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We all have experienced the proliferation of electronic access to manuscripts and various

internet-based search tools for scientific literature. Nevertheless, it remains a tall order for a

scientist to find all relevant information that will advance his or her thinking on a subject.

Sometimes the lack of communication can be blamed on different terminology or even

geographic distance (Wong & Kokko 2005), but regardless of the obstacles that need to be

overcome, one should avoid reinventing the wheel or progressing in different directions when

common themes exist. Unfortunately, examples of taxon-myopic or otherwise unnecessarily

constrained thinking are abundant. Already while studying lekking behaviour for my PhD, I

was struck by how rarely papers on lekking birds cited any literature on lekking mammals, and

vice versa. Limitations of web-based searches certainly cannot be the blame when the same

keywords appear in both fields. Likewise, there is no excuse for a lack of information flow

between people studying cooperative behaviours and those who focus on cooperative breeding.

Yet, despite the fact that to a layman the terms sound almost identical, Bergmüller et al. (2007)

show that the study of these two fields has proceeded almost completely separately.

Perhaps such a gap is what is expected wherever theoreticians and empiricists try to meet. In

the theory-dominated cooperative behaviour literature, empirical examples sometimes appear

almost anecdotal or, to be more fair, they concentrate on a few model organisms. The topic of

cooperative breeding, on the other hand, is strongly driven by field studies of a great diversity

of organisms (although again, the efforts of theoreticians in this area should not be neglected).

Thus, the unifying efforts by Bergmüller et al. should be extremely valuable. It is indeed

curious to note that terminological clarification seems to be the current topic in these two

interrelated fields: this year has seen a thorough terminological review by West et al. (2007)

that re-evaluates the usage of plenty of terms used in social evolution, and a ‘target review’ by

Lehmann & Keller (2006) that sought to categorize all cooperative behaviours using a

comprehensive framework and attracted no fewer than 15 responses.

The three papers taken together (Lehmann & Keller 2006, West et al. 2007, and Bergmüller et

al. 2007) should provide much food for thought and help clarify misunderstandings. Still, it is

telling that differences remain. For example, ‘cooperation’ in West et al’s definition differs

from that used by Bergmüller et al. in that it adds the requirement that the behaviour is selected

for because of its beneficial effect on the recipient (thus excluding byproduct mutualism). Even

though Bergmüller et al. do not explicitly define cooperation in this way, the sense in which

they use cooperation has evidence of similar implicit thinking: immediately after presenting a
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definition they proceed to consider that cooperation can be either selfish (directly selected) or

‘seemingly’ altruistic. These formulations clearly hint at the need to explain the adaptive value

of each cooperative behaviour in order to be classified as such. But later they also seem to

include byproduct mutualism as a maintenance mechanism for one causal route to cooperation

(‘passive’ group augmentation), which may create misunderstanding (I shall return to this

question in detail below). Further, it is clearly not an ideal situation to first restrict the use of

mutualism to interspecific interactions and then have to make an exception with byproduct

mutualism, and West et al.’s (2007) suggestion to simplify the terminology by talking about

‘mutual benefits’ appears more sensible. In general, it appears that the field has not yet rid

itself of subtle and potentially confusing terminological differences, and consequently one

almost wishes someone would write a ‘meta-review’ of Bergmüller et al. (2007), Lehmann &

Keller (2006), and West et al. (2007).

What is an explanation?

What are we aiming at when we try to explain a behaviour? Many empirically oriented

students are highly likely to find abstract phrases such as ‘negative pseudo-reciprocity’ less

friendly to grasp than a catchy phrase such as ‘pay to stay’. Friendliness of course is not the

best criterion for good science, so it is worth reflecting for a moment on what constitutes a

potential explanation, in other words a hypothesis. The value of the approach of Bergmüller et

al. is that they show how many explanations from the realm of cooperative breeding are

‘compound’ hypotheses, in the sense that they often make use of several mechanical

components that in turn have been amply studied by theoreticians. The compound hypotheses

of cooperative breeding can be seen as ‘higher-level’ explanations, in that they typically aim at

measuring lifetime inclusive fitness. Cooperation theory, on the other hand, typically focuses

on ‘lower-level’ building blocks such as short-term payoffs from behavioural encounters. But

should one level of explanation be favoured over the other?

Undoubtedly, questions are relevant at both levels. If theory showed that, say, negative pseudo-

reciprocity was for some reason very problematic, then any higher-level explanation that

makes use of negative pseudo-reciprocity should take such results seriously. This amply

justifies Bergmüller et al.’s call to pay more attention to both levels. At the same time, it

remains a useful question to ask how often all the components of a succinctly phrased

hypothesis such as ‘pay-to-stay’ can be fulfilled simultaneously in a real organism in its

ecological setting. The framework proposed by Bergmüller et al. will indeed be most useful if
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used for this purpose; it would therefore be beneficial if each of the arrows in their schematic

figures was followed by an evaluation of how easily this route leads to behaviours that appear

cooperative, what ecological conditions might promote this particular route, and whether such

conditions are common.

At the same time, one should be cautious not to fit the higher-level arguments to the low-level

mechanisms too forcefully. Bergmüller et al. suggest, for instance, that the division between

passive and active group augmentation equals that between byproduct mutualism and pseudo-

reciprocity. However, this may reflect a forced attempt to make boundaries match between

different levels of explanation. Passive group augmentation is a mechanism in which costly

alloparenting (or some other form of cooperation) is selected for because an individual benefits

by living in a larger group in the future. The ‘passivity’ refers to the fact that the correlation

between group size and a future fitness component exists irrespective of whether the newly

produced offspring behave cooperatively themselves (if they do, one shifts to the realm of

‘active’ group augmentation). Importantly, the ‘passivity’ does not mean that there was no

investment involved by the alloparenting individual: instead, the passively existing correlation

can be sufficient to create selection for a true investment that trades off with the individual’s

current survival (Kokko et al. 2001). Thus, passive group augmentation differs from

Bergmüller et al.’s byproduct mutualism in that only the former is true cooperation according

to the strict criterion of West et al. (2007), and the assertion by Bergmüller et al. (2007) that no

investment is involved is inconsistent with the original definition of passive augmentation.

The point that some higher-level explanations do not fall easily into single categories was, in

the same context of group augmentation, also raised by West et al. (2007). It is therefore

advisable that the charts provided by Bergmüller et al. (2007) will be used with caution, to

avoid the pitfall of thinking along predefined paths where reality is more complex. An

interesting topic for further research is to document how often augmentation benefits are

passive only, or whether they rely on an active component. The difference is not the presence

of current investment, but whether the newly raised offspring return enough active help later in

life to form a significant causal explanation of alloparenting, in addition to any ‘passive’

correlations present. In fact, if most individuals engage in cooperative behaviours in the groups

that they live in, it could turn out to be harder to find examples that are strictly restricted to

passive benefits only, than ones in which individuals can to some extent rely on actively
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returned help too. This said, I agree with Bergmüller et al. (2007) that solid evidence is

lacking so far.

What is the question?

It appears that there are two separate questions when explaining cooperation and cooperative

behaviour: (1) what mechanisms exist that can promote cooperation and what are the

requirements for each to operate, and (2) what ecological conditions favour suitable parameter

values that allow for the said requirements to be fulfilled. To some extent, this division reflects

the respective research foci in the study of cooperation vs. cooperative breeding. However,

with all due respect to the difficulties posed by real-life field studies, it appears that the second

question is further from a definitive answer than the first, lower-level question. A crucial test of

whether satisfactory answers have been obtained to both questions is whether we can assess the

relative importance of each of the proposed mechanisms to the extent that we can predict the

global distribution of species in which cooperation occurs.

There is little use in stating, for example, that tighter ecological constraints promote

cooperation within a species, when numerous non-cooperative species exist with apparently

equally difficult prospects for young breeders to establish themselves (Hatchwell & Komdeur

2000, Ekman et al. 2004). Likewise, stating that kin selection underlies much of cooperation is

an empty statement unless variation between species can be explained: individuals are related

to their relatives in all species (a tautology), yet only certain species breed cooperatively. This

is the principal reason why the study of Hamilton’s rule (br > c) to explain invertebrate

sociality has experienced a shifting emphasis from a focus on relatedness r to quantifying

benefits b and costs c (e.g. Wenseleers et al. 2004, Queller 2006, Wenseleers & Ratnieks

2006); importantly, this does not imply that kin selection has suddenly become unimportant

(for a recent debate see Fletcher et al. 2006, Foster et al. 2006a,b). Note also that it remains

true that unusual inheritance rules such as haplodiploidy can influence the rules of how

resources are put into use to aid the spread of relatives’ genes (Teyssèdre et al. 2006).

What is the solution?

When ecology is taken into account, several ideas emerge that extend the scheme of

Bergmüller et al. (2007). Imagine a set of parameter values that influences how likely one

follows one or another arrow in Bergmüller et al’s figures: for example, how easily individuals
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can coerce others to stay, or how easy it is for them to use public information. There are

several ways for the distribution of such parameter values to become non-random and thus

potentially help to explain which path species end up following.

1. Phylogenetic constraints. Constraints on evolutionary change have the potential to make

certain parameter values appear repeatedly in a species tree. Cooperation is indeed distributed

unevenly; for example, a phylogeny of oscine passerines suggests that cooperation implies low

speciation rates and low capacity to cross large geographic distances (Cockburn 2003). This

pattern has been argued to reflect the fact that pair-breeding species have more mobile habits as

their offspring disperse, and cooperation is also difficult to maintain in species with migratory

habits (Cockburn 2003, see also Baglione et al. 2005). To what extent phylogenetic inertia can

explain cooperation is perhaps best regarded an open question. In a phylogeny of corvids, the

trait appears rather labile, readily responding to environmental challenges (Ekman & Ericson

2006), whereas the debate on invertebrate eusociality has even brought up phrases such as

“irreversible contingency” (Maynard Smith & Szathmary 1995) or “point of no return” (Wilson

& Hölldobler 2005) after which species can only exist if they keep to their eusocial lifestyle

with morphologically differentiated workers. Many of the mechanisms proposed by

Bergmüller et al. (2007) depend on traits such as cognitive abilities, which almost certainly can

have a very strong phylogenetic component, thus at least the potential for significant

phylogenetic inertia should always be taken into account.

2. Coevolution of the decision to stay and the decision to help. Bergmüller et al. correctly state

that the decision to stay is not the same as the decision to help. However, the distinctness of the

two decisions should not be overemphasized, if it leads to the impression that helping

interactions can be sufficiently characterized as a two- or N-player game with the number of

players fixed. Bergmüller et al. themselves emphasize the importance of biological markets and

outside options, which in the real world means that the evolution of cooperative interactions

within a group and the tendencies to leave a group become linked. The two decisions may be

independent in principle, but the selective pressures acting on them are not, and hence we can

expect coevolution to occur.

There is indeed an emerging body of theoretical work on coevolution of dispersal and

cooperation that empiricists could take better note of (e.g. Aktipis 2004, Hamilton & Taborsky

2005, Le Galliard et al. 2005). When cooperative behaviour and dispersal coevolve, the

diversity of outcomes is much richer than expected by investigation of either alone, including a
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counterintuitive possibility that more mobile organisms can display higher levels of

cooperation in comparisons across species (Le Galliard et al. 2005). It would obviously be

fruitful to link such results to the details of partner choice, which is a somewhat finer-scaled

problem focused on by Bergmüller et al (2007).

3. Life histories and population-level feedback. This concept is related to the previous one on

coevolution, and relies on the fact that parameters such as ‘ecological constraints’ are not fixed

for each species but are emergent traits that evolve with the population. As repeatedly pointed

out by Jan Ekman and coworkers, a tight constraint on independent breeding does not dictate

philopatry. It simply dictates that an offspring has to wait, without specifying where (e.g.

Ekman et al. 2001, 2004). Only once one knows how prospects of survival and breeding vary

across different habitats or territories, one can predict what young individuals should do: stay

or leave, and in either case, be more or less helpful towards conspecifics.

Currently, there is an apparent mismatch between experimental results that find more dispersal

when new breeding opportunities arise (e.g. Komdeur et al. 1995) or resources at home are

diminished (e.g. Dickinson & McGowan 2005), and the observation that across species, habitat

saturation does not appear to explain much of the occurrence of cooperative breeding

(Hatchwell & Komdeur 2000). Moreover, the support for the role of life history as a

determinant of cooperative habits appears mixed (e.g. Arnold & Owens 1999, Ligon & Burt

2004, Doerr & Doerr 2006). Many apparent contradictions could potentially be resolved if the

problem was tied back to the way how population structure and density emerge from patterns

of individual breeding success and survival. For example, it makes sense that individuals

disperse from locally crowded conditions, or from locally poor sites. But if all habitat is made

uniformly crowded (or of uniform quality), as is the case when a species evolves to have a life

history that predicts high density, then moving between sites may yield little improvement for

most individuals. This is why experiments that investigate individually plastic responses to

local changes (e.g. Dickinson & McGowan 2005), while useful to detect patterns of within-

species plasticity, do not always scale up to a species-level comparison (Kokko & Lundberg

2001).

Instead, true predictions can be generated if the full life cycle is considered: a life history

pattern together with assumptions on habitat availability can be used to calculate how likely a

disperser secures a breeding location of a given quality. This calculation must be self-

consistent such that it accounts for the number of other dispersers and competing philopatric
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individuals in the population, which in turn depends on breeder productivity across habitats

(Pen & Weissing 2000, Kokko & Lundberg 2001, Kokko & Ekman 2002). This way one can

predict, for instance, that the relative advantage gained by staying at home based on parental

favouritism (which exists irrespective of overall density) may matter more than how generally

tight competition is in the environment (Kokko & Ekman 2002).

The bad news is that when several factors are considered simultaneously together with

feedback among them, predictions are rarely as clear as when artificially fixing some

parameters such as ‘constraints’. But if life history truly influences the frequency with which

vacancies arise and the ease of filling them, then this link must be included before realistic

predictions can be made. It is highly likely that theory has not yet explored every possible co-

occurring direction of causality (feedback): for example, low mortality may favour certain

behaviours but beneficial group behaviours can in turn lower the mortality of its members

(Krause & Ruxton 2002, Ligon & Burt 2004). For the scheme proposed by Bergmüller et al.

(2007), it is promising indeed that some of the most recent ideas link aspects of life history

back to the lower-level processes considered by Bergmüller et al. (2007): as an example, a long

lifespan may be a prerequisite for repeated social interactions, which again are essential for the

evolution of reciprocity (Ridley et al. 2005).

4. Multi-level selection. The phrase ‘group selection’ often evokes shudder and frowning

among evolutionary biologists, yet when properly applied it is mathematically equivalent to kin

selection (Queller 1992, Foster et al. 2006b). Important selective effects can even be expected

to occur at scales above single social groups, such as populations or species. In the social

amoeba Dictyostelium discoideum, single-cell organisms group to form multicellular

reproductive structures in which cells that form the stalk will altruistically die. Foster et al.

(2004) showed that ‘cheater’ genotypes (that avoid participating in pre-stalk formation) could

not proliferate because of pleiotropic effects that halt their success before reproduction can take

place. In myxobacteria, artificially created ‘cheater’ strains were observed to cause extinction

of whole populations, which might explain the absence of such cheaters in nature (Fiegna &

Velicer 2003). Foster (2006) has thus suggested that higher-level selection should be

considered seriously in the evolution of cooperation and cooperative breeding: perhaps extant

genetic architectures, or social systems in general, are those that possess enough robustness

that they can resist at least the most commonly occurring attempts to cheat the system (Rankin

et al., 2007). Empirical test of this idea remain obviously challenging (see Rankin & López-
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Sepulcre 2005), but these studies repeat the theme of Bergmüller et al. (2007) that researchers

interested in social evolution should pay more attention to studies that use different

terminology, or are conducted on different taxa than their own.

Conclusions

The categorization of Bergmüller et al. (2007) highlights the distinction between lower and

higher levels of explanation, and the need to unify them. The challenge does not stop there,

however, before species-level patterns are fully integrated into the picture. The scheme of

Bergmüller et al. (2007) is indeed a first step in this direction, hopefully leading to an

assessment of the prevalence and strength of all the different mechanisms involved in various

taxonomic groups and in different ecological or life history settings.
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