within habitat
patches is constant and hence that the mean number of
egg groups oviposited in a patch is directly proportional
to the amount of time that females spend in the patch.
Letting be the total time spent by all female butterfliesq (t)i

in patch i, we thus assume that follows the Poissona (t)i

distribution with mean , where is the mean num-∗ ∗q (t)/t ti

ber of butterfly days needed to oviposit one egg group.
Although correlated random walk may easily be incor-

porated into a simulation model (Byers 2001), we aim at
mathematical tractability by using the diffusion approxi-
mation, which aggregates the distributions of move lengths
and durations, and the distribution of turning angles into
habitat-specific diffusion coefficients and mortality ratesDi

(Patlak 1953; Turchin 1998). The strength of edge-mi

mediated behavior is quantified by habitat-specific mul-
tipliers , with the ratio measuring the individual’sk k /ki i j

preference to move to habitat type i instead of to habitat

type j (Ovaskainen and Cornell 2003; Ovaskainen 2004).
Assuming a landscape consisting of circular patches, Ovas-
kainen and Cornell (2003) employed the diffusion ap-
proximation to derive analytical formulas for migration
probabilities among habitat patches and for the times that
an individual is expected to spend in any one patch. The
formulas take into account not only the interpatch dis-
tances but also the actual spatial configuration of the patch
network. For example, adding a new patch between two
existing patches reduces the probability of migration be-
tween the two previous patches because the new patch
“competes” for the migrants. Because the formulas have
been previously published only in the mathematical lit-
erature, we reproduce them here in the appendix in the
online edition of the American Naturalist.

To calculate the total time that females spend inq (t)i

patch i, we proceed as follows. First, we use the probability
(appendix) to determine whether an individual initiallyRij

in patch i will visit patch j before it dies. Note that by
definition, , and thus all females visit their natalR p 1ii

patch. We let denote the number of females origi-m (t)i

nating from the other patches that visit patch i in year t,
while is the total number of femalesn (t) p b (t) � m (t)i i i

that visit patch i in year t. If an individual visits patch i,
we assume that the time it spends in that patch is expo-
nentially distributed with mean , which is the time thatTi

an individual presently in patch i is expected to spend in
patch i during its lifetime (appendix). The exponential
distribution is not exact, but it should be a good approx-
imation because the individual has a constant death rate
and a constant emigration rate following a short transient
after immigration. Because the sum of exponential distri-
butions follows the gamma distribution, the total time

that females spend in patch i is distributed accordingq (t)i

to the gamma distribution with parameters and .n (t) Ti i

The SPOM Approximation

A SPOM describes the dynamics of a metapopulation in
which the state of each patch in each year is classified
simply as occupied or empty. Because a patch may be
occupied in one stage of the life cycle and empty in an-
other, it is important to specify to which stage of the life
cycle one refers. We will classify patch i in year t as oc-
cupied if , that is, if any females emerge in theb (t) 1 0i

patch in year t, which indicates that the patch has been
successfully used for reproduction. We denote by

the state of patch i in year t and byO (t) � {0, 1}i

the vector describing the state of the entireNo(t) p {O (t)}i ip1

metapopulation. By the above reasoning, we let O (t) pi

if and if .1 b (t) 1 0 O (t) p 0 b (t) p 0i i i

The major simplification of the SPOM approximation
is that it ignores variation in local population sizes. We
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do this by assuming that , where c is a scalingb (t) p cr O (t)i i i

constant and is a suitable surrogate, such as the carryingri

capacity , for the number of females that eclose in patchKi

i conditioned on the patch being occupied. Note that cri

is not necessarily the average population size in patch i,
but it is such a constant population size that makes the
SPOM behave in the same manner as the IBM.

Our aim is to derive the transition probabilities that are
needed to move from the state to the state .o(t) o(t � 1)
We will derive the transition probabilities by working back-
ward in time, and we thus start by considering whether
any females will eclose in the patch in year . Ignoringt � 1
the unlikely possibility of extinction due to a very high
larval density (which may happen occasionally as a result
of scramble competition), the risk of local extinction is
greatest when the number of egg groups is smallest, in
which case density dependence in larval mortality may be
ignored. As the number of females produced by a larval
group that has survived the winter is distributed according
to the Poisson distribution, the probability that at least
one female ecloses from a given surviving group is p p

. Thus, the probability that no females eclose01 � exp (�n )h

from the groups that survived over winter isâ (t � 1)i

â (t�1)iP[O (t � 1) p 0] p (1 � p) . (1)i

Because is distributed as , we obtainâ (t � 1) Bin(a (t), e (t))i i i

the probability that no individuals will eclose next year by
summing over the binomial distribution, which gives

a (t)iP[O (t � 1) p 0] p (1 � e (t)p) . (2)i i

The number of egg groups oviposited in patch ia (t)i

follows the Poisson distribution with parameter .∗q (t)/ti

Summing equation (2) over this distribution gives

�e (t)pq (t)i iP[O (t � 1) p 0] p exp . (3)i ∗( )t

Because the time follows the gamma distributionq (t)i

with parameters and , we may integrate equationn (t) Ti i

(3) over the distribution for , which givesq (t)i

�n (t)iP[O (t � 1) p 0] p (1 � z (t)) , (4)i i

where . Note that is the mean num-∗ ∗z (t) p e (t)pT /t T /ti i i i

ber of egg groups produced in patch i by a female originally
located in patch i and that is the probability that ate (t)pi

least one female ecloses from a group. Thus, is thez (t)i

mean number of egg groups that will produce at least one
female in year , laid in patch i by a female that wast � 1
born in patch i in year t.

The number of females that originate from patches

other than patch i and visit patch i at least once during
their lifetime, , has the mean ¯m (t) m (t) p S b (t)R pi i j(i j ji

. Because is the sum of a large number ofcS r R O m (t)j(i j ji j i

independent Bernoulli random variables, each of which
has a small probability to be 1, the distribution for m (t)i

may be approximated by the Poisson distribution with
mean (Grimmett and Stirzaker 2001). The total num-m̄ (t)i

ber of individuals visiting patch i is ,n (t) p b (t) � m (t)i i i

and hence summing equation (4) over the Poisson dis-
tribution gives

¯�m z (t)i i �b (t)iP[O (t � 1) p 0] p exp (1 � z (t))i i( )1 � z (t)i

¯≈ exp (�n z (t)), (5)i i

where and the approximation is based on¯ ¯n p m � b (t)i i i

the assumption that . Combining the above, wez (t) K 1i

obtain

ce (t)piP[O (t � 1) p 0] p exp � (Mo) , (6)i i∗( )t

where M is the matrix with elements M p T R r pij i ji j

. We are now ready to consider the three specificT rji j

models.
Model A. If the environmental conditions are con-e (t)i

stant, we may replace in equation (6) with the meane (t)i

value to obtainem

(Mo(t))iP[O (t � 1) p 0] p exp � , (7)i ( )d

where .∗d p t /(ce p)m

Model B. If the environmental conditions vary inde-
pendently between the years and the patches, we may in-
tegrate equation (6) over the assumed gamma distribution
(assuming that the tail for which has a negligiblee (t) 1 1i

effect) to obtain

2�1/ez

2e (Mo(t))z iP[O (t � 1) p 0] p 1 � . (8)i ( )d

Note that as , equation (8) converges to equatione r 0z

(7) as expected.
Model C. Even if the environmental conditions are cor-

related, equation (8) still holds. However, equation (8)
ignores the correlation structure, and a better description
of the dynamics is obtained by simply replacing withe (t)i

in equation (6). This givese(t)
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Figure 2: Qualitative behavior of the SPOMs given by equations (10)
and (11). The figure shows the equilibrium fraction of occupied patches

as a function of the metapopulation capacity . The case∗p l e p 0M z

corresponds to model A and the cases and to model B.e p 1 e p 2z z

Parameter .d p 1

e(t)(Mo(t))iP[O (t � 1) p 0] p exp � , (9)i ( )e dm

which is a SPOM with a temporally varying parameter.

Qualitative Behavior of the SPOMs

Before comparing the dynamics predicted by the SPOMs
and the IBMs, we briefly examine the qualitative behavior
of the SPOMs that we have just derived. We will ignore
here the effects of stochasticity and consider only the de-
terministic drift in patch occupancy dynamics (Ovaskai-
nen 2002). In the deterministic approximation, model C
behaves as model B, and it hence suffices to consider mod-
els A and B only.

Elementary stability analysis shows that both models A
and B possess a nontrivial equilibrium state if and∗p 1 0
only if the trivial equilibrium state is unstable. Therefore,
in the terminology of Ovaskainen and Hanski (2001), all
the three models are Levins-type models. The threshold
condition for persistence, in the sense of existence of a
nontrivial equilibrium state, may be written as ,l 1 dM

where is the leading eigenvalue of matrix M, termedlM

the metapopulation capacity of the patch network (Hanski
and Ovaskainen 2000).

Although the threshold value d in models B and C does
not depend on the coefficient of variation , the equilib-ez

rium occupancy state depends strongly on . This is il-ez

lustrated by figure 2, in which we consider the determin-
istic variants of the models defined by equations (7) and
(8) in the case of homogeneous patch networks with iden-
tical and equally connected patches. In other words, we
consider the solutions to the equations

l pMp p 1 � exp � , (10)( )d

2�1/ez
2e l pz Mp p 1 � 1 � . (11)( )d

As expected, the equilibrium occupancy state decreases
with . It is interesting that the case correspondse e p 1z z

to the Levins model (Levins 1969) because in this case the
equilibrium state satisfies the equation .p p (1 � d)/lM

Results

Our aim is to compare the IBM and the SPOMs using
parameter values that are realistic for the Glanville fritillary
butterfly. We first describe the behavior of the IBM and

then test to what extent this is matched by the dynamics
predicted by the SPOM approximations.

The Behavior of the IBM

Let us first consider the migration phase. We use the pa-
rameter values estimated by Ovaskainen (2004) for Mel-
itaea diamina, a close relative of the Glanville fritillary.
Ovaskainen (2004) used mark-release-recapture data to
estimate the diffusion coefficients, mortality rates, and the
boundary multipliers for a landscape consisting of discrete
habitat patches (h) and matrix (m). There were no sta-
tistically significant differences in the parameter values be-
tween different habitat types; hence, we use the maximum
likelihood estimates ( /day) and2D p 94,000 m m p 0.1
(1/day) for both the habitat patches and the matrix. Be-
cause only the relative values of the boundary multipliers
matter, we set , and hence the strength of the biask p 1h

is measured by the value of , which was estimatedk p k m

as (Ovaskainen 2004).k p 1/115
Patterns of migration predicted by these parameter val-

ues in the patch network in figure 1 are shown in figure
3. Individuals spend roughly half of their expected lifetime
of 10 days in the habitat patches. The time spent in patches
increases with the area of the natal patch (fig. 3A). The
likelihood that an individual will ever make a successful
migration event varies between 0.14 and 0.97 and is
greatest for the smallest patches (fig. 3B). This is to be
expected because individuals born in small patches have
a higher emigration rate than individuals born in large
patches. The model generates a mechanistic rescue effect
because it assumes that reproduction depends on the
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Figure 3: Summary statistics for the consequences of migration (based
on the IBM) in the network shown in figure 1. A, Time that an individual
born to a particular patch is expected to spend within any one of the
habitat patches. B, Probability that an individual born to a particular
patch will ever visit any other patch than the natal one. C, Maximal
strength of the rescue effect, which is measured as the proportion of
individuals originating from the other habitat patches out of all butterflies
visiting the focal patch at least once.

pooled time that all butterflies spend in a habitat patch.
Figure 3C indicates the strength of the rescue effect in
terms of the proportion of butterfly days spent in a patch
by individuals originating from the other patches. In our
example, this proportion varies from 0.20 to 0.89 and is
largest in the smallest patches, as expected. All the results
in figure 3 show much variation, which means that the
size of a habitat patch alone does not explain well the
importance of a patch for migrating individuals. The re-
maining variance is explained by the position of the patch
within the patch network.

We continue with the demographic parameters. If the
habitat patches were of uniform quality, it would be nat-
ural to assume that the carrying capacity of a patch is
proportional to its area. However, larger patches are typ-
ically of lower average quality. Hanski et al. (1994) found
that the density of butterflies tends to be higher in smaller
patches. We assume that the carrying capacity is propor-
tional to the square root of patch area (in ha), K pi

, which is consistent with the results of Hanski1/2150(A )i
et al. (1994). Because the patch areas in figure 1 range
from 0.005 to 2.7 ha, the carrying capacities range from
11 to 246 females. We will use as a reasonable0n p 5h

mean number for females emerging per surviving egg
group in the absence of density dependence. We assume

, corresponding to a situation in which a female∗t p 5
with an average lifetime of days would oviposit1/m p 10
two egg groups on average if it would spend all its life
within the habitat patches.

Setting reasonable parameter values for the environ-
mental conditions is a more difficult task. We chose to fix
the mean environmental conditions to , whiche p 0.4m

corresponds to a situation in which a female would pro-
duce on average at most new females. In0 ∗e n t /m p 4m h

other words, without density dependence, the population
would on average grow at most as withN(t � 1) p R N(t)0

. Quite arbitrarily, we set . With this as-R p 4 e p 0.80 z

sumption, and assuming that females would spend all their
life within habitat patches, ,P(R ! 1) ≈ 0.13 P(R !0 0

, and . In reality, many fe-0.5) ≈ 0.05 P(R ! 0.1) ≈ 0.0040

males will spend a substantial part of their lifetime in the
matrix (fig. 3A), and hence the realized population growth
rate will be somewhat lower.

Figure 4 shows the dynamics produced by the three
versions of the IBM. This figure shows 50-year-long time
series of local population sizes for three habitat patches.
The three patches include one large patch (1 in fig. 1),
one small well-connected patch (2), and one small isolated
patch (3). In model A, which includes only demographic
stochasticity, the population size in the large patch fluc-
tuates only mildly around the carrying capacity. Popula-
tions in the smaller patches seldom reach the carrying
capacity because individuals born to these patches have a
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Figure 4: Local population dynamics (based on the IBM) in the three patches highlighted in figure 1. A1–A3, B1–B3, and C1–C3 correspond to
patches 1–3 and models A, B, and C, respectively. B1 and C1 represent nonrandom samples because we chose periods that included a local extinction.
During the simulation run of 2,000 years, local extinction occurred four times in patch 1 in model B and seven times in model C.

high tendency to leave the patch; consequently, these
patches would not support viable populations if they were
isolated from the rest of the network. The population in
the small isolated patch frequently goes extinct, whereas
the small well-connected patch remains occupied most of
the time because of the rescue effect. In model B with
uncorrelated environmental stochasticity, local population
sizes fluctuate greatly, and, as expected, environmental sto-
chasticity increases the risk of local extinction in all three
patches. Assuming that environmental stochasticity is
completely spatially correlated (model C) does not change
the local dynamics much in comparison with the previous
case (model B) once a patch is occupied. This is so because
within each patch, the environmental conditions vary in
an identical manner in models B and C. However, if a
population happens to become extinct, the recolonization
of the respective patch is much delayed in model C in

comparison with model B. This happens because the ad-
verse environmental conditions that make the focal pop-
ulation become extinct are likely to simultaneously sup-
press the local populations in the neighboring patches,
which reduces the numbers of potential immigrants to the
focal patch in the following years.

Comparison between IBMs and SPOMs

We now turn to a comparison between the IBMs and the
SPOMs. Using the SPOMs given by equations (7)–(9), we
attempted to find parameter values that would make the
SPOM behave as similarly as possible to the IBM.
Throughout the comparisons, we kept the migration pa-
rameters (and thus the matrix M) fixed to the same values
that were used in the IBMs. This leaves only one free
parameter in model A, c, which was fitted by requiring
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that the mean number of occupied patches was the same
for the SPOM as it was for the IBM. In models B and C,
there are two free parameters, c and , which were fittedez

by requiring that in addition to the mean also the patch-
specific occupancy probabilities should agree as closely as
possible in the two models.

We used two choices for the surrogate . In case 1, weri

set to the mean value of obtained from a 2,000-r b (t)i i

year-long simulation of the IBM. In case 2, we set equalri

to the carrying capacity, . Note that while we user p Ki i

information about the behavior of the IBM in case 1, this
case is relevant for applications because it is often more
feasible to determine the actual population sizes for the
occupied patches than to determine the theoretical car-
rying capacity. Of course, in reality one will have infor-
mation about the local population sizes only for a limited
number of years and populations. With case 1, we test
whether the behavior of the IBM could be approximated
by a SPOM if knowledge about the mean population sizes
would be available, while the estimation of the local pop-
ulation sizes is left as a separate problem and not consid-
ered here.

Figure 5 shows the ability of SPOMs to mimic the be-
havior of the IBMs. The left-hand panels compare the
occupancy probabilities for individual habitat patches,
whereas the right-hand panels compare the quasi-station-
ary distributions predicted by the two model types. The
SPOM reproduces very closely the full presence-absence
dynamics generated by the IBMs in both cases 1 and 2,
though in the latter case some patch-specific occupancy
probabilities show somewhat greater deviations.

Discussion

Stochastic patch occupancy models have been criticized
for being overly simple and thus not very helpful descrip-
tions of real metapopulations (Harrison 1991, 1994).
Much of the criticism has been directed toward the use
of metapopulation models without any spatial structure,
such as the classic Levins model (Levins 1969), which in-
deed are more appropriate for qualitative analysis rather
than for making quantitative predictions. Another concern
has been to what extent the classic metapopulation models
with emphasis on extinction-colonization dynamics suffice
to describe the dynamics of real metapopulations with
much variation in the sizes of local populations or much
movements of individuals among populations or both.
There is no conceptual difficulty in modeling such pop-
ulation structures with individual-based simulations, but
individual-based simulations will not easily lead to helpful
generalizations.

Here we have analyzed whether one family of simple
metapopulation models, the spatially realistic SPOM, is

able to replicate the behavior of IBM. Our case study was
the Glanville fritillary butterfly, whose metapopulation bi-
ology is exceptionally well known (Hanski 1999; many
chapters in Ehrlich and Hanski 2004). We first constructed
an IBM that incorporated information about the life his-
tory and movement behavior of the focal butterfly and
then attempted to capture the dynamics produced by the
IBM with a SPOM. The IBM predicted much variation in
local population sizes, in agreement with what happens in
real populations, but in spite of this, the SPOM approx-
imations replicated remarkably well the behavior of the
IBMs at the metapopulation level. This is an encouraging
result, suggesting that SPOMs are indeed relevant tools in
metapopulation studies in spite of their simplicity. Apart
from analyzing SPOMs derived directly from the corre-
sponding IBMs, we have also compared the dynamics pre-
dicted by the IBMs with those predicted by the spatially
realistic Levins model (see, e.g., Ovaskainen 2002), with
similarly positive results (appendix). The good perfor-
mance of the latter model was not necessarily anticipated
because it is based on different structural assumptions
than the IBMs and the SPOMs derived in this article.
This example highlights the general utility of SPOMs
as metapopulation-level descriptions of population
dynamics.

The fact that the SPOMs derived here have a mechanistic
basis has several advantages. First, all of the model pa-
rameters relate directly to the life cycle of the species and
thus have a clear biological interpretation. Second, in tra-
ditional SPOMs, such as the spatially realistic Levins model
or the incidence function model (Hanski 1994), the func-
tional form of the colonization rate is based on heuristic
assumptions about how patch area affects emigration and
immigration (typically power laws) and how interpatch
distances affect the success of migration (typically expo-
nential functions). The present modeling framework re-
places these assumptions with scaling laws that follow di-
rectly from the movement behavior of individuals. The
underlying model of individual movements is correlated
random walk with bias at habitat patch boundaries. This
is not a universally valid model for all organisms but is
appropriate for many much-studied taxa such as butter-
flies. Third, the present SPOMs include a mechanistic de-
scription of the rescue effect, which has been previously
modeled in a mechanistic manner only in homogeneous
patch networks (Gyllenberg and Hanski 1992; Etienne
2000, 2002; Harding and McNamara 2002). In the spatially
realistic metapopulation theory, the rescue effect has been
either ignored or modeled through heuristic assumptions
(e.g., Hanski 1999; Ovaskainen and Hanski 2001). Fourth,
because of their mechanistic basis, the present SPOMs are
expected to make valid predictions about the dynamics in
landscapes affected by habitat loss and fragmentation. This
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Figure 5: Comparison between the IBMs and the SPOMs. The left-hand panels compare patch-specific occupancy probabilities, with lines depicting
identity. The right-hand panels compare the quasi-stationary distributions for the number of occupied patches, which are approximated here using
data from 2,000-year-long simulation runs. In the right-hand panels, the lines correspond to the IBMs, and the circles correspond to the SPOMs.
A, E, Case 1, model A. B, F, Case 1, model B. C, G, Case 1, model C. D, H, Case 2, model C. (Models A and B behave in a comparable manner;
not shown here.) Parameter values for case 1: (model A); , (model B); , (model C). ParameterSPOM IBM SPOM IBMc p 0.96 c p 0.92 e p e c p 0.96 e p 1.4ez z z z

values for case 2: , (model C).SPOM IBMc p 0.36 e p 1.3ez z

is not necessarily the case with traditional SPOMs, which
do not account for the fact that habitat patches essentially
“compete” for the migrants or which model such com-
petition with heuristic assumptions (such as the ones used
in Hanski et al. 2000). When the landscape becomes more
fragmented, the effect of such competition is reduced, and

hence the parameter values obtained for the original land-
scape do not necessarily apply for the more fragmented
landscape.

An appealing feature of the present SPOMs is their sim-
plicity. Most strikingly, model A with demographic sto-
chasticity has just three free parameters. Matrix M, which
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incorporates information about patch areas and spatial
locations, depends nonlinearly only on the scale of mi-
gration distances and the boundary multi-1/2a p (D/m)
plier k. The absolute values of the diffusion coefficient D
and the mortality rate m affect M only through a multi-
plicative constant, which may be included in the parameter
d. Similarly, models B (with environmental stochasticity)
and C (with regional stochasticity) have four free param-
eters, the additional parameter measuring the strengthez

of environmental stochasticity. In contrast, the spatially
realistic Levins model, though also a simple model, has
three more parameters. The reduction in the number of
parameters is explained by two factors. First, the present
model does not involve separate descriptions of how patch
area affects emigration, immigration, and extinction (table
A1 in the online edition of the American Naturalist), which
all follow from the modeling of individual movement be-
havior with bias at habitat boundaries. Second, the present
model generates local extinctions and recolonizations from
the same processes of individual movements and repro-
duction; hence, there is no need for specific extinction and
colonization parameters.

The present models are based on practically the simplest
possible assumptions, so they should hence be considered
as baseline models on top of which additional complexity
could be built. For example, we have ignored most types
of interactions that could occur among individuals, the
exception being density dependence in local dynamics, but
other types of interactions could be added. Such modifi-
cations are likely to result in nonlinearities in the model
structure, and they could thus change the qualitative model
behavior. Another simplification made here is the as-
sumption that the diffusion coefficients and the mortality
rates are identical for the habitat patches and for the ma-
trix. This assumption can be relaxed, which would add
one or two more parameters (see appendix). Even more
fundamentally, one could change the basic assumptions
about the life history of the species, which we tailored for
the Glanville fritillary. For example, we assumed that mi-
gration and reproduction occur in a continuous fashion
throughout the adult life and that the reproductive output
depends on the amount of time that individuals spend in
the habitat patches. Although these assumptions are jus-
tified for many insects, other assumptions are needed for
other species inhabiting fragmented landscapes. One issue
that remains to be studied further is the length of the
transient period in local dynamics following establishment
of new populations. One could envision situations in
which the transient is much longer than in our examples
(see fig. 4). On the other hand, the classic metapopulation
approach may be generally less helpful for situations in
which the transients are very long because this implies
very large habitat patches and hence low population turn-

over. The combination of long transients and fast turn-
over (e.g., Ronce et al. 2000) seems unlikely for natural
metapopulations.

The SPOMs constructed here have an individual-based
background, which leads to the possibility of combining
data collected with different methods in parameter esti-
mation, such as presence-absence surveys, mark-recapture
studies, and life-history studies. For example, the dispersal
parameters D, m (or their habitat-specific versions), and k
may be estimated with mark-recapture studies. While do-
ing so, one may also include more detail about the land-
scape structure by accounting for, for example, arbitrary
patch shapes and variation in matrix quality. Such a spa-
tially explicit diffusion model can be parameterized with
mark-recapture data using the finite element method
(Ovaskainen 2004), after which the model can be used for
the construction of the matrix M. Mark-recapture data
can also be used to estimate local population sizes, and
these estimates can be used to construct a relationship
between and the size, quality, and isolation of a patchri

(e.g., Hanski et al. 1994). Following these steps, only one
(model A) or two (models B and C) parameters remain
to be estimated from presence-absence occupancy data.
Another possibility for combining the different sources of
data is to use Bayesian techniques and to use the estimates
based on one data type as prior distributions for parameter
estimation based on another type of data.

A major concern about SPOMs has been that they apply
only to classic metapopulations with a substantial amount
of population turnover (Harrison 1994). Because many
studies conducted in fragmented landscapes have de-
scribed the assemblages of local populations as patchy pop-
ulations rather than as classic metapopulations (e.g., Har-
rison 1991; Hill et al. 1996; Sutcliffe et al. 1997; Matthysen
1999; Szacki 1999; Roslin and Koivunen 2001), models
typified as being appropriate for the latter have been sug-
gested to be of limited general value. A major advantage
of the present modeling approach is that one may analyze
a range of spatially structured populations varying greatly
in the magnitude of migration. Hence, the message is that
there is no need for the patchy population versus classic
metapopulation dichotomy. Rather than attempting to de-
scribe different (meta)population “types,” it is helpful to
focus on the relevant processes, for example, the magni-
tude of migration (Hanski 1999). Naturally, the SPOM
approximations are not relevant for situations where there
is no population turnover at all and hence no variation
in the spatial pattern of patch occupancy, but as our study
shows, the applicability of SPOMs is not restricted by the
amount of migration among local populations. Indeed,
the models that we have constructed unify the patchy pop-
ulation and classic metapopulation models.
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