% UNIVERSITY OF HELSINKI

https://helda.helsinki.fi

Noise-equivalent and signal-equivalent visual summation of
guantal events in space and time

Hemila, S.

Cambridge University Press
1998

Visual Neuroscience. 1998. 15; 731-742

http://hdl.handle.net/1975/949

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Visual Neuroscience (1998), 15, 731-742. Printed in the USA.
Copyright © 1998 Cambridge University Press 0952-5238/98 $12.50

Noise-equivalent and signal-equivalent visual summation
of quantal events in space and time

SIMO HEMILA,! TUOMO LERBER,' ANp KRISTIAN DONNER?

"Laboratory of Physics, FIN-02015 Helsinki University of Technology, Espoo, Finland
*Department of Biosciences, FIN-00014 University of Helsinki, Helsinki, Finland

(RECEIVED July 16, 1997: AccepTep January 12, 1998)

Abstract

Noise recorded in visual neurons, or variability in psychophysical experiments, may be quantified in terms of
quantal fluctuations from an “equivalent” steady illumination. The conversion requires assumptions concerning how
photon signals are pooled in space and time. i.e. how to pass from light fluxes to numbers of photon events relevant
to the Poisson statistics describing signal/noise. It is usual to approximate real weighting profiles for the integration
of photon events in space and time (the sensitivity distribution of the receptive field [RF] and the waveform of the
impulse response [IR]) by sharp-bordered apertures of “complete,” equal-weight summation of events. Apertures
based on signal-equivalence cannot provide noise-equivalence, however, because greater numbers of events summed
with smaller weights (as in reality) have lower variances than smaller numbers summed with full weight. Thus
sharp-bordered apertures are necessarily smaller if defined for noise- than for signal-equivalence. We here consider
the difference for some commonly encountered RF and IR profiles. Summation areas, expressed as numbers of
photoreceptors (cones or rods) contributing with equal weight, are denoted N for signal and Ny for noise; sharply
delimited summation times are correspondingly denoted s and . We show that the relation in space is Ny = 0.5Ng
for the Gaussian distribution (e.g. for the RF center mechanism of retinal ganglion cells). For a photoreceptor in an
electrically coupled network the difference is even larger, e.g., for rods in the toad retina Ny = 0.2Ng (Ng = 13.7
rods and Ny = 2.8 rods). In time, the relation is ty = 0.71¢ for realistic quantal response waveforms of
photoreceptors. The surround input in a difference-of-Gaussians RF may either decrease or increase total noise,
depending on the degree of correlation of center and surround noise. We introduce a third useful definition of
sharp-bordered summation apertures: one that provides the same signal-to-noise ratio (SNR) for large-long stimuli
as the real integration profiles. The SNR-equivalent summation area is N* = N¢/Ny and summation time 1* =

12/54.

Keywords: Photoreceptor, Retina, Quantal fluctuation, Signal-to-noise ratio, Receptive field, Vision

Introduction

It is often useful to calibrate signal-to-noise ratios (SNRs) recorded
in visual neurons or in psychophysical experiments against the
“extrinsic” SNR of the light signal, the absolute physical limit,
where the only source of variation is the statistical fluctuations in
the photon flux (de Vries. 1943; Barlow, 1957). An obvious ex-
tension of this is to quantify extra, “biological” variability in terms
of quantal fluctuations from a hypothetic “intrinsic” background
light (Barlow, 1956, 1964, 1977). However, quantal fluctuations
follow the Poisson statistics of numbers. while light usually arrives
as a continuous flux, so the correspondence between photon fluc-
tuations and biological variability will depend on how that flux is
chopped into spatio-temporal packages. This is frequently done by
defining sharply delimited summation areas and times, such that
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partment of Biosciences, P.O. Box 17 (Arkadiankatu 7)., FIN-00014 Uni-
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photons falling within these are assumed to be summed with equal
weight. while photons falling outside do not contribute at all to a
particular spatio-temporal “pixel.” The realistic biological descrip-
tors are the sensitivity profile of the receptive field (RF) in space
and the waveform (persistence profile) of the quantal response (or
impulse response, IR) in time. The sharp-bordered apertures are
defined so that they contain the same integrated light sensitivity as
the real profiles and, within the borders, have constant sensitivity
equal to the peak sensitivity of the real profiles (see Fig. 1). The
psychophysical precedents are Riccd’s (1877) law of spatial sum-
mation, integrated into neurophysiology by Adrian and Matthews
(1927) and Hartline (1940), and Bloch’s (1885) law of temporal
summation, related to photoreceptor responses by Baylor and Hodg-
kin (1973).

We here consider the errors that arise when such apertures
defined for signal-equivalence are used for calculating noise-
equivalent intrinsic lights from biological variability, or con-
versely, for calculating expected biological variability under the
assumption that quantal fluctuation of the real light is the only
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Fig. 1. Schematic presentation of the relation between realistic temporal and spatial weighting profiles and corresponding sharp-
bordered summation apertures. A: Waveform of the response to a single photoisomerization according to the “independent activation
model” (with n = 4). and the signal-equivalent rectangular response. The base of the rectangle is 15 (here = 1.711,), and its area is equal
to the area under the smooth waveform. B: Two-dimensional Gaussian spatial sensitivity distribution (standard deviation = o) and the
signal-equivalent cylindrical, “top-hat™ sensitivity distribution (dashed lines). The radius of the latter is rs = /2. and its volume is
equal to that of the Gaussian. C: Duration-threshold function, i.e. log stimulus duration versus log threshold intensity for the quantal
response in (A). The point of intersection of the 45 deg and horizontal asymptotes (straight lines of slopes —1 and 0) is the
signal-equivalent summation time fg (= | on the normalized abscissa). This is a usual method for determining the interval of
“complete” temporal summation (Bloch's interval, also called the Bunsen-Roscoe range). Note that 5 can be obtained from only two
threshold measurements: one for a very brief stimulus (<r5) and one for a very long stimulus (315), fixing the vertical positions of
the two asymptotes. D: Area-threshold function, i.e. log stimulus area versus log threshold intensity for the Gaussian RF in (B). The
point of intersection of the 45 deg and the horizontal asymptotes (straight lines of slopes — 1 and 0) is the signal-equivalent summation
area Ag (= 1 on the normalized abscissa). This is a usual method for determining the area of “complete” spatial summation (Riccd’s
area). Note that Ag can be obtained from only two threshold measurements, one for a very small stimulus area (<As) and one for a
very large stimulus area (>Ay), fixing the vertical positions of the two asymptotes.

noise source. The point of departure is the fact that experimentally
observed RFs or IRs never have sharp borders, but rise and fall
more or less gradually. Replacing these by rectangular profiles
means that the signal is construed as being built from a smaller
number of quantal events summed with peak weight, compared
with the real situation where a larger number of events contribute
with individual, generally smaller weights. The same transforma-
tion cannot hold for noise, because the relative variation due to the
larger number of smaller events is necessarily lower than that due
to the smaller number of full-sized events. If recorded variability
is expressed in terms of fluctuations of standard-sized quantal

events, these will appear to be collected over smaller areas and
shorter times than those that constitute the signal. Our purpose is
to clarify how significant the difference is for some commonly
encountered spatial and temporal integration profiles, particularly
with a view to assessing potential errors in earlier “dark light”
estimates.

The analysis is not restricted to the profiles taken as examples
here, but could easily be extended to any spatial and temporal
weighting profiles of linear detectors. Nor is it basically limited to
Poisson variances connected with photon statistics, but shows quite
generally how random neural fluctuations, as opposed to common-
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mode signals, add in space and time. It further suggests a fast way
of obtaining information on unknown weighting profiles by mea-
suring summation apertures for externally added dynamic noise in
its effect on detection thresholds (e.g. image noise in psychophys-
ical detection tasks).

Theory and results
Signal-equivalent summation apertures

Temporal

A photoisomerization elicits a quantal response of standard
waveform in a photoreceptor cell (e.g. Pugh & Lamb, 1990) (rod
or cone; for brevity, we shall generally talk about “rods,” although
most of the considerations apply equally well to cones). This wave-
form may be viewed as a “persistence profile,” describing the
relative strength of the effect of an isomerization at each point in
time after it has occurred. Our purpose is to replace that profile by
a rectangular one, as if the effect persisted at a constant (maximal)
level for such a time that the total (integrated) effect is the same as
for the real profile. The general idea is illustrated in Fig. 1A for one
particular persistence profile (see further below).

Let f(r) be the relative amplitude of the quantal response as
function of time after the isomerization, with f(r) = 1 at the peak
of the response. The same integrated effect is provided by a rect-
angular pulse of amplitude = 1 and the duration z¢ given by (Bay-
lor & Hodgkin, 1973):

oo

ts = fr)de (1)
0

This corresponds to the “interval of complete summation™; the
signal at any moment can be construed as the sum of equal con-
tributions from all isomerisations that have occurred within the
preceding time window tg (Bloch, 1885: cf. Baumgardt, 1972). We
term it the signal-equivalent summation time. It is identical to the
“critical duration™ of a stimulus pulse, determined as the point of
intersection of two straight lines of slopes —1 and 0 fitted to log
pulse duration—log threshold intensity data (Fig. 1C). This method
for determining rg, by recording threshold intensity as function of
stimulus duration, has been widely used both in psychophysics and
neurophysiology. Results of several psychophysical studies of this
kind are summarized in Table 2 of Donner et al. (1995).

The waveform of the quantal response in many rods and cones
is well described by the “independent activation™ model of Baylor
et al. (1974):

f(1) = S;exp(—t/7) [1 — exp(—t/7)]""! (2)

where n is the number of stages in the filter chain, 7 is the largest
of the time constants (the rate constants 1/7 of the stages forming
an arithmetic sequence), and S is a normalizing factor scaling the
amplitude to unity at peak. Thus, f(1,) = 1, where ¢, = 7(In n) is
the time to peak. The summation time corresponding to this wave-
form, obtained by substituting eqn. (2) into eqn. (1), is ts = 7[n/
(n — 1)]"". For physiologically realistic values of n. this ranges
from rg = 1.301, (for n = 7) to 15 = 1.711, (for n = 4). In Fig. 1A,
the relation between f(¢) and the signal-equivalent summation time
is illustrated for “independent activation™ kinetics with n = 4.
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In some rods and cones, the quantal response is better described
by the “Poisson™ model of Baylor et al. (1974):

f(t) = Spt" 'exp(—t/7) (3)

where 7 is the time constant (same for all stages in the filter chain)
and Sp is again a normalizing factor scaling the amplitude of the
response to unity at peak. Thus, f(7,) = 1. where t, = (n — 1)7 is
the time to peak. The summation time for Poisson Kinetics, ob-
tained by substituting eqn. (3) into eqn. (1), is 15 = 7[e/(n —
1)]"~'(n — 1)!. For physiologically realistic values of n, this ranges
from tg = 1.041, (for n = 7) to ts = 1.491, (for n = 4),

Spatial

We assume for simplicity that the RF sensitivity distribution is
circularly symmetric and that the quantal signals from rods add
linearly. Sensitivity is maximal in the RF midpoint and decreases
towards zero according to some continuous function of distance
from there. The relative sensitivity at the distance r is denoted z(r),
with z(0) = I and z() = 0. We consider responses to full-field
stimuli. If Uy is the amplitude of a signal elicited by one photo-
isomerization in a rod at the RF midpoint, a photoisomerization in
rod n at the distance r, elicits a signal Uyz(r,) and [writing z(r,)
as z,] the total signal is UyZz,. Obviously, the same response
would be elicited by Xz, rods if all of them contributed a maximum-
sized response (if all had z = 1). Thus, Ny = Xz, is the number of
rods contributing with equal (full) weight that together would give
the same response to full-field illumination as does the real RF. If
the retinal rod density is p, the effective area occupied by these is
As = Ng/p or

Ag =f z(r)2@rdr (4)
0

This is the “area of complete summation™ or the signal-equivalent
summation area (Riccd’s area). Cylindrical (“rectangular”) weight-
ing profiles are commonly referred to as “top-hats,” and the one
with base area Ay may be termed the signal-equivalent top-hat
receptive field (STRF). The relation between the real weighting
profile and the STRF is illustrated in Fig. 1B for one particular
case (the Gaussian).

One commonly used method for measuring spatial summation
characteristics is by recording the “area-threshold function,” i.e.
threshold intensity as function of the area of a circular incremental
stimulus. Ag is obtained as the point of intersection of two straight
lines of slopes —1 and O fitted to the log-log data (Cleland &
Enroth-Cugell. 1968; Donner & Gronholm, 1984). This is exem-
plified in Fig. 1D for the Gaussian case.

Example 1: Gaussian receptive fields. The two-dimensional
Gaussian distribution provides a good description of the RF sen-
sitivity profile of many types of visual neurons, e.g. horizontal
cells and both the center and the surround mechanisms of ganglion
cells in the retina, but also appears as a weighting function, e.g. in
Gabor-type RFs commonly assumed in psychophysics. For a two-
dimensional Gaussian distribution with standard deviation o

Ag=mré= f exp(—r¥2c¢2)2mrdr =270 (5)
1]
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Thus, the radius of the STRF approximation of a Gaussian is rg =
a2 (Fig. 1B).

Example 2: Receptive fields with Bessel flanks. Rods of at least
lower vertebrates are electrically coupled, so the response in each
rod contains contributions from many neighbors (Schwartz, 1975:
Fain, 1975; Fain et al.. 1976). The sensitivity profile has a sharp
apex in the central rod but a wide spread, deviating much more
strongly from a top-hat than does the Gaussian. The rod mosaic
can be modelled as a homogeneous syncytium (Lamb & Simon,
1976: Schwartz, 1976: Fain et al., 1976; Attwell & Wilson, 1980:
Tessier-Lavigne & Attwell, 1988) with two essential parameters:
the leakage conductance from the syncytium interior to exterior
per unit area, denoted G, (S/m?), and the longitudinal resistance of
the unit area, denoted R,. The sensitivity profile of the flanks can
then be described by a modified Bessel function of the second
kind, K, (Minor & Maksimov, 1969; Lamb & Simon, 1976):

z(r) = Ko(r/A) (6)

where A = I/VR,G, is the space constant of the syncytium. The
response of a rod to one photoisomerization occurring in another
rod at the distance r is then

U= UHK"(."/I\) (7)

where [y is a constant. This continuous model based on a homo-
geneous syncytium breaks down when r approaches zero, as is
intuitively obvious from the fact that very small radii will be
wholly contained within one single rod (the central rod), and as is
mathematically evident from the fact that K,,(0) is infinite. For
small values of r, it is necessary to take into account the discrere
nature of the rod network. This entails, e.g. assigning a finite value
to z(0).

The STRF approximation depends on A and z(0). We defer
calculation of the summation area to the simulations in the last
section of the Results and the Appendix, with parameters repre-
sentative of the rod network of the toad retina.

Noise-equivalent summation apertures

Temporal

Assume that there is a steady illumination and/or an intrinsic
background “light,” producing [ isomerizations per rod per sec-
ond (Rh*s™ ') on average. The response to isomerizations () oc-
curring at times f; in one rod (n) at the distance r, from the RF
midpoint is

U"[f) =5(rn)Ullz,f(f_Ij) (8)
I

where U, is the response amplitude to an isomerization in the
middle of the RF [z(0) = 1]. According to Campbell’s theorem (see
e.g. Van der Ziel, 1970), the variance of U,(t) is

- -]

of = Iz, U(Fj f()*dr (9)
0

The integral in eqn. (9) captures the temporal persistence of the
noise effects of the isomerizations. By analogy with the definition
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of a “signal-equivalent summation time” r¢ [egn. (1)], we thus
define a noise-equivalent summation time ty:

tir= f fl)*de (10)
0

The Poisson variance of the number of events falling in this time
window, when multiplied by Ipz2 Ug. is equal to the recorded
neural variance. It is informative to express ty as a fraction x of the
signal-equivalent summation time r¢ [cf. eqn. (1)]:

f-=f f(f}zdr=xJ. f(e) dt = ktg (11)
0 0

If the actual waveform f(7) were rectangular, ¥ would of course
be = 1. If f(r) follows “independent activation™ kinetics [eqn. (2)],
k = 0.68; in this case varying the parameter n (the number of
stages in the filter chain) in a realistic range (n = 4-7) has only
minor effects on k. If f(r) follows “Poisson™ kinetics [eqn. (3)],
depends somewhat more strongly on n, growing monotonically
from ca. 0.71 at n = 4 to ca. 0.80 at n = 7.

Spatial

The random voltages from different rods are uncorrelated. Thus,
the total variance caused by the steady “background” illumination
(denoted o ) is the sum of the variances o2 from all contributing
rods,

of =3l =1L UEkts2> (12)

Our purpose, to produce the same total variance by means of Ny
rods that all contribute with equal weight, is achieved if

Ny = 3z2 (13)

The area encompassing this number of rods is Ay = Ny/p or.
assuming that it is circular:

AN=f z22(r)2mrdr (14)
0

This is the general expression for the base area of what we term the
noise-equivalent top-hat RF (NTRF). For the Gaussian profile this
gives

Ayp= J- exp(—r¥a?)2ardr=mo? (15)
(1]

and comparison with eqn. (5) shows that Ny = 0.5Ns. Thus, if the
real RF profile is Gaussian, the noise power would be accounted
for by Poisson fluctuations in half the number of equal-weight rods
that have to be invoked to build up the signal. If noise were
summed from the signal-equivalent number of rods (the STRF), it
would be much more powerful than in reality (Fig. 2). This reflects
the advantage of “smooth” weighting profiles for viewing natural
scenes (see Discussion). To decrease noise in a top-hat RF to the
same level as in the Gaussian RF, the former would have to be
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expanded by twofold (» would have to be increased by the factor
V2 or ca. 40%), compromising spatial resolution.

The RF with Bessel flanks [eqn. (6)] differs much more from a
top-hat than does the Gaussian, so the ratio Ny/Ng will be even
smaller. In the last section of the Results, we will consider simu-
lations showing that Ny = 0.2Ns when calculated with parameters
derived from the rod network of the toad retina.

Signal/noise-equivalent summation apertures

The use of sharp-bordered summation apertures is particularly con-
venient in calculations of SNRs limited by quantal noise. Assume
that full-field “step” stimuli of intensity /5 (Rh*s™ ") are given to
an RF comprising N photoreceptors from which photon events are
summed with equal weight over a time window 7. (By a “step”
stimulus we mean a rectangular pulse of any duration Ar > T.) The
signal is then Uy[gNT. In the presence of a background event rate
Iy (which in general will be the sum of both an intrinsic “dark
light” Ij, and a real background light /), the average number of
photon events in the receptive field within one summation time
after stimulus onset is NT (/s + I,). It has been customary to take
the square root of this number, Y NT (I + I,). as a measure of the
Poisson quantal noise, which gives the SNR (Barlow, 1957, 1958,
1964; Copenhagen et al., 1987).

SNR = ——2S _ — JNT —3. (16)
NNT (I + 1) Vig+ 1y

Although this equation is useful in showing that the SNR will be
affected by changes in spatio-temporal summation, the above anal-
ysis demonstrates that it does not in general describe the SNR of
an arbitrary linear filter in which z(r) and f(r) deviate from rect-
angular profiles. To achieve this, we rewrite the equation with N
and fg in the numerator and Ny and ry in the denominator:

SNR = Ntgly _ NS s a17)
“'INN InUp + 1y Ny ity Vi + 1

This, however, can be made formally identical to egn. (16) by the
introduction of new spatial and temporal summation apertures:
N* = N¢/Ny and t* = 12 /1y, which we term SNR-equivalent. For
a Gaussian sensitivity distribution, N* = 2Ns. For the usual multi-
stage filter waveforms of quantal responses (see above), 1 * = 1.415.
With these SNR-equivalent parameters, the dependence of signal/
noise on spatio-temporal summation can be written in a simple and
accurate manner:

SNR = VN™t*Is/N(Is + 1) (18)

Summation of noise in difference-of-Gaussian receptive fields

Retinal ganglion cells and many other higher order neurons (even
cone photoreceptors in some species) receive antagonistic input
from “surround” mechanisms with their own spatial profiles weight-
ing the primary photoreceptor signals. Generally, RF profiles of
surround mechanisms are wider and have lower peak sensitivity
than “center” profiles. Of particular interest is the difference-of-
Gaussians (DOG) RF, which successfully accounts for many prop-
erties of linear retinal ganglion cells (see e.g. Troy, 1993). For
modelling purposes, it is reasonable to assume that both center and
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surround are circularly symmetric and concentric Gaussians, and
that the output at each moment is the center signal minus the
surround signal relatively lagged by a fixed delay. This model has
been shown to work well for photoresponses to e.g. sinusoidal
contrast modulation (Enroth-Cugell et al., 1983; Donner & Hemili,
1996). Our present concern is how the noise transmitted from
photoreceptors over the “additional” surround pathway will affect
total noise in the ganglion cell.

In general, noise arriving over the center and surround path-
ways will show some degree of correlation, as both mechanisms
take their primary input at least partly from the same set of photo-
receptors (in the middle part of the RF). Despite this, it is instruc-
tive to consider first the (admittedly restrictive) assumption that
the two noise components are uncorrelated. This situation would
be approximated. e.g. (1) if there is strong variability in the trans-
mission times from photoreceptors to the ganglion cell over one or
both of the pathways, (2) if the relative surround delay is large
compared with the summation time of the photoreceptors (see
below), or (3) if the proportion of common photoreceptor input is
small, either because the surround is much wider than the center,
or because the two mechanisms selectively contact different sub-
sets of photoreceptors (as e.g. in color-opponent cells).

Uncorrelated noise

Let the subscript ¢ refer to the center and the subscript a to the
antagonistic surround. The total noise standard deviation will be
Tpoc = Vol + a;. According to eqns. (12) and (13), variance o2
is proportional to Ny Ug. In a balanced DOG RF, where the inte-
grated weighting functions of the center and the surround are equal,
the voltages I,ts Ns U, of the two mechanisms are equal (see Don-
ner & Hemild, 1996), implying that Uy, /Uy, = Ns./Ns,. The ratio
of variances in a balanced DOG RF is therefore

Un’;‘!/(fiz = A{'\-‘a Uﬂzn/NNr UU%
= [NNH/NM-HN‘)‘N/NSU): =N§('/NS(I (]9]

and the surround input increases the total standard deviation by the
factor

opocla. = (1 + Ng./Ng,) = V(1 + r&/r) (20)

When rg. = rg, (center and surround coextensive), this factor is
V2, i.e. the surround increases noise by ca. 40%. However, when
rsq = 1.5rg. the increase due to the surround is only 20% and if
rsa = 3rs. no more than ca. 5%. The “cost” of center-surround
organization in terms of extra noise quickly becomes negligible as
the surround grows larger.

Correlated noise

Given the relative insignificance of surround noise for large rg,
even if noise in the two pathways is completely uncorrelated, we
focus the analysis of correlated noise on the situation rg. = rg,. We
further assume maximal correlation, i.e. that center and surround
sample exactly the same set of photoreceptors and that the center-
surround transmission delay d has a fixed value, with no variation.
As before, the RF is a balanced DOG. An analytical solution is
readily available for a “difference of top-hats™ (see Van der Ziel,
1970), but for the DOG RF, we here prefer to do simulations rather
than develop extensive mathematical formalism. In the simulations
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we assumed spatio-temporally random arrival of photons, each
producing a response with four-stage “independent activation™ ki-
netics in rods. We determined by what factor (¢ /er,) the sur-
round input multiplies total noise. The result is critically dependent
on the value of d relative to the time scale of the photoreceptor
response, which can be captured in the summation time fg. There-
fore, Table 1 tabulates results for different values of center-
surround delays scaled by ts.

When the center-surround delay is large (d/ts > 1), noise from
the two mechanisms becomes practically uncorrelated, and oo /o,
converges towards eqn. (20). In a midrange of d/t¢ (around 0.5),
the total noise power is not much different from that of a single
Gaussian (opo /o, = 1). For smaller delays, however, the sur-
round input significantly decreases total noise. This is because the
delayed but strictly correlated antagonistic input curtails the single
events. In effect, the surround then serves as a high-pass filter,
decreasing the gain of the system at low to medium temporal
frequencies (see Fig. 3 in Donner & Hemild, 1996). Which of the
d/tg values in Table | would be physiologically realistic? Our best
guesses range from about 0.5 for light-adapted cones to 0.1 or even
lower for dark-adapted rods (Donner & Hemild, 1996). Over this
whole range, the RF surround will decrease the total power of
photoreceptor-originated noise in the ganglion cell. Implications
for SNRs will depend on the type of stimulus to be detected and
the nature of the detection process (see Discussion).

We have also performed simulations where the center-surround
delay d was allowed to vary. For large standard deviations (>15)
of d, center and surround noise become increasingly uncorrelated.
and opgg /o, converges towards eqn. (20). Smaller variability in a
physiologically realistic range (see Baylor & Fettiplace, 1977) has
little effect, however.

Table 1. Simulated noise in a balanced DOG RF, assuming that
center and surround receive their input from the same set of
photoreceptors, for different values of the (normalized) center-
surround delay (d/ts)"

d/1g Tpoc/ o, Upoc/Uy SNR
0.05 0.11 0.15 1.41
0.1 0.21 0.30 1.40
0.2 0.41 0.56 1.37
0.3 0.58 077 1.32
0.4 0.74 0.91 1.22
0.5 0.88 0.98 1.11
0.6 0.99 1.00 1.01
1.0 1.35 1.00 0.74
35 1.42 1.00 0.70

“Total noise standard deviation in a DOG RF is given as fraction of the
noise standard deviation in a single-Gaussian RF (corresponding to the
center mechanism alone) under the same conditions (opag /o). The third
column gives the amplitude of the quantal response in the DOG RF as a
fraction of the amplitude of the quantal response without antagonistic
surround. The fourth column gives the SNR for response-amplitude-based
detection of a brief dim flash of light in the DOG RF relative to that in the
single Gaussian. The noise values are means of results from 100 simulated
noise periods. each of which represented a 200-s exposure to a steady
(Poisson-distributed) photon flux producing on average 0.21 isomeriza-
tions in the RF per second. The quantal response was assumed to have
independent activation kinetics with n = 4. See text for further details.
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Fig. 3. A: A piece of hexagonal rod lattice. R is the resistance between
nearest neighbors and G is the leakage conductance from each rod interior
to exterior. The photocurrent is injected into the central rod (where the
leakage conductance is shown as stipled). The lattice may be divided into
12 identical sectors, as illustrated by the dashed lines delimiting one such
sector. The resistances and conductances on the border of that sector,
shown in black, belong to two sectors. while the central conductance be-
longs to all 12 sectors. Resistances orthogonal to sector borders (one of
which is shown as striped) may be omitted, because no current flows across
the border. B: The central part of the equivalent circuit of one sector of the
hexagonal lattice used in the calculations.

Determining RF size by recording the mean
and variance of responses

Theory

Sensitivity and variance information may, conversely. be used
for determining the effective size of summation apertures. For
example, Copenhagen et al. (1990) measured the mean amplitude
and variance of responses to brief, full-field flashes in toad rods
and horizontal cells, assuming that intrinsic noise could be ne-
glected. If the flash produces 7 photoisomerizations per rod (Rh*)
and signals are summed from N rods, the mean response is U =
UplN. Copenhagen et al. took ® = Uf I-N as the “expected”
variance, and by eliminating U, obtained an expression for the
number of rods contributing with equal weight:

N=U¥(c?1) (21)
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However, this expression is ambiguous in the same way as eqn.
(16) for the SNR. In fact, the response is U = UylpNg but the
variance is o = Ug Iy Ny. Elimination of U, then gives

U¥Y(cl;) = N} /Ny =N* (22)

Thus, when this method is used, the value obtained is the SNR-
equivalent number of rods. The same is true of another variance-
based method, using responses to dim, full-field flashes (U =
UplrNs) and the voltage variance o recorded without flashes but
in the presence of a dim background light /; that constitutes the
dominant noise source. According to eqns. (12) and (13) the vari-
ance is o = I Ug kts Ny. Denoting the sensitivity (the gain of the
response) to full-field flashes Sy = U/I; and eliminating U, we
get

S!%P'[BK"S

*®

2
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Simulation of signal-equivalent, noise-equivalent and

SNR-equivalent summation areas of toad rods

In the Appendix, we demonstrate the use of these methods by
simulations on the rod network in the retina of the toad, Bufo
marinus, to determine the three types of summation areas of a rod
in situ. The rod RF is interesting for this purpose, as it differs very
strongly from the top-hat profile, and in Bufo marinus the crucial
parameters are known with reasonable accuracy. The simulations
apply a special case of the discrete-component models developed
by Lamb and Simon (1976) and Tessier-Lavigne and Attwell (1988)
for calculating responses, noises, and input resistances of photo-
receptors in coupled networks. The resulting weighting profile is a
Bessel function except for a sharp peak of high but finite sensi-
tivity in the central rod. The details are described in the Appendix.

First, we simulated the mean response of each rod to an isom-
erization in the central rod. From this simulation, we obtained the
following values: Ng = 3z, = 13.7 rods, As = Ns/p = 910 um?,
Ny = 3z2 = 2.8 rods, and N* = NZ/Ny = 67 rods. We then
determined N* by the alternative method of simulating the vari-
ance of responses to dim flashes [eqn. (22)]. Two simulations of
this type yielded the values N* = 67.8 and 66.9 rods. Finally, we
determined Ny by simulating the noise from a weak, steady back-
ground illumination [eqn. (23)], obtaining Ny = 2.73 rods, in good
agreement with the above value of 2.8 rods.

Discussion

Three kinds of spatial and temporal swummation apertures

The signal in a linear neuron under full-field stimulation can al-
ways be translated into a sum of equal-weight signals from a
certain number of rods, the signal-equivalent number Ng (thus
U, = NsUp). In analogous manner, the noise can be construed as
a sum of equal-weight contributions from a noise-equivalent num-
ber of rods, Ny. For any spatial weighting function with smooth
flanks, Ny < Ng, as is qualitatively obvious from the following
argument. The noise statistic that allows straightforward addition
is variance (thus o2, = Nyod). Since variance is proportional to
the square of amplitudes, and hence to the square of weighting
factors z,, (=1), the relative contributions of peripheral rods to
variance will decrease faster than their contributions to the signal
with increasing distance from the RF midpoint. Note further that
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Ny is directly proportional to variance, so somewhat counterintu-
itively and opposite to the case for Ny and N°, increasing Ny
implies decreasing SNR.

When the convenient and customary form of eqn. (16) is used
for calculating SNRs, spatial summation must be described by the
SNR-equivalent rod number N* = N§¢ /Ny [as in eqn. (18)]. The
fact that Ny < Ny and thus N* > N tells about the signal/noise
advantage generally conferred by “smooth™ RF profiles compared
with the “top-hat” profile when the target to be detected is not a
sharp-bordered circular spot matching the (top-hat) RE This ad-
vantage is illustrated for diffuse illumination in Fig. 2. and it is
almost universally present to some degree in natural vision be-
cause of the autocorrelation of brightness values in natural scenes
and in the retinal image (cf. Srinivasan et al., 1982; Tsukamoto
et al., 1990). For the top-hat RF to achieve the same SNR as the
Gaussian RF in Fig. 2, it would have to be expanded by twofold (to
cover N* rods), which would instead degrade its capacity to re-
solve spatial detail.

We have explicitly dealt only with circularly symmetric RFs of
retinal neurons, and not with, e.g. linear cortical receptive fields or
other sensitivity profiles, as may be assumed in psychophysics. It
should be observed, however, that similar considerations apply
whenever signal and noise are calculated on the basis of photon
statistics in equal-weight spatial elements, while the real weighting
distribution has smoothly falling skirts. The analysis could be ex-
tended to any spatial weighting profile of linear detectors. More-
over, completely analogous arguments hold in the temporal domain
for the three different summation times: fg, fy, and 1.

Estimates of dark light per photoreceptor

When the number of isomerizations ( photon or thermal) that would
explain variability in a stage that sums from many rods (electrical
noise in a visual neuron, or the variability of psychophysical de-
tection) is referred back to single rods assumed to contribute with
equal weight, it is essential that it be distributed on the noise-
equivalent number Ny. If divided instead by the larger signal-
equivalent number N, as has been usual, this will obviously give
a misleadingly low value for the dark light in one rod cell. If the
actual spatial weighting profile is Gaussian, the error is by a factor
of 2. In analogous manner, the rate of dark events is underesti-
mated by a factor of 1.4—1.5 if signal-equivalent rather than noise-
equivalent summation times are used. If both these errors occurred
together, the rate of dark photon-like events per photoreceptor per
second would be underestimated by a factor of about 3.

Copenhagen et al. (1987), Aho et al. (1987), and Donner (1989)
present distributions of noise-equivalent dark rates of photon-like
events per rod in toad and frog, obtained from the response sta-
tistics and maintained discharge of retinal ganglion cells. Signal-
equivalent summation apertures were used throughout, so the
calculated event rates per rod are likely to be underestimates. The
proportion of (studied) ganglion cells where the variability in light
detection can be explained mainly by the statistics of photoisom-
erizations plus discrete “dark™ isomerization-like events of the
type first recorded in toad rods by Baylor et al., (1980) may thus
be lower than the ca. 20% suggested in these studies.

Donner (1989) used the absolute sensitivities of 105 dark-
adapted frog ganglion cells to calculate expected SNRs for thresh-
old responses on the assumption that these are affected only by
statistical variation in the number of flash-induced photoisomer-
izations plus the Baylor et al. (1980) type of dark events. In this
inverse calculation, introduction of the appropriate, i.e. noise-
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equivalent, apertures would increase expected SNRs. The correc-
tion would be important particularly in relation to the most sensitive
10% of the cells, which had “expected” threshold SNRs between
I and 2 when calculated on the basis of signal-equivalent summa-
tion apertures (Donner, 1989). This appeared hard to reconcile
with the experimenter’s impression that thresholds were in reality
“crisper” than would be suggested by such low SNR (low response
reliability). Unfortunately, the number of trials in the majority of
these threshold determinations had been too small to allow strictly
quantitative estimates of variability.

RF size and the origin of noise in amphibian rods

The rod RF was analyzed in particular detail, as it deviates very
strongly from the top-hat profile. Most of the z(r) values obtained
in the simulation agree with the function 0.3744 K|, to within an
accuracy of about 2% (Fig. 4). Excluding the midpoint, the largest
deviation was 3.5% (second nearest neighbors, K|, too large). The
relative sensitivity curve z(r) has a sharp apex in the midpoint.
When z(0) is set = 1, the six nearest neighbors have z = 0.377 and
the second nearest neighbors z = 0.217. Even then, a quantal
hyperpolarization in the central rod spreads so effectively that only
about 7% of the total signal is sent directly to the second-order
neuron, the rest being routed via other rods. This is functionally
important. because the gain of transmission from rods to second-
order cells is so high that without rod coupling the synapse would
easily saturate (Attwell et al., 1987; Belgum & Copenhagen. 1988).
For other functional aspects of the coupled photoreceptor network,
see Lamb and Simon (1976) and Tessier-Lavigne and Attwell (1988).

The measurements of rod summation areas in Bufo marinus by
Copenhagen et al. (1990) based on the mean-to-variance method
yielded values ranging from 28 to 63 rods in seven cells, with a
mean of 38 rods. As we have shown, what is obtained by this
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method is N*, the SNR-equivalent number of rods. In their calcu-
lation, Copenhagen et al. assumed that intrinsic noise was negli-
gible, just as we did in our present simulation. The fact that their
experimental mean N* = 38 rods is significantly lower than our
simulated value, N* = 67 rods, suggests the presence of nonneg-
ligible intrinsic noise in the real rods. Still, it appears as more
remarkable that clearly more than half of the recorded variation is
accounted for by Poisson variation of the numbers of photoisom-
erizations in the rod RE.

Djupsund and Hariyama (1995) recorded rod voltage in the
marsh frog Rana ridibunda in the presence of a known background
light and determined the power spectrum integral, which is equal
to o7 (Van der Ziel, 1970). Using eqn. (23), they obtained N* ~
42 (Djupsund, 1995), close to the value recorded in Bufo marinus.

The very small noise-equivalent summation area (Ny = 2.8
rods) found here for a Bufo marinus rod might at first sight seem
to conflict with the conclusion of Lamb and Simon (1976) that “as
far as the noise property is concerned. the responses of fifty cells
are being averaged (when a/A = 0.54).” In fact, there is no dis-
crepancy. because Lamb and Simon compared the noise of a rod in
the network and a rod in isolation. According to the top-hat model,
the noise comes from Ny rods in the network, but in the network
the input impedances and the voltages are reduced to a fraction
1/Ns. Thus the voltage variance in the network is reduced by the
factor Ny /N¢. This is the inverse of N*, which is about 50 when
a/A = 0.54.

The effect of the surround in difference-of-Gaussians
receptive fields

For uncorrelated center and surround noise, a unit with a DOG RF
will always be noisier than one with an equal-sized simple Gauss-
ian. In most cases, however, the noises arriving over the two path-

0.1

z(r)

0.01

r/a

Fig. 4. The circles show the normalized responses of rods at different distances from the central rod in the hexagonal network. The line,
representing the function 0.3744 K(0.439r/a), has been fitted to the whole range r/a = 0-26 included in the simulations, but only the

range r/a = 0-7 is shown.
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ways will be at least partly correlated. Here we consider the con-
sequences for the SNR under the assumption that surround noise ex-
actly replicates center noise, only it is lagged by a constant delay.

If the system operates in a quantum-counting mode, as might be
true close to the dark-adapted scotopic threshold. light detection is
independent of the form of the quantal response. Thus. even al-
lowing that surround mechanisms may be active down to very low
illumination levels (cf. Enroth-Cugell & Lennie, 1975; Rovamo
et al., 1998), the resulting modification of the quantal response
waveform would in this case have no consequences—detection
would still be limited by quantum statistics alone.

With more light, the surround effect might improve the detect-
ability of some signals if detection is based on signal amplitude.
For example, SNRs for the responses of DOG RFs to brief light
flashes, relative to SNRs for responses of equal-sized simple Gauss-
ian RFs, have been calculated in Table 1 as (Upoc/Us)/(0poc/
o.), denoted SNR,,;. For d/ts = 0.1, SNR,,; is 1.4, and for d/t5 =
0.5, SNR,,; = 1.11. Thus the detectability of brief flashes would
improve thanks to the surround (because it mainly attenuates lower
temporal frequencies, whereas the amplitude of the flash response
depends more on higher temporal frequencies). However, if detec-
tion is mediated by a temporal matched filter. the surround input
has no direct effect on SNR: detection of a signal with a certain
temporal-frequency composition is then limited only by noise of
the same temporal-frequency composition, and the surround will
(high-pass) filter the signal and the noise in exactly the same way
at all temporal frequencies (Rovamo et al., 1996, 1998). This
filtering is exemplified for two values of d/ts (= 0.1 and = 0.3) in
Fig. 3 of Donner and Hemilid (1996). With respect to noise, the
functional consequence of the surround mechanism would then
simply be a general attenuation of low- and medium-frequency
noise components of photoreceptor origin. This might contribute to
the somewhat surprising unimportance of photon noise (i.e. dom-
inance of neural noise originating more proximally in the system)
in psychophysical detection tasks even at quite low illumination
levels (Rovamo et al., 1998).

Whar the effect of externally added dyvnamic noise
can tell about summation profiles

The analysis suggests a new type of experiment to characterize the
spatial and temporal integration profiles of a noise-limited detec-
tor, analogous to the classical threshold versus stimulus area and
threshold versus stimulus duration experiments (Figs. 1C and 1D).
It is possible to add carefully calibrated amounts of dynamic spa-
tial and/or temporal white noise over specified spatio-temporal
windows in computer-generated stimulus images. The detection
threshold for a small, briefly presented stimulus can thus be mea-
sured as a function of the spatial extent or temporal duration of the
added noise (the stimulus always has to be fully contained within
the noise window both in space and time). Under certain symmetry
constraints, only two thresholds need to be measured: one for noise
added exactly to the stimulus area (or presented for exactly the
duration of the stimulus) and one for noise added over a “very
large™ area, much larger than Ay (or a “very long” noise duration,
much longer than 7y). Ay and 1y are then obtained simply as points
of intersection of two straight lines of slopes —0.5 and 0 drawn
through the data points on log-log scales. For a given type of RF
symmetry, e.g. circular, the spatial summation profile will largely
be characterized by the ratio Ay/Ag. Correspondingly, ty/ts will
tell much about the temporal summation profile.

S. Hemili, T. Lerber, and K. Donner

Conclusions

Sharp-bordered apertures of “complete summation™ remain useful
models for how a visual neuron pools photons in space and time.
They capture the extent of spatial or temporal summation in a
single number, which can in principle be obtained from just two
threshold determinations. The use of such summation areas and
times for signals has a long tradition (Ricco, 1877: Bloch 1885),
and Barlow (1957, 1958, 1964) expanded the concept to deal with
the summation of (photon) noise liable to be confused with the
signal. We have shown that for realistic weighting profiles with
smoothly falling flanks, noise behaves as if summed over smaller
areas and times than signals (Ny < Ng and 1y < 15). The noise-
equivalent apertures are useful, e.g. when relating noise observed
at a higher level to noise in underlying single photoreceptors. One
consequence of the more restricted summation of noise is that
SNRs of responses to full-field stimulation are higher than ex-
pected from signal-equivalent summation parameters, as if photons
were summed over wider, “SNR-equivalent”™ areas and times
(N® = Ngand t* > tg). This reflects the fact that (for the same
potential responsivity to fine detail or fast changes) “smooth™ weight-
ing profiles collect less noise and thus reach higher SNRs than
rectangular profiles when viewing images or time series with sub-
stantial autocorrelation (Tsukamoto et al., 1990; van Hateren, 1993).
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Appendix

Simulation of signal and noise in the rod network
of the toad retina

Signal simulations

A hexagonal rod lattice is shown in Fig. 3. The distance between nearest
neighbors is a, each rod’s interior is connected to the ground by a con-
ductance G, and between each pair of nearest neighbors there is a resistance
R. When the surface density of rods is p, the lattice constant is a =
V(2/J3)/Np = 1.075/Vp. The leakage conductance is G = G,/p =
(V3/2)G,a*. The tangential resistance R can be easily calculated along the
12 symmetry axes. In both symmetry groups (six and six axes), R = V3R,.
Assuming that ¢ < A, the product RG is

RG = 1.5a*G,R, = 1.5(a/A)? (Al)

In Bufo marinus, p = 15,000 mm > and A = 20 um (Copenhagen et al.,
1990). Thus, a = 8.774 pm, a/A = 0439, and RG = 0.289 with the
asymptotic solution U = Uy Ky(0.439 r/a).

For calculating the voltages, we divide the lattice into 12 equal sectors
(see Fig. 3A) and restrict the analysis to one sector. Due to the symmetry
of the rod network, current never crosses sector borders. The lowermost
resistors in Fig. 3B are on the border of two sectors, and this is taken into
account by including two parallel resistors 2R, one in each sector. Then the
total resistance is R. but half of the current is flowing in each sector.
Similarly, the leakage conductances of the rods along both sector borders
are divided among two sectors and the conductance of the central cell is
divided between 12 sectors. In each simulation, at least 50 rods were
included in the sector network, corresponding to 481 rods in the whole RF.
(Obviously, 50 rods X 12 sectors makes 600 rods, but it should be noted
that the central rod is then included in each sector, i.e. counted 12 times
instead of once, and, correspondingly, 18 “border” rods shared by neigh-
boring sectors are counted 12 times instead of 6. This gives a corrected
total of [600 — 11 — (6 X 18)] rods = 481 rods.) For normalized resis-
tances, we used R = | ) and for corresponding conductances G = (0.289
S. A current I (one twelfth of the total current) was injected into the
midpoint. The sum of all currents at each junction is zero and the current
in each resistor is voltage divided by resistance. The voltage of each rod
(the voltage between a junction and the ground) was obtained by solving
the resulting set of linear algebraic equations.

When calculating the currents in the peripheral resistances, the voltages
of the rods in the periphery had to be known. Assuming that the modified
Bessel function here describes the voltages well, eqn. (7) with Up = 1 V
was used to calculate these voltages. First, an arbitrary [, was used and the
ratios U/Kj at each rod were calculated. Then [, was iterated until U/K,
was practically one in each rod except in the midpoint. After obtaining the
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best fit with this current level, the voltages were normalized in order to
obtain the relative responses z(r):

z2(r) = U(r)/U(0), 0<z(r<l (A2)

Fig. 4 shows the normalized responses of the rods. i.e. the RF sensi-
tivity profile z(r). Except in the midpoint, the responses are well described
by the function K. Ny is the sum of all normalized responses z. Taking into
account the symmetry, the midpoint response is taken once, the responses
on the sector borders six times, and all the other responses 12 times. The
contribution of the small responses outside the calculated area is negligible.
We obtain Ng = 13.7 rods and Ay = Ng/p = 910 um?. Similarly, Ny is
obtained by summing z7, giving Ny = 2.8 rods. and finally N* =
N3 /Ny = 67 rods.

This simulation applies only to the values a and A given above. Because
Ky is a function of the ratio /A, the Ny values of other rod mosaics should
be proportional to pA®. However, this relation is not exact in the case of a
discrete network. In fact, Ny is approximately proportional to A7 (Lamb
& Simon 1976, Fig. 3).

Noise simulations

First, the variation of responses to weak full-field flashes was simu-
lated, assuming that flashes produced 0.2 Rh* on average. The normalized
response contribution in the central rod caused by photoisomerizations in
a rod at the distance r is nz(r), where n is the number of photoisomeriza-
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tions in each rod based on the Poisson distribution. The simulated total
response is the sum of the contributions from all rods. In each simulation,
the average response amplitude U/ and the mean square of the amplitudes,
52 (estimator of the population variance ), were determined based on
10,000 flashes. The SNR-equivalent number of rods was calculated by
putting these estimates into egn. (22). Two simulations gave the values
N* = 67.8 and 66.9 rods. in good agreement with the value N* =
¥z,)%/2z2 = 67 rods. Note, however, that even when based on samples as
large as 10,000, the N* estimates varied by more than 1%. This variability
is predominantly due to the relatively low precision in estimating popula-
tion variance o, which, moreover, improves but slowly with increasing
sample size. Indeed, with samples typical in electrophysiological experi-
mentation (< 100), variability in s* will be on the order £30% for statis-
tical reasons alone (e.g. Snedecor & Cochran, 1967; cf. data in Table II of
Copenhagen et al., 1990).

Second, the noise in the central rod due to quantal fluctuations of a
full-field steady background light was simulated. “Independent activation™
kinetics with n = 4 was assumed for the quantal response waveform. A
background light intensity of Iz = 0.2 Rh*s™' was used. with photons
distributed according to Poisson statistics on different rods and time inter-
vals &1, Arbitrarily, we set ¢ = 0.1 s and ¢ = 1 s for the simulation, the two
are subject to the condition that 8t < rs. The voltage mean square s3
obtained in the central rod was 0.371 Ug. (For the simulation, U, was
arbitrarily set = 1 V, but the value is not important, since U is eliminated
in the calculation of Ny.) Setting o = 0.371 Ug in eqn. (12) gives the
value ¥z2 = 2.73 for Ny. in good agreement with the value 3z7 = 2.8
obtained above.



