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The kinetics of  rod responses to flashes and steps of light was studied as a function of  background 
intensity (Is) at the photoreceptor and ganglion cell levels in the frog retina. Responses of  the rod 
photoreceptors were recorded intracellularly in the eyecup and as ERG mass potentials across the 
isolated, aspartate-superfused retina. The kinetics of  the retinally transmitted signal was derived from 
the latencies of  ganglion cell spike discharges recorded extracellularly in the eyecup. In all states of  
adaptation the linear-range rod response to dim flashes could be modelled as the impulse response of 
a chain of  low-pass filters with the same number of  stages: 4 (ERG) or 4 -6  (intracellular). 
Dark-adapted time-to-peak (tp, mean_+SD)  at 12°C was 2.4 + 0.6sec (ERG) or 1.7 + 0.4sec 
(intracellular). Under background light, the time scale shortened as a power function of  background 
intensity, lff b with b = 0.19 ___ 0.03 (ERG) or 0.14 ___ 0.04 (intracellular). The latency-derived time 
scale of  the rod-driven signal at the ganglion cell agreed well with that of  the photoreceptor responses. 
The apparent underlying impulse response had tp = 2.0 _+ 0.7 sec in darkness and accelerated as lff b 
with b = 0 . 1 7  _+ 0.03. The photoreceptor-to-ganglion-cell transmission delay shortened by 30% 
between darkness and a background delivering c a  1 0  4 photoisomerizations per rod per second. Data 
from the literature suggest that all vertebrate photoreceptors may accelerate according to similar 
power functions of  adapting intensity, with exponents in the range 0.1-0.2. It is noteworthy that the 
time scale of  human (foveal) vision in experiments on flicker sensitivity and temporal summation 
shortens as a power function of mean luminance with b ~ 0.15. 

Rod photoreceptor Ganglion cell Retina Visual adaptation Temporal resolution Temporal summa- 
tion Sensory latency 

INTRODUCTION 

The responses of  photoreceptor cells to light increments 
and decrements become faster as the general illumina- 
tion increases (Fuortes & Hodgkin, 1964; Baylor & 
Hodgkin, 1974; Baylor, Lamb & Yau, 1979; Forti, 
Menini, Rispoli & Torre, 1989; Kraft, Schneeweis & 
Schnapf, 1993). The improved high-frequency response 
of  this most distal low-pass filter permits higher temporal 
resolution of the whole visual system, one of  the ways in 
which the richer information potentially carried by 
larger numbers of  photons is utilized. Here we measure 
changes in the kinetics of linear-range rod responses over 
a wide range of background illumination. Our main 
purpose, beside precise description, is to clarify how far 
changes of  time scale at the photoreceptor level can 
explain those at the retinal output (derived from 
ganglion cell response latencies). The general goal is to 
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understand the mechanisms underlying the acceleration 
of  vision with increasing mean illumination. 

We find that the shortening of  time scale at both, 
the photoreceptor and the ganglion cell level is well 
described by similar power functions of background 
intensity. A power-function relation between rod pho- 
toresponse time scale and sensitivity (Fuortes & 
Hodgkin, 1964; Baylor & Hodgkin, 1974; Baylor, 
Matthews & Yau, 1980) holds somewhat less well. 
Response acceleration, but not sensitivity adaptation, 
levels off at backgrounds delivering more than 1000 
photoisomerizations per rod per second [Rh* sec ~]. In 
adaptation to stronger backgrounds, mechanisms that 
act by speeding up response recovery, thus affecting both 
sensitivity and time scale (see e.g. Fain & Cornwall, 
1993), are evidently superseded by gain controls not 
coupled to time scale. 

Published data on other vertebrate photoreceptors 
suggest that acceleration according to power functions 
of mean illumination with exponents between 0.1 and 0.2 
may be a universal rule. Moreover, the time scale of 
human foveal vision as measured in experiments on 
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temporal summation and flicker sensitivity depends on 
mean luminance in similar manner (Roufs, 1972). The 
present result, that time scale changes at the retinal 
output reproduce those in photoreceptors with the ad- 
dition only of  a minor shortening of  the retinal trans- 
mission time, supports the idea that psychophysical 
time scale changes predominantly reflect photoreceptor 
kinetics. 

METHODS 

Anima& and preparation 

Common frogs, Rana temporaria, were caught in the 
autumn either in SW Finland or in Leningrad Region 
(Russia). They were kept in near-darkness in basins at ca 
4~'C without feeding (resembling natural hibernating 
conditions). On the evening before an experiment the 
frog was transferred to a water-cooled bucket in a dark 
room where it was allowed to warm overnight to about 
15C.  

Preparation was carried out in dim red light. The frog 
was double-pithed, the eyes were enucleated and opened 
along the equator, and the anterior portion was re- 
moved. For ERG,  the retina was isolated in cooled 
Ringer and placed in a holder where it was superfused 
on the receptor side (see Donner, Hemilfi & Koske- 
lainen, 1988). For intracellular rod recordings and extra- 
cellular ganglion cell recordings, the vitreous was 
drained to a depth of 0.1-0.3 mm and the intact eyecup 
was placed in a cooled recording chamber without 
perfusion (see Copenhagen, Donner  & Reuter, 1987). 
Temperature was 11 1 2 C  in all experiments except in 
four of  the ERG experiments. 

Intracellular recording 

Recording. Rods were penetrated with glass capillaries 
(Brown-Flaming puller, Sutter Instruments) filled with 
0.5 M K-acetate and 0.5 M K-methylsulphate (resistance 
0.5-1 GO) and advanced through the retina with a 
micromanipulator  (Narishige). Photoresponses were 
d.c.-recorded, amplified (Axoclamp 2A, Axon Instru- 
ments) and stored on tape (TEAC FM recorder) and in 
digital form on a computer  hard disk. Rods were 
distinguished from cones, horizontal cells and hyper- 
polarizing bipolar cells on the basis of  spectral sensi- 
tivity, changes in response waveform with changing 
stimulus wavelength, receptive field size, and presence or 
absence of  a transient hyperpolarizing "nose"  in re- 
sponses to brighter flashes (see e.g. Brown & Pinto, 1974; 
Belgum & Copenhagen, 1988). 

Optics. In the single-channel optical system, light from 
a 50 W halogen lamp (Osram) driven by a stabilized 
current source formed a homogeneous field on the retina 
after passing through heat-absorbing filters, interference 
filters (Schott DIL),  neutral density filters (Balzers) and 
a circular 4-log-unit neutral-density wedge (Melles 
Griot). In darkness, stimuli were delivered by a com- 
puter-controlled shutter (Compur). In conditions with 
background light, the shutter was kept continuously 

open and square-wave incremental pulses of  desired 
contrast were delivered by swift deflections of the circu- 
lar wedge driven by a strong computer-controlled motor  
(MAM 36/15, Mattke, Germany).  The movement of  the 
wedge took 4~8 msec for dim flashes and maximally 
20msec for stronger flashes; very strong flashes were 
produced by rotation in the opposite direction, which 
required no more than 5 msec. The characteristics and 
performance of the motor-wedge system and the com- 
puter control are described in detail elsewhere (Djup- 
sund, Kouvalainen, Jfirvilehto & Weckstr6m, 1995). 
Stimulus duration was 100msec. For linear-range re- 
sponses of  frog rods at the low temperature (11-12~C) 
of all the intracellular experiments this can be considered 
as a "brief  flash" even under fairly strong backgrounds, 
where responses peaked at ca 500msec (see Fig. 2). 
Although the finite duration of  the pulse will in principle 
cause slight differences in the waveform of  the earliest 
rise compared with responses to ideal "delta pulses", this 
is of  no great consequence, as fits to intracellular re- 
sponses were based on the entire waveform. The circular 
test fields of  1 mm diameter (size controlled by a dia- 
phragm inserted in the beam) represented full-field illu- 
mination to single rods. 

The ERG mass rod potential 

Recording. Our technique for recording ERG mass 
receptor responses across isolated retinas with synaptic 
transmission blocked by aspartate was as described by 
Donner et al. (1988). The isolated retina was superfused 
on the receptor side by a Ringer solution containing 
(raM): NaCI 95, KC1 3, CaCI 2 0.9, MgC12 0.5, glucose 10, 
Na-aspartate 2, and buffers sodium bicarbonate 6 plus 
sodium-HEPES 6. pH was adjusted (by adding NaOH 
or HCI) to 7.5. 5% Leibovitz culture medium L-15 
(Sigma) was used in the Ringers to improve the viability 
of  the retina. L-15 permitted successful recording at 
higher temperatures, where Donner et al. (1988) found 
that retinas deteriorated rather quickly. 

Photoresponses were d.c.-recorded as a transretinal 
voltage with Ag/AgCI electrodes, digitized at 100 or 
200 Hz and stored on a computer hard disk. The optical 
system had two channels. The spectral composition and 
intensity of  the light were independently controlled with 
interference filters (Schott DIL) in the stimulus channel, 
the edge filter Schott R G  630 in the background channel, 
and neutral density filters (Schott) and wedges in both. 
Since the retina was mounted photoreceptors upwards, 
the light entered from the distal ends of  roots. Stimuli 
were homogeneous full-field flashes (20 msec, i.e. "brief  
flashes") delivered by a computer-controlled electromag- 
netic shutter (Compur). 

ERG compared with intracellular recording. Most of  
the quantitative analysis of  photoreceptor kinetics is 
based on ERG data. Intracellular voltage recording was 
used to supplement the ERG on points where the latter 
signal is problematic (see below) and to ascertain that 
the response most closely representing the signal trans- 
mitted to higher-order neurons would give essentially the 
same picture as the ERG. If this is the case, the ERG 
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technique has several advantages. Firstly, it is compara- 
tively non-invasive, as the rods are neither penetrated (as 
in intracellular recording) nor teased apart from the 
retinal tissue (as in current recording from single cells). 
This is crucial when studying response kinetics, which is 
particularly vulnerable to disruptive treatments. Sec- 
ondly, the signal is an ensemble average from tens of 
thousands of rods, hence has a high signal/noise ratio. 
This makes it possible to study responses to weak stimuli 
without extensive averaging. Thirdly, the ERG signal is 
the ohmic voltage associated with the current response of  
the rod and is unaffected by feedback mechanisms which 
(for our present purposes) "distort"  membrane voltage 
responses (see Fig. 1). 

On the other hand, although the rods in the isolated 
retina used for ERG were intact and embedded in tissue, 
they were of course detached from the pigment epi- 
thelium and exposed to artificial superfusate. Further, 
the transretinal ERG has its own weaknesses that must 
be clearly realized: (1) peculiar relations between tissue 
currents and the resulting voltage (Donner, Hemilfi & 
Koskelainen, 1992), (2) contributions from other photo- 
receptors and (3) distortion of later parts of  the re- 
sponses by glial currents (for both the latter points, see 
Fig. 1). 

Extracellular ganglion cell recording 

Action potentials were extracellularly recorded with 
glass micropipettes filled with 3 mM NaCI (resistance ca 
10 M~) from single ganglion cell somata or axons in the 
eyecup preparation. The eyecup was kept in a moist 
chamber at 11 12~C, whereby stable recording from the 
same cell for 10 hr or more could be achieved without 
oxygenation or perfusion. In a two-channel optical 
system, interference filters (Schott DIL) and neutral 
density filters (Balzers) and wedges could be indepen- 
dently inserted to provide background and stimulus 
lights of desired wavelengths and intensities. Circular 
test spots were produced by inserting masks into the 
beam. Square-wave light pulses of desired duration were 
delivered by a Compur electronic shutter. The interstim- 
ulus interval was 30 or 45 sec depending on the state of 
adaptation and the intensity of the stimulus. To isolate 
rod-driven responses over as wide intensity ranges as 
possible, backgrounds were yellow or red (i.e. cone-sup- 
pressing, 558 or 615 nm) while stimuli were blue-green 
(i.e. rod-favouring, 495 or 512 nm). All results refer to 
ON-responses (recorded from ganglion cells of classes 
I 3), which correspond to the leading edge of the 
photoreceptor hyperpolarization (see Donner, 1989). 

Light calibrations 

Rates of isomerizations in red rods. All stimulus lights 
were calibrated in units of incident quanta per mm 2 sec 
with an Airam UVM-8 radiometer or a calibrated pin 
diode placed in the position of the retina (see Koske- 
lainen, Hemiifi & Donner, 1994). This was converted 
into numbers of photoisomerizations per rod per second 
(Rh* sec ~) as follows. The mean density of rhodopsin 
rods in R. temporaria is 15,700mm 2 and the mean 

length and diameter of  the roughly cylindrical outer 
segments 43 and 6.4 ~m, respectively (Hemilfi & Reuter, 
1981). The mean optical density of  20 good isolated 
retinas measured as described by Gyllenberg, Reuter and 
Sippel (1974) was 0.344. Assuming a quantum efficiency 
for isomerization of 0.66 (Dartnall, 1972), 36% of 
502-nm photons incident on the retina produce isomer- 
izations in rhodopsin rods. Rates of isomerizations from 
other wavelengths are lower in proportion to the lower 
absorbance of rhodopsins02. 

Analysis 

The dim-flash rod response. Dim-flash rod responses 
were fitted with the "independent activation" model of 
Baylor, Hodgkin and Lamb (1974a). Although the 
model must now be regarded as purely phenomenologi- 
cal, it provides a good description of  response wave- 
forms in a large number of  species. The model of Lamb 
and Pugh (1992), which relates the early rise of  responses 
to phototransduction mechanisms differs only marginally 
as regards the predicted shape of the rising response (see 
Hood and Birch, 1993a, b). 

The response Rv(L t )  to a flash of intensity 
I [Rh* sec i] and (very short) duration tv is [cf. equation 
(41) in Baylor et al. (1974a)]: 

R v ( L t ) = S  Fltv[n"/(n-  l)" J]e ' /~(1-e  '/~)" i (1) 

where t is time after flash. The parameters are: (1) the' 
absolute flash sensitivity Sv (peak response amplitude 
per Rh* in the linear response range), which scales 
response size; (2) the number of stages in the activation 
chain n, which determines the waveform of the response; 
(3) the time constant r, which determines the overall time 
scale of the response. SF was determined by fitting 
Michaelis functions (in darkness: modified Michaelis 
functions) to three-point intensity response data as de- 
scribed by Donner, Hemilfi and Koskelainen (1989). 

Describing the time-course of a recorded response by 
equation (1) implies fixing values for n and r. One result 
of the experiments to be described was that n could, to 
a first approximation, be considered as independent of 
background intensity (see Figs 2 and 3). Since n and 
are interdependent and our main purpose was to 
measure changes in r, we therefore constrained n to have 
a constant value for one cell (in ERG, for one retina) 
under all backgrounds. The time scale is then completely 
captured by r or any well-defined time criterion, such as 
the time when the response has risen or fallen back to 
a certain proportion of its maximum amplitude. A 
particularly convenient measure is the time-to-peak ( tp )  

of the flash response [obtained by differentiation of 
equation (1) and setting dRy(I, tp)/dt = 0]: 

tp = Z" In n. (2) 

Ganglion cell L-functions. The response latency of 
ganglion cells (L) was measured as the time from the 
onset of a step-of-light stimulus to the midpoint of the 
first spike. Step stimulation (5 sec square-wave pulses) 
was used in order to extend the available range of purely 
rod-driven responses (before cone intrusion at high 
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stimulus intensities). It is assumed that the ganglion cell 
always fires the first spike at a moment  when the rod 
response summed over its whole receptive field has 
reached a fixed criterion (threshold) amplitude RT and 
been transmitted through the retina. The step response 
of  the rods, Rs (L  t), is essentially the time integral of  the 
flash response in equation (1) [cf. equation (40) of  Baylor 
et al. (1974a, b)]: 

Rs(I,  t) = SI(1 - e '/~)" (3) 

where S is step sensitivity (final response amplitude per 
Rh* sec t in the linear response range). Observe that: 

S / S v  = tl = ~[n/(n - 1)]" ' (4) 

where t~ is the integration (or summation)  time of the 
response. 

We denote by I = l (I)  (photoreceptor latency) the time 
from stimulus onset in which the summed photoreceptor 
response rises to RT, and by d the retinal transmission 
delay. Thus ganglion cell latency L = l + d. The step- 
stimulus intensity that elicits a rod response o f  f inal  
amplitude RT (summed across the ganglion cell receptive 
field) is the threshold intensity, IT = Rv /S ,  thus Rv = S11. 
Observing that Rs = RT when t = l in equation (3) we 
obtain: 

Rv = SIT = SI(1 - e "~)". (5) 

Thus photoreceptor latency as function of stimulus 
intensity is: 

l = - v  ln[1 - (IT~I)'~"]; (6) 

and ganglion cell latency as function of  stimulus inten- 
sity: 

L = l + d = d - v ln[1 - (IT~I)'~']. (7) 

We term this the L-function, L = L( I ) .  Fitting L-func- 
tions to recorded latencies allows estimation of the rod 
parameters n and v as well as the retinal transmission 
delay d. For each cell in each state of  adaptation, the 
data to be fitted consisted of  a set of  latencies to between 
5 and 15 different stimulus intensities, usually spaced 
0.5 log units apart  (thus covering 2 7 log intensity units). 
Each latency was the mean obtained from at least 3 
presentations of  the same stimulus. 

Threshold intensity IT was first determined as the 
intensity to which the ganglion cell responded on 50% 
of the stimulus presentations (e.g. Donner,  1987a). After 
that, n was determined by fitting power functions to the 
latency data. This procedure, described in detail by 
Donner  (1989), serves as an "objective" way of deter- 
mining n. For  ganglion cells as for rods, n was con- 
strained to be constant in different states of  adaptation, 
so for each cell the integer n that would on average 
provide the best description of  all data sets was chosen. 
The transmission delay d was then determined by an 
iterative procedure where a tentative d value was first 
subtracted from each latency, transforming the data into 
a set of  L -  d values. Rearranging equation (7) gives: 

= - ( L  -- d)/ln[1 -- (Ix~I)'~']. (8) 

Thus each of the L - d values provides an independent 
estimate for v. Ideally, all estimates from one cell under 
one background should coincide. A natural criterion for 
choosing d was therefore to take the value that would 
minimize the variance of r-estimates within a data set. 
This d-value was found by trying different values (with 
a resolution of 5 msec). The final ~-estimate for one cell 
in one state of  adaptation was the mean of these 
least-variance estimates from the relevant data set. 

For  more detailed justification of the procedures the 
reader is referred to Donner  (1989). 

RESULTS 

Rod acceleration under background." general properties o f  
intracellular and E R G  responses 

A qualitative idea of how flash responses of  rods 
accelerate under background light is given by Fig. 1, 
where the upper panels show the "dark"  situation and 
the lower panels the "background"  (100 or 150 
Rh* sec ~) situation. The figure also illustrates the 
differences between responses recorded by the two tech- 
niques we used: the left-hand panels show intracellular 
voltage records from one rod, the right-hand panels 
ERG mass potentials from one retina. With both tech- 
niques it is clear that the rising phase of all responses, as 
well as the return to baseline of  small responses, are 
accelerated by backgrounds. 

For large responses the picture is more complicated, 
revealing significant differences between intracellular 
and E R G  responses. The former show a fast initial 
relaxation from peak, particularly under background 
light [Fig. I(C)]. This is due to feedback mechanisms that 
do not affect the photocurrent  and thus not the ERG 
(Baylor et al., 1974a, b; 1979; Schwartz, 1976; Cervetto, 
Pasino & Torre, 1977; Detwiler, Hodgkin & Mc- 
Naughton,  1980). ERG responses are instead distorted 
by two components of  non-rod origin. First, the late 
parts especially of  larger responses are contaminated by 
glial currents obscuring the actual t ime-course of the 
photoreceptor component  (e.g. Tomita  & Yanagida, 
1981). Second, under stronger adapting backgrounds a 
distinct cone response [sharp peak in Fig. I(D)] rides on 
top of the rod response to brighter flashes. 

In this paper we restrict our attention to the kinetics 
of  small, linear-range responses. Linearity of  photo- 
transduction in a low-intensity (or low-contrast) stimu- 
lus range implies that response amplitude grows in direct 
proportion to the numbers of  photoisomerizations re- 
ceived, while the waveform and kinetics stay constant 
(see e.g. Pugh & Lamb, 1990). Responses to dim, brief 
flashes of  light thus (ideally) reproduce the waveform of 
the elementary response to a single photoisomerization. 

Changes in the time scale o f  dim-flash voltage responses 

Figure 2 shows dim-flash responses from one rod 
recorded in darkness (A) and against 3 backgrounds 
delivering l, 10 and 100 Rh* sec ~, respectively (B-D). 
The smooth curves trace equation (1) with the number 
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of stages constrained to be the same (n = 4) under all 
backgrounds. They are seen to provide reasonable fits to 
all responses, implying that response shape stays roughly 
constant. The difference when going from (A) to (D) is 
that the time scale shortens (and sensitivity decreases). 
These central observations were confirmed in 7 rods 
studied under at least 3 background intensities. The 
best-fitting n-value varied between 4 and 6. 

Although the responses in Fig. 2 are averages of many 
single records, they are still rather noisy. The basic 

reason is that we have to consider responses of very 
small amplitude, as only these can be trusted to be 
broadly unaffected by voltage feedback mechanisms (see 
above). Accurate model-fitting to such small responses, 
however, would really require much more extensive 
(time-consuming) averaging. For  determination of par- 
ameters under a large number of background intensities, 
we therefore mainly relied on the leading edge of  ERG 
responses, which may be preferable in other respects as 
well (see Methods). 
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F I G U R E  1. Families of  intracellular (A, C) and E R G  (B, D) rod responses to brief flashes of  light in darkness (A, B) and in 
the presence of  background illumination (C, D): I B = 100 Rh* sec i in (C) and 150 Rh* sec i in (D). (A, C) Intracellular rod 
photovoltages recorded in the eyecup. Background and flashes both 512 nm, flashes at 0.5 log unit intensity intervals starting 
from 1 Rh* in (A) and 50 Rh* in (C). All traces are averages of four single responses. Temperature 12°C. (B, D) E R G  mass 
receptor potentials recorded across the isolated retina. Flashes at 1 log unit intervals starting from 22 Rh* in (B) and 280 Rh* 
in (D). The smallest responses are averages of  eight, the other traces show single responses. Flashes 494 nm, background "red" 
edge filter transmitt ing above 630 nm (to suppress cones relatively more than rods). In all responses a protracted glial tail is 
evident (see particularly the slow dome-like potential peaking about  4 sec in the largest responses). At the highest st imulus 

intensity in (D), a large cone response (sharp peak) appears. Temperature 21°C. 
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FIGURE 2. Linear-range responses recorded intracellularly in one rod 
in darkness (A) and against backgrounds delivering l (B), 10 (C) and 
100 Rh* sec t (D). Nominal flash intensities [Rh*]: 1.0 (A), 1.6 (B), 7.9 
(C) and 50 (D). All traces are averages of 16 single responses. Smooth 

curves trace equation (1) with n - 4 .  

Changes in time scale and sensitivity of  dim-flash ERG 
responses 

Time scale vs background intensity. Figure 3 shows the 
early parts o f  ERG responses to l inear-range flashes 
recorded from one retina [same as in Fig. I(B) and (D)] 
in darkness and against two backgrounds [1.5 Rh* sec 

in (B) and 150 Rh* sec ~ in (C)]. As already pointed out, 
later parts o f  E R G  responses, from peak or even earlier, 
are distorted by glial currents and therefore are neglected 
here. The smooth  curves fitted to the leading edges trace 
equat ion (1) with the same number o f  stages (n = 4) in 
all cases. The consistently good  fits support the idea that 
the shape remains invariant while the time scale and 
sensitivity change.  Changes  in kinetics can then be 
described by a single time parameter. In the fo l lowing we 
use the time to peak (tp) o f  the model  response fitted to 
the leading edge o f  the recorded response. 

Figure 4(A) shows (on l og - log  coordinates)  how tp 
changed with the state o f  adaptation in one retina. First 
consider the solid squares, which plot log tp against log I~ 
(lower abscissa). Over a wide range o f  background 
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FIGURE 3. Linear-range ERG responses from one retina in darkness 
(A) and against backgrounds of intensities 1.5 (B) and 150 (C) 
Rh* sec t. Flash intensities [Rh*]: 22 in (A) and (B), 280 in (C). All 
traces are averages of eight single responses; (A) and (C) are the 
smallest responses in Fig. 1 (B) and (D) on expanded scales. Smooth 

curves trace equation (1) with n -4 .  Temperature 21'C. 
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F I G U R E  4. (A) Time scale of  E R G responses under adapting 
backgrounds: log t o plotted as function of  log I B (11, lower abscissa) 
and of  log S F (©,  upper abscissa). The regression line has a slope of  
-0 .206 .  (The data point for the weakest background and those for the 
3 highest backgrounds were not  included in the fit.) (B) Sensitivity of  
E R G  responses under adapting backgrounds: log SF and log SEr a as 
functions of  log I B from the same experiment. The regression line fitted 
to the log S r data  below log 1 B = 2.5 has a slope of  0.51. (Observe that 
changes of  log Rm, x can be directly read from the figure as the difference 

between log Svrel and log SF. ) Temperature 16.5°C. 

intensities extending to at least 1000 Rh* sec ' they fall 
approximately on a straight line: 

log tp = log a -- b log lB. (9) 

The regression coefficient is --0.206 (r 2 >0.99) for 
the points included in the fit (see figure legend). In all 
7 retinas studied, straight lines provided good fits to 
the log-log data ( r2>0.97  for all), with mean 
b = 0.19 + 0.03 (SD). Equation (9) is equivalent to: 

tp = a l B  b. (10)  

The change of rod response time scale in our ERG 
experiments can thus be described by a power function 
of background intensity with exponent -0 .19 .  Having 
established this, we fitted power functions also to time 
scale changes estimated from intracellular data. In 7 cells 
studied under the I, 10 and 100 Rh* sec ' backgrounds 
(as in Fig. 2), the mean exponent for best fits was 
-0.14_+ 0.04 (SD), indicating a somewhat shallower 
background-dependence than for ERG responses. Fac- 
tors likely to cause such a difference are considered in the 
Discussion. 

It should be added that the ERG experiments were 
done under three different temperatures (three at 12°C, 
three at 16-17°C, and one at 21°C) to roughly explore 
whether the steepness of  the log tp - log IB relation might 
vary with temperature. No consistent temperature effect 
on b was detected, although dark-adapted response 
kinetics was about twice as fast at 21°C compared with 
12°C. 

Sensitivity vs background. Figure 4(B) shows how 
sensitivity changed with background in the same retina. 
First consider the dependence of  (absolute) flash sensi- 
tivity, log SF, on log IB (open squares, left-hand ordi- 
nate). This "threshold-vs-background-intensity" (TVI) 
function for flash responses closely follows "square- 
root"  adaptation over a considerable range: the re- 
gression line shown for points below log lB=2.5  
(IB< 300 Rh* sec ~) has slope 0.51 (r 2 >0.99). The 
mean slope over this range in all 7 retinas was 
0 .54+0.13 (SD) and the mean background intensity 
that depressed SF by 50% from its dark-adapted value 
was 0.8 + 0.2 Rh* sec ~. Under backgrounds stronger 
than 300 Rh* sec ~ the adaptation curve steepened (see 
further below). 

Time scale vs sensitivity. Next consider the relation 
between log to and log SF (panel A, open circles, upper 
abscissa). This format has been used in several previous 
studies of  time scale changes in photoreceptors (Fuortes 
& Hodgkin, 1964; Baylor & Hodgkin, 1974; Baylor 
et al., 1980). Self-evidently, if log tp and log SF were both 
perfectly linear to loglB, their mutual relation would 
also be linear. In the particular case of TVI slope 0.5, the 
log t p -  log SF relation would be twice as steep as the 
log t p -  log IB relation. This is approximately true over 
the first 1.5 log units of sensitivity in Fig. 4(A). For all 
the 7 retinas studied, the linear part of the average 
log t o - l o g  Sv relation would obviously have a slope of 
0.19/0.54 ~ 0.35 ,~ 1/2.8. Baylor et al. (1980), fitting a 
swarm of  log to vs log Sv data from many single toad 
rods by linear regression over a similar range, obtained 
the slope 1/2.65. Thus, over a certain range, the relation 
of time scale to flash sensitivity can also be approxi- 
mated by a power function, close to the prediction of the 
Fuortes-Hodgkin (1964) model where sensitivity and 
time scale are assumed to be mechanistically coupled so 
as to produce the relation: 

tp oc S~ I("-0. (11) 

For  n = 4  the slope should be i/3, not far from the 
observed 1/2.8. From Fig. 4(A) it is evident, however, 
that the linear relation between log tp and log SF is a 
good approximation only over a limited range. The slope 
rather appears to be monotonically decreasing, 
suggesting that SF is reduced also by mechanism(s) that 
do not simultaneously shorten the time scale of re- 
sponses. A trivial mechanism of  this kind would be 
response compression as the maximal response ampli- 
tude (Rmax) begins to decrease under stronger back- 
grounds. This alone cannot, however, account for the 
changes, as seen from the plot of  relative sensitivity 
(SF,re I = SF/Rmax) as function of background in Fig. 4(B) 
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(open circles, right-hand ordinate). Relative sensitivity is 
a measure where effects of  response compression have 
been factored out; it expresses the fraction of the total 
light-sensitive conductance turned off by one photoiso- 
merization. The strong change of SF,r,~ in the range where 
time-scale changes level off (IB > 1000 Rh* sec ~) there- 
fore indicates that "Fuor tes-Hodgkin- l ike"  adaptat ion 
is gradually supplanted by a gain control not coupled to 
time scale. 

Time scale of the rod signal after retinal transmission: 
ganglion cell recordings 

Figure 5 shows four sets of  latency vs. stimulus-inten- 
sity data, recorded from one ganglion cell in darkness 
and against 3 backgrounds spaced 1 log unit apart. The 
data are plotted on reciprocal ordinates to resolve the 
small differences between the short latencies at high 
stimulus intensities. The continuous curves are L-func- 
tions (see Analysis section) with n = 5 but differing in Iv, 

and d. As noted previously, reciprocal latencies ( l /L)  
plotted against log intensity resemble straight lines, and 
these lines become steeper with light-adaptation (Don- 
ner, 1987b). From equation (7) it can be seen that, with 
n fixed, changes in the L-functions depend on: (1) rises 
of  threshold intensity Iv, predominantly causing right- 
ward shifts on the log I abscissa; (2) shortening of  time 
scale (~ o r  tp),  predominantly causing upward shifts on 
the 1/L ordinate; (3) shortening of the transmission delay 
d, making the functions steeper. 

Figure 6 decomposes the changes into these three 
basic factors. Panel (A) plots the increment threshold 
function, log IT VS log IB, which rises via a square-root 
range to a final slope of  1.2. Such adaptation, somewhat 
steeper than the Weber relation (1.0), is common for the 
step thresholds of  ganglion cells stimulated with moder- 
ately large test spots (Donner, 1981). Panel (B) shows 
how log tp of  the apparent  underlying photoreceptor 
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F I G U R E  6. Changes in sensitivity and time parameters of  the cell of  
Fig. 5. (A) Increment threshold function: log step threshold intensity 
(log IT) as a function of log I s. The two straight segments fitted by eye 
have slopes 0.5 and 1.2. (B) Log lp of  the apparent  underlying impulse 
response as a function of log I s.  tp was obtained from r according to 
equation (2). The regression line has slope -0 .17 .  (C) Transmission 
delay d as a function of log 1 B. The lines have been drawn to connect 

the data points. 

impulse response changed with background. On log-log 
coordinates, the data is fitted by a straight line with 
regression coefficient - 0 . 170  (r2=0.98) .  The mean 
slope from similar experiments on 7 cells was 
- 0 . 1 7  _+ 0.03 (SD) (r 2 > 0.97 for all fits). Obviously, this 
is in good agreement with the response acceleration 
observed in rods [equations (9) and (10) with b = 0.17]. 

Panel (C) shows how the transmission delay d short- 
ened with increasing loglB. In 7 cells, the average 
decrease in d was by 30% over the full adaptation range, 
from 159 + 23 msec in darkness to 114 _ 11 msec (differ- 
ent at P < 0.01, t-test for paired values). Under the 
strongest backgrounds cones are likely to intrude at high 
stimulus intensities, so the quantitative estimate might 
partly reflect a transition from slower rod transmission 
to faster cone transmission (Schnapf & Copenhagen, 
1982). This cannot  be the full explanation, however, 
because even under the strongest of  our yellow back- 
grounds, rods determined responses to the blue-green 
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stimulus over a substantial range from threshold up- 
wards [see Fig. 2 in Donner  (1987a) where rod and cone 
thresholds are clearly distinguished]. At the moderate 
backgrounds where d already begins to change, there 
would be little if any cone involvement. The results thus 
suggest that the transmission of  rod signals is indeed 
modified. 

DISCUSSION 

Response time scale in rods and ganglion cells 

The time scale of the rod-driven excitation at the 
ganglion cell derived from latencies and that of  the 
actual responses of the rod photoreceptors both 
contracted as power functions of background intensity, 
with no significant difference between exponents 
( -0 .17_+0.03  in ganglion cells compared with 
- 0 . 1 9  __ 0.03 for rod ERG responses and - 0 . 1 4  _+ 0.04 
for intracellular rod responses). Response time scales at 
the two levels agreed in absolute terms as well. At 12°C, 
the time to peak of  the apparent photoreceptor impulse 
response underlying dark-adapted ganglion cell re- 
sponses was 2.0+_0.7sec ( ± S D ,  28 cells), compared 
with ER G rod tp--2.4 __ 0.6 sec (7 retinas) and intra- 
cellular rod tp = 1.7 _+ 0.4 sec (10 cells) [ERG data nor- 
malized to 12°C by applying Q~0 = 2.1 (Donner et al., 
1988)]. 

Thus, ganglion-cell-derived values for both b and tp 
were intermediate between rod values from intracellular 
and ERG recordings. On the other hand, the small 
although systematic differences between values obtained 
by the two latter techniques may be due to several known 
effects, some of  which should (in the present context) 
properly be considered as experimenal artifacts. In the 
intracellular dim-flash responses (Fig. 2), signal/noise 
did not permit accurate model-fitting to the leading edge 
alone. When the whole response is used, any remnant of 
the voltage-dependent feedback mechanisms considered 
in connection with Fig. 1 will shorten the apparent 
absolute time scale and probably weaken its back- 
ground-dependence. [Note that the flash threshold of, 
for example, a dark-adapted ganglion cell may be 
0.01 Rh* or less, thus a response to 1 Rh* in a dark- 
adapted rod as in Fig. 2(A) is not physiologically 
"small".] By contrast, ERG mass rod responses from the 
superfused retina are sensitive to several potentially 
decelerating factors, one being a relative overrepresenta- 
tion of the slower response components from the distal 
ends of  the rods (see Donner  et al., 1992). This " t ip"  
component is known to be relatively most strongly 
depressed by background (Schnapf, 1983), which would 
enhance response acceleration. 

Scotopic temporal summation in frogs, cats and humans 

A functionally important  temporal characteristic of  
ganglion cells is the time over which photon signals are 
integrated for a threshold response, the summation or 
integration time ti. This can be measured independently, 
without relying on temporal properties of recorded re- 

sponses, as the ratio of threshold intensities under flash 
and step stimulation, multiplied by flash duration (Bay- 
lor & Hodgkin, 1973). Under the independent activation 
model, ti is related to T by equation (4), implying (when 
n is constant) that ti should show the same dependence 
on IB as do ~ and tp. It is satisfying to note that the 
summation time of  frog ganglion cells under background 
light has been found to decrease according to the power 
function IB °~7 (Donner, 1987a), identical to that found 
here for the latency-derived time scale. This lends sup- 
port to the linear model we have applied. 

Interestingly, the summation time of cat ganglion 
cells appears to shorten in similar manner, roughly as 
IB °18, starting at a background intensity of about 
3 × 105 quantas07 deg -2 sec i (Fig. 7 in Barlow & Levick, 
1969). This is roughly the/B-range where individual cat 
rods in situ seem to start desensitizing (Steinberg, 1971; 
Sakmann & Filion, 1972). Assuming that rod density is 
400,000 mm -2, that 1 deg = 217 #m in the cat eye (Stein- 
berg, Reid & Lacy, 1973) and that 25% of corneal 
507-quanta produce isomerizations in rods (Barlow & 
Levick, 1969), 3 × 105 quantas07 deg z sec ~ would corre- 
spond to 4 Rh* sec ~, i.e. an intensity where each rod on 
average receives roughly one photoisomerization per 
integration time (ti ~ 300 msec; see Tamura, Nakatani & 
Yau, 1989). Note that increment thresholds of  cat 
ganglion cells start rising at 2 4  log units weaker back- 
grounds (Shapley & Enroth-Cugell, 1984). This suggests 
that scotopic time scale changes in mammals, too, 
originate in the rod photoreceptors. 

In human rod vision, decrease of  temporal summation 
(Sharpe, Stockman, Fach & Markstahler, 1993) and 
improvement of  high-frequency flicker sensitivity 
(Sharpe, Stockman & MacLeod, 1989) require/B-levels 
ca 3log units higher than those where increment 
thresholds start rising. The minimum background inten- 
sity for affecting scotopic temporal summation seems to 
be around -0 .5 -0 .0  log scot.td (Fig. 4 of Sharpe et al., 
1993), corresponding to 2-6 Rh* sec ~. Again, this is 
consistent with a mechanism residing in the rods. 

Sensitivity changes 

Over a 2.5 log unit background range, rod ERG flash 
sensitivity adapted approximately as the square root of 
background intensity, the sensitivity-halving back- 
ground being ca 0.8 Rh* sec ~. Similar shallow adap- 
tation has been found previously in mass receptor 
recordings from isolated frog retina [Figs 1-3 of  Hood 
and Hock (1975) indicate average slope 0.5 over a 
corresponding range], but the conventional view from 
work on single rods is to regard it rather as a transition 
range towards a "proper" ,  near-Weber dependence on IB 
(Fain, 1976; Baylor et al., 1980; Leibovic, Dowling & 
Kim, 1987). We wish to emphasize that the wide range 
of square-root adaptation observed here is not likely to 
be an artifact peculiar to the mass response of  a hetero- 
geneous population of superfused rods, because rod- 
driven flash thresholds of  ganglion cells in the intact 
eyecup also follow a slope of  approx. 0.5 up to about 
the same limit (ca 200Rh*sec-~: Reuter, Donner & 
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Copenhagen, 1986; Donner, 1987b). This is far beyond 
the background range where square-root adaptation can 
be interpreted as photon-limited flash detection by the 
ganglion cell itself, and is thus likely to reflect changes 
in rod sensitivity. [See Donner  et al. (1990), who, how- 
ever, monitored step thresholds.] Under dim and moder- 
ate backgrounds where protection from saturation is not 
yet a primary concern, square-root adaptation would in 
fact seem "ideal" for a rod, reducing response ampli- 
tudes by no more than is necessary to keep the output 
noise constant while photon fluctuations increase in 
proportion to x/~B- 

Two types o f  background adaptation 

The comparison of changes in sensitivity and time 
scale (Fig. 4) clearly reveals that two different types of 
background adaptation processes are present in rods, 
only one of which is associated with acceleration of  
photoresponses. Under low to moderate IB, correspond- 
ing to the range of  square-root adaptation, a relation 
between sensitivity and time scale approximating that 
foreseen by the Fuortes-Hodgkin model was observed 
(described by tp ~ S ~  '2"~). With increasing IB, however, a 
progressively larger proportion of the sensitivity changes 
expressed a process that decreases the gain of  photo- 
transduction without affecting time scale. (The latter 
type of adaptation should not be confused with response 
compression due to decreasing R . . . .  which is a third 
factor that affects the size of  responses and thus SF). 

Both types of  adaptation might ultimately depend on 
the decreases in intracellular calcium ([Ca 2+ ]~) known to 
accompany responses to light (see Pugh & Lamb, 1990; 
Fain & Cornwall, 1993). Lowered [Ca2+]~ is known to 
speed up the recovery of responses by at least two 
mechanisms: accelerated resynthesis of cGMP (Koch & 
Stryer, 1988) and reduction of the lifetime of the active 
form of  rhodopsin (Kawamura, 1993). Obviously, such 
mechanisms reduce response amplitude and shorten the 
time scale. However, calcium is known to modulate 
several aspects of  phototransduction. Lagnado and Bay- 
lor (1994) have recently reported one mechanism 
whereby lowered [Ca2+]~ reduces the gain of the acti- 
vation cascade of phototransduction without affecting 
time scale, and others may remain to be discovered. 

Acceleration in other vertebrate photoreceptors 

Rod~. Table 1 collects data from published work 
where it has been possible to extract photoreceptor tp in 
at least two states of  adaptation. Often only two values 
under background have been available; we have then 
assumed that time scale changes as a power function of 
background intensity, and give the exponent that would 
fit the data. Where possible, we have also given expo- 
nents for power functions of sensitivity. Many of the 
values have been extracted from results of single exper- 
iments. In view of this, the estimated exponents show 
surprisingly little variation. 

Mammalian rods, however, appear to accelerate less 
strongly under background than rods of lower ver- 
tebrates. Although the difference may well be (partly) 

TABLE I. Response acceleration in vertebrate photoreceptors. The 
table gives the exponents b that best describe the acceleration of  
responses assuming that time scale is a power function of background 
intensity [equation (10), left-hand column], or a power function of  flash 
sensitivity (right-hand column). Rod fits were restricted to back- 

grounds < 104 Rh* sec ~. See text for details. 

Species, signal b(tp 3~_ IB ~) b(tp vc SF '~) 

Non-mammal ian  rods 
1. Frog, ERG 0.19 0.35 
2. Toad, photocurrent 0.23 0.41 
3. Toad, photocurrent 0.38 
4. Toad, photocurrent (base) 0.25 0.42 

(tip) 0.28 0.37 
5. Triturus, photocurrent 0.16 0.39 
6. Skate, photocurrent 0.24 

Mammal ian  rods 
7. Guinea pig, photocurrent 0.09 0.29 
8. Cat, photocurrent 0.14 
9. Rabbit, photocurrent 0.09 0.15 

10. Human, photocurrent 0.09 0.17 
11. Human, ERG a-wave 0.1 l 
Cones 
12. Turtle, intracellular 0.19 0.23 
13. Monkey, photocurrent 0.04 

Sources: 1. Present study; 2. Baylor, Lamb and Yau (1979); 3. Baylor 
et al. (1980); 4. Schnapf (1983); 5. Forti et al. (1989); 6. Cornwall, 
Ripps, Chappell and Jones (1989); 7. Matthews (1991); 8. Tamura 
et al. (1989); 9. Nakatani, Tamura and Yau (1991); 10. Kraft, 
Schneeweis and Schnapf (1993); 11. Hood and Birch (1993a); 12. 
Baylor and Hodgkin (1974); 13. Schnapf et al. (1990). 

real, the acceleration of single mammalian photo- 
receptors could be underestimated. Until recently it was 
thought that mammalian rods lacked even sensitivity 
adaptation (Baylor et al., 1984). It now appears that 
sensitivity adaptation is ubiquitous, and that failures to 
observe it were related to the disruptive preparative 
procedures associated e.g. with suction-pipette record- 
ing. Even the comparatively robust rods of amphibians 
adapt much less well when drawn into pipettes than in 
the intact retina or eyecup (Donner et al., 1990). Thus 
it would not be surprising if kinetic adaptation could 
easily be partly "washed out". 

Cones. Data from the literature on the time scale of 
linear-range cone responses are scarce. Baylor and 
Hodgkin (1974, their Fig. 9) present log tp - log Sv data 
for single turtle cones exposed to backgrounds. For 5 
cells there are enough points (6 or more, in one case 5) 
over 1.5 [ogunits of sensitivity change under back- 
grounds to allow reasonably accurate fitting of power 
functions. The mean slope is -0 .23  +0.07 (SD), 
r 2 > 0.91. In conjunction with the TV! function for the 
same cells [slope 0.82 over the relevant range, Fig. 7 in 
Baylor and Hodgkin (1974)], the estimated log tp - log IB 
slope becomes -0 .19 .  This is a rough estimate, but it 
does suggest that cones do not generically behave differ- 
ently from rods. 

Human cones are of particular interest since a large 
body of  relevant psychophysics (summarized in Table 2) 
refers to foveal cone vision. The evidence is somewhat 
contradictory. Current recordings from single primate 
cones have shown clear gain adaptation, but almost 
negligible acceleration under backgrounds (Schnapf, 
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TABLE 2. Acceleration of human foveal vision .as function of mean 
luminance: exponents b that best describe the shortening of time scale 
as function of mean luminance (background intensity) in experiments 

on flicker sensitivity and "critical duration" (i.e. summation time) 

Source b(z oc/fib) r 2 

Flicker sensitivity: cutoff frequency 
1. de Lange (1952) 

2. Kelly (1961) 
3. Roufs (1972) 

Critical duration 
1. Graham and Kemp (1938) 
2. Keller (1941) (2 subjects) 
3. Herrick (1956) 

4. Roufs (1972) 

Mean + SD 

Mean + SD 

0.16 0.97 
0.09 0.92 
0.17 0.98 
0.10 0.94 
0.17 0.93 
0.16 0.99 
0.13 0.96 

0.14 4- 0.03 

0.10 0.99 
0.12 0.99 
0.13 0.96 
0.17 0.97 
0.15 0.94 
0.22 0.96 
0.18 0.99 
0.15 0.95 

0.15 + 0.04 

The values were obtained as coefficients of linear regression when 
fitting the data in log-log form [equation (9); fits restricted to 
luminances ~< 3.1 log td]. The degree of explanation is > 92% in all 
cases, showing that the fits were fair to excellent. The time scale 
criterion in flicker experiments was the "cutoff frequency" defined 
by Roufs (1972). Unless otherwise noted, each value refers to one 
subject. 

N u n n ,  M e i s t e r  & B a y l o r ,  1990).  T h i s  r e su l t ,  h o w e v e r ,  is 

o p e n  to  t h e  s a m e  o b j e c t i o n s  as  e x p r e s s e d  a b o v e  f o r  rods .  

H o o d  a n d  B i r c h  ( 1 9 9 3 b ) ,  s t u d y i n g  t h e  h u m a n  c o n e  

E R G  a - w a v e ,  f o u n d  t h a t  t h e  e a r l y  r ise  o f  r e s p o n s e s  to  

a f ixed f l a sh  i n t e n s i t y  s t a y e d  v i r t u a l l y  u n c h a n g e d  o v e r  a 

s u b s t a n t i a l  r a n g e  o f  b a c k g r o u n d  in t ens i t i e s .  I f  i t  is 

a c c e p t e d  t h a t  h u m a n  c o n e s  d o  h a v e  s ens i t i v i t y  a d a p -  

t a t i o n ,  t he  i n v a r i a n c e  o f  t h e  e a r l y  r ise  n e c e s s a r i l y  imp l i -  

c a t e s  a n  a d a p t a t i o n  m e c h a n i s m  c o u p l e d  to  t i m e  sca le  

c h a n g e s  (see a b o v e ) .  I t  t h e n  a p p e a r s  l ike ly  t h a t  t he  

" p h o t o r e c e p t o r - l i k e "  a c c e l e r a t i o n  o f  t i m e  sca le  in  h u -  

m a n  f o v e a l  v i s i o n  ( T a b l e  2) i n d e e d  o r i g i n a t e s  l a rge ly  in 

t h e  c o n e s .  
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